aboutsummaryrefslogtreecommitdiff
path: root/docs/GarbageCollection.html
diff options
context:
space:
mode:
Diffstat (limited to 'docs/GarbageCollection.html')
-rw-r--r--docs/GarbageCollection.html1387
1 files changed, 1387 insertions, 0 deletions
diff --git a/docs/GarbageCollection.html b/docs/GarbageCollection.html
new file mode 100644
index 0000000000..d0b651eb64
--- /dev/null
+++ b/docs/GarbageCollection.html
@@ -0,0 +1,1387 @@
+<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
+ "http://www.w3.org/TR/html4/strict.dtd">
+<html>
+<head>
+ <meta http-equiv="Content-Type" Content="text/html; charset=UTF-8" >
+ <title>Accurate Garbage Collection with LLVM</title>
+ <link rel="stylesheet" href="llvm.css" type="text/css">
+ <style type="text/css">
+ .rowhead { text-align: left; background: inherit; }
+ .indent { padding-left: 1em; }
+ .optl { color: #BFBFBF; }
+ </style>
+</head>
+<body>
+
+<div class="doc_title">
+ Accurate Garbage Collection with LLVM
+</div>
+
+<ol>
+ <li><a href="#introduction">Introduction</a>
+ <ul>
+ <li><a href="#feature">Goals and non-goals</a></li>
+ </ul>
+ </li>
+
+ <li><a href="#quickstart">Getting started</a>
+ <ul>
+ <li><a href="#quickstart-compiler">In your compiler</a></li>
+ <li><a href="#quickstart-runtime">In your runtime library</a></li>
+ <li><a href="#shadow-stack">About the shadow stack</a></li>
+ </ul>
+ </li>
+
+ <li><a href="#core">Core support</a>
+ <ul>
+ <li><a href="#gcattr">Specifying GC code generation:
+ <tt>gc "..."</tt></a></li>
+ <li><a href="#gcroot">Identifying GC roots on the stack:
+ <tt>llvm.gcroot</tt></a></li>
+ <li><a href="#barriers">Reading and writing references in the heap</a>
+ <ul>
+ <li><a href="#gcwrite">Write barrier: <tt>llvm.gcwrite</tt></a></li>
+ <li><a href="#gcread">Read barrier: <tt>llvm.gcread</tt></a></li>
+ </ul>
+ </li>
+ </ul>
+ </li>
+
+ <li><a href="#plugin">Compiler plugin interface</a>
+ <ul>
+ <li><a href="#collector-algos">Overview of available features</a></li>
+ <li><a href="#stack-map">Computing stack maps</a></li>
+ <li><a href="#init-roots">Initializing roots to null:
+ <tt>InitRoots</tt></a></li>
+ <li><a href="#custom">Custom lowering of intrinsics: <tt>CustomRoots</tt>,
+ <tt>CustomReadBarriers</tt>, and <tt>CustomWriteBarriers</tt></a></li>
+ <li><a href="#safe-points">Generating safe points:
+ <tt>NeededSafePoints</tt></a></li>
+ <li><a href="#assembly">Emitting assembly code:
+ <tt>GCMetadataPrinter</tt></a></li>
+ </ul>
+ </li>
+
+ <li><a href="#runtime-impl">Implementing a collector runtime</a>
+ <ul>
+ <li><a href="#gcdescriptors">Tracing GC pointers from heap
+ objects</a></li>
+ </ul>
+ </li>
+
+ <li><a href="#references">References</a></li>
+
+</ol>
+
+<div class="doc_author">
+ <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a> and
+ Gordon Henriksen</p>
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section">
+ <a name="introduction">Introduction</a>
+</div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>Garbage collection is a widely used technique that frees the programmer from
+having to know the lifetimes of heap objects, making software easier to produce
+and maintain. Many programming languages rely on garbage collection for
+automatic memory management. There are two primary forms of garbage collection:
+conservative and accurate.</p>
+
+<p>Conservative garbage collection often does not require any special support
+from either the language or the compiler: it can handle non-type-safe
+programming languages (such as C/C++) and does not require any special
+information from the compiler. The
+<a href="http://www.hpl.hp.com/personal/Hans_Boehm/gc/">Boehm collector</a> is
+an example of a state-of-the-art conservative collector.</p>
+
+<p>Accurate garbage collection requires the ability to identify all pointers in
+the program at run-time (which requires that the source-language be type-safe in
+most cases). Identifying pointers at run-time requires compiler support to
+locate all places that hold live pointer variables at run-time, including the
+<a href="#gcroot">processor stack and registers</a>.</p>
+
+<p>Conservative garbage collection is attractive because it does not require any
