aboutsummaryrefslogtreecommitdiff
path: root/docs/CodeGenerator.html
diff options
context:
space:
mode:
Diffstat (limited to 'docs/CodeGenerator.html')
-rw-r--r--docs/CodeGenerator.html2169
1 files changed, 2169 insertions, 0 deletions
diff --git a/docs/CodeGenerator.html b/docs/CodeGenerator.html
new file mode 100644
index 0000000000..fbdc294e4a
--- /dev/null
+++ b/docs/CodeGenerator.html
@@ -0,0 +1,2169 @@
+<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
+ "http://www.w3.org/TR/html4/strict.dtd">
+<html>
+<head>
+ <meta http-equiv="content-type" content="text/html; charset=utf-8">
+ <title>The LLVM Target-Independent Code Generator</title>
+ <link rel="stylesheet" href="llvm.css" type="text/css">
+</head>
+<body>
+
+<div class="doc_title">
+ The LLVM Target-Independent Code Generator
+</div>
+
+<ol>
+ <li><a href="#introduction">Introduction</a>
+ <ul>
+ <li><a href="#required">Required components in the code generator</a></li>
+ <li><a href="#high-level-design">The high-level design of the code
+ generator</a></li>
+ <li><a href="#tablegen">Using TableGen for target description</a></li>
+ </ul>
+ </li>
+ <li><a href="#targetdesc">Target description classes</a>
+ <ul>
+ <li><a href="#targetmachine">The <tt>TargetMachine</tt> class</a></li>
+ <li><a href="#targetdata">The <tt>TargetData</tt> class</a></li>
+ <li><a href="#targetlowering">The <tt>TargetLowering</tt> class</a></li>
+ <li><a href="#targetregisterinfo">The <tt>TargetRegisterInfo</tt> class</a></li>
+ <li><a href="#targetinstrinfo">The <tt>TargetInstrInfo</tt> class</a></li>
+ <li><a href="#targetframeinfo">The <tt>TargetFrameInfo</tt> class</a></li>
+ <li><a href="#targetsubtarget">The <tt>TargetSubtarget</tt> class</a></li>
+ <li><a href="#targetjitinfo">The <tt>TargetJITInfo</tt> class</a></li>
+ </ul>
+ </li>
+ <li><a href="#codegendesc">Machine code description classes</a>
+ <ul>
+ <li><a href="#machineinstr">The <tt>MachineInstr</tt> class</a></li>
+ <li><a href="#machinebasicblock">The <tt>MachineBasicBlock</tt>
+ class</a></li>
+ <li><a href="#machinefunction">The <tt>MachineFunction</tt> class</a></li>
+ </ul>
+ </li>
+ <li><a href="#codegenalgs">Target-independent code generation algorithms</a>
+ <ul>
+ <li><a href="#instselect">Instruction Selection</a>
+ <ul>
+ <li><a href="#selectiondag_intro">Introduction to SelectionDAGs</a></li>
+ <li><a href="#selectiondag_process">SelectionDAG Code Generation
+ Process</a></li>
+ <li><a href="#selectiondag_build">Initial SelectionDAG
+ Construction</a></li>
+ <li><a href="#selectiondag_legalize_types">SelectionDAG LegalizeTypes Phase</a></li>
+ <li><a href="#selectiondag_legalize">SelectionDAG Legalize Phase</a></li>
+ <li><a href="#selectiondag_optimize">SelectionDAG Optimization
+ Phase: the DAG Combiner</a></li>
+ <li><a href="#selectiondag_select">SelectionDAG Select Phase</a></li>
+ <li><a href="#selectiondag_sched">SelectionDAG Scheduling and Formation
+ Phase</a></li>
+ <li><a href="#selectiondag_future">Future directions for the
+ SelectionDAG</a></li>
+ </ul></li>
+ <li><a href="#liveintervals">Live Intervals</a>
+ <ul>
+ <li><a href="#livevariable_analysis">Live Variable Analysis</a></li>
+ <li><a href="#liveintervals_analysis">Live Intervals Analysis</a></li>
+ </ul></li>
+ <li><a href="#regalloc">Register Allocation</a>
+ <ul>
+ <li><a href="#regAlloc_represent">How registers are represented in
+ LLVM</a></li>
+ <li><a href="#regAlloc_howTo">Mapping virtual registers to physical
+ registers</a></li>
+ <li><a href="#regAlloc_twoAddr">Handling two address instructions</a></li>
+ <li><a href="#regAlloc_ssaDecon">The SSA deconstruction phase</a></li>
