aboutsummaryrefslogtreecommitdiff
path: root/lib/Analysis/ScalarEvolution.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Analysis/ScalarEvolution.cpp')
-rw-r--r--lib/Analysis/ScalarEvolution.cpp202
1 files changed, 105 insertions, 97 deletions
diff --git a/lib/Analysis/ScalarEvolution.cpp b/lib/Analysis/ScalarEvolution.cpp
index 436b79dc07..d1f6679a43 100644
--- a/lib/Analysis/ScalarEvolution.cpp
+++ b/lib/Analysis/ScalarEvolution.cpp
@@ -2813,7 +2813,6 @@ ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
const SCEV* BECount = CouldNotCompute;
const SCEV* MaxBECount = CouldNotCompute;
bool CouldNotComputeBECount = false;
- bool CouldNotComputeMaxBECount = false;
for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
BackedgeTakenInfo NewBTI =
ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
@@ -2826,25 +2825,13 @@ ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
} else if (!CouldNotComputeBECount) {
if (BECount == CouldNotCompute)
BECount = NewBTI.Exact;
- else {
- // TODO: More analysis could be done here. For example, a
- // loop with a short-circuiting && operator has an exact count
- // of the min of both sides.
- CouldNotComputeBECount = true;
- BECount = CouldNotCompute;
- }
- }
- if (NewBTI.Max == CouldNotCompute) {
- // We couldn't compute an maximum value for this exit, so
- // we won't be able to compute an maximum value for the loop.
- CouldNotComputeMaxBECount = true;
- MaxBECount = CouldNotCompute;
- } else if (!CouldNotComputeMaxBECount) {
- if (MaxBECount == CouldNotCompute)
- MaxBECount = NewBTI.Max;
else
- MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, NewBTI.Max);
+ BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
}
+ if (MaxBECount == CouldNotCompute)
+ MaxBECount = NewBTI.Max;
+ else if (NewBTI.Max != CouldNotCompute)
+ MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
}
return BackedgeTakenInfo(BECount, MaxBECount);
@@ -2925,9 +2912,7 @@ ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
Value *ExitCond,
BasicBlock *TBB,
BasicBlock *FBB) {
- // Check if the controlling expression for this loop is an and or or. In
- // such cases, an exact backedge-taken count may be infeasible, but a
- // maximum count may still be feasible.
+ // Check if the controlling expression for this loop is an And or Or.
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
if (BO->getOpcode() == Instruction::And) {
// Recurse on the operands of the and.
@@ -3899,88 +3884,111 @@ bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
LoopEntryPredicate->isUnconditional())
continue;
- ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
- if (!ICI) continue;
+ if (isNecessaryCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
+ LoopEntryPredicate->getSuccessor(0) != PredecessorDest))
+ return true;
+ }
- // Now that we found a conditional branch that dominates the loop, check to
- // see if it is the comparison we are looking for.
- Value *PreCondLHS = ICI->getOperand(0);
- Value *PreCondRHS = ICI->getOperand(1);
- ICmpInst::Predicate Cond;
- if (LoopEntryPredicate->getSuccessor(0) == PredecessorDest)
- Cond = ICI->getPredicate();
- else
- Cond = ICI->getInversePredicate();
+ return false;
+}
- if (Cond == Pred)
- ; // An exact match.
- else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE)
- ; // The actual condition is beyond sufficient.
- else
- // Check a few special cases.
- switch (Cond) {
- case ICmpInst::ICMP_UGT:
- if (Pred == ICmpInst::ICMP_ULT) {
- std::swap(PreCondLHS, PreCondRHS);
- Cond = ICmpInst::ICMP_ULT;
- break;
- }
- continue;
- case ICmpInst::ICMP_SGT:
- if (Pred == ICmpInst::ICMP_SLT) {
- std::swap(PreCondLHS, PreCondRHS);
- Cond = ICmpInst::ICMP_SLT;
+/// isNecessaryCond - Test whether the given CondValue value is a condition
+/// which is at least as strict as the one described by Pred, LHS, and RHS.
+bool ScalarEvolution::isNecessaryCond(Value *CondValue,
+ ICmpInst::Predicate Pred,
+ const SCEV *LHS, const SCEV *RHS,
+ bool Inverse) {
+ // Recursivly handle And and Or conditions.
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
+ if (BO->getOpcode() == Instruction::And) {
+ if (!Inverse)
+ return isNecessaryCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
+ isNecessaryCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
+ } else if (BO->getOpcode() == Instruction::Or) {
+ if (Inverse)
+ return isNecessaryCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
+ isNecessaryCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
+ }
+ }
+
+ ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
+ if (!ICI) return false;
+
+ // Now that we found a conditional branch that dominates the loop, check to
+ // see if it is the comparison we are looking for.
