diff options
Diffstat (limited to 'docs/CodeGenerator.html')
-rw-r--r-- | docs/CodeGenerator.html | 3190 |
1 files changed, 0 insertions, 3190 deletions
diff --git a/docs/CodeGenerator.html b/docs/CodeGenerator.html deleted file mode 100644 index 651eb96603..0000000000 --- a/docs/CodeGenerator.html +++ /dev/null @@ -1,3190 +0,0 @@ -<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" - "http://www.w3.org/TR/html4/strict.dtd"> -<html> -<head> - <meta http-equiv="content-type" content="text/html; charset=utf-8"> - <title>The LLVM Target-Independent Code Generator</title> - <link rel="stylesheet" href="_static/llvm.css" type="text/css"> - - <style type="text/css"> - .unknown { background-color: #C0C0C0; text-align: center; } - .unknown:before { content: "?" } - .no { background-color: #C11B17 } - .no:before { content: "N" } - .partial { background-color: #F88017 } - .yes { background-color: #0F0; } - .yes:before { content: "Y" } - </style> - -</head> -<body> - -<h1> - The LLVM Target-Independent Code Generator -</h1> - -<ol> - <li><a href="#introduction">Introduction</a> - <ul> - <li><a href="#required">Required components in the code generator</a></li> - <li><a href="#high-level-design">The high-level design of the code - generator</a></li> - <li><a href="#tablegen">Using TableGen for target description</a></li> - </ul> - </li> - <li><a href="#targetdesc">Target description classes</a> - <ul> - <li><a href="#targetmachine">The <tt>TargetMachine</tt> class</a></li> - <li><a href="#targetdata">The <tt>TargetData</tt> class</a></li> - <li><a href="#targetlowering">The <tt>TargetLowering</tt> class</a></li> - <li><a href="#targetregisterinfo">The <tt>TargetRegisterInfo</tt> class</a></li> - <li><a href="#targetinstrinfo">The <tt>TargetInstrInfo</tt> class</a></li> - <li><a href="#targetframeinfo">The <tt>TargetFrameInfo</tt> class</a></li> - <li><a href="#targetsubtarget">The <tt>TargetSubtarget</tt> class</a></li> - <li><a href="#targetjitinfo">The <tt>TargetJITInfo</tt> class</a></li> - </ul> - </li> - <li><a href="#codegendesc">The "Machine" Code Generator classes</a> - <ul> - <li><a href="#machineinstr">The <tt>MachineInstr</tt> class</a></li> - <li><a href="#machinebasicblock">The <tt>MachineBasicBlock</tt> - class</a></li> - <li><a href="#machinefunction">The <tt>MachineFunction</tt> class</a></li> - <li><a href="#machineinstrbundle"><tt>MachineInstr Bundles</tt></a></li> - </ul> - </li> - <li><a href="#mc">The "MC" Layer</a> - <ul> - <li><a href="#mcstreamer">The <tt>MCStreamer</tt> API</a></li> - <li><a href="#mccontext">The <tt>MCContext</tt> class</a> - <li><a href="#mcsymbol">The <tt>MCSymbol</tt> class</a></li> - <li><a href="#mcsection">The <tt>MCSection</tt> class</a></li> - <li><a href="#mcinst">The <tt>MCInst</tt> class</a></li> - </ul> - </li> - <li><a href="#codegenalgs">Target-independent code generation algorithms</a> - <ul> - <li><a href="#instselect">Instruction Selection</a> - <ul> - <li><a href="#selectiondag_intro">Introduction to SelectionDAGs</a></li> - <li><a href="#selectiondag_process">SelectionDAG Code Generation - Process</a></li> - <li><a href="#selectiondag_build">Initial SelectionDAG - Construction</a></li> - <li><a href="#selectiondag_legalize_types">SelectionDAG LegalizeTypes Phase</a></li> - <li><a href="#selectiondag_legalize">SelectionDAG Legalize Phase</a></li> - <li><a href="#selectiondag_optimize">SelectionDAG Optimization - Phase: the DAG Combiner</a></li> - <li><a href="#selectiondag_select">SelectionDAG Select Phase</a></li> - <li><a href="#selectiondag_sched">SelectionDAG Scheduling and Formation - Phase</a></li> - <li><a href="#selectiondag_future">Future directions for the - SelectionDAG</a></li> - </ul></li> - <li><a href="#liveintervals">Live Intervals</a> - <ul> - <li><a href="#livevariable_analysis">Live Variable Analysis</a></li> - <li><a href="#liveintervals_analysis">Live Intervals Analysis</a></li> - </ul></li> - <li><a href="#regalloc">Register Allocation</a> - <ul> - <li><a href="#regAlloc_represent">How registers are represented in - LLVM</a></li> - <li><a href="#regAlloc_howTo">Mapping virtual registers to physical - registers</a></li> - <li><a href="#regAlloc_twoAddr">Handling two address instructions</a></li> - <li><a