+ <li><a href="#regAlloc_fold">Instruction folding</a></li>
+ <li><a href="#regAlloc_builtIn">Built in register allocators</a></li>
+ </ul></li>
+ <li><a href="#codeemit">Code Emission</a>
+ <ul>
+ <li><a href="#codeemit_asm">Generating Assembly Code</a></li>
+ <li><a href="#codeemit_bin">Generating Binary Machine Code</a></li>
+ </ul></li>
+ </ul>
+ </li>
+ <li><a href="#targetimpls">Target-specific Implementation Notes</a>
+ <ul>
+ <li><a href="#tailcallopt">Tail call optimization</a></li>
+ <li><a href="#sibcallopt">Sibling call optimization</a></li>
+ <li><a href="#x86">The X86 backend</a></li>
+ <li><a href="#ppc">The PowerPC backend</a>
+ <ul>
+ <li><a href="#ppc_abi">LLVM PowerPC ABI</a></li>
+ <li><a href="#ppc_frame">Frame Layout</a></li>
+ <li><a href="#ppc_prolog">Prolog/Epilog</a></li>
+ <li><a href="#ppc_dynamic">Dynamic Allocation</a></li>
+ </ul></li>
+ </ul></li>
+
+</ol>
+
+<div class="doc_author">
+ <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>,
+ <a href="mailto:isanbard@gmail.com">Bill Wendling</a>,
+ <a href="mailto:pronesto@gmail.com">Fernando Magno Quintao
+ Pereira</a> and
+ <a href="mailto:jlaskey@mac.com">Jim Laskey</a></p>
+</div>
+
+<div class="doc_warning">
+ <p>Warning: This is a work in progress.</p>
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section">
+ <a name="introduction">Introduction</a>
+</div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>The LLVM target-independent code generator is a framework that provides a
+ suite of reusable components for translating the LLVM internal representation
+ to the machine code for a specified target&mdash;either in assembly form
+ (suitable for a static compiler) or in binary machine code format (usable for
+ a JIT compiler). The LLVM target-independent code generator consists of five
+ main components:</p>
+
+<ol>
+ <li><a href="#targetdesc">Abstract target description</a> interfaces which
+ capture important properties about various aspects of the machine,
+ independently of how they will be used. These interfaces are defined in
+ <tt>include/llvm/Target/</tt>.</li>
+
+ <li>Classes used to represent the <a href="#codegendesc">machine code</a>
+ being generated for a target. These classes are intended to be abstract
+ enough to represent the machine code for <i>any</i> target machine. These
+ classes are defined in <tt>include/llvm/CodeGen/</tt>.</li>
+
+ <li><a href="#codegenalgs">Target-independent algorithms</a> used to implement
+ various phases of native code generation (register allocation, scheduling,
+ stack frame representation, etc). This code lives
+ in <tt>lib/CodeGen/</tt>.</li>
+
+ <li><a href="#targetimpls">Implementations of the abstract target description
+ interfaces</a> for particular targets. These machine descriptions make
+ use of the components provided by LLVM, and can optionally provide custom
+ target-specific passes, to build complete code generators for a specific
+ target. Target descriptions live in <tt>lib/Target/</tt>.</li>
+
+ <li><a href="#jit">The target-independent JIT components</a>. The LLVM JIT is
+ completely target independent (it uses the <tt>TargetJITInfo</tt>
+ structure to interface for target-specific issues. The code for the
+ target-independent JIT lives in <tt>lib/ExecutionEngine/JIT</tt>.</li>
+</ol>
+
+<p>Depending on which part of the code generator you are interested in working
+ on, different pieces of this will be useful to you. In any case, you should
+ be familiar with the <a href="#targetdesc">target description</a>
+ and <a href="#codegendesc">machine code representation</a> classes. If you