+ Value *PreCondLHS = ICI->getOperand(0);
+ Value *PreCondRHS = ICI->getOperand(1);
+ ICmpInst::Predicate Cond;
+ if (Inverse)
+ Cond = ICI->getInversePredicate();
+ else
+ Cond = ICI->getPredicate();
+
+ if (Cond == Pred)
+ ; // An exact match.
+ else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE)
+ ; // The actual condition is beyond sufficient.
+ else
+ // Check a few special cases.
+ switch (Cond) {
+ case ICmpInst::ICMP_UGT:
+ if (Pred == ICmpInst::ICMP_ULT) {
+ std::swap(PreCondLHS, PreCondRHS);
+ Cond = ICmpInst::ICMP_ULT;
+ break;
+ }
+ return false;
+ case ICmpInst::ICMP_SGT:
+ if (Pred == ICmpInst::ICMP_SLT) {
+ std::swap(PreCondLHS, PreCondRHS);
+ Cond = ICmpInst::ICMP_SLT;
+ break;
+ }
+ return false;
+ case ICmpInst::ICMP_NE:
+ // Expressions like (x >u 0) are often canonicalized to (x != 0),
+ // so check for this case by checking if the NE is comparing against
+ // a minimum or maximum constant.
+ if (!ICmpInst::isTrueWhenEqual(Pred))
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) {
+ const APInt &A = CI->getValue();
+ switch (Pred) {
+ case ICmpInst::ICMP_SLT:
+ if (A.isMaxSignedValue()) break;
+ return false;
+ case ICmpInst::ICMP_SGT:
+ if (A.isMinSignedValue()) break;
+ return false;
+ case ICmpInst::ICMP_ULT:
+ if (A.isMaxValue()) break;
+ return false;
+ case ICmpInst::ICMP_UGT:
+ if (A.isMinValue()) break;
+ return false;
+ default:
+ return false;
+ }
+ Cond = ICmpInst::ICMP_NE;
+ // NE is symmetric but the original comparison may not be. Swap
+ // the operands if necessary so that they match below.
+ if (isa<SCEVConstant>(LHS))
+ std::swap(PreCondLHS, PreCondRHS);
break;
}
- continue;
- case ICmpInst::ICMP_NE:
- // Expressions like (x >u 0) are often canonicalized to (x != 0),
- // so check for this case by checking if the NE is comparing against
- // a minimum or maximum constant.
- if (!ICmpInst::isTrueWhenEqual(Pred))
- if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) {
- const APInt &A = CI->getValue();
- switch (Pred) {
- case ICmpInst::ICMP_SLT:
- if (A.isMaxSignedValue()) break;
- continue;
- case ICmpInst::ICMP_SGT:
- if (A.isMinSignedValue()) break;
- continue;
- case ICmpInst::ICMP_ULT:
- if (A.isMaxValue()) break;
- continue;
- case ICmpInst::ICMP_UGT:
- if (A.isMinValue()) break;
- continue;
- default:
- continue;
- }
- Cond = ICmpInst::ICMP_NE;
- // NE is symmetric but the original comparison may not be. Swap
- // the operands if necessary so that they match below.
- if (isa<SCEVConstant>(LHS))
- std::swap(PreCondLHS, PreCondRHS);
- break;
- }
- continue;
- default:
- // We weren't able to reconcile the condition.
- continue;
- }
-
- if (!PreCondLHS->getType()->isInteger()) continue;
+ return false;
+ default:
+ // We weren't able to reconcile the condition.
+ return false;
+ }
- const SCEV* PreCondLHSSCEV = getSCEV(PreCondLHS);
- const SCEV* PreCondRHSSCEV = getSCEV(PreCondRHS);
- if ((HasSameValue(LHS, PreCondLHSSCEV) &&
- HasSameValue(RHS, PreCondRHSSCEV)) ||
- (HasSameValue(LHS, getNotSCEV(PreCondRHSSCEV)) &&
- HasSameValue(RHS, getNotSCEV(PreCondLHSSCEV))))
- return true;
- }
+ if (!PreCondLHS->getType()->isInteger()) return false;
- return false;
+ const SCEV *PreCondLHSSCEV = getSCEV(PreCondLHS);
+ const SCEV *PreCondRHSSCEV = getSCEV(PreCondRHS);
+ return (HasSameValue(LHS, PreCondLHSSCEV) &&
+ HasSameValue(RHS, PreCondRHSSCEV)) ||
+ (HasSameValue(LHS, getNotSCEV(PreCondRHSSCEV)) &&
+ HasSameValue(RHS, getNotSCEV(PreCondLHSSCEV)));
}
/// getBECount - Subtract the end and start values and divide by the step,