diff options
Diffstat (limited to 'docs/CodeGenerator.rst')
-rw-r--r-- | docs/CodeGenerator.rst | 2428 |
1 files changed, 2428 insertions, 0 deletions
diff --git a/docs/CodeGenerator.rst b/docs/CodeGenerator.rst new file mode 100644 index 0000000000..d1d0231105 --- /dev/null +++ b/docs/CodeGenerator.rst @@ -0,0 +1,2428 @@ +.. _code_generator: + +========================================== +The LLVM Target-Independent Code Generator +========================================== + +.. role:: raw-html(raw) + :format: html + +.. raw:: html + + <style> + .unknown { background-color: #C0C0C0; text-align: center; } + .unknown:before { content: "?" } + .no { background-color: #C11B17 } + .no:before { content: "N" } + .partial { background-color: #F88017 } + .yes { background-color: #0F0; } + .yes:before { content: "Y" } + </style> + +.. contents:: + :local: + +.. warning:: + This is a work in progress. + +Introduction +============ + +The LLVM target-independent code generator is a framework that provides a suite +of reusable components for translating the LLVM internal representation to the +machine code for a specified target---either in assembly form (suitable for a +static compiler) or in binary machine code format (usable for a JIT +compiler). The LLVM target-independent code generator consists of six main +components: + +1. `Abstract target description`_ interfaces which capture important properties + about various aspects of the machine, independently of how they will be used. + These interfaces are defined in ``include/llvm/Target/``. + +2. Classes used to represent the `code being generated`_ for a target. These + classes are intended to be abstract enough to represent the machine code for + *any* target machine. These classes are defined in + ``include/llvm/CodeGen/``. At this level, concepts like "constant pool + entries" and "jump tables" are explicitly exposed. + +3. Classes and algorithms used to represent code as the object file level, the + `MC Layer`_. These classes represent assembly level constructs like labels, + sections, and instructions. At this level, concepts like "constant pool + entries" and "jump tables" don't exist. + +4. `Target-independent algorithms`_ used to implement various phases of native + code generation (register allocation, scheduling, stack frame representation, + etc). This code lives in ``lib/CodeGen/``. + +5. `Implementations of the abstract target description interfaces`_ for + particular targets. These machine descriptions make use of the components + provided by LLVM, and can optionally provide custom target-specific passes, + to build complete code generators for a specific target. Target descriptions + live in ``lib/Target/``. + +6. The target-independent JIT components. The LLVM JIT is completely target + independent (it uses the ``TargetJITInfo`` structure to interface for + target-specific issues. The code for the target-independent JIT lives in + ``lib/ExecutionEngine/JIT``. + +Depending on which part of the code generator you are interested in working on, +different pieces of this will be useful to you. In any case, you should be +familiar with the `target description`_ and `machine code representation`_ +classes. If you want to add a backend for a new target, you will need to +`implement the target description`_ classes for your new target and understand +the `LLVM code representation <LangRef.html>`_. If you are interested in +implementing a new `code generation algorithm`_, it should only depend on the +target-description and machine code representation classes, ensuring that it is +portable. + +Required components in the code generator +----------------------------------------- + +The two pieces of the LLVM code generator are the high-level interface to the +code generator and the set of reusable components that can be used to build +target-specific backends. The two most important interfaces (:raw-html:`<tt>` +`TargetMachine`_ :raw-html:`</tt>` and :raw-html:`<tt>` `TargetData`_ +:raw-html:`</tt>`) are the only ones that are required to be defined for a +backend to fit into the LLVM system, but the others must be defined if the +reusable code generator components are going to be used. + +This design has two important implications. The first is that LLVM can support +completely non-traditional code generation targets. For example, the C backend +does not require register allocation, instruction selection, or any of the other +standard components provided by the system. As such, it only implements these +two interfaces, and does its own thing. Note that C backend was removed from the +trunk since LLVM 3.1 release. Another example of a code generator like this is a +(purely hypothetical) backend that converts LLVM to the GCC RTL form and uses +GCC to emit machine code for a target. + +This design also implies that it is possible to design and implement radically +different code generators in the LLVM system that do not make use of any of the +built-in components. Doing so is not recommended at all, but could be required +for radically different targets that do not fit into the LLVM machine +description model: FPGAs for example. + +.. _high-level design of the code generator: + +The high-level design of the code generator +------------------------------------------- + +The LLVM target-independent code generator is designed to support efficient and +quality code generation for standard register-based microprocessors. Code +generation in this model is divided into the following stages: + +1. `Instruction Selection`_ --- This phase determines an efficient way to + express the input LLVM code in the target instruction set. This stage + produces the initial code for the program in the target instruction set, then + makes use of virtual registers in SSA form and physical registers that + represent any required register assignments due to target constraints or + calling conventions. This step turns the LLVM code into a DAG of target + instructions. + +2. `Scheduling and Formation`_ --- This phase takes the DAG of target + instructions produced by the instruction selection phase, determines an + ordering of the instructions, then emits the instructions as :raw-html:`<tt>` + `MachineInstr`_\s :raw-html:`</tt>` with that ordering. Note that we + describe this in the `instruction selection section`_ because it operates on + a `SelectionDAG`_. + +3. `SSA-based Machine Code Optimizations`_ --- This optional stage consists of a + series of machine-code optimizations that operate on the SSA-form produced by + the instruction selector. Optimizations like modulo-scheduling or peephole + optimization work here. + +4. `Register Allocation`_ --- The target code is transformed from an infinite + virtual register file in SSA form to the concrete register file used by the + target. This phase introduces spill code and eliminates all virtual register + references from the program. + +5. `Prolog/Epilog Code Insertion`_ --- Once the machine code has been generated + for the function and the amount of stack space required is known (used for + LLVM alloca's and spill slots), the prolog and epilog code for the function + can be inserted and "abstract stack location references" can be eliminated. + This stage is responsible for implementing optimizations like frame-pointer + elimination and stack packing. + +6. `Late Machine Code Optimizations`_ --- Optimizations that operate on "final" + machine code can go here, such as spill code scheduling and peephole + optimizations. + +7. `Code Emission`_ --- The final stage actually puts out the code for the + current function, either in the target assembler format or in machine + code. + +The code generator is based on the assumption that the instruction selector will +use an optimal pattern matching selector to create high-quality sequences of +native instructions. Alternative code generator designs based on pattern +expansion and aggressive iterative peephole optimization are much slower. This +design permits efficient compilation (important for JIT environments) and +aggressive optimization (used when generating code offline) by allowing +components of varying levels of sophistication to be used for any step of +compilation. + +In addition to these stages, target implementations can insert arbitrary +target-specific passes into the flow. For example, the X86 target uses a +special pass to handle the 80x87 floating point stack architecture. Other +targets with unusual requirements can be supported with custom passes as needed. + +Using TableGen for target description +------------------------------------- + +The target description classes require a detailed description of the target +architecture. These target descriptions often have a large amount of common +information (e.g., an ``add`` instruction is almost identical to a ``sub`` +instruction). In order to allow the maximum amount of commonality to be +factored out, the LLVM code generator uses the +`TableGen <TableGenFundamentals.html>`_ tool to describe big chunks of the +target machine, which allows the use of domain-specific and target-specific +abstractions to reduce the amount of repetition. + +As LLVM continues to be developed and refined, we plan to move more and more of +the target description to the ``.td`` form. Doing so gives us a number of +advantages. The most important is that it makes it easier to port LLVM because +it reduces the amount of C++ code that has to be written, and the surface area +of the code generator that needs to be understood before someone can get +something working. Second, it makes it easier to change things. In particular, +if tables and other things are all emitted by ``tblgen``, we only need a change +in one place (``tblgen``) to update all of the targets to a new interface. + +.. _Abstract target description: +.. _target description: + +Target description classes +========================== + +The LLVM target description classes (located in the ``include/llvm/Target`` +directory) provide an abstract description of the target machine independent of +any particular client. These classes are designed to capture the *abstract* +properties of the target (such as the instructions and registers it has), and do +not incorporate any particular pieces of code generation algorithms. + +All of the target description classes (except the :raw-html:`<tt>` `TargetData`_ +:raw-html:`</tt>` class) are designed to be subclassed by the concrete target +implementation, and have virtual methods implemented. To get to these +implementations, the :raw-html:`<tt>` `TargetMachine`_ :raw-html:`</tt>` class +provides accessors that should be implemented by the target. + +.. _TargetMachine: + +The ``TargetMachine`` class +--------------------------- + +The ``TargetMachine`` class provides virtual methods that are used to access the +target-specific implementations of the various target description classes via +the ``get*Info`` methods (``getInstrInfo``, ``getRegisterInfo``, +``getFrameInfo``, etc.). This class is designed to be specialized by a concrete +target implementation (e.g., ``X86TargetMachine``) which implements the various +virtual methods. The only required target description class is the +:raw-html:`<tt>` `TargetData`_ :raw-html:`</tt>` class, but if the code +generator components are to be used, the other interfaces should be implemented +as well. + +.. _TargetData: + +The ``TargetData`` class +------------------------ + +The ``TargetData`` class is the only required target description class, and it +is the only class that is not extensible (you cannot derived a new class from +it). ``TargetData`` specifies information about how the target lays out memory +for structures, the alignment requirements for various data types, the size of +pointers in the target, and whether the target is little-endian or +big-endian. + +.. _targetlowering: + +The ``TargetLowering`` class +---------------------------- + +The ``TargetLowering`` class is used by SelectionDAG based instruction selectors +primarily to describe how LLVM code should be lowered to SelectionDAG +operations. Among other things, this class indicates: + +* an initial register class to use for various ``ValueType``\s, + +* which operations are natively supported by the target machine, + +* the return type of ``setcc`` operations, + +* the type to use for shift amounts, and + +* various high-level characteristics, like whether it is profitable to turn + division by a constant into a multiplication sequence + +The ``TargetRegisterInfo`` class +-------------------------------- + +The ``TargetRegisterInfo`` class is used to describe the register file of the +target and any interactions between the registers. + +Registers in the code generator are represented in the code generator by +unsigned integers. Physical registers (those that actually exist in the target +description) are unique small numbers, and virtual registers are generally +large. Note that register ``#0`` is reserved as a flag value. + +Each register in the processor description has an associated +``TargetRegisterDesc`` entry, which provides a textual name for the register +(used for assembly output and debugging dumps) and a set of aliases (used to +indicate whether one register overlaps with another). + +In addition to the per-register description, the ``TargetRegisterInfo`` class +exposes a set of processor specific register classes (instances of the +``TargetRegisterClass`` class). Each register class contains sets of registers +that have the same properties (for example, they