+special compiler support, but it does have problems. In particular, because the
+conservative garbage collector cannot <i>know</i> that a particular word in the
+machine is a pointer, it cannot move live objects in the heap (preventing the
+use of compacting and generational GC algorithms) and it can occasionally suffer
+from memory leaks due to integer values that happen to point to objects in the
+program. In addition, some aggressive compiler transformations can break
+conservative garbage collectors (though these seem rare in practice).</p>
+
+<p>Accurate garbage collectors do not suffer from any of these problems, but
+they can suffer from degraded scalar optimization of the program. In particular,
+because the runtime must be able to identify and update all pointers active in
+the program, some optimizations are less effective. In practice, however, the
+locality and performance benefits of using aggressive garbage collection
+techniques dominates any low-level losses.</p>
+
+<p>This document describes the mechanisms and interfaces provided by LLVM to
+support accurate garbage collection.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="feature">Goals and non-goals</a>
+</div>
+
+<div class="doc_text">
+
+<p>LLVM's intermediate representation provides <a href="#intrinsics">garbage
+collection intrinsics</a> that offer support for a broad class of
+collector models. For instance, the intrinsics permit:</p>
+
+<ul>
+ <li>semi-space collectors</li>
+ <li>mark-sweep collectors</li>
+ <li>generational collectors</li>
+ <li>reference counting</li>
+ <li>incremental collectors</li>
+ <li>concurrent collectors</li>
+ <li>cooperative collectors</li>
+</ul>
+
+<p>We hope that the primitive support built into the LLVM IR is sufficient to
+support a broad class of garbage collected languages including Scheme, ML, Java,
+C#, Perl, Python, Lua, Ruby, other scripting languages, and more.</p>
+
+<p>However, LLVM does not itself provide a garbage collector&#151;this should
+be part of your language's runtime library. LLVM provides a framework for
+compile time <a href="#plugin">code generation plugins</a>. The role of these
+plugins is to generate code and data structures which conforms to the <em>binary
+interface</em> specified by the <em>runtime library</em>. This is similar to the
+relationship between LLVM and DWARF debugging info, for example. The
+difference primarily lies in the lack of an established standard in the domain
+of garbage collection&#151;thus the plugins.</p>
+
+<p>The aspects of the binary interface with which LLVM's GC support is
+concerned are:</p>
+
+<ul>
+ <li>Creation of GC-safe points within code where collection is allowed to
+ execute safely.</li>
+ <li>Computation of the stack map. For each safe point in the code, object
+ references within the stack frame must be identified so that the
+ collector may traverse and perhaps update them.</li>
+ <li>Write barriers when storing object references to the heap. These are
+ commonly used to optimize incremental scans in generational
+ collectors.</li>
+ <li>Emission of read barriers when loading object references. These are
+ useful for interoperating with concurrent collectors.</li>
+</ul>
+
+<p>There are additional areas that LLVM does not directly address:</p>
+
+<ul>
+ <li>Registration of global roots with the runtime.</li>
+ <li>Registration of stack map entries with the runtime.</li>
+ <li>The functions used by the program to allocate memory, trigger a
+ collection, etc.</li>
+ <li>Computation or compilation of type maps, or registration of them with
+ the runtime. These are used to crawl the heap for object
+ references.</li>
+</ul>
+
+<p>In general, LLVM's support for GC does not include features which can be
+adequately addressed with other features of the IR and does not specify a
+particular binary interface. On the plus side, this means that you should be
+able to integrate LLVM with an existing runtime. On the other hand, it leaves
+a lot of work for the developer of a novel language. However, it's easy to get
+started quickly and scale up to a more sophisticated implementation as your
