diff options
Diffstat (limited to 'lib/CodeGen/ModuloScheduling/ModuloScheduling.cpp')
-rw-r--r-- | lib/CodeGen/ModuloScheduling/ModuloScheduling.cpp | 1967 |
1 files changed, 0 insertions, 1967 deletions
diff --git a/lib/CodeGen/ModuloScheduling/ModuloScheduling.cpp b/lib/CodeGen/ModuloScheduling/ModuloScheduling.cpp deleted file mode 100644 index ffb3404ff8..0000000000 --- a/lib/CodeGen/ModuloScheduling/ModuloScheduling.cpp +++ /dev/null @@ -1,1967 +0,0 @@ -//===-- ModuloScheduling.cpp - ModuloScheduling ----------------*- C++ -*-===// -// -// The LLVM Compiler Infrastructure -// -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This ModuloScheduling pass is based on the Swing Modulo Scheduling -// algorithm. -// -//===----------------------------------------------------------------------===// - -#define DEBUG_TYPE "ModuloSched" - -#include "ModuloScheduling.h" -#include "llvm/Instructions.h" -#include "llvm/Function.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/Passes.h" -#include "llvm/Support/CFG.h" -#include "llvm/Target/TargetSchedInfo.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/GraphWriter.h" -#include "llvm/ADT/StringExtras.h" -#include <cmath> -#include <algorithm> -#include <fstream> -#include <sstream> -#include <utility> -#include <vector> -#include "../../Target/SparcV9/MachineCodeForInstruction.h" -#include "../../Target/SparcV9/SparcV9TmpInstr.h" -#include "../../Target/SparcV9/SparcV9Internals.h" -#include "../../Target/SparcV9/SparcV9RegisterInfo.h" -using namespace llvm; - -/// Create ModuloSchedulingPass -/// -FunctionPass *llvm::createModuloSchedulingPass(TargetMachine & targ) { - DEBUG(std::cerr << "Created ModuloSchedulingPass\n"); - return new ModuloSchedulingPass(targ); -} - - -//Graph Traits for printing out the dependence graph -template<typename GraphType> -static void WriteGraphToFile(std::ostream &O, const std::string &GraphName, - const GraphType >) { - std::string Filename = GraphName + ".dot"; - O << "Writing '" << Filename << "'..."; - std::ofstream F(Filename.c_str()); - - if (F.good()) - WriteGraph(F, GT); - else - O << " error opening file for writing!"; - O << "\n"; -}; - -//Graph Traits for printing out the dependence graph -namespace llvm { - - template<> - struct DOTGraphTraits<MSchedGraph*> : public DefaultDOTGraphTraits { - static std::string getGraphName(MSchedGraph *F) { - return "Dependence Graph"; - } - - static std::string getNodeLabel(MSchedGraphNode *Node, MSchedGraph *Graph) { - if (Node->getInst()) { - std::stringstream ss; - ss << *(Node->getInst()); - return ss.str(); //((MachineInstr*)Node->getInst()); - } - else - return "No Inst"; - } - static std::string getEdgeSourceLabel(MSchedGraphNode *Node, - MSchedGraphNode::succ_iterator I) { - //Label each edge with the type of dependence - std::string edgelabel = ""; - switch (I.getEdge().getDepOrderType()) { - - case MSchedGraphEdge::TrueDep: - edgelabel = "True"; - break; - - case MSchedGraphEdge::AntiDep: - edgelabel = "Anti"; - break; - - case MSchedGraphEdge::OutputDep: - edgelabel = "Output"; - break; - - default: - edgelabel = "Unknown"; - break; - } - - //FIXME - int iteDiff = I.getEdge().getIteDiff(); - std::string intStr = "(IteDiff: "; - intStr += itostr(iteDiff); - - intStr += ")"; - edgelabel += intStr; - - return edgelabel; - } - }; -} - -/// ModuloScheduling::runOnFunction - main transformation entry point -/// The Swing Modulo Schedule algorithm has three basic steps: -/// 1) Computation and Analysis of the dependence graph -/// 2) Ordering of the nodes -/// 3) Scheduling -/// -bool ModuloSchedulingPass::runOnFunction(Function &F) { - - bool Changed = false; - - DEBUG(std::cerr << "Creating ModuloSchedGraph for each valid BasicBlock in " + F.getName() + "\n"); - - //Get MachineFunction - MachineFunction &MF = MachineFunction::get(&F); - - //Worklist - std::vector<MachineBasicBlock*> Worklist; - - //Iterate over BasicBlocks and put them into our worklist if they are valid - for (MachineFunction::iterator