are all 32-bit integer +registers). Each SSA virtual register created by the instruction selector has +an associated register class. When the register allocator runs, it replaces +virtual registers with a physical register in the set. + +The target-specific implementations of these classes is auto-generated from a +`TableGen <TableGenFundamentals.html>`_ description of the register file. + +.. _TargetInstrInfo: + +The ``TargetInstrInfo`` class +----------------------------- + +The ``TargetInstrInfo`` class is used to describe the machine instructions +supported by the target. It is essentially an array of ``TargetInstrDescriptor`` +objects, each of which describes one instruction the target +supports. Descriptors define things like the mnemonic for the opcode, the number +of operands, the list of implicit register uses and defs, whether the +instruction has certain target-independent properties (accesses memory, is +commutable, etc), and holds any target-specific flags. + +The ``TargetFrameInfo`` class +----------------------------- + +The ``TargetFrameInfo`` class is used to provide information about the stack +frame layout of the target. It holds the direction of stack growth, the known +stack alignment on entry to each function, and the offset to the local area. +The offset to the local area is the offset from the stack pointer on function +entry to the first location where function data (local variables, spill +locations) can be stored. + +The ``TargetSubtarget`` class +----------------------------- + +The ``TargetSubtarget`` class is used to provide information about the specific +chip set being targeted. A sub-target informs code generation of which +instructions are supported, instruction latencies and instruction execution +itinerary; i.e., which processing units are used, in what order, and for how +long. + +The ``TargetJITInfo`` class +--------------------------- + +The ``TargetJITInfo`` class exposes an abstract interface used by the +Just-In-Time code generator to perform target-specific activities, such as +emitting stubs. If a ``TargetMachine`` supports JIT code generation, it should +provide one of these objects through the ``getJITInfo`` method. + +.. _code being generated: +.. _machine code representation: + +Machine code description classes +================================ + +At the high-level, LLVM code is translated to a machine specific representation +formed out of :raw-html:`<tt>` `MachineFunction`_ :raw-html:`</tt>`, +:raw-html:`<tt>` `MachineBasicBlock`_ :raw-html:`</tt>`, and :raw-html:`<tt>` +`MachineInstr`_ :raw-html:`</tt>` instances (defined in +``include/llvm/CodeGen``). This representation is completely target agnostic, +representing instructions in their most abstract form: an opcode and a series of +operands. This representation is designed to support both an SSA representation +for machine code, as well as a register allocated, non-SSA form. + +.. _MachineInstr: + +The ``MachineInstr`` class +-------------------------- + +Target machine instructions are represented as instances of the ``MachineInstr`` +class. This class is an extremely abstract way of representing machine +instructions. In particular, it only keeps track of an opcode number and a set +of operands. + +The opcode number is a simple unsigned integer that only has meaning to a +specific backend. All of the instructions for a target should be defined in the +``*InstrInfo.td`` file for the target. The opcode enum values are auto-generated +from this description. The ``MachineInstr`` class does not have any information +about how to interpret the instruction (i.e., what the semantics of the +instruction are); for that you must refer to the :raw-html:`<tt>` +`TargetInstrInfo`_ :raw-html:`</tt>` class. + +The operands of a machine instruction can be of several different types: a +register reference, a constant integer, a basic block reference, etc. In +addition, a machine operand should be marked as a def or a use of the value +(though only registers are allowed to be defs). + +By convention, the LLVM code generator orders instruction operands so that all +register definitions come before the register uses, even on architectures that +are normally printed in other orders. For example, the SPARC add instruction: +"``add %i1, %i2, %i3``" adds the "%i1", and "%i2" registers and stores the +result into the "%i3" register. In the LLVM code generator, the operands should +be stored as "``%i3, %i1, %i2``": with the destination first. + +Keeping destination (definition) operands at the beginning of the operand list +has several advantages. In particular, the debugging printer will print the +instruction like this: + +.. code-block:: llvm + + %r3 = add %i1, %i2 + +Also if the first operand is a def, it is easier to `create instructions`_ whose +only def is the first operand. + +.. _create instructions: + +Using the ``MachineInstrBuilder.h`` functions +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +Machine instructions are created by using the ``BuildMI`` functions, located in +the ``include/llvm/CodeGen/MachineInstrBuilder.h`` file. The ``BuildMI`` +functions make it easy to build arbitrary machine instructions. Usage of the +``BuildMI`` functions look like this: + +.. code-block:: c++ + + // Create a 'DestReg = mov 42' (rendered in X86 assembly as 'mov DestReg, 42') + // instruction. The '1' specifies how many operands will be added. + MachineInstr *MI = BuildMI(X86::MOV32ri, 1, DestReg).addImm(42); + + // Create the same instr, but insert it at the end of a basic block. + MachineBasicBlock &MBB = ... + BuildMI(MBB, X86::MOV32ri, 1, DestReg).addImm(42); + + // Create the same instr, but insert it before a specified iterator point. + MachineBasicBlock::iterator MBBI = ... + BuildMI(MBB, MBBI, X86::MOV32ri, 1, DestReg).addImm(42); + + // Create a 'cmp Reg, 0' instruction, no destination reg. + MI = BuildMI(X86::CMP32ri, 2).addReg(Reg).addImm(0); + + // Create an 'sahf' instruction which takes no operands and stores nothing. + MI = BuildMI(X86::SAHF, 0); + + // Create a self looping branch instruction. + BuildMI(MBB, X86::JNE, 1).addMBB(&MBB); + +The key thing to remember with the ``BuildMI`` functions is that you have to +specify the number of operands that the machine instruction will take. This +allows for efficient memory allocation. You also need to specify if operands +default to be uses of values, not definitions. If you need to add a definition +operand (other than the optional destination register), you must explicitly mark +it as such: + +.. code-block:: c++ + + MI.addReg(Reg, RegState::Define); + +Fixed (preassigned) registers +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +One important issue that the code generator needs to be aware of is the presence +of fixed registers. In particular, there are often places in the instruction +stream where the register allocator *must* arrange for a particular value to be +in a particular register. This can occur due to limitations of the instruction +set (e.g., the X86 can only do a 32-bit divide with the ``EAX``/``EDX`` +registers), or external factors like calling conventions. In any case, the +instruction selector should emit code that copies a virtual register into or out +of a physical register when needed. + +For example, consider this simple LLVM example: + +.. code-block:: llvm + + define i32 @test(i32 %X, i32 %Y) { + %Z = udiv i32 %X, %Y + ret i32 %Z + } + +The X86 instruction selector produces this machine code for the ``div`` and +``ret`` (use "``llc X.bc -march=x86 -print-machineinstrs``" to get this): + +.. code-block:: llvm + + ;; Start of div + %EAX = mov %reg1024 ;; Copy X (in reg1024) into EAX + %reg1027 = sar %reg1024, 31 + %EDX = mov %reg1027 ;; Sign extend X into EDX + idiv %reg1025 ;; Divide by Y (in reg1025) + %reg1026 = mov %EAX ;; Read the result (Z) out of EAX + + ;; Start of ret + %EAX = mov %reg1026 ;; 32-bit return value goes in EAX + ret + +By the end of code generation, the register allocator has coalesced the +registers and deleted the resultant identity moves producing the following +code: + +.. code-block:: llvm + + ;; X is in EAX, Y is in ECX + mov %EAX, %EDX + sar %EDX, 31 + idiv %ECX + ret + +This approach is extremely general (if it can handle the X86 architecture, it +can handle anything!) and allows all of the target specific knowledge about the +instruction stream to be isolated in the instruction selector. Note that +physical registers should have a short lifetime for good code generation, and +all physical registers are assumed dead on entry to and exit from basic blocks +(before register allocation). Thus, if you need a value to be live across basic +block boundaries, it *must* live in a virtual register. + +Call-clobbered registers +^^^^^^^^^^^^^^^^^^^^^^^^ + +Some machine instructions, like calls, clobber a large number of physical +registers. Rather than adding ``<def,dead>`` operands for all of them, it is +possible to use an ``MO_RegisterMask`` operand instead. The register mask +operand holds a bit mask of preserved registers, and everything else is +considered to be clobbered by the instruction. + +Machine code in SSA form +^^^^^^^^^^^^^^^^^^^^^^^^ + +``MachineInstr``'s are initially selected in SSA-form, and are maintained in +SSA-form until register allocation happens. For the most part, this is +trivially simple since LLVM is already in SSA form; LLVM PHI nodes become +machine code PHI nodes, and virtual registers are only allowed to have a single +definition. + +After register allocation, machine code is no longer in SSA-form because there +are no virtual registers left in the code. + +.. _MachineBasicBlock: + +The ``MachineBasicBlock`` class +------------------------------- + +The ``MachineBasicBlock`` class contains a list of machine instructions +(:raw-html:`<tt>` `MachineInstr`_ :raw-html:`</tt>` instances). It roughly +corresponds to the LLVM code input to the instruction selector, but there can be +a one-to-many mapping (i.e. one LLVM basic block can map to multiple machine +basic blocks). The ``MachineBasicBlock`` class has a "``getBasicBlock``" method, +which returns the LLVM basic block that it comes from. + +.. _MachineFunction: + +The ``MachineFunction`` class +----------------------------- + +The ``MachineFunction`` class contains a list of machine basic blocks +(:raw-html:`<tt>` `MachineBasicBlock`_ :raw-html:`</tt>` instances). It +corresponds one-to-one with the LLVM function input to the instruction selector. +In addition to a list of basic blocks, the ``MachineFunction`` contains a a +``MachineConstantPool``, a ``MachineFrameInfo``, a ``MachineFunctionInfo``, and +a ``MachineRegisterInfo``. See ``include/llvm/CodeGen/MachineFunction.h`` for +more information. + +``MachineInstr Bundles`` +------------------------ + +LLVM code generator can model sequences of instructions as MachineInstr +bundles. A MI bundle can model a VLIW group / pack which contains an arbitrary +number of parallel instructions. It can also be used to model a sequential list +of instructions (potentially with data dependencies) that cannot be legally +separated (e.g. ARM Thumb2 IT blocks). + +Conceptually a MI bundle is a MI with a number of other MIs nested within: + +:: + + -------------- + | Bundle | --------- + -------------- \ + | ---------------- + | | MI | + | ---------------- + | | + | ---------------- + | | MI | + | ---------------- + | | + | ---------------- + | | MI | + | ---------------- + | + -------------- + | Bundle | -------- + -------------- \ + | ---------------- + | | MI | + | ---------------- + | | + | ---------------- + | | MI | + | ---------------- + | | + | ... + | + -------------- + | Bundle | -------- + -------------- \ + | + ... + +MI bundle support does not change the physical representations of +MachineBasicBlock and MachineInstr. All the MIs (including top level and nested +ones) are stored as sequential list of MIs. The "bundled" MIs are marked with +the 'InsideBundle' flag. A top level MI with the special BUNDLE opcode is used +to represent the start of a bundle. It's legal to mix BUNDLE MIs with indiviual +MIs that are not inside bundles nor represent bundles. + +MachineInstr passes should operate on a MI bundle as a single unit. Member +methods have been taught to correctly handle bundles and MIs inside bundles. +The MachineBasicBlock iterator has been modified to skip over bundled MIs to +enforce the bundle-as-a-single-unit concept. An alternative iterator +instr_iterator has been added to MachineBasicBlock to allow passes to iterate +over all of the MIs in a MachineBasicBlock, including those which are nested +inside bundles. The top level BUNDLE instruction must have the correct set of +register MachineOperand's that represent the cumulative inputs and outputs of +the bundled MIs. + +Packing / bundling of MachineInstr's should be done as part of the register +allocation super-pass. More specifically, the pass which determines what MIs +should be bundled together must be done after code generator exits SSA form +(i.e. after two-address pass, PHI elimination, and copy coalescing). Bundles +should only be finalized (i.e. adding BUNDLE MIs and input and output register +MachineOperands) after virtual registers have been rewritten into physical +registers. This requirement eliminates the need to add virtual register operands +to BUNDLE instructions which would effectively double the virtual register def +and use lists. + +.. _MC Layer: + +The "MC" Layer +============== + +The MC Layer is used to represent and