+compiler matures.</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section">
+ <a name="quickstart">Getting started</a>
+</div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>Using a GC with LLVM implies many things, for example:</p>
+
+<ul>
+ <li>Write a runtime library or find an existing one which implements a GC
+ heap.<ol>
+ <li>Implement a memory allocator.</li>
+ <li>Design a binary interface for the stack map, used to identify
+ references within a stack frame on the machine stack.*</li>
+ <li>Implement a stack crawler to discover functions on the call stack.*</li>
+ <li>Implement a registry for global roots.</li>
+ <li>Design a binary interface for type maps, used to identify references
+ within heap objects.</li>
+ <li>Implement a collection routine bringing together all of the above.</li>
+ </ol></li>
+ <li>Emit compatible code from your compiler.<ul>
+ <li>Initialization in the main function.</li>
+ <li>Use the <tt>gc "..."</tt> attribute to enable GC code generation
+ (or <tt>F.setGC("...")</tt>).</li>
+ <li>Use <tt>@llvm.gcroot</tt> to mark stack roots.</li>
+ <li>Use <tt>@llvm.gcread</tt> and/or <tt>@llvm.gcwrite</tt> to
+ manipulate GC references, if necessary.</li>
+ <li>Allocate memory using the GC allocation routine provided by the
+ runtime library.</li>
+ <li>Generate type maps according to your runtime's binary interface.</li>
+ </ul></li>
+ <li>Write a compiler plugin to interface LLVM with the runtime library.*<ul>
+ <li>Lower <tt>@llvm.gcread</tt> and <tt>@llvm.gcwrite</tt> to appropriate
+ code sequences.*</li>
+ <li>Compile LLVM's stack map to the binary form expected by the
+ runtime.</li>
+ </ul></li>
+ <li>Load the plugin into the compiler. Use <tt>llc -load</tt> or link the
+ plugin statically with your language's compiler.*</li>
+ <li>Link program executables with the runtime.</li>
+</ul>
+
+<p>To help with several of these tasks (those indicated with a *), LLVM
+includes a highly portable, built-in ShadowStack code generator. It is compiled
+into <tt>llc</tt> and works even with the interpreter and C backends.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="quickstart-compiler">In your compiler</a>
+</div>
+
+<div class="doc_text">
+
+<p>To turn the shadow stack on for your functions, first call:</p>
+
+<div class="doc_code"><pre
+>F.setGC("shadow-stack");</pre></div>
+
+<p>for each function your compiler emits. Since the shadow stack is built into
+LLVM, you do not need to load a plugin.</p>
+
+<p>Your compiler must also use <tt>@llvm.gcroot</tt> as documented.
+Don't forget to create a root for each intermediate value that is generated
+when evaluating an expression. In <tt>h(f(), g())</tt>, the result of
+<tt>f()</tt> could easily be collected if evaluating <tt>g()</tt> triggers a
+collection.</p>
+
+<p>There's no need to use <tt>@llvm.gcread</tt> and <tt>@llvm.gcwrite</tt> over
+plain <tt>load</tt> and <tt>store</tt> for now. You will need them when
+switching to a more advanced GC.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="quickstart-runtime">In your runtime</a>
+</div>
+
+<div class="doc_text">
+
+<p>The shadow stack doesn't imply a memory allocation algorithm. A semispace
+collector or building atop <tt>malloc</tt> are great places to start, and can
+be implemented with very little code.</p>
+
+<p>When it comes time to collect, however, your runtime needs to traverse the
+stack roots, and for this it needs to integrate with the shadow stack. Luckily,
+doing so is very simple. (This code is heavily commented to help you
+understand the data structure, but there are only 20 lines of meaningful
+code.)</p>
+
+</div>
+
+<div class="doc_code"><pre
+>/// @brief The map for a single function's stack frame. One of these is
+/// compiled as constant data into the executable for each function.
+///
+/// Storage of metadata values is elided if the %metadata parameter to
+/// @llvm.gcroot is null.
+struct FrameMap {
+ int32_t NumRoots; //&lt; Number of roots in stack frame.
+ int32_t NumMeta; //&lt; Number of metadata entries. May be &lt; NumRoots.
+ const void *Meta[0]; //&lt; Metadata for each root.