BI = MF.begin(); BI != MF.end(); ++BI) - if(MachineBBisValid(BI)) - Worklist.push_back(&*BI); - - DEBUG(if(Worklist.size() == 0) std::cerr << "No single basic block loops in function to ModuloSchedule\n"); - - //Iterate over the worklist and perform scheduling - for(std::vector<MachineBasicBlock*>::iterator BI = Worklist.begin(), - BE = Worklist.end(); BI != BE; ++BI) { - - MSchedGraph *MSG = new MSchedGraph(*BI, target); - - //Write Graph out to file - DEBUG(WriteGraphToFile(std::cerr, F.getName(), MSG)); - - //Print out BB for debugging - DEBUG(std::cerr << "ModuloScheduling BB: \n"; (*BI)->print(std::cerr)); - - //Calculate Resource II - int ResMII = calculateResMII(*BI); - - //Calculate Recurrence II - int RecMII = calculateRecMII(MSG, ResMII); - - //Our starting initiation interval is the maximum of RecMII and ResMII - II = std::max(RecMII, ResMII); - - //Print out II, RecMII, and ResMII - DEBUG(std::cerr << "II starts out as " << II << " ( RecMII=" << RecMII << "and ResMII=" << ResMII << "\n"); - - //Calculate Node Properties - calculateNodeAttributes(MSG, ResMII); - - //Dump node properties if in debug mode - DEBUG(for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), - E = nodeToAttributesMap.end(); I !=E; ++I) { - std::cerr << "Node: " << *(I->first) << " ASAP: " << I->second.ASAP << " ALAP: " - << I->second.ALAP << " MOB: " << I->second.MOB << " Depth: " << I->second.depth - << " Height: " << I->second.height << "\n"; - }); - - //Put nodes in order to schedule them - computePartialOrder(); - - //Dump out partial order - DEBUG(for(std::vector<std::vector<MSchedGraphNode*> >::iterator I = partialOrder.begin(), - E = partialOrder.end(); I !=E; ++I) { - std::cerr << "Start set in PO\n"; - for(std::vector<MSchedGraphNode*>::iterator J = I->begin(), JE = I->end(); J != JE; ++J) - std::cerr << "PO:" << **J << "\n"; - }); - - //Place nodes in final order - orderNodes(); - - //Dump out order of nodes - DEBUG(for(std::vector<MSchedGraphNode*>::iterator I = FinalNodeOrder.begin(), E = FinalNodeOrder.end(); I != E; ++I) { - std::cerr << "FO:" << **I << "\n"; - }); - - //Finally schedule nodes - computeSchedule(); - - //Print out final schedule - DEBUG(schedule.print(std::cerr)); - - - //Final scheduling step is to reconstruct the loop - reconstructLoop(*BI); - - //Print out new loop - - - //Clear out our maps for the next basic block that is processed - nodeToAttributesMap.clear(); - partialOrder.clear(); - recurrenceList.clear(); - FinalNodeOrder.clear(); - schedule.clear(); - - //Clean up. Nuke old MachineBB and llvmBB - //BasicBlock *llvmBB = (BasicBlock*) (*BI)->getBasicBlock(); - //Function *parent = (Function*) llvmBB->getParent(); - //Should't std::find work?? - //parent->getBasicBlockList().erase(std::find(parent->getBasicBlockList().begin(), parent->getBasicBlockList().end(), *llvmBB)); - //parent->getBasicBlockList().erase(llvmBB); - - //delete(llvmBB); - //delete(*BI); - } - - - return Changed; -} - - -/// This function checks if a Machine Basic Block is valid for modulo -/// scheduling. This means that it has no control flow (if/else or -/// calls) in the block. Currently ModuloScheduling only works on -/// single basic block loops. -bool ModuloSchedulingPass::MachineBBisValid(const MachineBasicBlock *BI) { - - bool isLoop = false; - - //Check first if its a valid loop - for(succ_const_iterator I = succ_begin(BI->getBasicBlock()), - E = succ_end(BI->getBasicBlock()); I != E; ++I) { - if (*I == BI->getBasicBlock()) // has single block loop - isLoop = true; - } - - if(!isLoop) - return false; - - //Get Target machine instruction info - const TargetInstrInfo *TMI = target.getInstrInfo(); - - //Check each instruction and look for calls - for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) { - //Get opcode to check instruction type - MachineOpCode OC = I->getOpcode(); - if(TMI->isCall(OC)) - return false; - - } - return true; -} - -//ResMII is calculated by determining the usage count for each resource -//and using the