process code at the raw machine code +level, devoid of "high level" information like "constant pools", "jump tables", +"global variables" or anything like that. At this level, LLVM handles things +like label names, machine instructions, and sections in the object file. The +code in this layer is used for a number of important purposes: the tail end of +the code generator uses it to write a .s or .o file, and it is also used by the +llvm-mc tool to implement standalone machine code assemblers and disassemblers. + +This section describes some of the important classes. There are also a number +of important subsystems that interact at this layer, they are described later in +this manual. + +.. _MCStreamer: + +The ``MCStreamer`` API +---------------------- + +MCStreamer is best thought of as an assembler API. It is an abstract API which +is *implemented* in different ways (e.g. to output a .s file, output an ELF .o +file, etc) but whose API correspond directly to what you see in a .s file. +MCStreamer has one method per directive, such as EmitLabel, EmitSymbolAttribute, +SwitchSection, EmitValue (for .byte, .word), etc, which directly correspond to +assembly level directives. It also has an EmitInstruction method, which is used +to output an MCInst to the streamer. + +This API is most important for two clients: the llvm-mc stand-alone assembler is +effectively a parser that parses a line, then invokes a method on MCStreamer. In +the code generator, the `Code Emission`_ phase of the code generator lowers +higher level LLVM IR and Machine* constructs down to the MC layer, emitting +directives through MCStreamer. + +On the implementation side of MCStreamer, there are two major implementations: +one for writing out a .s file (MCAsmStreamer), and one for writing out a .o +file (MCObjectStreamer). MCAsmStreamer is a straight-forward implementation +that prints out a directive for each method (e.g. ``EmitValue -> .byte``), but +MCObjectStreamer implements a full assembler. + +The ``MCContext`` class +----------------------- + +The MCContext class is the owner of a variety of uniqued data structures at the +MC layer, including symbols, sections, etc. As such, this is the class that you +interact with to create symbols and sections. This class can not be subclassed. + +The ``MCSymbol`` class +---------------------- + +The MCSymbol class represents a symbol (aka label) in the assembly file. There +are two interesting kinds of symbols: assembler temporary symbols, and normal +symbols. Assembler temporary symbols are used and processed by the assembler +but are discarded when the object file is produced. The distinction is usually +represented by adding a prefix to the label, for example "L" labels are +assembler temporary labels in MachO. + +MCSymbols are created by MCContext and uniqued there. This means that MCSymbols +can be compared for pointer equivalence to find out if they are the same symbol. +Note that pointer inequality does not guarantee the labels will end up at +different addresses though. It's perfectly legal to output something like this +to the .s file: + +:: + + foo: + bar: + .byte 4 + +In this case, both the foo and bar symbols will have the same address. + +The ``MCSection`` class +----------------------- + +The ``MCSection`` class represents an object-file specific section. It is +subclassed by object file specific implementations (e.g. ``MCSectionMachO``, +``MCSectionCOFF``, ``MCSectionELF``) and these are created and uniqued by +MCContext. The MCStreamer has a notion of the current section, which can be +changed with the SwitchToSection method (which corresponds to a ".section" +directive in a .s file). + +.. _MCInst: + +The ``MCInst`` class +-------------------- + +The ``MCInst`` class is a target-independent representation of an instruction. +It is a simple class (much more so than `MachineInstr`_) that holds a +target-specific opcode and a vector of MCOperands. MCOperand, in turn, is a +simple discriminated union of three cases: 1) a simple immediate, 2) a target +register ID, 3) a symbolic expression (e.g. "``Lfoo-Lbar+42``") as an MCExpr. + +MCInst is the common currency used to represent machine instructions at the MC +layer. It is the type used by the instruction encoder, the instruction printer, +and the type generated by the assembly parser and disassembler. + +.. _Target-independent algorithms: +.. _code generation algorithm: + +Target-independent code generation algorithms +============================================= + +This section documents the phases described in the `high-level design of the +code generator`_. It explains how they work and some of the rationale behind +their design. + +.. _Instruction Selection: +.. _instruction selection section: + +Instruction Selection +--------------------- + +Instruction Selection is the process of translating LLVM code presented to the +code generator into target-specific machine instructions. There are several +well-known ways to do this in the literature. LLVM uses a SelectionDAG based +instruction selector. + +Portions of the DAG instruction selector are generated from the target +description (``*.td``) files. Our goal is for the entire instruction selector +to be generated from these ``.td`` files, though currently there are still +things that require custom C++ code. + +.. _SelectionDAG: + +Introduction to SelectionDAGs +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +The SelectionDAG provides an abstraction for code representation in a way that +is amenable to instruction selection using automatic techniques +(e.g. dynamic-programming based optimal pattern matching selectors). It is also +well-suited to other phases of code generation; in particular, instruction +scheduling (SelectionDAG's are very close to scheduling DAGs post-selection). +Additionally, the SelectionDAG provides a host representation where a large +variety of very-low-level (but target-independent) `optimizations`_ may be +performed; ones which require extensive information about the instructions +efficiently supported by the target. + +The SelectionDAG is a Directed-Acyclic-Graph whose nodes are instances of the +``SDNode`` class. The primary payload of the ``SDNode`` is its operation code +(Opcode) that indicates what operation the node performs and the operands to the +operation. The various operation node types are described at the top of the +``include/llvm/CodeGen/SelectionDAGNodes.h`` file. + +Although most operations define a single value, each node in the graph may +define multiple values. For example, a combined div/rem operation will define +both the dividend and the remainder. Many other situations require multiple +values as well. Each node also has some number of operands, which are edges to +the node defining the used value. Because nodes may define multiple values, +edges are represented by instances of the ``SDValue`` class, which is a +``<SDNode, unsigned>`` pair, indicating the node and result value being used, +respectively. Each value produced by an ``SDNode`` has an associated ``MVT`` +(Machine Value Type) indicating what the type of the value is. + +SelectionDAGs contain two different kinds of values: those that represent data +flow and those that represent control flow dependencies. Data values are simple +edges with an integer or floating point value type. Control edges are +represented as "chain" edges which are of type ``MVT::Other``. These edges +provide an ordering between nodes that have side effects (such as loads, stores, +calls, returns, etc). All nodes that have side effects should take a token +chain as input and produce a new one as output. By convention, token chain +inputs are always operand #0, and chain results are always the last value +produced by an operation. + +A SelectionDAG has designated "Entry" and "Root" nodes. The Entry node is +always a marker node with an Opcode of ``ISD::EntryToken``. The Root node is +the final side-effecting node in the token chain. For example, in a single basic +block function it would be the return node. + +One important concept for SelectionDAGs is the notion of a "legal" vs. +"illegal" DAG. A legal DAG for a target is one that only uses supported +operations and supported types. On a 32-bit PowerPC, for example, a DAG with a +value of type i1, i8, i16, or i64 would be illegal, as would a DAG that uses a +SREM or UREM operation. The `legalize types`_ and `legalize operations`_ phases +are responsible for turning an illegal DAG into a legal DAG. + +SelectionDAG Instruction Selection Process +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +SelectionDAG-based instruction selection consists of the following steps: + +#. `Build initial DAG`_ --- This stage performs a simple translation from the + input LLVM code to an illegal SelectionDAG. + +#. `Optimize SelectionDAG`_ --- This stage performs simple optimizations on the + SelectionDAG to simplify it, and recognize meta instructions (like rotates + and ``div``/``rem`` pairs) for targets that support these meta operations. + This makes the resultant code more efficient and the `select instructions + from DAG`_ phase (below) simpler. + +#. `Legalize SelectionDAG Types`_ --- This stage transforms SelectionDAG nodes + to eliminate any types that are unsupported on the target. + +#. `Optimize SelectionDAG`_ --- The SelectionDAG optimizer is run to clean up + redundancies exposed by type legalization. + +#. `Legalize SelectionDAG Ops`_ --- This stage transforms SelectionDAG nodes to + eliminate any operations that are unsupported on the target. + +#. `Optimize SelectionDAG`_ --- The SelectionDAG optimizer is run to eliminate + inefficiencies introduced by operation legalization. + +#. `Select instructions from DAG`_ --- Finally, the target instruction selector + matches the DAG operations to target instructions. This process translates + the target-independent input DAG into another DAG of target instructions. + +#. `SelectionDAG Scheduling and Formation`_ --- The last phase assigns a linear + order to the instructions in the target-instruction DAG and emits them into + the MachineFunction being compiled. This step uses traditional prepass + scheduling techniques. + +After all of these steps are complete, the SelectionDAG is destroyed and the +rest of the code generation passes are run. + +One great way to visualize what is going on here is to take advantage of a few +LLC command line options. The following options pop up a window displaying the +SelectionDAG at specific times (if you only get errors printed to the console +while using this, you probably `need to configure your +system <ProgrammersManual.html#ViewGraph>`_ to add support for it). + +* ``-view-dag-combine1-dags`` displays the DAG after being built, before the + first optimization pass. + +* ``-view-legalize-dags`` displays the DAG before Legalization. + +* ``-view-dag-combine2-dags`` displays the DAG before the second optimization + pass. + +* ``-view-isel-dags`` displays the DAG before the Select phase. + +* ``-view-sched-dags`` displays the DAG before Scheduling. + +The ``-view-sunit-dags`` displays the Scheduler's dependency graph. This graph +is based on the final SelectionDAG, with nodes that must be scheduled together +bundled into a single scheduling-unit node, and with immediate operands and +other nodes that aren't relevant for scheduling omitted. + +.. _Build initial DAG: + +Initial SelectionDAG Construction +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +The initial SelectionDAG is na\ :raw-html:`ï`\ vely peephole expanded from +the LLVM input by the ``SelectionDAGLowering`` class in the +``lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp`` file. The intent of this pass +is to expose as much low-level, target-specific details to the SelectionDAG as +possible. This pass is mostly hard-coded (e.g. an LLVM ``add`` turns into an +``SDNode add`` while a ``getelementptr`` is expanded into the obvious +arithmetic). This pass requires target-specific hooks to lower calls, returns, +varargs, etc. For these features, the :raw-html:`<tt>` `TargetLowering`_ +:raw-html:`</tt>` interface is used. + +.. _legalize types: +.. _Legalize SelectionDAG Types: +.. _Legalize SelectionDAG Ops: + +SelectionDAG LegalizeTypes Phase +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +The Legalize phase is in charge of converting a DAG to only use the types that +are natively supported by the target. + +There are two main ways of converting values of unsupported scalar types to +values of supported types: converting small types to larger types ("promoting"), +and breaking up large integer types into smaller ones ("expanding"). For +example, a target might require that all f32 values are promoted to f64 and that +all i1/i8/i16 values are promoted to i32. The same target might require that +all i64 values be expanded into pairs of i32 values. These changes can insert +sign and zero extensions as needed to make sure that the final code has the same +behavior as the input. + +There are two main ways of converting values of unsupported vector types to +value of supported types: splitting vector types, multiple times if necessary, +until a legal type is found, and extending vector types by adding elements to +the end to round them out to legal types ("widening"). If a vector gets split +all the way down to single-element parts with no supported vector type being +found, the elements are converted to scalars ("scalarizing"). + +A target implementation tells the legalizer which types are supported (and which +register class to use for them) by calling the ``addRegisterClass`` method in +its TargetLowering constructor. + +.. _legalize operations: +.. _Legalizer: + +SelectionDAG Legalize Phase +^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +The Legalize phase is in charge of converting a DAG to only use the operations +that are natively supported by the target. + +Targets often have weird constraints, such as not supporting every operation on +every supported datatype (e.g. X86 does not support byte conditional moves and +PowerPC does not support sign-extending loads from a 16-bit memory location). +Legalize takes care of this by open-coding another sequence of operations to +emulate the operation ("expansion"), by promoting one type to a larger type that +supports the operation ("promotion"), or by using a target-specific hook to +implement the legalization ("custom"). + +A target implementation tells the legalizer which operations are not supported +(and which of the above three actions to take) by calling the +``setOperationAction`` method in its ``TargetLowering`` constructor. + +Prior to the existence of the Legalize passes, we required that every target +`selector`_ supported and handled every operator and type even if they are not +natively supported. The introduction of the Legalize phases allows all of the +canonicalization patterns to be shared across targets, and makes it very easy to +optimize the canonicalized code because it is still in the form of a DAG. + +.. _optimizations: +.. _Optimize SelectionDAG: +.. _selector: + +SelectionDAG Optimization Phase: the DAG Combiner +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +The SelectionDAG optimization phase is run multiple times for code generation, +immediately after the DAG is built and once after each legalization. The first +run of the pass allows the initial code to be cleaned up (e.g. performing +optimizations that depend on knowing that the operators have restricted type +inputs). Subsequent runs of the pass clean up the messy code generated by the +Legalize passes, which allows Legalize to be very simple (it can focus on making +code legal instead of focusing on generating *good* and legal code). + +One important class of optimizations performed is optimizing inserted sign and +zero extension instructions. We currently use ad-hoc techniques, but could move +to more rigorous techniques in the future. Here are some good papers on the +subject: + +"`Widening integer arithmetic <http://www.eecs.harvard.edu/~nr/pubs/widen-abstract.html>`_" :raw-html:`<br>` +Kevin Redwine and Norman Ramsey :raw-html:`<br>` +International Conference on Compiler Construction (CC) 2004 + +"`Effective sign extension elimination <http://portal.acm.org/citation.cfm?doid=512529.512552>`_" :raw-html:`<br>` +Motohiro Kawahito, Hideaki Komatsu, and Toshio Nakatani :raw-html:`<br>` +Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design +and Implementation. + +.. _Select instructions from DAG: + +SelectionDAG Select Phase +^^^^^^^^^^^^^^^^^^^^^^^^^ + +The Select phase is the bulk of the target-specific code for instruction +selection. This phase takes a legal SelectionDAG as input, pattern matches the +instructions supported by the target to this DAG, and produces a new DAG of +target code. For example, consider the following LLVM fragment: + +.. code-block:: llvm + + %t1 = fadd float %W, %X + %t2 = fmul float %t1, %Y + %t3 = fadd float %t2, %Z + +This LLVM code corresponds to a SelectionDAG that looks basically like this: + +.. code-block:: llvm + + (fadd:f32 (fmul:f32 (fadd:f32 W, X), Y), Z) + +If a target supports floating point multiply-and-add (FMA) operations, one of +the adds can be merged with the multiply. On the PowerPC, for example, the +output of the instruction selector might look like this DAG: + +:: + + (FMADDS (FADDS W, X), Y, Z) + +The ``FMADDS`` instruction is a ternary instruction that multiplies its first +two operands and adds the third (as single-precision floating-point numbers). +The ``FADDS`` instruction is a simple binary single-precision add instruction. +To perform this pattern match, the PowerPC backend includes the following +instruction definitions: + +:: + + def FMADDS : AForm_1<59, 29, + (ops F4RC:$FRT, F4RC:$FRA, F4RC:$FRC, F4RC:$FRB), + "fmadds $FRT, $FRA, $FRC, $FRB", + [(set F4RC:$FRT, (fadd (fmul F4RC:$FRA, F4RC:$FRC), + F4RC:$FRB))]>; + def FADDS : AForm_2<59, 21, + (ops F4RC:$FRT, F4RC:$FRA, F4RC:$FRB), + "fadds $FRT, $FRA, $FRB", + [(set F4RC:$FRT, (fadd F4RC:$FRA, F4RC:$FRB))]>; + +The portion of the instruction definition in bold indicates the pattern used to +match the instruction. The DAG operators (like ``fmul``/``fadd``) are defined +in the ``include/llvm/Target/TargetSelectionDAG.td`` file. " ``F4RC``" is the +register class of the input and result values. + +The TableGen DAG instruction selector generator reads the instruction patterns +in the ``.td`` file and automatically builds parts of the pattern matching code +for your target. It has the following strengths: + +* At compiler-compiler time, it analyzes your instruction patterns and tells you + if your patterns make sense or not. + +* It can handle arbitrary constraints on operands for the pattern match. In + particular, it is straight-forward to say things like "match any immediate + that is a 13-bit sign-extended value". For examples, see the ``immSExt16`` + and related ``tblgen`` classes in the PowerPC backend. + +* It knows several important identities for the patterns defined. For example, + it knows that addition is commutative, so it allows the ``FMADDS`` pattern + above to match "``(fadd X, (fmul Y, Z))``" as well as "``(fadd (fmul X, Y), + Z)``", without the target author having to specially handle this case. + +* It has a full-featured type-inferencing system. In particular, you should + rarely have to explicitly tell the system what type parts of your patterns + are. In the ``FMADDS`` case above, we didn't have to tell ``tblgen`` that all + of the nodes in the pattern are of type 'f32'. It was able to infer and + propagate this knowledge from the fact that ``F4RC`` has type 'f32'. + +* Targets can define their own (and rely on built-in) "pattern fragments". + Pattern fragments are chunks of reusable patterns that get inlined into your + patterns during compiler-compiler time. For example, the integer "``(not + x)``" operation is actually defined as a pattern fragment that expands as + "``(xor x, -1)``", since the SelectionDAG does not have a native '``not``' + operation. Targets can define their own short-hand fragments as they see fit. + See the definition of '``not``' and '``ineg``' for examples. + +* In addition to instructions, targets can specify arbitrary patterns that map + to one or more instructions using the 'Pat' class. For example, the PowerPC + has no way to load an arbitrary integer immediate into a register in one + instruction. To tell tblgen how to do this, it defines: + + :: + + // Arbitrary immediate support. Implement in terms of LIS/ORI. + def : Pat<(i32 imm:$imm), + (ORI (LIS (HI16 imm:$imm)), (LO16 imm:$imm))>; + + If none of the single-instruction patterns for loading an immediate into a + register match, this will be used. This rule says "match an arbitrary i32 + immediate, turning it into an ``ORI`` ('or a 16-bit immediate') and an ``LIS`` + ('load 16-bit immediate, where the immediate is shifted to the left 16 bits') + instruction". To make this work, the ``LO16``/``HI16`` node transformations + are used to manipulate the input immediate (in this case, take the high or low + 16-bits of the immediate). + +* While the system does automate a lot, it still allows you to write custom C++ + code to match special cases if there is something that is hard to + express. + +While it has many strengths, the system currently has some limitations, +primarily because it is a work in progress and is not yet finished: + +* Overall, there is no way to define or match SelectionDAG nodes that define + multiple values (e.g. ``SMUL_LOHI``, ``LOAD``, ``CALL``, etc). This is the + biggest reason that you currently still *have to* write custom C++ code + for your instruction selector. + +* There is no great way to support matching complex addressing modes yet. In + the future, we will extend pattern fragments to allow them to define multiple + values (e.g. the four operands of the `X86 addressing mode`_, which are + currently matched with custom C++ code). In addition, we'll extend fragments + so that a fragment can match multiple different patterns. + +* We don't automatically infer flags like ``isStore``/``isLoad`` yet. + +* We don't automatically generate the set of supported registers and operations + for the `Legalizer`_ yet. + +* We don't have a way of tying in custom legalized nodes yet. + +Despite these limitations, the instruction selector generator is still quite +useful for most of the binary and logical operations in typical instruction +sets. If you run into any problems or can't figure out how to do something, +please let Chris know! + +.. _Scheduling and Formation: +.. _SelectionDAG Scheduling and Formation: + +SelectionDAG Scheduling and Formation Phase +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +The scheduling phase takes the DAG of target instructions from the selection +phase and assigns an order. The scheduler can pick an order depending on +various constraints of the machines (i.e. order for minimal register pressure or +try to cover instruction latencies). Once an order is established, the DAG is +converted to a list of :raw-html:`<tt>` `MachineInstr`_\s :raw-html:`</tt>` and +the SelectionDAG is destroyed. + +Note that this phase is logically separate from the instruction selection phase, +but is tied to it closely in the code because it operates on SelectionDAGs. + +Future directions for the SelectionDAG +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +#. Optional function-at-a-time selection. + +#. Auto-generate entire selector from ``.td`` file. + +.. _SSA-based Machine Code Optimizations: + +SSA-based Machine Code Optimizations +------------------------------------ + +To Be Written + +Live Intervals +-------------- + +Live Intervals are the ranges (intervals) where a variable is *live*. They are +used by some `register allocator`_ passes to determine if two or more virtual +registers which require the same physical register are live at the same point in +the program (i.e., they conflict). When this situation occurs, one virtual +register must be *spilled*. + +Live Variable Analysis +^^^^^^^^^^^^^^^^^^^^^^ + +The first step in determining the live intervals of variables is to calculate +the set of registers that are immediately dead after the instruction (i.e., the +instruction calculates the value, but it is never used) and the set of registers +that are used by the instruction, but are never used after the instruction +(i.e., they are killed). Live variable information is computed for +each *virtual* register and *register allocatable* physical register +in the function. This is done in a very efficient manner because it uses SSA to +sparsely compute lifetime information for virtual registers (which are in SSA +form) and only has to track physical registers within a block. Before register +allocation, LLVM can assume that physical registers are only live within a +single basic block. This allows it to do a single, local analysis to resolve +physical register lifetimes within each basic block. If a physical register is +not register allocatable (e.g., a stack pointer or condition codes), it is not +tracked. + +Physical registers may be live in to or out of a function. Live in values are +typically arguments in registers. Live out values are typically return values in +registers. Live in values are marked as such, and are given a dummy "defining" +instruction during live intervals analysis. If the last basic block of a +function is a ``return``, then it's marked as using all live out values in the +function. + +``PHI`` nodes need to be handled specially, because the calculation of the live +variable information from a depth first traversal of the CFG of the function +won't guarantee that a virtual register used by the ``PHI`` node is defined +before it's used. When a ``PHI`` node is encountered, only the definition is +handled, because the uses will be handled in other basic blocks. + +For each ``PHI`` node of the current basic block, we simulate an assignment at +the end of the current basic block and traverse the successor basic blocks. If a +successor basic block has a ``PHI`` node and one of the ``PHI`` node's operands +is coming from the current basic block, then the variable is marked as *alive* +within the current basic block and all of its predecessor basic blocks, until +the basic block with the defining instruction is encountered. + +Live Intervals Analysis +^^^^^^^^^^^^^^^^^^^^^^^ + +We now have the information available to perform the live intervals analysis and +build the live intervals themselves. We start off by numbering the basic blocks +and machine instructions. We then handle the "live-in" values. These are in +physical registers, so the physical register is assumed to be killed by the end +of the basic block. Live intervals for virtual registers are computed for some +ordering of the machine instructions ``[1, N]``. A live interval is an interval +``[i, j)``, where ``1 >= i >= j > N``, for which a variable is live. + +.. note:: + More to come... + +.. _Register Allocation: +.. _register allocator: + +Register