+};
+
+/// @brief A link in the dynamic shadow stack. One of these is embedded in the
+/// stack frame of each function on the call stack.
+struct StackEntry {
+ StackEntry *Next; //&lt; Link to next stack entry (the caller's).
+ const FrameMap *Map; //&lt; Pointer to constant FrameMap.
+ void *Roots[0]; //&lt; Stack roots (in-place array).
+};
+
+/// @brief The head of the singly-linked list of StackEntries. Functions push
+/// and pop onto this in their prologue and epilogue.
+///
+/// Since there is only a global list, this technique is not threadsafe.
+StackEntry *llvm_gc_root_chain;
+
+/// @brief Calls Visitor(root, meta) for each GC root on the stack.
+/// root and meta are exactly the values passed to
+/// <tt>@llvm.gcroot</tt>.
+///
+/// Visitor could be a function to recursively mark live objects. Or it
+/// might copy them to another heap or generation.
+///
+/// @param Visitor A function to invoke for every GC root on the stack.
+void visitGCRoots(void (*Visitor)(void **Root, const void *Meta)) {
+ for (StackEntry *R = llvm_gc_root_chain; R; R = R->Next) {
+ unsigned i = 0;
+
+ // For roots [0, NumMeta), the metadata pointer is in the FrameMap.
+ for (unsigned e = R->Map->NumMeta; i != e; ++i)
+ Visitor(&amp;R->Roots[i], R->Map->Meta[i]);
+
+ // For roots [NumMeta, NumRoots), the metadata pointer is null.
+ for (unsigned e = R->Map->NumRoots; i != e; ++i)
+ Visitor(&amp;R->Roots[i], NULL);
+ }
+}</pre></div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="shadow-stack">About the shadow stack</a>
+</div>
+
+<div class="doc_text">
+
+<p>Unlike many GC algorithms which rely on a cooperative code generator to
+compile stack maps, this algorithm carefully maintains a linked list of stack
+roots [<a href="#henderson02">Henderson2002</a>]. This so-called "shadow stack"
+mirrors the machine stack. Maintaining this data structure is slower than using
+a stack map compiled into the executable as constant data, but has a significant
+portability advantage because it requires no special support from the target
+code generator, and does not require tricky platform-specific code to crawl
+the machine stack.</p>
+
+<p>The tradeoff for this simplicity and portability is:</p>
+
+<ul>
+ <li>High overhead per function call.</li>
+ <li>Not thread-safe.</li>
+</ul>
+
+<p>Still, it's an easy way to get started. After your compiler and runtime are
+up and running, writing a <a href="#plugin">plugin</a> will allow you to take
+advantage of <a href="#collector-algos">more advanced GC features</a> of LLVM
+in order to improve performance.</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section">
+ <a name="core">IR features</a><a name="intrinsics"></a>
+</div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>This section describes the garbage collection facilities provided by the
+<a href="LangRef.html">LLVM intermediate representation</a>. The exact behavior
+of these IR features is specified by the binary interface implemented by a
+<a href="#plugin">code generation plugin</a>, not by this document.</p>
+
+<p>These facilities are limited to those strictly necessary; they are not
+intended to be a complete interface to any garbage collector. A program will
+need to interface with the GC library using the facilities provided by that
+program.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="gcattr">Specifying GC code generation: <tt>gc "..."</tt></a>
+</div>
+
+<div class="doc_code"><tt>
+ define <i>ty</i> @<i>name</i>(...) <span style="text-decoration: underline">gc "<i>name</i>"</span> { ...