+ want to add a backend for a new target, you will need
+ to <a href="#targetimpls">implement the target description</a> classes for
+ your new target and understand the <a href="LangRef.html">LLVM code
+ representation</a>. If you are interested in implementing a
+ new <a href="#codegenalgs">code generation algorithm</a>, it should only
+ depend on the target-description and machine code representation classes,
+ ensuring that it is portable.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="required">Required components in the code generator</a>
+</div>
+
+<div class="doc_text">
+
+<p>The two pieces of the LLVM code generator are the high-level interface to the
+ code generator and the set of reusable components that can be used to build
+ target-specific backends. The two most important interfaces
+ (<a href="#targetmachine"><tt>TargetMachine</tt></a>
+ and <a href="#targetdata"><tt>TargetData</tt></a>) are the only ones that are
+ required to be defined for a backend to fit into the LLVM system, but the
+ others must be defined if the reusable code generator components are going to
+ be used.</p>
+
+<p>This design has two important implications. The first is that LLVM can
+ support completely non-traditional code generation targets. For example, the
+ C backend does not require register allocation, instruction selection, or any
+ of the other standard components provided by the system. As such, it only
+ implements these two interfaces, and does its own thing. Another example of
+ a code generator like this is a (purely hypothetical) backend that converts
+ LLVM to the GCC RTL form and uses GCC to emit machine code for a target.</p>
+
+<p>This design also implies that it is possible to design and implement
+ radically different code generators in the LLVM system that do not make use
+ of any of the built-in components. Doing so is not recommended at all, but
+ could be required for radically different targets that do not fit into the
+ LLVM machine description model: FPGAs for example.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="high-level-design">The high-level design of the code generator</a>
+</div>
+
+<div class="doc_text">
+
+<p>The LLVM target-independent code generator is designed to support efficient
+ and quality code generation for standard register-based microprocessors.
+ Code generation in this model is divided into the following stages:</p>
+
+<ol>
+ <li><b><a href="#instselect">Instruction Selection</a></b> &mdash; This phase
+ determines an efficient way to express the input LLVM code in the target
+ instruction set. This stage produces the initial code for the program in
+ the target instruction set, then makes use of virtual registers in SSA
+ form and physical registers that represent any required register
+ assignments due to target constraints or calling conventions. This step
+ turns the LLVM code into a DAG of target instructions.</li>
+
+ <li><b><a href="#selectiondag_sched">Scheduling and Formation</a></b> &mdash;
+ This phase takes the DAG of target instructions produced by the
+ instruction selection phase, determines an ordering of the instructions,
+ then emits the instructions
+ as <tt><a href="#machineinstr">MachineInstr</a></tt>s with that ordering.
+ Note that we describe this in the <a href="#instselect">instruction
+ selection section</a> because it operates on
+ a <a href="#selectiondag_intro">SelectionDAG</a>.</li>
+
+ <li><b><a href="#ssamco">SSA-based Machine Code Optimizations</a></b> &mdash;
+ This optional stage consists of a series of machine-code optimizations
+ that operate on the SSA-form produced by the instruction selector.