Allocation +------------------- + +The *Register Allocation problem* consists in mapping a program +:raw-html:`<b><tt>` P\ :sub:`v`\ :raw-html:`</tt></b>`, that can use an unbounded +number of virtual registers, to a program :raw-html:`<b><tt>` P\ :sub:`p`\ +:raw-html:`</tt></b>` that contains a finite (possibly small) number of physical +registers. Each target architecture has a different number of physical +registers. If the number of physical registers is not enough to accommodate all +the virtual registers, some of them will have to be mapped into memory. These +virtuals are called *spilled virtuals*. + +How registers are represented in LLVM +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +In LLVM, physical registers are denoted by integer numbers that normally range +from 1 to 1023. To see how this numbering is defined for a particular +architecture, you can read the ``GenRegisterNames.inc`` file for that +architecture. For instance, by inspecting +``lib/Target/X86/X86GenRegisterInfo.inc`` we see that the 32-bit register +``EAX`` is denoted by 43, and the MMX register ``MM0`` is mapped to 65. + +Some architectures contain registers that share the same physical location. A +notable example is the X86 platform. For instance, in the X86 architecture, the +registers ``EAX``, ``AX`` and ``AL`` share the first eight bits. These physical +registers are marked as *aliased* in LLVM. Given a particular architecture, you +can check which registers are aliased by inspecting its ``RegisterInfo.td`` +file. Moreover, the class ``MCRegAliasIterator`` enumerates all the physical +registers aliased to a register. + +Physical registers, in LLVM, are grouped in *Register Classes*. Elements in the +same register class are functionally equivalent, and can be interchangeably +used. Each virtual register can only be mapped to physical registers of a +particular class. For instance, in the X86 architecture, some virtuals can only +be allocated to 8 bit registers. A register class is described by +``TargetRegisterClass`` objects. To discover if a virtual register is +compatible with a given physical, this code can be used:</p> + +.. code-block:: c++ + + bool RegMapping_Fer::compatible_class(MachineFunction &mf, + unsigned v_reg, + unsigned p_reg) { + assert(TargetRegisterInfo::isPhysicalRegister(p_reg) && + "Target register must be physical"); + const TargetRegisterClass *trc = mf.getRegInfo().getRegClass(v_reg); + return trc->contains(p_reg); + } + +Sometimes, mostly for debugging purposes, it is useful to change the number of +physical registers available in the target architecture. This must be done +statically, inside the ``TargetRegsterInfo.td`` file. Just ``grep`` for +``RegisterClass``, the last parameter of which is a list of registers. Just +commenting some out is one simple way to avoid them being used. A more polite +way is to explicitly exclude some registers from the *allocation order*. See the +definition of the ``GR8`` register class in +``lib/Target/X86/X86RegisterInfo.td`` for an example of this. + +Virtual registers are also denoted by integer numbers. Contrary to physical +registers, different virtual registers never share the same number. Whereas +physical registers are statically defined in a ``TargetRegisterInfo.td`` file +and cannot be created by the application developer, that is not the case with +virtual registers. In order to create new virtual registers, use the method +``MachineRegisterInfo::createVirtualRegister()``. This method will return a new +virtual register. Use an ``IndexedMap<Foo, VirtReg2IndexFunctor>`` to hold +information per virtual register. If you need to enumerate all virtual +registers, use the function ``TargetRegisterInfo::index2VirtReg()`` to find the +virtual register numbers: + +.. code-block:: c++ + + for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { + unsigned VirtReg = TargetRegisterInfo::index2VirtReg(i); + stuff(VirtReg); + } + +Before register allocation, the operands of an instruction are mostly virtual +registers, although physical registers may also be used. In order to check if a +given machine operand is a register, use the boolean function +``MachineOperand::isRegister()``. To obtain the integer code of a register, use +``MachineOperand::getReg()``. An instruction may define or use a register. For +instance, ``ADD reg:1026 := reg:1025 reg:1024`` defines the registers 1024, and +uses registers 1025 and 1026. Given a register operand, the method +``MachineOperand::isUse()`` informs if that register is being used by the +instruction. The method ``MachineOperand::isDef()`` informs if that registers is +being defined. + +We will call physical registers present in the LLVM bitcode before register +allocation *pre-colored registers*. Pre-colored registers are used in many +different situations, for instance, to pass parameters of functions calls, and +to store results of particular instructions. There are two types of pre-colored +registers: the ones *implicitly* defined, and those *explicitly* +defined. Explicitly defined registers are normal operands, and can be accessed +with ``MachineInstr::getOperand(int)::getReg()``. In order to check which +registers are implicitly defined by an instruction, use the +``TargetInstrInfo::get(opcode)::ImplicitDefs``, where ``opcode`` is the opcode +of the target instruction. One important difference between explicit and +implicit physical registers is that the latter are defined statically for each +instruction, whereas the former may vary depending on the program being +compiled. For example, an instruction that represents a function call will +always implicitly define or use the same set of physical registers. To read the +registers implicitly used by an instruction, use +``TargetInstrInfo::get(opcode)::ImplicitUses``. Pre-colored registers impose +constraints on any register allocation algorithm. The register allocator must +make sure that none of them are overwritten by the values of virtual registers +while still alive. + +Mapping virtual registers to physical registers +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +There are two ways to map virtual registers to physical registers (or to memory +slots). The first way, that we will call *direct mapping*, is based on the use +of methods of the classes ``TargetRegisterInfo``, and ``MachineOperand``. The +second way, that we will call *indirect mapping*, relies on the ``VirtRegMap`` +class in order to insert loads and stores sending and getting values to and from +memory. + +The direct mapping provides more flexibility to the developer of the register +allocator; however, it is more error prone, and demands more implementation +work. Basically, the programmer will have to specify where load and store +instructions should be inserted in the target function being compiled in order +to get and store values in memory. To assign a physical register to a virtual +register present in a given operand, use ``MachineOperand::setReg(p_reg)``. To +insert a store instruction, use ``TargetInstrInfo::storeRegToStackSlot(...)``, +and to insert a load instruction, use ``TargetInstrInfo::loadRegFromStackSlot``. + +The indirect mapping shields the application developer from the complexities of +inserting load and store instructions. In order to map a virtual register to a +physical one, use ``VirtRegMap::assignVirt2Phys(vreg, preg)``. In order to map +a certain virtual register to memory, use +``VirtRegMap::assignVirt2StackSlot(vreg)``. This method will return the stack +slot where ``vreg``'s value will be located. If it is necessary to map another +virtual register to the same stack slot, use +``VirtRegMap::assignVirt2StackSlot(vreg, stack_location)``. One important point +to consider when using the indirect mapping, is that even if a virtual register +is mapped to memory, it still needs to be mapped to a physical register. This +physical register is the location where the virtual register is supposed to be +found before being stored or after being reloaded. + +If the indirect strategy is used, after all the virtual registers have been +mapped to physical registers or stack slots, it is necessary to use a spiller +object to place load and store instructions in the code. Every virtual that has +been mapped to a stack slot will be stored to memory after been defined and will +be loaded before being used. The implementation of the spiller tries to recycle +load/store instructions, avoiding unnecessary instructions. For an example of +how to invoke the spiller, see ``RegAllocLinearScan::runOnMachineFunction`` in +``lib/CodeGen/RegAllocLinearScan.cpp``. + +Handling two address instructions +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +With very rare exceptions (e.g., function calls), the LLVM machine code +instructions are three address instructions. That is, each instruction is +expected to define at most one register, and to use at most two registers. +However, some architectures use two address instructions. In this case, the +defined register is also one of the used register. For instance, an instruction +such as ``ADD %EAX, %EBX``, in X86 is actually equivalent to ``%EAX = %EAX + +%EBX``. + +In order to produce correct code, LLVM must convert three address instructions +that represent two address instructions into true two address instructions. LLVM +provides the pass ``TwoAddressInstructionPass`` for this specific purpose. It +must be run before register allocation takes place. After its execution, the +resulting code may no longer be in SSA form. This happens, for instance, in +situations where an instruction such as ``%a = ADD %b %c`` is converted to two +instructions such as: + +:: + + %a = MOVE %b + %a = ADD %a %c + +Notice that, internally, the second instruction is represented as ``ADD +%a[def/use] %c``. I.e., the register operand ``%a`` is both used and defined by +the instruction. + +The SSA deconstruction phase +^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +An important transformation that happens during register allocation is called +the *SSA Deconstruction Phase*. The SSA form simplifies many analyses that are +performed on the control flow graph of programs. However, traditional +instruction sets do not implement PHI instructions. Thus, in order to generate +executable code, compilers must replace PHI instructions with other instructions +that preserve their semantics. + +There are many ways in which PHI instructions can safely be removed from the +target code. The most traditional PHI deconstruction algorithm replaces PHI +instructions with copy instructions. That is the strategy adopted by LLVM. The +SSA deconstruction algorithm is implemented in +``lib/CodeGen/PHIElimination.cpp``. In order to invoke this pass, the identifier +``PHIEliminationID`` must be marked as required in the code of the register +allocator. + +Instruction folding +^^^^^^^^^^^^^^^^^^^ + +*Instruction folding* is an optimization performed during register allocation +that removes unnecessary copy instructions. For instance, a sequence of +instructions such as: + +:: + + %EBX = LOAD %mem_address + %EAX = COPY %EBX + +can be safely substituted by the single instruction: + +:: + + %EAX = LOAD %mem_address + +Instructions can be folded with the +``TargetRegisterInfo::foldMemoryOperand(...)`` method. Care must be taken when +folding instructions; a folded instruction can be quite different from the +original instruction. See ``LiveIntervals::addIntervalsForSpills`` in +``lib/CodeGen/LiveIntervalAnalysis.cpp`` for an example of its use. + +Built in register allocators +^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +The LLVM infrastructure provides the application developer with three different +register allocators: + +* *Fast* --- This register allocator is the default for debug builds. It + allocates registers on a basic block level, attempting to keep values in + registers and reusing registers as appropriate. + +* *Basic* --- This is an incremental approach to register allocation. Live + ranges are assigned to registers one at a time in an order that is driven by + heuristics. Since code can be rewritten on-the-fly during allocation, this + framework allows interesting allocators to be developed as extensions. It is + not itself a production register allocator but is a potentially useful + stand-alone mode for triaging bugs and as a performance baseline. + +* *Greedy* --- *The default allocator*. This is a highly tuned implementation of + the *Basic* allocator that incorporates global live range splitting. This + allocator works hard to minimize the cost of spill code. + +* *PBQP* --- A Partitioned Boolean Quadratic Programming (PBQP) based register + allocator. This allocator works by constructing a PBQP problem representing + the register allocation problem under consideration, solving this using a PBQP + solver, and mapping the solution back to a register assignment. + +The type of register allocator used in ``llc`` can be chosen with the command +line option ``-regalloc=...