+</tt></div>
+
+<div class="doc_text">
+
+<p>The <tt>gc</tt> function attribute is used to specify the desired GC style
+to the compiler. Its programmatic equivalent is the <tt>setGC</tt> method of
+<tt>Function</tt>.</p>
+
+<p>Setting <tt>gc "<i>name</i>"</tt> on a function triggers a search for a
+matching code generation plugin "<i>name</i>"; it is that plugin which defines
+the exact nature of the code generated to support GC. If none is found, the
+compiler will raise an error.</p>
+
+<p>Specifying the GC style on a per-function basis allows LLVM to link together
+programs that use different garbage collection algorithms (or none at all).</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="gcroot">Identifying GC roots on the stack: <tt>llvm.gcroot</tt></a>
+</div>
+
+<div class="doc_code"><tt>
+ void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
+</tt></div>
+
+<div class="doc_text">
+
+<p>The <tt>llvm.gcroot</tt> intrinsic is used to inform LLVM that a stack
+variable references an object on the heap and is to be tracked for garbage
+collection. The exact impact on generated code is specified by a <a
+href="#plugin">compiler plugin</a>.</p>
+
+<p>A compiler which uses mem2reg to raise imperative code using <tt>alloca</tt>
+into SSA form need only add a call to <tt>@llvm.gcroot</tt> for those variables
+which a pointers into the GC heap.</p>
+
+<p>It is also important to mark intermediate values with <tt>llvm.gcroot</tt>.
+For example, consider <tt>h(f(), g())</tt>. Beware leaking the result of
+<tt>f()</tt> in the case that <tt>g()</tt> triggers a collection.</p>
+
+<p>The first argument <b>must</b> be a value referring to an alloca instruction
+or a bitcast of an alloca. The second contains a pointer to metadata that
+should be associated with the pointer, and <b>must</b> be a constant or global
+value address. If your target collector uses tags, use a null pointer for
+metadata.</p>
+
+<p>The <tt>%metadata</tt> argument can be used to avoid requiring heap objects
+to have 'isa' pointers or tag bits. [<a href="#appel89">Appel89</a>, <a
+href="#goldberg91">Goldberg91</a>, <a href="#tolmach94">Tolmach94</a>] If
+specified, its value will be tracked along with the location of the pointer in
+the stack frame.</p>
+
+<p>Consider the following fragment of Java code:</p>
+
+<pre>
+ {
+ Object X; // A null-initialized reference to an object
+ ...
+ }
+</pre>
+
+<p>This block (which may be located in the middle of a function or in a loop
+nest), could be compiled to this LLVM code:</p>
+
+<pre>
+Entry:
+ ;; In the entry block for the function, allocate the
+ ;; stack space for X, which is an LLVM pointer.
+ %X = alloca %Object*
+
+ ;; Tell LLVM that the stack space is a stack root.
+ ;; Java has type-tags on objects, so we pass null as metadata.
+ %tmp = bitcast %Object** %X to i8**
+ call void @llvm.gcroot(i8** %X, i8* null)
+ ...
+
+ ;; "CodeBlock" is the block corresponding to the start
+ ;; of the scope above.
+CodeBlock:
+ ;; Java null-initializes pointers.
+ store %Object* null, %Object** %X
+
+ ...
+
+ ;; As the pointer goes out of scope, store a null value into
+ ;; it, to indicate that the value is no longer live.
+ store %Object* null, %Object** %X
+ ...
+</pre>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="barriers">Reading and writing references in the heap</a>
+</div>
+
+<div class="doc_text">
+
+<p>Some collectors need to be informed when the mutator (the program that needs
+garbage collection) either reads a pointer from or writes a pointer to a field
+of a heap object. The code fragments inserted at these points are called
+<em>read barriers</em> and <em>write barriers</em>, respectively. The amount of
+code that needs to be executed is usually quite small and not on the critical
+path of any computation, so the overall performance impact of the barrier is
+tolerable.</p>
+
+<p>Barriers often require access to the <em>object pointer</em> rather than the
+<em>derived pointer</em> (which is a pointer to the field within the
+object). Accordingly, these intrinsics take both pointers as separate arguments
+for completeness. In this snippet, <tt>%object</tt> is the object pointer, and
+<tt>%derived</tt> is the derived pointer:</p>
+
+<blockquote><pre>
+ ;; An array type.
+ %class.Array = type { %class.Object, i32, [0 x %class.Object*] }
+ ...
+
+ ;; Load the object pointer from a gcroot.
+ %object = load %class.Array** %object_addr
+
+ ;; Compute the derived pointer.