+ Optimizations like modulo-scheduling or peephole optimization work
+ here.</li>
+
+ <li><b><a href="#regalloc">Register Allocation</a></b> &mdash; The target code
+ is transformed from an infinite virtual register file in SSA form to the
+ concrete register file used by the target. This phase introduces spill
+ code and eliminates all virtual register references from the program.</li>
+
+ <li><b><a href="#proepicode">Prolog/Epilog Code Insertion</a></b> &mdash; Once
+ the machine code has been generated for the function and the amount of
+ stack space required is known (used for LLVM alloca's and spill slots),
+ the prolog and epilog code for the function can be inserted and "abstract
+ stack location references" can be eliminated. This stage is responsible
+ for implementing optimizations like frame-pointer elimination and stack
+ packing.</li>
+
+ <li><b><a href="#latemco">Late Machine Code Optimizations</a></b> &mdash;
+ Optimizations that operate on "final" machine code can go here, such as
+ spill code scheduling and peephole optimizations.</li>
+
+ <li><b><a href="#codeemit">Code Emission</a></b> &mdash; The final stage
+ actually puts out the code for the current function, either in the target
+ assembler format or in machine code.</li>
+</ol>
+
+<p>The code generator is based on the assumption that the instruction selector
+ will use an optimal pattern matching selector to create high-quality
+ sequences of native instructions. Alternative code generator designs based
+ on pattern expansion and aggressive iterative peephole optimization are much
+ slower. This design permits efficient compilation (important for JIT
+ environments) and aggressive optimization (used when generating code offline)
+ by allowing components of varying levels of sophistication to be used for any
+ step of compilation.</p>
+
+<p>In addition to these stages, target implementations can insert arbitrary
+ target-specific passes into the flow. For example, the X86 target uses a
+ special pass to handle the 80x87 floating point stack architecture. Other
+ targets with unusual requirements can be supported with custom passes as
+ needed.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="tablegen">Using TableGen for target description</a>
+</div>
+
+<div class="doc_text">
+
+<p>The target description classes require a detailed description of the target
+ architecture. These target descriptions often have a large amount of common
+ information (e.g., an <tt>add</tt> instruction is almost identical to a
+ <tt>sub</tt> instruction). In order to allow the maximum amount of
+ commonality to be factored out, the LLVM code generator uses
+ the <a href="TableGenFundamentals.html">TableGen</a> tool to describe big
+ chunks of the target machine, which allows the use of domain-specific and
+ target-specific abstractions to reduce the amount of repetition.</p>
+
+<p>As LLVM continues to be developed and refined, we plan to move more and more
+ of the target description to the <tt>.td</tt> form. Doing so gives us a
+ number of advantages. The most important is that it makes it easier to port
+ LLVM because it reduces the amount of C++ code that has to be written, and
+ the surface area of the code generator that needs to be understood before
+ someone can get something working. Second, it makes it easier to change
+ things. In particular, if tables and other things are all emitted
+ by <tt>tblgen</tt>, we only need a change in one place (<tt>tblgen</tt>) to
+ update all of the targets to a new interface.</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section">
+ <a name="targetdesc">Target description classes</a>
+</div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>The LLVM target description classes (located in the
+ <tt>include/llvm/Target</tt> directory) provide an abstract description of
+ the target machine independent of any particular client. These classes are
+ designed to capture the <i>abstract</i> properties of the target (such as the
+ instructions and registers it has), and do not incorporate any particular
+ pieces of code generation algorithms.</p>
+
+<p>All of the target description classes (except the
+ <tt><a href="#targetdata">TargetData</a></tt> class) are designed to be
+ subclassed by the concrete target implementation, and have virtual methods
+ implemented. To get to these implementations, the
+ <tt><a href="#targetmachine">TargetMachine</a></tt> class provides accessors
+ that should be implemented by the target.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="targetmachine">The <tt>TargetMachine</tt> class</a>
+</div>
+
+<div class="doc_text">
+
+<p>The <tt>TargetMachine</tt> class provides virtual methods that are used to
+ access the target-specific implementations of the various target description
