diff options
Diffstat (limited to 'lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp')
-rw-r--r-- | lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp | 262 |
1 files changed, 1 insertions, 261 deletions
diff --git a/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp b/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp index cc9a3d5722..8fe619eaaf 100644 --- a/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp +++ b/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp @@ -14,19 +14,18 @@ #define DEBUG_TYPE "function-lowering-info" #include "FunctionLoweringInfo.h" -#include "llvm/CallingConv.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/IntrinsicInst.h" #include "llvm/LLVMContext.h" #include "llvm/Module.h" +#include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" -#include "llvm/Analysis/DebugInfo.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetFrameInfo.h" @@ -34,92 +33,12 @@ #include "llvm/Target/TargetIntrinsicInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetOptions.h" -#include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" -#include "llvm/Support/raw_ostream.h" #include <algorithm> using namespace llvm; -/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence -/// of insertvalue or extractvalue indices that identify a member, return -/// the linearized index of the start of the member. -/// -unsigned llvm::ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty, - const unsigned *Indices, - const unsigned *IndicesEnd, - unsigned CurIndex) { - // Base case: We're done. - if (Indices && Indices == IndicesEnd) - return CurIndex; - - // Given a struct type, recursively traverse the elements. - if (const StructType *STy = dyn_cast<StructType>(Ty)) { - for (StructType::element_iterator EB = STy->element_begin(), - EI = EB, - EE = STy->element_end(); - EI != EE; ++EI) { - if (Indices && *Indices == unsigned(EI - EB)) - return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex); - CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex); - } - return CurIndex; - } - // Given an array type, recursively traverse the elements. - else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { - const Type *EltTy = ATy->getElementType(); - for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { - if (Indices && *Indices == i) - return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex); - CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex); - } - return CurIndex; - } - // We haven't found the type we're looking for, so keep searching. - return CurIndex + 1; -} - -/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of -/// EVTs that represent all the individual underlying -/// non-aggregate types that comprise it. -/// -/// If Offsets is non-null, it points to a vector to be filled in -/// with the in-memory offsets of each of the individual values. -/// -void llvm::ComputeValueVTs(const TargetLowering &TLI, const Type *Ty, - SmallVectorImpl<EVT> &ValueVTs, - SmallVectorImpl<uint64_t> *Offsets, - uint64_t StartingOffset) { - // Given a struct type, recursively traverse the elements. - if (const StructType *STy = dyn_cast<StructType>(Ty)) { - const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy); - for (StructType::element_iterator EB = STy->element_begin(), - EI = EB, - EE = STy->element_end(); - EI != EE; ++EI) - ComputeValueVTs(TLI, *EI, ValueVTs, Offsets, - StartingOffset + SL->getElementOffset(EI - EB)); - return; - } - // Given an array type, recursively traverse the elements. - if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { - const Type *EltTy = ATy->getElementType(); - uint64_t EltSize = TLI.getTargetData()->getTypeAllocSize(EltTy); - for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) - ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets, - StartingOffset + i * EltSize); - return; - } - // Interpret void as zero return values. - if (Ty->isVoidTy()) - return; - // Base case: we can get an EVT for this LLVM IR type. - ValueVTs.push_back(TLI.getValueType(Ty)); - if (Offsets) - Offsets->push_back(StartingOffset); -} - /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by /// PHI nodes or outside of the basic block that defines it, or used by a /// switch or atomic instruction, which may expand to multiple basic blocks. @@ -285,24 +204,6 @@ unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) { return FirstReg; } -/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. -GlobalVariable *llvm::ExtractTypeInfo(Value *V) { - V = V->stripPointerCasts(); - GlobalVariable *GV = dyn_cast<GlobalVariable>(V); - - if (GV && GV->getName() == ".llvm.eh.catch.all.value") { - assert(GV->hasInitializer() && - "The EH catch-all value must have an initializer"); - Value *Init = GV->getInitializer(); - GV = dyn_cast<GlobalVariable>(Init); - if (!GV) V = cast<ConstantPointerNull>(Init); - } - - assert((GV || isa<ConstantPointerNull>(V)) && - "TypeInfo must be a global variable or NULL"); - return GV; -} - /// AddCatchInfo - Extract the personality and type infos from an eh.selector /// call, and add them to the specified machine basic block. void llvm::AddCatchInfo(const CallInst &I, MachineModuleInfo *MMI, @@ -370,164 +271,3 @@ void llvm::CopyCatchInfo(const BasicBlock *SrcBB, const BasicBlock *DestBB, #endif } } - -/// hasInlineAsmMemConstraint - Return true if the inline asm instruction being -/// processed uses a memory 'm' constraint. -bool -llvm::hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos, - const TargetLowering &TLI) { - for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { - InlineAsm::ConstraintInfo &CI = CInfos[i]; - for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { - TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); - if (CType == TargetLowering::C_Memory) - return true; - } - - // Indirect operand accesses access memory. - if (CI.isIndirect) - return true; - } - - return false; -} - -/// getFCmpCondCode - Return the ISD condition code corresponding to -/// the given LLVM IR floating-point condition code. This includes -/// consideration of global floating-point math flags. -/// -ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { - ISD::CondCode FPC, FOC; - switch (Pred) { - case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break; - case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break; - case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break; - case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break; - case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break; - case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break; - case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break; - case FCmpInst::FCMP_ORD: FOC = FPC = ISD::SETO; break; - case FCmpInst::FCMP_UNO: FOC = FPC = ISD::SETUO; break; - case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break; - case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break; - case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break; - case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break; - case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break; - case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break; - case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break; - default: - llvm_unreachable("Invalid FCmp predicate opcode!"); - FOC = FPC = ISD::SETFALSE; - break; - } - if (FiniteOnlyFPMath()) - return FOC; - else - return FPC; -} - -/// getICmpCondCode - Return the ISD condition code corresponding to -/// the given LLVM IR integer condition code. -/// -ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { - switch (Pred) { - case ICmpInst::ICMP_EQ: return ISD::SETEQ; - case ICmpInst::ICMP_NE: return ISD::SETNE; - case ICmpInst::ICMP_SLE: return ISD::SETLE; - case ICmpInst::ICMP_ULE: return ISD::SETULE; - case ICmpInst::ICMP_SGE: return ISD::SETGE; - case ICmpInst::ICMP_UGE: return ISD::SETUGE; - case ICmpInst::ICMP_SLT: return ISD::SETLT; - case ICmpInst::ICMP_ULT: return ISD::SETULT; - case ICmpInst::ICMP_SGT: return ISD::SETGT; - case ICmpInst::ICMP_UGT: return ISD::SETUGT; - default: - llvm_unreachable("Invalid ICmp predicate opcode!"); - return ISD::SETNE; - } -} - -/// Test if the given instruction is in a position to be optimized -/// with a tail-call. This roughly means that it's in a block with -/// a return and there's nothing that needs to be scheduled -/// between it and the return. -/// -/// This function only tests target-independent requirements. -bool llvm::isInTailCallPosition(ImmutableCallSite CS, Attributes CalleeRetAttr, - const TargetLowering &TLI) { - const Instruction *I = CS.getInstruction(); - const BasicBlock *ExitBB = I->getParent(); - const TerminatorInst *Term = ExitBB->getTerminator(); - const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); - const Function *F = ExitBB->getParent(); - - // The block must end in a return statement or unreachable. - // - // FIXME: Decline tailcall if it's not guaranteed and if the block ends in - // an unreachable, for now. The way tailcall optimization is currently - // implemented means it will add an epilogue followed by a jump. That is - // not profitable. Also, if the callee is a special function (e.g. - // longjmp on x86), it can end up causing miscompilation that has not - // been fully understood. - if (!Ret && - (!GuaranteedTailCallOpt || !isa<UnreachableInst>(Term))) return false; - - // If I will have a chain, make sure no other instruction that will have a - // chain interposes between I and the return. - if (I->mayHaveSideEffects() || I->mayReadFromMemory() || - !I->isSafeToSpeculativelyExecute()) - for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ; - --BBI) { - if (&*BBI == I) - break; - // Debug info intrinsics do not get in the way of tail call optimization. - if (isa<DbgInfoIntrinsic>(BBI)) - continue; - if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || - !BBI->isSafeToSpeculativelyExecute()) - return false; - } - - // If the block ends with a void return or unreachable, it doesn't matter - // what the call's return type is. - if (!Ret || Ret->getNumOperands() == 0) return true; - - // If the return value is undef, it doesn't matter what the call's - // return type is. - if (isa<UndefValue>(Ret->getOperand(0))) return true; - - // Conservatively require the attributes of the call to match those of - // the return. Ignore noalias because it doesn't affect the call sequence. - unsigned CallerRetAttr = F->getAttributes().getRetAttributes(); - if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias) - return false; - - // It's not safe to eliminate the sign / zero extension of the return value. - if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt)) - return false; - - // Otherwise, make sure the unmodified return value of I is the return value. - for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ; - U = dyn_cast<Instruction>(U->getOperand(0))) { - if (!U) - return false; - if (!U->hasOneUse()) - return false; - if (U == I) - break; - // Check for a truly no-op truncate. - if (isa<TruncInst>(U) && - TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType())) - continue; - // Check for a truly no-op bitcast. - if (isa<BitCastInst>(U) && - (U->getOperand(0)->getType() == U->getType() || - (U->getOperand(0)->getType()->isPointerTy() && - U->getType()->isPointerTy()))) - continue; - // Otherwise it's not a true no-op. - return false; - } - - return true; -} |