maximum. -//FIXME: In future there should be a way to get alternative resources -//for each instruction -int ModuloSchedulingPass::calculateResMII(const MachineBasicBlock *BI) { - - const TargetInstrInfo *mii = target.getInstrInfo(); - const TargetSchedInfo *msi = target.getSchedInfo(); - - int ResMII = 0; - - //Map to keep track of usage count of each resource - std::map<unsigned, unsigned> resourceUsageCount; - - for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) { - - //Get resource usage for this instruction - InstrRUsage rUsage = msi->getInstrRUsage(I->getOpcode()); - std::vector<std::vector<resourceId_t> > resources = rUsage.resourcesByCycle; - - //Loop over resources in each cycle and increments their usage count - for(unsigned i=0; i < resources.size(); ++i) - for(unsigned j=0; j < resources[i].size(); ++j) { - if( resourceUsageCount.find(resources[i][j]) == resourceUsageCount.end()) { - resourceUsageCount[resources[i][j]] = 1; - } - else { - resourceUsageCount[resources[i][j]] = resourceUsageCount[resources[i][j]] + 1; - } - } - } - - //Find maximum usage count - - //Get max number of instructions that can be issued at once. (FIXME) - int issueSlots = msi->maxNumIssueTotal; - - for(std::map<unsigned,unsigned>::iterator RB = resourceUsageCount.begin(), RE = resourceUsageCount.end(); RB != RE; ++RB) { - - //Get the total number of the resources in our cpu - int resourceNum = CPUResource::getCPUResource(RB->first)->maxNumUsers; - - //Get total usage count for this resources - unsigned usageCount = RB->second; - - //Divide the usage count by either the max number we can issue or the number of - //resources (whichever is its upper bound) - double finalUsageCount; - if( resourceNum <= issueSlots) - finalUsageCount = ceil(1.0 * usageCount / resourceNum); - else - finalUsageCount = ceil(1.0 * usageCount / issueSlots); - - - //Only keep track of the max - ResMII = std::max( (int) finalUsageCount, ResMII); - - } - - return ResMII; - -} - -/// calculateRecMII - Calculates the value of the highest recurrence -/// By value we mean the total latency -int ModuloSchedulingPass::calculateRecMII(MSchedGraph *graph, int MII) { - std::vector<MSchedGraphNode*> vNodes; - //Loop over all nodes in the graph - for(MSchedGraph::iterator I = graph->begin(), E = graph->end(); I != E; ++I) { - findAllReccurrences(I->second, vNodes, MII); - vNodes.clear(); - } - - int RecMII = 0; - - for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::iterator I = recurrenceList.begin(), E=recurrenceList.end(); I !=E; ++I) { - DEBUG(for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) { - std::cerr << **N << "\n"; - }); - RecMII = std::max(RecMII, I->first); - } - - return MII; -} - -/// calculateNodeAttributes - The following properties are calculated for -/// each node in the dependence graph: ASAP, ALAP, Depth, Height, and -/// MOB. -void ModuloSchedulingPass::calculateNodeAttributes(MSchedGraph *graph, int MII) { - - //Loop over the nodes and add them to the map - for(MSchedGraph::iterator I = graph->begin(), E = graph->end(); I != E; ++I) { - //Assert if its already in the map - assert(nodeToAttributesMap.find(I->second) == nodeToAttributesMap.end() && "Node attributes are already in the map"); - - //Put into the map with default attribute values - nodeToAttributesMap[I->second] = MSNodeAttributes(); - } - - //Create set to deal with reccurrences - std::set<MSchedGraphNode*> visitedNodes; - - //Now Loop over map and calculate the node attributes - for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { - calculateASAP(I->first, MII, (MSchedGraphNode*) 0); - visitedNodes.clear(); - } - - int maxASAP = findMaxASAP(); - //Calculate ALAP which depends on ASAP being totally calculated - for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { - calculateALAP(I->first, MII, maxASAP, (MSchedGraphNode*) 0); - visitedNodes.clear(); - } - - //Calculate MOB which depends on ASAP being totally calculated, also do depth and height - for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { - (I->second).MOB = std::max(0,(I->second).ALAP - (I->second).ASAP); - - DEBUG(std::cerr << "MOB: " << (I->second).MOB << " (" << *(I->first) << ")\n"); - calculateDepth(I->first, (MSchedGraphNode*) 0); - calculateHeight(I->first, (MSchedGraphNode*) 0); - } - - -} - -/// ignoreEdge - Checks to see if this edge of a recurrence should be ignored or not -bool ModuloSchedulingPass::ignoreEdge(MSchedGraphNode *srcNode, MSchedGraphNode *destNode) { - if(destNode == 0 || srcNode ==0) - return false; - - bool findEdge = edgesToIgnore.count(std::make_pair(srcNode, destNode->getInEdgeNum(srcNode))); - - return findEdge; -} - - -/// calculateASAP - Calculates the -int ModuloSchedulingPass::calculateASAP(MSchedGraphNode *node, int MII, MSchedGraphNode *destNode) { - - DEBUG(std::cerr << "Calculating ASAP for " << *node << "\n"); - - //Get current node attributes - MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second; - - if(attributes.ASAP != -1) - return attributes.ASAP; - - int maxPredValue = 0; - - //Iterate over all of the predecessors and find max - for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) { - - //Only process if we are not ignoring the edge - if(!ignoreEdge(*P, node)) { - int predASAP = -1; - predASAP = calculateASAP(*P, MII, node); - - assert(predASAP != -1 && "ASAP has not been calculated"); - int iteDiff = node->getInEdge(*P).getIteDiff(); - - int currentPredValue = predASAP + (*P)->getLatency() - (iteDiff * MII); - DEBUG(std::cerr << "pred ASAP: " << predASAP << ", iteDiff: " << iteDiff << ", PredLatency: " << (*P)->getLatency() << ", Current ASAP pred: " << currentPredValue << "\n"); - maxPredValue = std::max(maxPredValue, currentPredValue); - } - } - - attributes.ASAP = maxPredValue; - - DEBUG(std::cerr << "ASAP: " << attributes.ASAP << " (" << *node << ")\n"); - - return maxPredValue; -} - - -int ModuloSchedulingPass::calculateALAP(MSchedGraphNode *node, int MII, - int maxASAP, MSchedGraphNode *srcNode) { - - DEBUG(std::cerr << "Calculating ALAP for " << *node << "\n"); - - MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second; - - if(attributes.ALAP != -1) - return attributes.ALAP; - - if(node->hasSuccessors()) { - - //Trying to deal with the issue where the node has successors, but - //we are ignoring all of the edges to them. So this is my hack for - //now.. there is probably a more elegant way of doing this (FIXME) - bool processedOneEdge = false; - - //FIXME, set to something high to start - int minSuccValue = 9999999; - - //Iterate over all of the predecessors and fine max - for(MSchedGraphNode::succ_iterator P = node->succ_begin(), - E = node->succ_end(); P != E; ++P) { - - //Only process if we are not ignoring the edge - if(!ignoreEdge(node, *P)) { - processedOneEdge = true; - int succALAP = -1; - succALAP = calculateALAP(*P, MII, maxASAP, node); - - assert(succALAP != -1 && "Successors ALAP should have been caclulated"); - - int iteDiff = P.getEdge().getIteDiff(); - - int currentSuccValue = succALAP - node->getLatency() + iteDiff * MII; - - DEBUG(std::cerr << "succ ALAP: " << succALAP << ", iteDiff: " << iteDiff << ", SuccLatency: " << (*P)->getLatency() << ", Current ALAP succ: " << currentSuccValue << "\n"); - - minSuccValue = std::min(minSuccValue, currentSuccValue); - } - } - - if(processedOneEdge) - attributes.ALAP = minSuccValue; - - else - attributes.ALAP = maxASAP; - } - else - attributes.ALAP = maxASAP; - - DEBUG(std::cerr << "ALAP: " << attributes.ALAP << " (" << *node << ")\n"); - - if(attributes.ALAP < 0) - attributes.ALAP = 0; - - return attributes.ALAP; -} - -int ModuloSchedulingPass::findMaxASAP() { - int maxASAP = 0; - - for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), - E = nodeToAttributesMap.end(); I != E; ++I) - maxASAP = std::max(maxASAP, I->second.ASAP); - return maxASAP; -} - - -int ModuloSchedulingPass::calculateHeight(MSchedGraphNode *node,MSchedGraphNode *srcNode) { - - MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second; - - if(attributes.height != -1) - return attributes.height; - - int maxHeight = 0; - - //Iterate over all of the predecessors and find max - for(MSchedGraphNode::succ_iterator P = node->succ_begin(), - E = node->succ_end(); P != E; ++P) { - - - if(!ignoreEdge(node, *P)) { - int succHeight = calculateHeight(*P, node); - - assert(succHeight != -1 && "Successors Height should have been caclulated"); - - int currentHeight = succHeight + node->getLatency(); - maxHeight = std::max(maxHeight, currentHeight); - } - } - attributes.height = maxHeight; - DEBUG(std::cerr << "Height: " << attributes.height << " (" << *node << ")\n"); - return maxHeight; -} - - -int ModuloSchedulingPass::calculateDepth(MSchedGraphNode *node, - MSchedGraphNode *destNode) { - - MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second; - - if(attributes.depth != -1) - return attributes.depth; - - int maxDepth = 0; - - //Iterate over all of the predecessors and fine max - for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) { - - if(!ignoreEdge(*P, node)) { - int predDepth = -1; - predDepth = calculateDepth(*P, node); - - assert(predDepth != -1 && "Predecessors ASAP should have been caclulated"); - - int currentDepth = predDepth + (*P)->getLatency(); - maxDepth = std::max(maxDepth, currentDepth); - } - } - attributes.depth = maxDepth; - - DEBUG(std::cerr << "Depth: " << attributes.depth << " (" << *node << "*)\n"); - return maxDepth; -} - - - -void ModuloSchedulingPass::addReccurrence(std::vector<MSchedGraphNode*> &recurrence, int II, MSchedGraphNode *srcBENode, MSchedGraphNode *destBENode) { - //Check to make sure that this recurrence is unique - bool same = false; - - - //Loop over all recurrences already in our list - for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::iterator R = recurrenceList.begin(), RE = recurrenceList.end(); R != RE; ++R) { - - bool all_same = true; - //First compare size - if(R->second.size() == recurrence.size()) { - - for(std::vector<MSchedGraphNode*>::const_iterator node = R->second.begin(), end = R->second.end(); node != end; ++node) { - if(std::find(recurrence.begin(), recurrence.end(), *node) == recurrence.end()) { - all_same = all_same && false; - break; - } - else - all_same = all_same && true; - } - if(all_same) { - same = true; - break; - } - } - } - - if(!same) { - srcBENode = recurrence.back(); - destBENode = recurrence.front(); - - //FIXME - if(destBENode->getInEdge(srcBENode).getIteDiff() == 0) { - //DEBUG(std::cerr << "NOT A BACKEDGE\n"); - //find actual backedge HACK HACK - for(unsigned i=0; i< recurrence.size()-1; ++i) { - if(recurrence[i+1]->getInEdge(recurrence[i]).getIteDiff() == 1) { - srcBENode = recurrence[i]; - destBENode = recurrence[i+1]; - break; - } - - } - - } - DEBUG(std::cerr << "Back Edge to Remove: " << *srcBENode << " to " << *destBENode << "\n"); - edgesToIgnore.insert(std::make_pair(srcBENode, destBENode->getInEdgeNum(srcBENode))); - recurrenceList.insert(std::make_pair(II, recurrence)); - } - -} - -void ModuloSchedulingPass::findAllReccurrences(MSchedGraphNode *node, - std::vector<MSchedGraphNode*> &visitedNodes, - int II) { - - if(std::find(visitedNodes.begin(), visitedNodes.end(), node) != visitedNodes.end()) { - std::vector<MSchedGraphNode*> recurrence; - bool first = true; - int delay = 0; - int distance = 0; - int RecMII = II; //Starting value - MSchedGraphNode *last = node; - MSchedGraphNode *srcBackEdge = 0; - MSchedGraphNode *destBackEdge = 0; - - - - for(std::vector<MSchedGraphNode*>::iterator I = visitedNodes.begin(), E = visitedNodes.end(); - I !