+ classes via the <tt>get*Info</tt> methods (<tt>getInstrInfo</tt>,
+ <tt>getRegisterInfo</tt>, <tt>getFrameInfo</tt>, etc.). This class is
+ designed to be specialized by a concrete target implementation
+ (e.g., <tt>X86TargetMachine</tt>) which implements the various virtual
+ methods. The only required target description class is
+ the <a href="#targetdata"><tt>TargetData</tt></a> class, but if the code
+ generator components are to be used, the other interfaces should be
+ implemented as well.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="targetdata">The <tt>TargetData</tt> class</a>
+</div>
+
+<div class="doc_text">
+
+<p>The <tt>TargetData</tt> class is the only required target description class,
+ and it is the only class that is not extensible (you cannot derived a new
+ class from it). <tt>TargetData</tt> specifies information about how the
+ target lays out memory for structures, the alignment requirements for various
+ data types, the size of pointers in the target, and whether the target is
+ little-endian or big-endian.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="targetlowering">The <tt>TargetLowering</tt> class</a>
+</div>
+
+<div class="doc_text">
+
+<p>The <tt>TargetLowering</tt> class is used by SelectionDAG based instruction
+ selectors primarily to describe how LLVM code should be lowered to
+ SelectionDAG operations. Among other things, this class indicates:</p>
+
+<ul>
+ <li>an initial register class to use for various <tt>ValueType</tt>s,</li>
+
+ <li>which operations are natively supported by the target machine,</li>
+
+ <li>the return type of <tt>setcc</tt> operations,</li>
+
+ <li>the type to use for shift amounts, and</li>
+
+ <li>various high-level characteristics, like whether it is profitable to turn
+ division by a constant into a multiplication sequence</li>
+</ul>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="targetregisterinfo">The <tt>TargetRegisterInfo</tt> class</a>
+</div>
+
+<div class="doc_text">
+
+<p>The <tt>TargetRegisterInfo</tt> class is used to describe the register file
+ of the target and any interactions between the registers.</p>
+
+<p>Registers in the code generator are represented in the code generator by
+ unsigned integers. Physical registers (those that actually exist in the
+ target description) are unique small numbers, and virtual registers are
+ generally large. Note that register #0 is reserved as a flag value.</p>
+
+<p>Each register in the processor description has an associated
+ <tt>TargetRegisterDesc</tt> entry, which provides a textual name for the
+ register (used for assembly output and debugging dumps) and a set of aliases
+ (used to indicate whether one register overlaps with another).</p>
+
+<p>In addition to the per-register description, the <tt>TargetRegisterInfo</tt>
+ class exposes a set of processor specific register classes (instances of the
+ <tt>TargetRegisterClass</tt> class). Each register class contains sets of
+ registers that have the same properties (for example, they are all 32-bit
+ integer registers). Each SSA virtual register created by the instruction
+ selector has an associated register class. When the register allocator runs,
+ it replaces virtual registers with a physical register in the set.</p>
+
+<p>The target-specific implementations of these classes is auto-generated from
+ a <a href="TableGenFundamentals.html">TableGen</a> description of the
+ register file.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="targetinstrinfo">The <tt>TargetInstrInfo</tt> class</a>
+</div>
+
+<div class="doc_text">
+
+<p>The <tt>TargetInstrInfo</tt> class is used to describe the machine
+ instructions supported by the target. It is essentially an array of
+ <tt>TargetInstrDescriptor</tt> objects, each of which describes one
+ instruction the target supports. Descriptors define things like the mnemonic
+ for the opcode, the number of operands, the list of implicit register uses
+ and defs, whether the instruction has certain target-independent properties
+ (accesses memory, is commutable, etc), and holds any target-specific
+ flags.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="targetframeinfo">The <tt>TargetFrameInfo</tt> class</a>
+</div>
+
+<div class="doc_text">
+
+<p>The <tt>TargetFrameInfo</tt> class is used to provide information about the
+ stack frame layout of the target. It holds the direction of stack growth, the
+ known stack alignment on entry to each function, and the offset to the local
+ area. The offset to the local area is the offset from the stack pointer on
+ function entry to the first location where function data (local variables,
+ spill locations) can be stored.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="targetsubtarget">The <tt>TargetSubtarget</tt> class</a>
+</div>
+
+<div class="doc_text">