+ %derived = getelementptr %object, i32 0, i32 2, i32 %n</pre></blockquote>
+
+<p>LLVM does not enforce this relationship between the object and derived
+pointer (although a <a href="#plugin">plugin</a> might). However, it would be
+an unusual collector that violated it.</p>
+
+<p>The use of these intrinsics is naturally optional if the target GC does
+require the corresponding barrier. Such a GC plugin will replace the intrinsic
+calls with the corresponding <tt>load</tt> or <tt>store</tt> instruction if they
+are used.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsubsection">
+ <a name="gcwrite">Write barrier: <tt>llvm.gcwrite</tt></a>
+</div>
+
+<div class="doc_code"><tt>
+void @llvm.gcwrite(i8* %value, i8* %object, i8** %derived)
+</tt></div>
+
+<div class="doc_text">
+
+<p>For write barriers, LLVM provides the <tt>llvm.gcwrite</tt> intrinsic
+function. It has exactly the same semantics as a non-volatile <tt>store</tt> to
+the derived pointer (the third argument). The exact code generated is specified
+by a <a href="#plugin">compiler plugin</a>.</p>
+
+<p>Many important algorithms require write barriers, including generational
+and concurrent collectors. Additionally, write barriers could be used to
+implement reference counting.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsubsection">
+ <a name="gcread">Read barrier: <tt>llvm.gcread</tt></a>
+</div>
+
+<div class="doc_code"><tt>
+i8* @llvm.gcread(i8* %object, i8** %derived)<br>
+</tt></div>
+
+<div class="doc_text">
+
+<p>For read barriers, LLVM provides the <tt>llvm.gcread</tt> intrinsic function.
+It has exactly the same semantics as a non-volatile <tt>load</tt> from the
+derived pointer (the second argument). The exact code generated is specified by
+a <a href="#plugin">compiler plugin</a>.</p>
+
+<p>Read barriers are needed by fewer algorithms than write barriers, and may
+have a greater performance impact since pointer reads are more frequent than
+writes.</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section">
+ <a name="plugin">Implementing a collector plugin</a>
+</div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>User code specifies which GC code generation to use with the <tt>gc</tt>
+function attribute or, equivalently, with the <tt>setGC</tt> method of
+<tt>Function</tt>.</p>
+
+<p>To implement a GC plugin, it is necessary to subclass
+<tt>llvm::GCStrategy</tt>, which can be accomplished in a few lines of
+boilerplate code. LLVM's infrastructure provides access to several important
+algorithms. For an uncontroversial collector, all that remains may be to
+compile LLVM's computed stack map to assembly code (using the binary
+representation expected by the runtime library). This can be accomplished in
+about 100 lines of code.</p>
+
+<p>This is not the appropriate place to implement a garbage collected heap or a
+garbage collector itself. That code should exist in the language's runtime
+library. The compiler plugin is responsible for generating code which
+conforms to the binary interface defined by library, most essentially the
+<a href="#stack-map">stack map</a>.</p>
+
+<p>To subclass <tt>llvm::GCStrategy</tt> and register it with the compiler:</p>
+
+<blockquote><pre>// lib/MyGC/MyGC.cpp - Example LLVM GC plugin
+
+#include "llvm/CodeGen/GCStrategy.h"
+#include "llvm/CodeGen/GCMetadata.h"
+#include "llvm/Support/Compiler.h"
+
+using namespace llvm;
+
+namespace {
+ class VISIBILITY_HIDDEN MyGC : public GCStrategy {
+ public:
+ MyGC() {}
+ };
+
+ GCRegistry::Add&lt;MyGC&gt;
+ X("mygc", "My bespoke garbage collector.");
+}</pre></blockquote>
+
+<p>This boilerplate collector does nothing. More specifically:</p>
+
+<ul>
+ <li><tt>llvm.gcread</tt> calls are replaced with the corresponding
+ <tt>load</tt> instruction.</li>
+ <li><tt>llvm.gcwrite</tt> calls are replaced with the corresponding
+ <tt>store</tt> instruction.</li>
+ <li>No safe points are added to the code.</li>
+ <li>The stack map is not compiled into the executable.</li>
+</ul>
+
+<p>Using the LLVM makefiles (like the <a
+href="http://llvm.org/viewvc/llvm-project/llvm/trunk/projects/sample/">sample
+project</a>), this code can be compiled as a plugin using a simple
+makefile:</p>
+
+<blockquote><pre
+># lib/MyGC/Makefile
+
+LEVEL := ../..