=E; ++I) { - - if(*I == node) - first = false; - if(first) - continue; - - delay = delay + (*I)->getLatency(); - - if(*I != node) { - int diff = (*I)->getInEdge(last).getIteDiff(); - distance += diff; - if(diff > 0) { - srcBackEdge = last; - destBackEdge = *I; - } - } - - recurrence.push_back(*I); - last = *I; - } - - - - //Get final distance calc - distance += node->getInEdge(last).getIteDiff(); - - - //Adjust II until we get close to the inequality delay - II*distance <= 0 - - int value = delay-(RecMII * distance); - int lastII = II; - while(value <= 0) { - - lastII = RecMII; - RecMII--; - value = delay-(RecMII * distance); - } - - - DEBUG(std::cerr << "Final II for this recurrence: " << lastII << "\n"); - addReccurrence(recurrence, lastII, srcBackEdge, destBackEdge); - assert(distance != 0 && "Recurrence distance should not be zero"); - return; - } - - for(MSchedGraphNode::succ_iterator I = node->succ_begin(), E = node->succ_end(); I != E; ++I) { - visitedNodes.push_back(node); - findAllReccurrences(*I, visitedNodes, II); - visitedNodes.pop_back(); - } -} - - - - - -void ModuloSchedulingPass::computePartialOrder() { - - - //Loop over all recurrences and add to our partial order - //be sure to remove nodes that are already in the partial order in - //a different recurrence and don't add empty recurrences. - for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::reverse_iterator I = recurrenceList.rbegin(), E=recurrenceList.rend(); I !=E; ++I) { - - //Add nodes that connect this recurrence to the previous recurrence - - //If this is the first recurrence in the partial order, add all predecessors - for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) { - - } - - - std::vector<MSchedGraphNode*> new_recurrence; - //Loop through recurrence and remove any nodes already in the partial order - for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) { - bool found = false; - for(std::vector<std::vector<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), PE = partialOrder.end(); PO != PE; ++PO) { - if(std::find(PO->begin(), PO->end(), *N) != PO->end()) - found = true; - } - if(!found) { - new_recurrence.push_back(*N); - - if(partialOrder.size() == 0) - //For each predecessors, add it to this recurrence ONLY if it is not already in it - for(MSchedGraphNode::pred_iterator P = (*N)->pred_begin(), - PE = (*N)->pred_end(); P != PE; ++P) { - - //Check if we are supposed to ignore this edge or not - if(!ignoreEdge(*P, *N)) - //Check if already in this recurrence - if(std::find(I->second.begin(), I->second.end(), *P) == I->second.end()) { - //Also need to check if in partial order - bool predFound = false; - for(std::vector<std::vector<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), PEND = partialOrder.end(); PO != PEND; ++PO) { - if(std::find(PO->begin(), PO->end(), *P) != PO->end()) - predFound = true; - } - - if(!predFound) - if(std::find(new_recurrence.begin(), new_recurrence.end(), *P) == new_recurrence.end()) - new_recurrence.push_back(*P); - - } - } - } - } - - - if(new_recurrence.size() > 0) - partialOrder.push_back(new_recurrence); - } - - //Add any nodes that are not already in the partial order - std::vector<MSchedGraphNode*> lastNodes; - for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { - bool found = false; - //Check if its already in our partial order, if not add it to the final vector - for(std::vector<std::vector<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), PE = partialOrder.end(); PO != PE; ++PO) { - if(std::find(PO->begin(), PO->end(), I->first) != PO->end()) - found = true; - } - if(!found) - lastNodes.push_back(I->first); - } - - if(lastNodes.size() > 0) - partialOrder.push_back(lastNodes); - -} - - -void ModuloSchedulingPass::predIntersect(std::vector<MSchedGraphNode*> &CurrentSet, std::vector<MSchedGraphNode*> &IntersectResult) { - - //Sort CurrentSet so we can use lowerbound - std::sort(CurrentSet.begin(), CurrentSet.end()); - - for(unsigned j=0; j < FinalNodeOrder.size(); ++j) { - for(MSchedGraphNode::pred_iterator P = FinalNodeOrder[j]->pred_begin(), - E = FinalNodeOrder[j]->pred_end(); P != E; ++P) { - - //Check if we are supposed to ignore this edge or not - if(ignoreEdge(*P,FinalNodeOrder[j])) - continue; - - if(std::find(CurrentSet.begin(), - CurrentSet.end(), *P) != CurrentSet.end()) - if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end()) - IntersectResult.push_back(*P); - } - } -} - -void