diff options
Diffstat (limited to 'include/llvm/IR/Operator.h')
-rw-r--r-- | include/llvm/IR/Operator.h | 478 |
1 files changed, 478 insertions, 0 deletions
diff --git a/include/llvm/IR/Operator.h b/include/llvm/IR/Operator.h new file mode 100644 index 0000000000..879707cd24 --- /dev/null +++ b/include/llvm/IR/Operator.h @@ -0,0 +1,478 @@ +//===-- llvm/Operator.h - Operator utility subclass -------------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines various classes for working with Instructions and +// ConstantExprs. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_IR_OPERATOR_H +#define LLVM_IR_OPERATOR_H + +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Type.h" +#include "llvm/Support/GetElementPtrTypeIterator.h" + +namespace llvm { + +class GetElementPtrInst; +class BinaryOperator; +class ConstantExpr; + +/// Operator - This is a utility class that provides an abstraction for the +/// common functionality between Instructions and ConstantExprs. +/// +class Operator : public User { +private: + // Do not implement any of these. The Operator class is intended to be used + // as a utility, and is never itself instantiated. + void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; + void *operator new(size_t s) LLVM_DELETED_FUNCTION; + Operator() LLVM_DELETED_FUNCTION; + +protected: + // NOTE: Cannot use LLVM_DELETED_FUNCTION because it's not legal to delete + // an overridden method that's not deleted in the base class. Cannot leave + // this unimplemented because that leads to an ODR-violation. + ~Operator(); + +public: + /// getOpcode - Return the opcode for this Instruction or ConstantExpr. + /// + unsigned getOpcode() const { + if (const Instruction *I = dyn_cast<Instruction>(this)) + return I->getOpcode(); + return cast<ConstantExpr>(this)->getOpcode(); + } + + /// getOpcode - If V is an Instruction or ConstantExpr, return its + /// opcode. Otherwise return UserOp1. + /// + static unsigned getOpcode(const Value *V) { + if (const Instruction *I = dyn_cast<Instruction>(V)) + return I->getOpcode(); + if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) + return CE->getOpcode(); + return Instruction::UserOp1; + } + + static inline bool classof(const Instruction *) { return true; } + static inline bool classof(const ConstantExpr *) { return true; } + static inline bool classof(const Value *V) { + return isa<Instruction>(V) || isa<ConstantExpr>(V); + } +}; + +/// OverflowingBinaryOperator - Utility class for integer arithmetic operators +/// which may exhibit overflow - Add, Sub, and Mul. It does not include SDiv, +/// despite that operator having the potential for overflow. +/// +class OverflowingBinaryOperator : public Operator { +public: + enum { + NoUnsignedWrap = (1 << 0), + NoSignedWrap = (1 << 1) + }; + +private: + friend class BinaryOperator; + friend class ConstantExpr; + void setHasNoUnsignedWrap(bool B) { + SubclassOptionalData = + (SubclassOptionalData & ~NoUnsignedWrap) | (B * NoUnsignedWrap); + } + void setHasNoSignedWrap(bool B) { + SubclassOptionalData = + (SubclassOptionalData & ~NoSignedWrap) | (B * NoSignedWrap); + } + +public: + /// hasNoUnsignedWrap - Test whether this operation is known to never + /// undergo unsigned overflow, aka the nuw property. + bool hasNoUnsignedWrap() const { + return SubclassOptionalData & NoUnsignedWrap; + } + + /// hasNoSignedWrap - Test whether this operation is known to never + /// undergo signed overflow, aka the nsw property. + bool hasNoSignedWrap() const { + return (SubclassOptionalData & NoSignedWrap) != 0; + } + + static inline bool classof(const Instruction *I) { + return I->getOpcode() == Instruction::Add || + I->getOpcode() == Instruction::Sub || + I->getOpcode() == Instruction::Mul || + I->getOpcode() == Instruction::Shl; + } + static inline bool classof(const ConstantExpr *CE) { + return CE->getOpcode() == Instruction::Add || + CE->getOpcode() == Instruction::Sub || + CE->getOpcode() == Instruction::Mul || + CE->getOpcode() == Instruction::Shl; + } + static inline bool classof(const Value *V) { + return (isa<Instruction>(V) && classof(cast<Instruction>(V))) || + (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V))); + } +}; + +/// PossiblyExactOperator - A udiv or sdiv instruction, which can be marked as +/// "exact", indicating that no bits are destroyed. +class PossiblyExactOperator : public Operator { +public: + enum { + IsExact = (1 << 0) + }; + +private: + friend class BinaryOperator; + friend class ConstantExpr; + void setIsExact(bool B) { + SubclassOptionalData = (SubclassOptionalData & ~IsExact) | (B * IsExact); + } + +public: + /// isExact - Test whether this division is known to be exact, with + /// zero remainder. + bool isExact() const { + return SubclassOptionalData & IsExact; + } + + static bool isPossiblyExactOpcode(unsigned OpC) { + return OpC == Instruction::SDiv || + OpC == Instruction::UDiv || + OpC == Instruction::AShr || + OpC == Instruction::LShr; + } + static inline bool classof(const ConstantExpr *CE) { + return isPossiblyExactOpcode(CE->getOpcode()); + } + static inline bool classof(const Instruction *I) { + return isPossiblyExactOpcode(I->getOpcode()); + } + static inline bool classof(const Value *V) { + return (isa<Instruction>(V) && classof(cast<Instruction>(V))) || + (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V))); + } +}; + +/// Convenience struct for specifying and reasoning about fast-math flags. +class FastMathFlags { +private: + friend class FPMathOperator; + unsigned Flags; + FastMathFlags(unsigned F) : Flags(F) { } + +public: + enum { + UnsafeAlgebra = (1 << 0), + NoNaNs = (1 << 1), + NoInfs = (1 << 2), + NoSignedZeros = (1 << 3), + AllowReciprocal = (1 << 4) + }; + + FastMathFlags() : Flags(0) + { } + + /// Whether any flag is set + bool any() { return Flags != 0; } + + /// Set all the flags to false + void clear() { Flags = 0; } + + /// Flag queries + bool noNaNs() { return 0 != (Flags & NoNaNs); } + bool noInfs() { return 0 != (Flags & NoInfs); } + bool noSignedZeros() { return 0 != (Flags & NoSignedZeros); } + bool allowReciprocal() { return 0 != (Flags & AllowReciprocal); } + bool unsafeAlgebra() { return 0 != (Flags & UnsafeAlgebra); } + + /// Flag setters + void setNoNaNs() { Flags |= NoNaNs; } + void setNoInfs() { Flags |= NoInfs; } + void setNoSignedZeros() { Flags |= NoSignedZeros; } + void setAllowReciprocal() { Flags |= AllowReciprocal; } + void setUnsafeAlgebra() { + Flags |= UnsafeAlgebra; + setNoNaNs(); + setNoInfs(); + setNoSignedZeros(); + setAllowReciprocal(); + } +}; + + +/// FPMathOperator - Utility class for floating point operations which can have +/// information about relaxed accuracy requirements attached to them. +class FPMathOperator : public Operator { +private: + friend class Instruction; + + void setHasUnsafeAlgebra(bool B) { + SubclassOptionalData = + (SubclassOptionalData & ~FastMathFlags::UnsafeAlgebra) | + (B * FastMathFlags::UnsafeAlgebra); + + // Unsafe algebra implies all the others + if (B) { + setHasNoNaNs(true); + setHasNoInfs(true); + setHasNoSignedZeros(true); + setHasAllowReciprocal(true); + } + } + void setHasNoNaNs(bool B) { + SubclassOptionalData = + (SubclassOptionalData & ~FastMathFlags::NoNaNs) | + (B * FastMathFlags::NoNaNs); + } + void setHasNoInfs(bool B) { + SubclassOptionalData = + (SubclassOptionalData & ~FastMathFlags::NoInfs) | + (B * FastMathFlags::NoInfs); + } + void setHasNoSignedZeros(bool B) { + SubclassOptionalData = + (SubclassOptionalData & ~FastMathFlags::NoSignedZeros) | + (B * FastMathFlags::NoSignedZeros); + } + void setHasAllowReciprocal(bool B) { + SubclassOptionalData = + (SubclassOptionalData & ~FastMathFlags::AllowReciprocal) | + (B * FastMathFlags::AllowReciprocal); + } + + /// Convenience function for setting all the fast-math flags + void setFastMathFlags(FastMathFlags FMF) { + SubclassOptionalData |= FMF.Flags; + } + +public: + /// Test whether this operation is permitted to be + /// algebraically transformed, aka the 'A' fast-math property. + bool hasUnsafeAlgebra() const { + return (SubclassOptionalData & FastMathFlags::UnsafeAlgebra) != 0; + } + + /// Test whether this operation's arguments and results are to be + /// treated as non-NaN, aka the 'N' fast-math property. + bool hasNoNaNs() const { + return (SubclassOptionalData & FastMathFlags::NoNaNs) != 0; + } + + /// Test whether this operation's arguments and results are to be + /// treated as NoN-Inf, aka the 'I' fast-math property. + bool hasNoInfs() const { + return (SubclassOptionalData & FastMathFlags::NoInfs) != 0; + } + + /// Test whether this operation can treat the sign of zero + /// as insignificant, aka the 'S' fast-math property. + bool hasNoSignedZeros() const { + return (SubclassOptionalData & FastMathFlags::NoSignedZeros) != 0; + } + + /// Test whether this operation is permitted to use + /// reciprocal instead of division, aka the 'R' fast-math property. + bool hasAllowReciprocal() const { + return (SubclassOptionalData & FastMathFlags::AllowReciprocal) != 0; + } + + /// Convenience function for getting all the fast-math flags + FastMathFlags getFastMathFlags() const { + return FastMathFlags(SubclassOptionalData); + } + + /// \brief Get the maximum error permitted by this operation in ULPs. An + /// accuracy of 0.0 means that the operation should be performed with the + /// default precision. + float getFPAccuracy() const; + + static inline bool classof(const Instruction *I) { + return I->getType()->isFPOrFPVectorTy(); + } + static inline bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } +}; + + +/// ConcreteOperator - A helper template for defining operators for individual +/// opcodes. +template<typename SuperClass, unsigned Opc> +class ConcreteOperator : public SuperClass { +public: + static inline bool classof(const Instruction *I) { + return