+
+<p>The <tt>TargetSubtarget</tt> class is used to provide information about the
+ specific chip set being targeted. A sub-target informs code generation of
+ which instructions are supported, instruction latencies and instruction
+ execution itinerary; i.e., which processing units are used, in what order,
+ and for how long.</p>
+
+</div>
+
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="targetjitinfo">The <tt>TargetJITInfo</tt> class</a>
+</div>
+
+<div class="doc_text">
+
+<p>The <tt>TargetJITInfo</tt> class exposes an abstract interface used by the
+ Just-In-Time code generator to perform target-specific activities, such as
+ emitting stubs. If a <tt>TargetMachine</tt> supports JIT code generation, it
+ should provide one of these objects through the <tt>getJITInfo</tt>
+ method.</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section">
+ <a name="codegendesc">Machine code description classes</a>
+</div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>At the high-level, LLVM code is translated to a machine specific
+ representation formed out of
+ <a href="#machinefunction"><tt>MachineFunction</tt></a>,
+ <a href="#machinebasicblock"><tt>MachineBasicBlock</tt></a>,
+ and <a href="#machineinstr"><tt>MachineInstr</tt></a> instances (defined
+ in <tt>include/llvm/CodeGen</tt>). This representation is completely target
+ agnostic, representing instructions in their most abstract form: an opcode
+ and a series of operands. This representation is designed to support both an
+ SSA representation for machine code, as well as a register allocated, non-SSA
+ form.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="machineinstr">The <tt>MachineInstr</tt> class</a>
+</div>
+
+<div class="doc_text">
+
+<p>Target machine instructions are represented as instances of the
+ <tt>MachineInstr</tt> class. This class is an extremely abstract way of
+ representing machine instructions. In particular, it only keeps track of an
+ opcode number and a set of operands.</p>
+
+<p>The opcode number is a simple unsigned integer that only has meaning to a
+ specific backend. All of the instructions for a target should be defined in
+ the <tt>*InstrInfo.td</tt> file for the target. The opcode enum values are
+ auto-generated from this description. The <tt>MachineInstr</tt> class does
+ not have any information about how to interpret the instruction (i.e., what
+ the semantics of the instruction are); for that you must refer to the
+ <tt><a href="#targetinstrinfo">TargetInstrInfo</a></tt> class.</p>
+
+<p>The operands of a machine instruction can be of several different types: a
+ register reference, a constant integer, a basic block reference, etc. In
+ addition, a machine operand should be marked as a def or a use of the value
+ (though only registers are allowed to be defs).</p>
+
+<p>By convention, the LLVM code generator orders instruction operands so that
+ all register definitions come before the register uses, even on architectures
+ that are normally printed in other orders. For example, the SPARC add
+ instruction: "<tt>add %i1, %i2, %i3</tt>" adds the "%i1", and "%i2" registers
+ and stores the result into the "%i3" register. In the LLVM code generator,
+ the operands should be stored as "<tt>%i3, %i1, %i2</tt>": with the
+ destination first.</p>
+
+<p>Keeping destination (definition) operands at the beginning of the operand
+ list has several advantages. In particular, the debugging printer will print
+ the instruction like this:</p>
+
+<div class="doc_code">
+<pre>
+%r3 = add %i1, %i2
+</pre>
+</div>
+
+<p>Also if the first operand is a def, it is easier to <a href="#buildmi">create
+ instructions</a> whose only def is the first operand.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="buildmi">Using the <tt>MachineInstrBuilder.h</tt> functions</a>
+</div>
+
+<div class="doc_text">
+
+<p>Machine instructions are created by using the <tt>BuildMI</tt> functions,
+ located in the <tt>include/llvm/CodeGen/MachineInstrBuilder.h</tt> file. The
+ <tt>BuildMI</tt> functions make it easy to build arbitrary machine
+ instructions. Usage of the <tt>BuildMI</tt> functions look like this:</p>
+
+<div class="doc_code">
+<pre>
+// Create a 'DestReg = mov 42' (rendered in X86 assembly as 'mov DestReg, 42')
+// instruction. The '1' specifies how many operands will be added.
+MachineInstr *MI = BuildMI(X86::MOV32ri, 1, DestReg).addImm(42);
+
+// Create the same instr, but insert it at the end of a basic block.
+MachineBasicBlock &amp;MBB = ...
+BuildMI(MBB, X86::MOV32ri, 1, DestReg).addImm(42);
+
+// Create the same instr, but insert it before a specified iterator point.
+MachineBasicBlock::iterator MBBI = ...
+BuildMI(MBB, MBBI, X86::MOV32ri, 1, DestReg).addImm(42);
+
+// Create a 'cmp Reg, 0' instruction, no destination reg.