+LIBRARYNAME = <var>MyGC</var>
+LOADABLE_MODULE = 1
+
+include $(LEVEL)/Makefile.common</pre></blockquote>
+
+<p>Once the plugin is compiled, code using it may be compiled using <tt>llc
+-load=<var>MyGC.so</var></tt> (though <var>MyGC.so</var> may have some other
+platform-specific extension):</p>
+
+<blockquote><pre
+>$ cat sample.ll
+define void @f() gc "mygc" {
+entry:
+ ret void
+}
+$ llvm-as &lt; sample.ll | llc -load=MyGC.so</pre></blockquote>
+
+<p>It is also possible to statically link the collector plugin into tools, such
+as a language-specific compiler front-end.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="collector-algos">Overview of available features</a>
+</div>
+
+<div class="doc_text">
+
+<p><tt>GCStrategy</tt> provides a range of features through which a plugin
+may do useful work. Some of these are callbacks, some are algorithms that can
+be enabled, disabled, or customized. This matrix summarizes the supported (and
+planned) features and correlates them with the collection techniques which
+typically require them.</p>
+
+<table>
+ <tr>
+ <th>Algorithm</th>
+ <th>Done</th>
+ <th>shadow stack</th>
+ <th>refcount</th>
+ <th>mark-sweep</th>
+ <th>copying</th>
+ <th>incremental</th>
+ <th>threaded</th>
+ <th>concurrent</th>
+ </tr>
+ <tr>
+ <th class="rowhead"><a href="#stack-map">stack map</a></th>
+ <td>&#10004;</td>
+ <td></td>
+ <td></td>
+ <td>&#10008;</td>
+ <td>&#10008;</td>
+ <td>&#10008;</td>
+ <td>&#10008;</td>
+ <td>&#10008;</td>
+ </tr>
+ <tr>
+ <th class="rowhead"><a href="#init-roots">initialize roots</a></th>
+ <td>&#10004;</td>
+ <td>&#10008;</td>
+ <td>&#10008;</td>
+ <td>&#10008;</td>
+ <td>&#10008;</td>
+ <td>&#10008;</td>
+ <td>&#10008;</td>
+ <td>&#10008;</td>
+ </tr>
+ <tr class="doc_warning">
+ <th class="rowhead">derived pointers</th>
+ <td>NO</td>
+ <td></td>
+ <td></td>
+ <td></td>
+ <td></td>
+ <td></td>
+ <td>&#10008;*</td>
+ <td>&#10008;*</td>
+ </tr>
+ <tr>
+ <th class="rowhead"><em><a href="#custom">custom lowering</a></em></th>
+ <td>&#10004;</td>
+ <th></th>
+ <th></th>
+ <th></th>
+ <th></th>
+ <th></th>
+ <th></th>
+ <th></th>
+ </tr>
+ <tr>
+ <th class="rowhead indent">gcroot</th>
+ <td>&#10004;</td>
+ <td>&#10008;</td>
+ <td>&#10008;</td>
+ <td></td>
+ <td></td>
+ <td></td>
+ <td></td>
+ <td></td>
+ </tr>
+ <tr>
+ <th class="rowhead indent">gcwrite</th>
+ <td>&#10004;</td>
+ <td></td>
+ <td>&#10008;</td>
+ <td></td>
+ <td></td>
+ <td>&#10008;</td>
+ <td></td>
+ <td>&#10008;</td>
+ </tr>
+ <tr>
+ <th class="rowhead indent">gcread</th>
+ <td>&#10004;</td>
+ <td></td>
+ <td></td>
+ <td></td>
+ <td></td>
+ <td></td>
+ <td></td>
+ <td>&#10008;</td>
+ </tr>
+ <tr>
+ <th class="rowhead"><em><a href="#safe-points">safe points</a></em></th>
+ <td></td>
+ <th></th>
+ <th></th>
+ <th></th>
+ <th></th>
+ <th></th>
+ <th></th>
+ <th></th>
+ </tr>
+ <tr>
+ <th class="rowhead indent">in calls</th>
+ <td>&#10004;</td>
+ <td></td>
+ <td></td>
+ <td>&#10008;</td>