I->getOpcode() == Opc; + } + static inline bool classof(const ConstantExpr *CE) { + return CE->getOpcode() == Opc; + } + static inline bool classof(const Value *V) { + return (isa<Instruction>(V) && classof(cast<Instruction>(V))) || + (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V))); + } +}; + +class AddOperator + : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Add> { +}; +class SubOperator + : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Sub> { +}; +class MulOperator + : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Mul> { +}; +class ShlOperator + : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Shl> { +}; + + +class SDivOperator + : public ConcreteOperator<PossiblyExactOperator, Instruction::SDiv> { +}; +class UDivOperator + : public ConcreteOperator<PossiblyExactOperator, Instruction::UDiv> { +}; +class AShrOperator + : public ConcreteOperator<PossiblyExactOperator, Instruction::AShr> { +}; +class LShrOperator + : public ConcreteOperator<PossiblyExactOperator, Instruction::LShr> { +}; + + + +class GEPOperator + : public ConcreteOperator<Operator, Instruction::GetElementPtr> { + enum { + IsInBounds = (1 << 0) + }; + + friend class GetElementPtrInst; + friend class ConstantExpr; + void setIsInBounds(bool B) { + SubclassOptionalData = + (SubclassOptionalData & ~IsInBounds) | (B * IsInBounds); + } + +public: + /// isInBounds - Test whether this is an inbounds GEP, as defined + /// by LangRef.html. + bool isInBounds() const { + return SubclassOptionalData & IsInBounds; + } + + inline op_iterator idx_begin() { return op_begin()+1; } + inline const_op_iterator idx_begin() const { return op_begin()+1; } + inline op_iterator idx_end() { return op_end(); } + inline const_op_iterator idx_end() const { return op_end(); } + + Value *getPointerOperand() { + return getOperand(0); + } + const Value *getPointerOperand() const { + return getOperand(0); + } + static unsigned getPointerOperandIndex() { + return 0U; // get index for modifying correct operand + } + + /// getPointerOperandType - Method to return the pointer operand as a + /// PointerType. + Type *getPointerOperandType() const { + return getPointerOperand()->getType(); + } + + /// getPointerAddressSpace - Method to return the address space of the + /// pointer operand. + unsigned getPointerAddressSpace() const { + return cast<PointerType>(getPointerOperandType())->getAddressSpace(); + } + + unsigned getNumIndices() const { // Note: always non-negative + return getNumOperands() - 1; + } + + bool hasIndices() const { + return getNumOperands() > 1; + } + + /// hasAllZeroIndices - Return true if all of the indices of this GEP are + /// zeros. If so, the result pointer and the first operand have the same + /// value, just potentially different types. + bool hasAllZeroIndices() const { + for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) { + if (ConstantInt *C = dyn_cast<ConstantInt>(I)) + if (C->isZero()) + continue; + return false; + } + return true; + } + + /// hasAllConstantIndices - Return true if all of the indices of this GEP are + /// constant integers. If so, the result pointer and the first operand have + /// a constant offset between them. + bool hasAllConstantIndices() const { + for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) { + if (!isa<ConstantInt>(I)) + return false; + } + return true; + } + + /// \brief Accumulate the constant address offset of this GEP if possible. + /// + /// This routine accepts an APInt into which it will accumulate the constant + /// offset of this GEP if the GEP is in fact constant. If the GEP is not + /// all-constant, it returns false and the value of the offset APInt is + /// undefined (it is *not* preserved!). The APInt passed into this routine + /// must be at least as wide as the IntPtr type for the address space of + /// the base GEP pointer. + bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const { + assert(Offset.getBitWidth() == + DL.getPointerSizeInBits(getPointerAddressSpace()) && + "The offset must have exactly as many bits as our pointer."); + + for (gep_type_iterator GTI = gep_type_begin(this), GTE = gep_type_end(this); + GTI != GTE; ++GTI) { + ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); + if (!OpC) + return false; + if (OpC->isZero()) + continue; + + // Handle a struct index, which adds its field offset to the pointer. + if (StructType *STy = dyn_cast<StructType>(*GTI)) { + unsigned ElementIdx = OpC->getZExtValue(); + const StructLayout *SL = DL.getStructLayout(STy); + Offset += APInt(Offset.getBitWidth(), + SL->getElementOffset(ElementIdx)); + continue; + } + + // For array or vector indices, scale the index by the size of the type. + APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth()); + Offset += Index * APInt(Offset.getBitWidth(), + DL.getTypeAllocSize(GTI.getIndexedType())); + } + return true; + } + +}; + +} // End llvm namespace + +#endif |