+MI = BuildMI(X86::CMP32ri, 2).addReg(Reg).addImm(0);
+// Create an 'sahf' instruction which takes no operands and stores nothing.
+MI = BuildMI(X86::SAHF, 0);
+
+// Create a self looping branch instruction.
+BuildMI(MBB, X86::JNE, 1).addMBB(&amp;MBB);
+</pre>
+</div>
+
+<p>The key thing to remember with the <tt>BuildMI</tt> functions is that you
+ have to specify the number of operands that the machine instruction will
+ take. This allows for efficient memory allocation. You also need to specify
+ if operands default to be uses of values, not definitions. If you need to
+ add a definition operand (other than the optional destination register), you
+ must explicitly mark it as such:</p>
+
+<div class="doc_code">
+<pre>
+MI.addReg(Reg, RegState::Define);
+</pre>
+</div>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="fixedregs">Fixed (preassigned) registers</a>
+</div>
+
+<div class="doc_text">
+
+<p>One important issue that the code generator needs to be aware of is the
+ presence of fixed registers. In particular, there are often places in the
+ instruction stream where the register allocator <em>must</em> arrange for a
+ particular value to be in a particular register. This can occur due to
+ limitations of the instruction set (e.g., the X86 can only do a 32-bit divide
+ with the <tt>EAX</tt>/<tt>EDX</tt> registers), or external factors like
+ calling conventions. In any case, the instruction selector should emit code
+ that copies a virtual register into or out of a physical register when
+ needed.</p>
+
+<p>For example, consider this simple LLVM example:</p>
+
+<div class="doc_code">
+<pre>
+define i32 @test(i32 %X, i32 %Y) {
+ %Z = udiv i32 %X, %Y
+ ret i32 %Z
+}
+</pre>
+</div>
+
+<p>The X86 instruction selector produces this machine code for the <tt>div</tt>
+ and <tt>ret</tt> (use "<tt>llc X.bc -march=x86 -print-machineinstrs</tt>" to
+ get this):</p>
+
+<div class="doc_code">
+<pre>
+;; Start of div
+%EAX = mov %reg1024 ;; Copy X (in reg1024) into EAX
+%reg1027 = sar %reg1024, 31
+%EDX = mov %reg1027 ;; Sign extend X into EDX
+idiv %reg1025 ;; Divide by Y (in reg1025)
+%reg1026 = mov %EAX ;; Read the result (Z) out of EAX
+
+;; Start of ret
+%EAX = mov %reg1026 ;; 32-bit return value goes in EAX
+ret
+</pre>
+</div>
+
+<p>By the end of code generation, the register allocator has coalesced the
+ registers and deleted the resultant identity moves producing the following
+ code:</p>
+
+<div class="doc_code">
+<pre>
+;; X is in EAX, Y is in ECX
+mov %EAX, %EDX
+sar %EDX, 31
+idiv %ECX
+ret
+</pre>
+</div>
+
+<p>This approach is extremely general (if it can handle the X86 architecture, it
+ can handle anything!) and allows all of the target specific knowledge about
+ the instruction stream to be isolated in the instruction selector. Note that
+ physical registers should have a short lifetime for good code generation, and
+ all physical registers are assumed dead on entry to and exit from basic
+ blocks (before register allocation). Thus, if you need a value to be live
+ across basic block boundaries, it <em>must</em> live in a virtual
+ register.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="ssa">Machine code in SSA form</a>
+</div>
+
+<div class="doc_text">
+
+<p><tt>MachineInstr</tt>'s are initially selected in SSA-form, and are
+ maintained in SSA-form until register allocation happens. For the most part,
+ this is trivially simple since LLVM is already in SSA form; LLVM PHI nodes
+ become machine code PHI nodes, and virtual registers are only allowed to have
+ a single definition.</p>
+
+<p>After register allocation, machine code is no longer in SSA-form because
+ there are no virtual registers left in the code.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="machinebasicblock">The <tt>MachineBasicBlock</tt> class</a>
+</div>
+
+<div class="doc_text">
+
+<p>The <tt>MachineBasicBlock</tt> class contains a list of machine instructions
+ (<tt><a href="#machineinstr">MachineInstr</a></tt> instances). It roughly
+ corresponds to the LLVM code input to the instruction selector, but there can
+ be a one-to-many mapping (i.e. one LLVM basic block can map to multiple
+ machine basic blocks). The <tt>MachineBasicBlock</tt> class has a