+ <td>&#10008;</td>
+ <td>&#10008;</td>
+ <td>&#10008;</td>
+ <td>&#10008;</td>
+ </tr>
+ <tr>
+ <th class="rowhead indent">before calls</th>
+ <td>&#10004;</td>
+ <td></td>
+ <td></td>
+ <td></td>
+ <td></td>
+ <td></td>
+ <td>&#10008;</td>
+ <td>&#10008;</td>
+ </tr>
+ <tr class="doc_warning">
+ <th class="rowhead indent">for loops</th>
+ <td>NO</td>
+ <td></td>
+ <td></td>
+ <td></td>
+ <td></td>
+ <td></td>
+ <td>&#10008;</td>
+ <td>&#10008;</td>
+ </tr>
+ <tr>
+ <th class="rowhead indent">before escape</th>
+ <td>&#10004;</td>
+ <td></td>
+ <td></td>
+ <td></td>
+ <td></td>
+ <td></td>
+ <td>&#10008;</td>
+ <td>&#10008;</td>
+ </tr>
+ <tr class="doc_warning">
+ <th class="rowhead">emit code at safe points</th>
+ <td>NO</td>
+ <td></td>
+ <td></td>
+ <td></td>
+ <td></td>
+ <td></td>
+ <td>&#10008;</td>
+ <td>&#10008;</td>
+ </tr>
+ <tr>
+ <th class="rowhead"><em>output</em></th>
+ <td></td>
+ <th></th>
+ <th></th>
+ <th></th>
+ <th></th>
+ <th></th>
+ <th></th>
+ <th></th>
+ </tr>
+ <tr>
+ <th class="rowhead indent"><a href="#assembly">assembly</a></th>
+ <td>&#10004;</td>
+ <td></td>
+ <td></td>
+ <td>&#10008;</td>
+ <td>&#10008;</td>
+ <td>&#10008;</td>
+ <td>&#10008;</td>
+ <td>&#10008;</td>
+ </tr>
+ <tr class="doc_warning">
+ <th class="rowhead indent">JIT</th>
+ <td>NO</td>
+ <td></td>
+ <td></td>
+ <td class="optl">&#10008;</td>
+ <td class="optl">&#10008;</td>
+ <td class="optl">&#10008;</td>
+ <td class="optl">&#10008;</td>
+ <td class="optl">&#10008;</td>
+ </tr>
+ <tr class="doc_warning">
+ <th class="rowhead indent">obj</th>
+ <td>NO</td>
+ <td></td>
+ <td></td>
+ <td class="optl">&#10008;</td>
+ <td class="optl">&#10008;</td>
+ <td class="optl">&#10008;</td>
+ <td class="optl">&#10008;</td>
+ <td class="optl">&#10008;</td>
+ </tr>
+ <tr class="doc_warning">
+ <th class="rowhead">live analysis</th>
+ <td>NO</td>
+ <td></td>
+ <td></td>
+ <td class="optl">&#10008;</td>
+ <td class="optl">&#10008;</td>
+ <td class="optl">&#10008;</td>
+ <td class="optl">&#10008;</td>
+ <td class="optl">&#10008;</td>
+ </tr>
+ <tr class="doc_warning">
+ <th class="rowhead">register map</th>
+ <td>NO</td>
+ <td></td>
+ <td></td>
+ <td class="optl">&#10008;</td>
+ <td class="optl">&#10008;</td>
+ <td class="optl">&#10008;</td>
+ <td class="optl">&#10008;</td>
+ <td class="optl">&#10008;</td>
+ </tr>
+ <tr>
+ <td colspan="10">
+ <div><span class="doc_warning">*</span> Derived pointers only pose a
+ hazard to copying collectors.</div>
+ <div><span class="optl">&#10008;</span> in gray denotes a feature which
+ could be utilized if available.</div>
+ </td>
+ </tr>
+</table>
+
+<p>To be clear, the collection techniques above are defined as:</p>
+
+<dl>
+ <dt>Shadow Stack</dt>
+ <dd>The mutator carefully maintains a linked list of stack roots.</dd>
+ <dt>Reference Counting</dt>
+ <dd>The mutator maintains a reference count for each object and frees an
+ object when its count falls to zero.</dd>
+ <dt>Mark-Sw