ModuloSchedulingPass::succIntersect(std::vector<MSchedGraphNode*> &CurrentSet, std::vector<MSchedGraphNode*> &IntersectResult) { - - //Sort CurrentSet so we can use lowerbound - std::sort(CurrentSet.begin(), CurrentSet.end()); - - for(unsigned j=0; j < FinalNodeOrder.size(); ++j) { - for(MSchedGraphNode::succ_iterator P = FinalNodeOrder[j]->succ_begin(), - E = FinalNodeOrder[j]->succ_end(); P != E; ++P) { - - //Check if we are supposed to ignore this edge or not - if(ignoreEdge(FinalNodeOrder[j],*P)) - continue; - - if(std::find(CurrentSet.begin(), - CurrentSet.end(), *P) != CurrentSet.end()) - if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end()) - IntersectResult.push_back(*P); - } - } -} - -void dumpIntersection(std::vector<MSchedGraphNode*> &IntersectCurrent) { - std::cerr << "Intersection ("; - for(std::vector<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(), E = IntersectCurrent.end(); I != E; ++I) - std::cerr << **I << ", "; - std::cerr << ")\n"; -} - - - -void ModuloSchedulingPass::orderNodes() { - - int BOTTOM_UP = 0; - int TOP_DOWN = 1; - - //Set default order - int order = BOTTOM_UP; - - - //Loop over all the sets and place them in the final node order - for(std::vector<std::vector<MSchedGraphNode*> >::iterator CurrentSet = partialOrder.begin(), E= partialOrder.end(); CurrentSet != E; ++CurrentSet) { - - DEBUG(std::cerr << "Processing set in S\n"); - DEBUG(dumpIntersection(*CurrentSet)); - - //Result of intersection - std::vector<MSchedGraphNode*> IntersectCurrent; - - predIntersect(*CurrentSet, IntersectCurrent); - - //If the intersection of predecessor and current set is not empty - //sort nodes bottom up - if(IntersectCurrent.size() != 0) { - DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is NOT empty\n"); - order = BOTTOM_UP; - } - //If empty, use successors - else { - DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is empty\n"); - - succIntersect(*CurrentSet, IntersectCurrent); - - //sort top-down - if(IntersectCurrent.size() != 0) { - DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is NOT empty\n"); - order = TOP_DOWN; - } - else { - DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is empty\n"); - //Find node with max ASAP in current Set - MSchedGraphNode *node; - int maxASAP = 0; - DEBUG(std::cerr << "Using current set of size " << CurrentSet->size() << "to find max ASAP\n"); - for(unsigned j=0; j < CurrentSet->size(); ++j) { - //Get node attributes - MSNodeAttributes nodeAttr= nodeToAttributesMap.find((*CurrentSet)[j])->second; - //assert(nodeAttr != nodeToAttributesMap.end() && "Node not in attributes map!"); - DEBUG(std::cerr << "CurrentSet index " << j << "has ASAP: " << nodeAttr.ASAP << "\n"); - if(maxASAP < nodeAttr.ASAP) { - maxASAP = nodeAttr.ASAP; - node = (*CurrentSet)[j]; - } - } - assert(node != 0 && "In node ordering node should not be null"); - IntersectCurrent.push_back(node); - order = BOTTOM_UP; - } - } - - //Repeat until all nodes are put into the final order from current set - while(IntersectCurrent.size() > 0) { - - if(order == TOP_DOWN) { - DEBUG(std::cerr << "Order is TOP DOWN\n"); - - while(IntersectCurrent.size() > 0) { - DEBUG(std::cerr << "Intersection is not empty, so find heighest height\n"); - - int MOB = 0; - int height = 0; - MSchedGraphNode *highestHeightNode = IntersectCurrent[0]; - - //Find node in intersection with highest heigh and lowest MOB - for(std::vector<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(), - E = IntersectCurrent.end(); I != E; ++I) { - - //Get current nodes properties - MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*I)->second; - - if(height < nodeAttr.height) { - highestHeightNode = *I; - height = nodeAttr.height; - MOB = nodeAttr.MOB; - } - else if(height == nodeAttr.height) { - if(MOB > nodeAttr.height) { - highestHeightNode = *I; - height = nodeAttr.height; - MOB = nodeAttr.MOB; - } - } - } - - //Append our node with greatest height to the NodeOrder - if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestHeightNode) == FinalNodeOrder.end()) { - DEBUG(std::cerr << "Adding node to Final Order: " << *highestHeightNode << "\n"); - FinalNodeOrder.push_back(highestHeightNode); - } - - //Remove V from IntersectOrder - IntersectCurrent.erase(std::find(IntersectCurrent.begin(), - IntersectCurrent.end(), highestHeightNode)); - - - //Intersect V's successors with CurrentSet - for(MSchedGraphNode::succ_iterator P = highestHeightNode->succ_begin(), - E = highestHeightNode->succ_end(); P != E; ++P) { - //if(lower_bound(CurrentSet->begin(), - // CurrentSet->end(), *P) != CurrentSet->end()) { - if(std::find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) { - if(ignoreEdge(highestHeightNode, *P)) - continue; - //If not already in Intersect, add - if(std::find(IntersectCurrent.begin(), IntersectCurrent.end(), *P) == IntersectCurrent.end()) - IntersectCurrent.push_back(*P); - } - } - } //End while loop over Intersect Size - - //Change direction - order = BOTTOM_UP; - - //Reset Intersect to reflect changes in OrderNodes - IntersectCurrent.clear(); - predIntersect(*CurrentSet, IntersectCurrent); - - } //End If TOP_DOWN - - //Begin if BOTTOM_UP - else { - DEBUG(std::cerr << "Order is BOTTOM UP\n"); - while(IntersectCurrent.size() > 0) { - DEBUG(std::cerr << "Intersection of size " << IntersectCurrent.size() << ", finding highest depth\n"); - - //dump intersection - DEBUG(dumpIntersection(IntersectCurrent)); - //Get node with highest depth, if a tie, use one with lowest - //MOB - int MOB = 0; - int depth = 0; - MSchedGraphNode *highestDepthNode = IntersectCurrent[0]; - - for(std::vector<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(), - E = IntersectCurrent.end(); I != E; ++I) { - //Find node attribute in graph - MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*I)->second; - - if(depth < nodeAttr.depth) { - highestDepthNode = *I; - depth = nodeAttr.depth; - MOB = nodeAttr.MOB; - } - else if(depth == nodeAttr.depth) { - if(MOB > nodeAttr.MOB) { - highestDepthNode = *I; - depth = nodeAttr.depth; - MOB = nodeAttr.MOB; - } - } - } - - - - //Append highest depth node to the NodeOrder - if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestDepthNode) == FinalNodeOrder.end()) { - DEBUG(std::cerr << "Adding node to Final Order: " << *highestDepthNode << "\n"); - FinalNodeOrder.push_back(highestDepthNode); - } - //Remove heightestDepthNode from IntersectOrder - IntersectCurrent.erase(std::find(IntersectCurrent.begin(), - IntersectCurrent.end(),highestDepthNode)); - - - //Intersect heightDepthNode's pred with CurrentSet - for(MSchedGraphNode::pred_iterator P = highestDepthNode->pred_begin(), - E = highestDepthNode->pred_end(); P != E; ++P) { - //if(lower_bound(CurrentSet->begin(), - // CurrentSet->end(), *P) != CurrentSet->end()) { - if(std::find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) { - - if(ignoreEdge(*P, highestDepthNode)) - continue; - - //If not already in Intersect, add - if(std::find(IntersectCurrent.begin(), - IntersectCurrent.end(), *P) == IntersectCurrent.end()) - IntersectCurrent.push_back(*P); - } - } - - } //End while loop over Intersect Size - - //Change order - order = TOP_DOWN; - - //Reset IntersectCurrent to reflect changes in OrderNodes - IntersectCurrent.clear(); - succIntersect(*CurrentSet, IntersectCurrent); - } //End if BOTTOM_DOWN - - DEBUG(std::cerr << "Current Intersection Size: " << IntersectCurrent.size() << "\n"); - } - //End Wrapping while loop - DEBUG(std::cerr << "Ending Size of Current Set: " << CurrentSet->size() << "\n"); - }//End for over all sets of nodes - - //FIXME: As the algorithm stands it will NEVER add an instruction such as ba (with no - //data dependencies) to the final order. We add this manually. It will always be - //in the last set of S since its not part of a recurrence - //Loop over all the sets and place them in the final node order - std::vector<std::vector<MSchedGraphNode*> > ::reverse_iterator LastSet = partialOrder.rbegin(); - for(std::vector<MSchedGraphNode*>::iterator CurrentNode = LastSet->begin(), LastNode = LastSet->end(); |