``: + +.. code-block:: bash + + $ llc -regalloc=linearscan file.bc -o ln.s + $ llc -regalloc=fast file.bc -o fa.s + $ llc -regalloc=pbqp file.bc -o pbqp.s + +.. _Prolog/Epilog Code Insertion: + +Prolog/Epilog Code Insertion +---------------------------- + +Compact Unwind + +Throwing an exception requires *unwinding* out of a function. The information on +how to unwind a given function is traditionally expressed in DWARF unwind +(a.k.a. frame) info. But that format was originally developed for debuggers to +backtrace, and each Frame Description Entry (FDE) requires ~20-30 bytes per +function. There is also the cost of mapping from an address in a function to the +corresponding FDE at runtime. An alternative unwind encoding is called *compact +unwind* and requires just 4-bytes per function. + +The compact unwind encoding is a 32-bit value, which is encoded in an +architecture-specific way. It specifies which registers to restore and from +where, and how to unwind out of the function. When the linker creates a final +linked image, it will create a ``__TEXT,__unwind_info`` section. This section is +a small and fast way for the runtime to access unwind info for any given +function. If we emit compact unwind info for the function, that compact unwind +info will be encoded in the ``__TEXT,__unwind_info`` section. If we emit DWARF +unwind info, the ``__TEXT,__unwind_info`` section will contain the offset of the +FDE in the ``__TEXT,__eh_frame`` section in the final linked image. + +For X86, there are three modes for the compact unwind encoding: + +*Function with a Frame Pointer (``EBP`` or ``RBP``)* + ``EBP/RBP``-based frame, where ``EBP/RBP`` is pushed onto the stack + immediately after the return address, then ``ESP/RSP`` is moved to + ``EBP/RBP``. Thus to unwind, ``ESP/RSP`` is restored with the current + ``EBP/RBP`` value, then ``EBP/RBP`` is restored by popping the stack, and the + return is done by popping the stack once more into the PC. All non-volatile + registers that need to be restored must have been saved in a small range on + the stack that starts ``EBP-4`` to ``EBP-1020`` (``RBP-8`` to + ``RBP-1020``). The offset (divided by 4 in 32-bit mode and 8 in 64-bit mode) + is encoded in bits 16-23 (mask: ``0x00FF0000``). The registers saved are + encoded in bits 0-14 (mask: ``0x00007FFF``) as five 3-bit entries from the + following table: + + ============== ============= =============== + Compact Number i386 Register x86-64 Register + ============== ============= =============== + 1 ``EBX`` ``RBX`` + 2 ``ECX`` ``R12`` + 3 ``EDX`` ``R13`` + 4 ``EDI`` ``R14`` + 5 ``ESI`` ``R15`` + 6 ``EBP`` ``RBP`` + ============== ============= =============== + +*Frameless with a Small Constant Stack Size (``EBP`` or ``RBP`` is not used as a frame pointer)* + To return, a constant (encoded in the compact unwind encoding) is added to the + ``ESP/RSP``. Then the return is done by popping the stack into the PC. All + non-volatile registers that need to be restored must have been saved on the + stack immediately after the return address. The stack size (divided by 4 in + 32-bit mode and 8 in 64-bit mode) is encoded in bits 16-23 (mask: + ``0x00FF0000``). There is a maximum stack size of 1024 bytes in 32-bit mode + and 2048 in 64-bit mode. The number of registers saved is encoded in bits 9-12 + (mask: ``0x00001C00``). Bits 0-9 (mask: ``0x000003FF``) contain which + registers were saved and their order. (See the + ``encodeCompactUnwindRegistersWithoutFrame()`` function in + ``lib/Target/X86FrameLowering.cpp`` for the encoding algorithm.) + +*Frameless with a Large Constant Stack Size (``EBP`` or ``RBP`` is not used as a frame pointer)* + This case is like the "Frameless with a Small Constant Stack Size" case, but + the stack size is too large to encode in the compact unwind encoding. Instead + it requires that the function contains "``subl $nnnnnn, %esp``" in its + prolog. The compact encoding contains the offset to the ``$nnnnnn`` value in + the function in bits 9-12 (mask: ``0x00001C00``). + +.. _Late Machine Code Optimizations: + +Late Machine Code Optimizations +------------------------------- + +.. note:: + + To Be Written + +.. _Code Emission: + +Code Emission +------------- + +The code emission step of code generation is responsible for lowering from the +code generator abstractions (like `MachineFunction`_, `MachineInstr`_, etc) down +to the abstractions used by the MC layer (`MCInst`_, `MCStreamer`_, etc). This +is done with a combination of several different classes: the (misnamed) +target-independent AsmPrinter class, target-specific subclasses of AsmPrinter +(such as SparcAsmPrinter), and the TargetLoweringObjectFile class. + +Since the MC layer works at the level of abstraction of object files, it doesn't +have a notion of functions, global variables etc. Instead, it thinks about +labels, directives, and instructions. A key class used at this time is the +MCStreamer class. This is an abstract API that is implemented in different ways +(e.g. to output a .s file, output an ELF .o file, etc) that is effectively an +"assembler API". MCStreamer has one method per directive, such as EmitLabel, +EmitSymbolAttribute, SwitchSection, etc, which directly correspond to assembly +level directives. + +If you are interested in implementing a code generator for a target, there are +three important things that you have to implement for your target: + +#. First, you need a subclass of AsmPrinter for your target. This class + implements the general lowering process converting MachineFunction's into MC + label constructs. The AsmPrinter base class provides a number of useful + methods and routines, and also allows you to override the lowering process in + some important ways. You should get much of the lowering for free if you are + implementing an ELF, COFF, or MachO target, because the + TargetLoweringObjectFile class implements much of the common logic. + +#. Second, you need to implement an instruction printer for your target. The + instruction printer takes an `MCInst`_ and renders it to a raw_ostream as + text. Most of this is automatically generated from the .td file (when you + specify something like "``add $dst, $src1, $src2``" in the instructions), but + you need to implement routines to print operands. + +#. Third, you need to implement code that lowers a `MachineInstr`_ to an MCInst, + usually implemented in "<target>MCInstLower.cpp". This lowering process is + often target specific, and is responsible for turning jump table entries, + constant pool indices, global variable addresses, etc into MCLabels as + appropriate. This translation layer is also responsible for expanding pseudo + ops used by the code generator into the actual machine instructions they + correspond to. The MCInsts that are generated by this are fed into the + instruction printer or the encoder. + +Finally, at your choosing, you can also implement an subclass of MCCodeEmitter +which lowers MCInst's into machine code bytes and relocations. This is +important if you want to support direct .o file emission, or would like to +implement an assembler for your target. + +VLIW Packetizer +--------------- + +In a Very Long Instruction Word (VLIW) architecture, the compiler is responsible +for mapping instructions to functional-units available on the architecture. To +that end, the compiler creates groups of instructions called *packets* or +*bundles*. The VLIW packetizer in LLVM is a target-independent mechanism to +enable the packetization of machine instructions. + +Mapping from instructions to functional units +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +Instructions in a VLIW target can typically be mapped to multiple functional +units. During the process of packetizing, the compiler must be able to reason +about whether an instruction can be added to a packet. This decision can be +complex since the compiler has to examine all possible mappings of instructions +to functional units. Therefore to alleviate compilation-time complexity, the +VLIW packetizer parses the instruction classes of a target and generates tables +at compiler build time. These tables can then be queried by the provided +machine-independent API to determine if an instruction can be accommodated in a +packet. + +How the packetization tables are generated and used +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +The packetizer reads instruction classes from a target's itineraries and creates +a deterministic finite automaton (DFA) to represent the state of a packet. A DFA +consists of three major elements: inputs, states, and transitions. The set of +inputs for the generated DFA represents the instruction being added to a +packet. The states represent the possible consumption of functional units by +instructions in a packet. In the DFA, transitions from one state to another +occur on the addition of an instruction to an existing packet. If there is a +legal mapping of functional units to instructions, then the DFA contains a +corresponding transition. The absence of a transition indicates that a legal +mapping does not exist and that the instruction cannot be added to the packet. + +To generate tables for a VLIW target, add *Target*\ GenDFAPacketizer.inc as a +target to the Makefile in the target directory. The exported API provides three +functions: ``DFAPacketizer::clearResources()``, +``DFAPacketizer::reserveResources(MachineInstr *MI)``, and +``DFAPacketizer::canReserveResources(MachineInstr *MI)``. These functions allow +a target packetizer to add an instruction to an existing packet and to check +whether an instruction can be added to a packet. See +``llvm/CodeGen/DFAPacketizer.h`` for more information. + +Implementing a Native Assembler +=============================== + +Though you're probably reading this because you want to write or maintain a +compiler backend, LLVM also fully supports building a native assemblers too. +We've tried hard to automate the generation of the assembler from the .td files +(in particular the instruction syntax and encodings), which means that a large +part of the manual and repetitive data entry can be factored and shared with the +compiler. + +Instruction Parsing +------------------- + +.. note:: + + To Be Written + + +Instruction Alias Processing +---------------------------- + +Once the instruction is parsed, it enters the MatchInstructionImpl function. +The MatchInstructionImpl function performs alias processing and then does actual +matching. + +Alias processing is the phase that canonicalizes different lexical forms of the +same instructions down to one representation. There are several different kinds +of alias that are possible to implement and they are listed below in the order +that they are processed (which is in order from simplest/weakest to most +complex/powerful). Generally you want to use the first alias mechanism that +meets the needs of your instruction, because it will allow a more concise +description. + +Mnemonic Aliases +^^^^^^^^^^^^^^^^ + +The first phase of alias processing is simple instruction mnemonic remapping for +classes of instructions which are allowed with two different mnemonics. This +phase is a simple and unconditionally remapping from one input mnemonic to one +output mnemonic. It isn't possible for this form of alias to look at the +operands at all, so the remapping must apply for all forms of a given mnemonic. +Mnemonic aliases are defined simply, for example X86 has: + +:: + + def : MnemonicAlias<"cbw", "cbtw">; + def : MnemonicAlias<"smovq", "movsq">; + def : MnemonicAlias<"fldcww", "fldcw">; + def : MnemonicAlias<"fucompi", "fucomip">; + def : MnemonicAlias<"ud2a", "ud2">; + +... and many others. With a MnemonicAlias definition, the mnemonic is remapped +simply and directly. Though MnemonicAlias's can't look at any aspect of the +instruction (such as the operands) they can depend on global modes (the same +ones supported by the matcher), through a Requires clause: + +:: + + def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>; + def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>; + +In this example, the mnemonic gets mapped into different a new one depending on +the current instruction set. + +Instruction Aliases +^^^^^^^^^^^^^^^^^^^ + +The most general phase of alias processing occurs while matching is happening: +it provides new forms for the matcher to match along with a specific instruction +to generate. An instruction alias has two parts: the string to match and the +instruction to generate. For example: + +:: + + def : InstAlias<"movsx $src, $dst", (MOVSX16rr8W GR16:$dst, GR8 :$src)>; + def : InstAlias<"movsx $src, $dst", (MOVSX16rm8W GR16:$dst, i8mem:$src)>; + def : InstAlias<"movsx $src, $dst", (MOVSX32rr8 GR32:$dst, GR8 :$src)>; + def : InstAlias<"movsx $src, $dst", (MOVSX32rr16 GR32:$dst, GR16 :$src)>; + def : InstAlias<"movsx $src, $dst", (MOVSX64rr8 GR64:$dst, GR8 :$src)>; + def : InstAlias<"movsx $src, $dst", (MOVSX64rr16 GR64:$dst, GR16 :$src)>; + def : InstAlias<"movsx $src, $dst", (MOVSX64rr32 GR64:$dst, GR32 :$src)>; + +This shows a powerful example of the instruction aliases, matching the same +mnemonic in multiple different ways depending on what operands are present in +the assembly. The result of instruction aliases can include operands in a +different order than the destination instruction, and can use an input multiple +times, for example: + +:: + + def : InstAlias<"clrb $reg", (XOR8rr GR8 :$reg, GR8 :$reg)>; + def : InstAlias<"clrw $reg", (XOR16rr GR16:$reg, GR16:$reg)>; + def : InstAlias<"clrl $reg", (XOR32rr GR32:$reg, GR32:$reg)>; + def : InstAlias<"clrq $reg", (XOR64rr GR64:$reg, GR64:$reg)>; + +This example also shows that tied operands are only listed once. In the X86 +backend, XOR8rr has two input GR8's and one output GR8 (where an input is tied +to the output). InstAliases take a flattened operand list without duplicates +for tied operands. The result of an instruction alias can also use immediates +and fixed physical registers which are added as simple immediate operands in the +result, for example: + +:: + + // Fixed Immediate operand. + def : InstAlias<"aad", (AAD8i8 10)>; + + // Fixed register operand. + def : InstAlias<"fcomi", (COM_FIr ST1)>; + + // Simple alias. + def : InstAlias<"fcomi $reg", (COM_FIr RST:$reg)>; + +Instruction aliases can also have a Requires clause to make them subtarget +specific. + +If the back-end supports it, the instruction printer can automatically emit the +alias rather than what's being aliased. It typically leads to better, more +readable code. If it's better to print out what's being aliased, then pass a '0' +as the third parameter to the InstAlias definition. + +Instruction Matching +-------------------- + +.. note:: + + To Be Written + +.. _Implementations of the abstract target description interfaces: +.. _implement the target description: + +Target-specific Implementation Notes +==================================== + +This section of the document explains features or design decisions that are +specific to the code generator for a particular target. First we start with a +table that summarizes what features are supported by each target. + +Target Feature Matrix +--------------------- + +Note that this table does not include the C backend or Cpp backends, since they +do not use the target independent code generator infrastructure. It also +doesn't list features that are not supported fully by any target yet. It +considers a feature to be supported if at least one subtarget supports it. A +feature being supported means that it is useful and works for most cases, it +does not indicate that there are zero known bugs in the implementation. Here is +the key: + +:raw-html:`<table border="1" cellspacing="0">` +:raw-html:`<tr>` +:raw-html:`<th>Unknown</th>` +:raw-html:`<th>No support</th>` +:raw-html:`<th>Partial Support</th>` +:raw-html:`<th>Complete Support</th>` +:raw-html:`</tr>` +:raw-html:`<tr>` +:raw-html:`<td class="unknown"></td>` +:raw-html:`<td class="no"></td>` +:raw-html:`<td class="partial"></td>` +:raw-html:`<td class="yes"></td>` +:raw-html:`</tr>` +:raw-html:`</table>` + +Here is the table: + +:raw-html:`<table width="689" border="1" cellspacing="0">` +:raw-html:`<tr><td></td>` +:raw-html:`<td colspan="13" align="center" style="background-color:#ffc">Target</td>` +:raw-html:`</tr>` +:raw-html:`<tr>` +:raw-html:`<th>Feature</th>` +:raw-html:`<th>ARM</th>` +:raw-html:`<th>CellSPU</th>` +:raw-html:`<th>Hexagon</th>` +:raw-html:`<th>MBlaze</th>` +:raw-html:`<th>MSP430</th>` +:raw-html:`<th>Mips</th>` +:raw-html:`<th>PTX</th>` +:raw-html:`<th>PowerPC</th>` +:raw-html:`<th>Sparc</th>` +:raw-html:`<th>X86</th>` +:raw-html:`<th>XCore</th>` +:raw-html:`</tr>` + +:raw-html:`<tr>` +:raw-html:`<td><a href="#feat_reliable">is generally reliable</a></td>` +:raw-html:`<td class="yes"></td> <!-- ARM -->` +:raw-html:`<td class="no"></td> <!-- CellSPU -->` +:raw-html:`<td class="yes"></td> <!-- Hexagon -->` +:raw-html:`<td class="no"></td> <!-- MBlaze -->` +:raw-html:`<td class="unknown"></td> <!-- MSP430 -->` +:raw-html:`<td class="yes"></td> <!-- Mips -->` +:raw-html:`<td class="no"></td> <!-- PTX -->` +:raw-html:`<td class="yes"></td> <!-- PowerPC -->` +:raw-html:`<td class="yes"></td> <!-- Sparc -->` +:raw-html:`<td class="yes"></td> <!-- X86 -->` +:raw-html:`<td class="unknown"></td> <!-- XCore -->` +:raw-html:`</tr>` + +:raw-html:`<tr>` +:raw-html:`<td><a href="#feat_asmparser">assembly parser</a></td>` +:raw-html:`<td class="no"></td> <!-- ARM -->` +:raw-html:`<td class="no"></td> <!-- CellSPU -->` +:raw-html:`<td class="no"></td> <!-- Hexagon -->` +:raw-html:`<td class="yes"></td> <!-- MBlaze -->` +:raw-html:`<td class="no"></td> <!-- MSP430 -->` +:raw-html:`<td class="no"></td> <!-- Mips -->` +:raw-html:`<td class="no"></td> <!-- PTX -->` +:raw-html:`<td class="no"></td> <!-- PowerPC -->` +:raw-html:`<td class="no"></td> <!-- Sparc -->` +:raw-html:`<td class="yes"></td> <!-- X86 -->` +:raw-html:`<td class="no"></td> <!-- XCore -->` +:raw-html:`</tr>` + +:raw-html:`<tr>` +:raw-html:`<td><a href="#feat_disassembler">disassembler</a></td>` +:raw-html:`<td class="yes"></td> <!-- ARM -->` +:raw-html:`<td class="no"></td> <!-- CellSPU -->` +:raw-html:`<td class="no"></td> <!-- Hexagon -->` +:raw-html:`<td class="yes"></td> <!-- MBlaze -->` +:raw-html:`<td class="no"></td> <!-- MSP430 -->` +:raw-html:`<td class="no"></td> <!-- Mips -->` +:raw-html:`<td class="no"></td> <!-- PTX -->` +:raw-html:`<td class="no"></td> <!-- PowerPC -->` +:raw-html:`<td class="no"></td> <!-- Sparc -->` +:raw-html:`<td class="yes"></td> <!-- X86 -->` +:raw-html:`<td class="no"></td> <!-- XCore -->` +:raw-html:`</tr>` + +:raw-html:`<tr>` +:raw-html:`<td><a href="#feat_inlineasm">inline asm</a></td>` +:raw-html:`<td class="yes"></td> <!-- ARM -->` +:raw-html:`<td class="no"></td> <!-- CellSPU -->` +:raw-html:`<td class="yes"></td> <!-- Hexagon -->` +:raw-html:`<td class="yes"></td> <!-- MBlaze -->` +:raw-html:`<td class="unknown"></td> <!-- MSP430 -->` +:raw-html:`<td class="no"></td> <!-- Mips -->` +:raw-html:`<td class="unknown"></td> <!-- PTX -->` +:raw-html:`<td class="yes"></td> <!-- PowerPC -->` +:raw-html:`<td class="unknown"></td> <!-- Sparc -->` +:raw-html:`<td class="yes"></td> <!-- X86 -->` +:raw-html:`<td class="unknown"></td> <!-- XCore -->` +:raw-html:`</tr>` + +:raw-html:`<tr>` +:raw-html:`<td><a href="#feat_jit">jit</a></td>` +:raw-html:`<td class="partial"><a href="#feat_jit_arm">*</a></td> <!-- ARM -->` +:raw-html:`<td class="no"></td> <!-- CellSPU -->` +:raw-html:`<td class="no"></td> <!-- Hexagon -->` +:raw-html:`<td class="no"></td> <!-- MBlaze -->` +:raw-html:`<td class="unknown"></td> <!-- MSP430 -->` +:raw-html:`<td class="yes"></td> <!-- Mips -->` +:raw-html:`<td class="unknown"></td> <!-- PTX -->` +:raw-html:`<td class="yes"></td> <!-- PowerPC -->` +:raw-html:`<td class="unknown"></td> <!-- Sparc -->` +:raw-html:`<td class="yes"></td> <!-- X86 -->` +:raw-html:`<td class="unknown"></td> <!-- XCore -->` +:raw-html:`</tr>` + +:raw-html:`<tr>` +:raw-html:`<td><a href="#feat_objectwrite">.o file writing</a></td>` +:raw-html:`<td class="no"></td> <!-- ARM -->` +:raw-html:`<td class="no"></td> <!-- CellSPU -->` +:raw-html:`<td class="no"></td> <!-- Hexagon -->` +:raw-html:`<td class="yes"></td> <!-- MBlaze -->` +:raw-html:`<td class="no"></td> <!-- MSP430 -->` +:raw-html:`<td class="no"></td> <!-- Mips -->` +:raw-html:`<td class="no"></td> <!-- PTX -->` +:raw-html:`<td class="no"></td> <!-- PowerPC -->` +:raw-html:`<td class="no"></td> <!-- Sparc -->` +:raw-html:`<td class="yes"></td> <!-- X86 -->` +:raw-html:`<td class="no"></td> <!-- XCore -->` +:raw-html:`</tr>` + +:raw-html:`<tr>` +:raw-html:`<td><a hr:raw-html:`ef="#feat_tailcall">tail calls</a></td>` +:raw-html:`<td class="yes"></td> <!-- ARM -->` +:raw-html:`<td class="no"></td> <!-- CellSPU -->` +:raw-html:`<td class="yes"></td> <!-- Hexagon -->` +:raw-html:`<td class="no"></td> <!-- MBlaze -->` +:raw-html:`<td class="unknown"></td> <!-- MSP430 -->` +:raw-html:`<td class="no"></td> <!-- Mips -->` +:raw-html:`<td class="unknown"></td> <!-- PTX -->` +:raw-html:`<td class="yes"></td> <!-- PowerPC -->` +:raw-html:`<td class="unknown"></td> <!-- Sparc -->` +:raw-html:`<td class="yes"></td> <!-- X86 -->` +:raw-html:`<td class="unknown"></td> <!-- XCore -->` +:raw-html:`</tr>` + +:raw-html:`<tr>` +:raw-html:`<td><a href="#feat_segstacks">segmented stacks</a></td>` +:raw-html:`<td class="no"></td> <!-- ARM -->` +:raw-html:`<td class="no"></td> <!-- CellSPU -->` +:raw-html:`<td class="no"></td> <!-- Hexagon -->` +:raw-html:`<td class="no"></td> <!-- MBlaze -->` +:raw-html:`<td class="no"></td> <!-- MSP430 -->` +:raw-html:`<td class="no"></td> <!-- Mips -->` +:raw-html:`<td class="no"></td> <!-- PTX -->` +:raw-html:`<td class="no"></td> <!-- PowerPC -->` +:raw-html:`<td class="no"></td> <!-- Sparc -->` +:raw-html:`<td class="partial"><a href="#feat_segstacks_x86">*</a></td> <!-- X86 -->` +:raw-html:`<td class="no"></td> <!-- XCore -->` +:raw-html:`</tr>` + +:raw-html:`</table>` + +.. _feat_reliable: + +Is Generally Reliable +^^^^^^^^^^^^^^^^^^^^^ + +This box indicates whether the target is considered to be production quality. +This indicates that the target has been used as a static compiler to compile +large amounts of code by a variety of different people and is in continuous use. + +.. _feat_asmparser: + +Assembly Parser +^^^^^^^^^^^^^^^ + +This box indicates whether the target supports parsing target specific .s files +by implementing the MCAsmParser interface. This is required for llvm-mc to be +able to act as a native assembler and is required for inline assembly support in +the native .o file writer. + +.. _feat_disassembler: + +Disassembler +^^^^^^^^^^^^ + +This box indicates whether the target supports the MCDisassembler API for +disassembling machine opcode bytes into MCInst's. + +.. _feat_inlineasm: + +Inline Asm +^^^^^^^^^^ + +This box indicates whether the target supports most popular inline assembly +constraints and modifiers. + +.. _feat_jit: + +JIT Support +^^^^^^^^^^^ + +This box indicates whether the target supports the JIT compiler through the +ExecutionEngine interface. + +.. _feat_jit_arm: + +The ARM backend has basic support for integer code in ARM codegen mode, but +lacks NEON and full Thumb support. + +.. _feat_objectwrite: + +.o File Writing +^^^^^^^^^^^^^^^ + +This box indicates whether the target supports writing .o files (e.g. MachO, +ELF, and/or COFF) files directly from the target. Note that the target also +must include an assembly parser and general inline assembly support for full +inline assembly support in the .o writer. + +Targets that don't support this feature can obviously still write out .o files, +they just rely on having an external assembler to translate from a .s file to a +.o file (as is the case for many C compilers). + +.. _feat_tailcall: + +Tail Calls +^^^^^^^^^^ + +This box indicates whether the target supports guaranteed tail calls. These are +calls marked "`tail <LangRef.html#i_call>`_" and use the fastcc calling +convention. Please see the `tail call section more more details`_. + +.. _feat_segstacks: + +Segmented Stacks +^^^^^^^^^^^^^^^^ + +This box indicates whether the target supports segmented stacks. This replaces +the traditional large C stack with many linked segments. It is compatible with +the `gcc implementation <http://gcc.gnu.org/wiki/SplitStacks>`_ used by the Go +front end. + +.. _feat_segstacks_x86: + +Basic support exists on the X86 backend. Currently vararg doesn't work and the +object files are not marked the way the gold linker expects, but simple Go +programs can be built by dragonegg. + +.. _tail call section more more details: + +Tail call optimization +---------------------- + +Tail call optimization, callee reusing the stack of the caller, is currently +supported on x86/x86-64 and PowerPC. It is performed if: + +* Caller and callee have the calling convention ``fastcc`` or ``cc 10`` (GHC + call convention). + +* The call is a tail call - in tail position (ret immediately follows call and + ret uses value of call or is void). + +* Option ``-tailcallopt`` is enabled. + +* Platform specific constraints are met. + +x86/x86-64 constraints: + +* No variable argument lists are used. + +* On x86-64 when generating GOT/PIC code only module-local calls (visibility = + hidden or protected) are supported. + +PowerPC constraints: + +* No variable argument lists are used. + +* No byval parameters are used. + +* On ppc32/64 GOT/PIC only module-local calls (visibility = hidden or protected) + are supported. + +Example: + +Call as ``llc -tailcallopt test.ll``. + +.. code-block:: llvm + + declare fastcc i32 @tailcallee(i32 inreg %a1, i32 inreg %a2, i32 %a3, i32 %a4) + + define fastcc i32 @tailcaller(i32 %in1, i32 %in2) { + %l1 = add i32 %in1, %in2 + %tmp = tail call fastcc i32 @tailcallee(i32 %in1 inreg, i32 %in2 inreg, i32 %in1, i32 %l1) + ret i32 %tmp + } + +Implications of ``-tailcallopt``: + +To support tail call optimization in situations where the callee has more +arguments than the caller a 'callee pops arguments' convention is used. This +currently causes each ``fastcc`` call that is not tail call optimized (because +one or more of above constraints are not met) to be followed by a readjustment +of the stack. So performance might be worse in such cases. + +Sibling call optimization +------------------------- + +Sibling call optimization is a restricted form of tail call optimization. +Unlike tail call optimization described in the previous section, it can be +performed automatically on any tail calls when ``-tailcallopt`` option is not +specified. + +Sibling call optimization is currently performed on x86/x86-64 when the +following constraints are met: + +* Caller and callee have the same calling convention. It can be either ``c`` or + ``fastcc``. + +* The call is a tail call - in tail position (ret immediately follows call and + ret uses value of call or is void). + +* Caller and callee have matching return type or the callee result is not used. + +* If any of the callee arguments are being passed in stack, they must be + available in caller's own incoming argument stack and the frame offsets must + be the same. + +Example: + +.. code-block:: llvm + + declare i32 @bar(i32, i32) + + define i32 @foo(i32 %a, i32 %b, i32 %c) { + entry: + %0 = tail call i32 @bar(i32 %a, i32 %b) + ret i32 %0 + } + +The X86 backend +--------------- + +The X86 code generator lives in the ``lib/Target/X86`` directory. This code +generator is capable of targeting a variety of x86-32 and x86-64 