+ "<tt>getBasicBlock</tt>" method, which returns the LLVM basic block that it
+ comes from.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="machinefunction">The <tt>MachineFunction</tt> class</a>
+</div>
+
+<div class="doc_text">
+
+<p>The <tt>MachineFunction</tt> class contains a list of machine basic blocks
+ (<tt><a href="#machinebasicblock">MachineBasicBlock</a></tt> instances). It
+ corresponds one-to-one with the LLVM function input to the instruction
+ selector. In addition to a list of basic blocks,
+ the <tt>MachineFunction</tt> contains a a <tt>MachineConstantPool</tt>,
+ a <tt>MachineFrameInfo</tt>, a <tt>MachineFunctionInfo</tt>, and a
+ <tt>MachineRegisterInfo</tt>. See
+ <tt>include/llvm/CodeGen/MachineFunction.h</tt> for more information.</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section">
+ <a name="codegenalgs">Target-independent code generation algorithms</a>
+</div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>This section documents the phases described in the
+ <a href="#high-level-design">high-level design of the code generator</a>.
+ It explains how they work and some of the rationale behind their design.</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+ <a name="instselect">Instruction Selection</a>
+</div>
+
+<div class="doc_text">
+
+<p>Instruction Selection is the process of translating LLVM code presented to
+ the code generator into target-specific machine instructions. There are
+ several well-known ways to do this in the literature. LLVM uses a
+ SelectionDAG based instruction selector.</p>
+
+<p>Portions of the DAG instruction selector are generated from the target
+ description (<tt>*.td</tt>) files. Our goal is for the entire instruction
+ selector to be generated from these <tt>.td</tt> files, though currently
+ there are still things that require custom C++ code.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+ <a name="selectiondag_intro">Introduction to SelectionDAGs</a>
+</div>
+
+<div class="doc_text">
+
+<p>The SelectionDAG provides an abstraction for code representation in a way
+ that is amenable to instruction selection using automatic techniques
+ (e.g. dynamic-programming based optimal pattern matching selectors). It is
+ also well-suited to other phases of code generation; in particular,
+ instruction scheduling (SelectionDAG's are very close to scheduling DAGs
+ post-selection). Additionally, the SelectionDAG provides a host
+ representation where a large variety of very-low-level (but
+ target-independent) <a href="#selectiondag_optimize">optimizations</a> may be
+ performed; ones which require extensive information about the instructions
+ efficiently supported by the target.</p>
+
+<p>The SelectionDAG is a Directed-Acyclic-Graph whose nodes are instances of the
+ <tt>SDNode</tt> class. The primary payload of the <tt>SDNode</tt> is its
+ operation code (Opcode) that indicates what operation the node performs and
+ the operands to the operation. The various operation node types are
+ described at the top of the <tt>include/llvm/CodeGen/SelectionDAGNodes.h</tt>
+ file.</p>
+
+<p>Although most operations define a single value, each node in the graph may
+ define multiple values. For example, a combined div/rem operation will
+ define both the dividend and the remainder. Many other situations require
+ multiple values as well. Each node also has some number of operands, which
+ are edges to the node defining the used value. Because nodes may define
+ multiple values, edges are represented by instances of the <tt>SDValue</tt>
+ class, which is a <tt>&lt;SDNode, unsigned&gt;</tt> pair, indicating the node
+ and result value being used, respectively. Each value produced by
+ an <tt>SDNode</tt> has an associated <tt>MVT</tt> (Machine Value Type)
+ indicating what the type of the value is.</p>
+
+<p>SelectionDAGs contain two different kinds of values: those that represent
+ data flow and those that represent control flow dependencies. Data values
+ are simple edges with an integer or floating point value type. Control edges
+ are represented as "chain" edges which are of type <tt>MVT::Other</tt>.
+ These edges provide an or