processors, and +includes support for ISA extensions such as MMX and SSE. + +X86 Target Triples supported +^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +The following are the known target triples that are supported by the X86 +backend. This is not an exhaustive list, and it would be useful to add those +that people test. + +* **i686-pc-linux-gnu** --- Linux + +* **i386-unknown-freebsd5.3** --- FreeBSD 5.3 + +* **i686-pc-cygwin** --- Cygwin on Win32 + +* **i686-pc-mingw32** --- MingW on Win32 + +* **i386-pc-mingw32msvc** --- MingW crosscompiler on Linux + +* **i686-apple-darwin*** --- Apple Darwin on X86 + +* **x86_64-unknown-linux-gnu** --- Linux + +X86 Calling Conventions supported +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +The following target-specific calling conventions are known to backend: + +* **x86_StdCall** --- stdcall calling convention seen on Microsoft Windows + platform (CC ID = 64). + +* **x86_FastCall** --- fastcall calling convention seen on Microsoft Windows + platform (CC ID = 65). + +* **x86_ThisCall** --- Similar to X86_StdCall. Passes first argument in ECX, + others via stack. Callee is responsible for stack cleaning. This convention is + used by MSVC by default for methods in its ABI (CC ID = 70). + +.. _X86 addressing mode: + +Representing X86 addressing modes in MachineInstrs +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +The x86 has a very flexible way of accessing memory. It is capable of forming +memory addresses of the following expression directly in integer instructions +(which use ModR/M addressing): + +:: + + SegmentReg: Base + [1,2,4,8] * IndexReg + Disp32 + +In order to represent this, LLVM tracks no less than 5 operands for each memory +operand of this form. This means that the "load" form of '``mov``' has the +following ``MachineOperand``\s in this order: + +:: + + Index: 0 | 1 2 3 4 5 + Meaning: DestReg, | BaseReg, Scale, IndexReg, Displacement Segment + OperandTy: VirtReg, | VirtReg, UnsImm, VirtReg, SignExtImm PhysReg + +Stores, and all other instructions, treat the four memory operands in the same +way and in the same order. If the segment register is unspecified (regno = 0), +then no segment override is generated. "Lea" operations do not have a segment +register specified, so they only have 4 operands for their memory reference. + +X86 address spaces supported +^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +x86 has a feature which provides the ability to perform loads and stores to +different address spaces via the x86 segment registers. A segment override +prefix byte on an instruction causes the instruction's memory access to go to +the specified segment. LLVM address space 0 is the default address space, which +includes the stack, and any unqualified memory accesses in a program. Address +spaces 1-255 are currently reserved for user-defined code. The GS-segment is +represented by address space 256, while the FS-segment is represented by address +space 257. Other x86 segments have yet to be allocated address space +numbers. + +While these address spaces may seem similar to TLS via the ``thread_local`` +keyword, and often use the same underlying hardware, there are some fundamental +differences. + +The ``thread_local`` keyword applies to global variables and specifies that they +are to be allocated in thread-local memory. There are no type qualifiers +involved, and these variables can be pointed to with normal pointers and +accessed with normal loads and stores. The ``thread_local`` keyword is +target-independent at the LLVM IR level (though LLVM doesn't yet have +implementations of it for some configurations) + +Special address spaces, in contrast, apply to static types. Every load and store +has a particular address space in its address operand type, and this is what +determines which address space is accessed. LLVM ignores these special address +space qualifiers on global variables, and does not provide a way to directly +allocate storage in them. At the LLVM IR level, the behavior of these special +address spaces depends in part on the underlying OS or runtime environment, and +they are specific to x86 (and LLVM doesn't yet handle them correctly in some +cases). + +Some operating systems and runtime environments use (or may in the future use) +the FS/GS-segment registers for various low-level purposes, so care should be +taken when considering them. + +Instruction naming +^^^^^^^^^^^^^^^^^^ + +An instruction name consists of the base name, a default operand size, and a a +character per operand with an optional special size. For example: + +:: + + ADD8rr -> add, 8-bit register, 8-bit register + IMUL16rmi -> imul, 16-bit register, 16-bit memory, 16-bit immediate + IMUL16rmi8 -> imul, 16-bit register, 16-bit memory, 8-bit immediate + MOVSX32rm16 -> movsx, 32-bit register, 16-bit memory + +The PowerPC backend +------------------- + +The PowerPC code generator lives in the lib/Target/PowerPC directory. The code +generation is retargetable to several variations or *subtargets* of the PowerPC +ISA; including ppc32, ppc64 and altivec. + +LLVM PowerPC ABI +^^^^^^^^^^^^^^^^ + +LLVM follows the AIX PowerPC ABI, with two deviations. LLVM uses a PC relative +(PIC) or static addressing for accessing global values, so no TOC (r2) is +used. Second, r31 is used as a frame pointer to allow dynamic growth of a stack +frame. LLVM takes advantage of having no TOC to provide space to save the frame +pointer in the PowerPC linkage area of the caller frame. Other details of +PowerPC ABI can be found at `PowerPC ABI +<http://developer.apple.com/documentation/DeveloperTools/Conceptual/LowLevelABI/Articles/32bitPowerPC.html>`_\ +. Note: This link describes the 32 bit ABI. The 64 bit ABI is similar except +space for GPRs are 8 bytes wide (not 4) and r13 is reserved for system use. + +Frame Layout +^^^^^^^^^^^^ + +The size of a PowerPC frame is usually fixed for the duration of a function's +invocation. Since the frame is fixed size, all references into the frame can be +accessed via fixed offsets from the stack pointer. The exception to this is +when dynamic alloca or variable sized arrays are present, then a base pointer +(r31) is used as a proxy for the stack pointer and stack pointer is free to grow +or shrink. A base pointer is also used if llvm-gcc is not passed the +-fomit-frame-pointer flag. The stack pointer is always aligned to 16 bytes, so +that space allocated for altivec vectors will be properly aligned. + +An invocation frame is laid out as follows (low memory at top): + +:raw-html:`<table border="1" cellspacing="0">` +:raw-html:`<tr>` +:raw-html:`<td>Linkage<br><br></td>` +:raw-html:`</tr>` +:raw-html:`<tr>` +:raw-html:`<td>Parameter area<br><br></td>` +:raw-html:`</tr>` +:raw-html:`<tr>` +:raw-html:`<td>Dynamic area<br><br></td>` +:raw-html:`</tr>` +:raw-html:`<tr>` +:raw-html:`<td>Locals area<br><br></td>` +:raw-html:`</tr>` +:raw-html:`<tr>` +:raw-html:`<td>Saved registers area<br><br></td>` +:raw-html:`</tr>` +:raw-html:`<tr style="border-style: none hidden none hidden;">` +:raw-html:`<td><br></td>` +:raw-html:`</tr>` +:raw-html:`<tr>` +:raw-html:`<td>Previous Frame<br><br></td>` +:raw-html:`</tr>` +:raw-html:`</table>` + +The *linkage* area is used by a callee to save special registers prior to +allocating its own frame. Only three entries are relevant to LLVM. The first +entry is the previous stack pointer (sp), aka link. This allows probing tools +like gdb or exception handlers to quickly scan the frames in the stack. A +function epilog can also use the link to pop the frame from the stack. The +third entry in the linkage area is used to save the return address from the lr +register. Finally, as mentioned above, the last entry is used to save the +previous frame pointer (r31.) The entries in the linkage area are the size of a +GPR, thus the linkage area is 24 bytes long in 32 bit mode and 48 bytes in 64 +bit mode. + +32 bit linkage area: + +:raw-html:`<table border="1" cellspacing="0">` +:raw-html:`<tr>` +:raw-html:`<td>0</td>` +:raw-html:`<td>Saved SP (r1)</td>` +:raw-html:`</tr>` +:raw-html:`<tr>` +:raw-html:`<td>4</td>` +:raw-html:`<td>Saved CR</td>` +:raw-html:`</tr>` +:raw-html:`<tr>` +:raw-html:`<td>8</td>` +:raw-html:`<td>Saved LR</td>` +:raw-html:`</tr>` +:raw-html:`<tr>` +:raw-html:`<td>12</td>` +:raw-html:`<td>Reserved</td>` +:raw-html:`</tr>` +:raw-html:`<tr>` +:raw-html:`<td>16</td>` +:raw-html:`<td>Reserved</td>` +:raw-html:`</tr>` +:raw-html:`<tr>` +:raw-html:`<td>20</td>` +:raw-html:`<td>Saved FP (r31)</td>` +:raw-html:`</tr>` +:raw-html:`</table>` + +64 bit linkage area: + +:raw-html:`<table border="1" cellspacing="0">` +:raw-html:`<tr>` +:raw-html:`<td>0</td>` +:raw-html:`<td>Saved SP (r1)</td>` +:raw-html:`</tr>` +:raw-html:`<tr>` +:raw-html:`<td>8</td>` +:raw-html:`<td>Saved CR</td>` +:raw-html:`</tr>` +:raw-html:`<tr>` +:raw-html:`<td>16</td>` +:raw-html:`<td>Saved LR</td>` +:raw-html:`</tr>` +:raw-html:`<tr>` +:raw-html:`<td>24</td>` +:raw-html:`<td>Reserved</td>` +:raw-html:`</tr>` +:raw-html:`<tr>` +:raw-html:`<td>32</td>` +:raw-html:`<td>Reserved</td>` +:raw-html:`</tr>` +:raw-html:`<tr>` +:raw-html:`<td>40</td>` +:raw-html:`<td>Saved FP (r31)</td>` +:raw-html:`</tr>` +:raw-html:`</table>` + +The *parameter area* is used to store arguments being passed to a callee +function. Following the PowerPC ABI, the first few arguments are actually +passed in registers, with the space in the parameter area unused. However, if +there are not enough registers or the callee is a thunk or vararg function, +these register arguments can be spilled into the parameter area. Thus, the +parameter area must be large enough to store all the parameters for the largest +call sequence made by the caller. The size must also be minimally large enough +to spill registers r3-r10. This allows callees blind to the call signature, +such as thunks and vararg functions, enough space to cache the argument +registers. Therefore, the parameter area is minimally 32 bytes (64 bytes in 64 +bit mode.) Also note that since the parameter area is a fixed offset from the +top of the frame, that a callee can access its spilt arguments using fixed +offsets from the stack pointer (or base pointer.) + +Combining the information about the linkage, parameter areas and alignment. A +stack frame is minimally 64 bytes in 32 bit mode and 128 bytes in 64 bit mode. + +The *dynamic area* starts out as size zero. If a function uses dynamic alloca +then space is added to the stack, the linkage and parameter areas are shifted to +top of stack, and the new space is available immediately below the linkage and +parameter areas. The cost of shifting the linkage and parameter areas is minor +since only the link value needs to be copied. The link value can be easily +fetched by adding the original frame size to the base pointer. Note that +allocations in the dynamic space need to observe 16 byte alignment. + +The *locals area* is where the llvm compiler reserves space for local variables. + +The *saved registers area* is where the llvm compiler spills callee saved +registers on entry to the callee. + +Prolog/Epilog +^^^^^^^^^^^^^ + +The llvm prolog and epilog are the same as described in the PowerPC ABI, with +the following exceptions. Callee saved registers are spilled after the frame is +created. This allows the llvm epilog/prolog support to be common with other +targets. The base pointer callee saved register r31 is saved in the TOC slot of +linkage area. This simplifies allocation of space for the base pointer and +makes it convenient to locate programatically and during debugging. + +Dynamic Allocation +^^^^^^^^^^^^^^^^^^ + +.. note:: + + TODO - More to come. + +The PTX backend +--------------- + +The PTX code generator lives in the lib/Target/PTX directory. It is currently a +work-in-progress, but already supports most of the code generation functionality +needed to generate correct PTX kernels for CUDA devices. + +The code generator can target PTX 2.0+, and shader model 1.0+. The PTX ISA +Reference Manual is used as the primary source of ISA information, though an +effort is made to make the output of the code generator match the output of the +NVidia nvcc compiler, whenever possible. + +Code Generator Options: + +:raw-html:`<table border="1" cellspacing="0">` +:raw-html:`<tr>` +:raw-html:`<th>Option</th>` +:raw-html:`<th>Description</th>` +:raw-html:`</tr>` +:raw-html:`<tr>` +:raw-html:`<td>``double``</td>` +:raw-html:`<td align="left">If enabled, the map_f64_to_f32 directive is disabled in the PTX output, allowing native double-precision arithmetic</td>` +:raw-html:`</tr>` +:raw-html:`<tr>` +:raw-html:`<td>``no-fma``</td>` +:raw-html:`<td align="left">Disable generation of Fused-Multiply Add instructions, which may be beneficial for some devices</td>` +:raw-html:`</tr>` +:raw-html:`<tr>` +:raw-html:`<td>``smxy / computexy``</td>` +:raw-html:`<td align="left">Set shader model/compute capability to x.y, e.g. sm20 or compute13</td>` +:raw-html:`</tr>` +:raw-html:`</table>` + +Working: + +* Arithmetic instruction selection (including combo FMA) + +* Bitwise instruction selection + +* Control-flow instruction selection + +* Function calls (only on SM 2.0+ and no return arguments) + +* Addresses spaces (0 = global, 1 = constant, 2 = local, 4 = shared) + +* Thread synchronization (bar.sync) + +* Special register reads ([N]TID, [N]CTAID, PMx, CLOCK, etc.) + +In Progress: + +* Robust call instruction selection + +* Stack frame allocation + +* Device-specific instruction scheduling optimizations |