href="#regAlloc_ssaDecon">The SSA deconstruction phase</a></li> - <li><a href="#regAlloc_fold">Instruction folding</a></li> - <li><a href="#regAlloc_builtIn">Built in register allocators</a></li> - </ul></li> - <li><a href="#codeemit">Code Emission</a></li> - <li><a href="#vliw_packetizer">VLIW Packetizer</a> - <ul> - <li><a href="#vliw_mapping">Mapping from instructions to functional - units</a></li> - <li><a href="#vliw_repr">How the packetization tables are - generated and used</a></li> - </ul> - </li> - </ul> - </li> - <li><a href="#nativeassembler">Implementing a Native Assembler</a></li> - - <li><a href="#targetimpls">Target-specific Implementation Notes</a> - <ul> - <li><a href="#targetfeatures">Target Feature Matrix</a></li> - <li><a href="#tailcallopt">Tail call optimization</a></li> - <li><a href="#sibcallopt">Sibling call optimization</a></li> - <li><a href="#x86">The X86 backend</a></li> - <li><a href="#ppc">The PowerPC backend</a> - <ul> - <li><a href="#ppc_abi">LLVM PowerPC ABI</a></li> - <li><a href="#ppc_frame">Frame Layout</a></li> - <li><a href="#ppc_prolog">Prolog/Epilog</a></li> - <li><a href="#ppc_dynamic">Dynamic Allocation</a></li> - </ul></li> - <li><a href="#ptx">The PTX backend</a></li> - </ul></li> - -</ol> - -<div class="doc_author"> - <p>Written by the LLVM Team.</p> -</div> - -<div class="doc_warning"> - <p>Warning: This is a work in progress.</p> -</div> - -<!-- *********************************************************************** --> -<h2> - <a name="introduction">Introduction</a> -</h2> -<!-- *********************************************************************** --> - -<div> - -<p>The LLVM target-independent code generator is a framework that provides a - suite of reusable components for translating the LLVM internal representation - to the machine code for a specified target—either in assembly form - (suitable for a static compiler) or in binary machine code format (usable for - a JIT compiler). The LLVM target-independent code generator consists of six - main components:</p> - -<ol> - <li><a href="#targetdesc">Abstract target description</a> interfaces which - capture important properties about various aspects of the machine, - independently of how they will be used. These interfaces are defined in - <tt>include/llvm/Target/</tt>.</li> - - <li>Classes used to represent the <a href="#codegendesc">code being - generated</a> for a target. These classes are intended to be abstract - enough to represent the machine code for <i>any</i> target machine. These - classes are defined in <tt>include/llvm/CodeGen/</tt>. At this level, - concepts like "constant pool entries" and "jump tables" are explicitly - exposed.</li> - - <li>Classes and algorithms used to represent code as the object file level, - the <a href="#mc">MC Layer</a>. These classes represent assembly level - constructs like labels, sections, and instructions. At this level, - concepts like "constant pool entries" and "jump tables" don't exist.</li> - - <li><a href="#codegenalgs">Target-independent algorithms</a> used to implement - various phases of native code generation (register allocation, scheduling, - stack frame representation, etc). This code lives - in <tt>lib/CodeGen/</tt>.</li> - - <li><a href="#targetimpls">Implementations of the abstract target description - interfaces</a> for particular targets. These machine descriptions make - use of the components provided by LLVM, and can optionally provide custom - target-specific passes, to build complete code generators for a specific - target. Target descriptions live in <tt>lib/Target/</tt>.</li> - - <li><a href="#jit">The target-independent JIT components</a>. The LLVM JIT is - completely target independent (it uses the <tt>TargetJITInfo</tt> - structure to interface for target-specific issues. The code for the - target-independent JIT lives in <tt>lib/ExecutionEngine/JIT</tt>.</li> -</ol> - -<p>Depending on which part of the code generator you are interested in working - on, different pieces of this will be useful to you. In any case, you should - be familiar with the <a href="#targetdesc">target description</a> - and <a href="#codegendesc">machine code representation</a> classes. If you - want to add a backend for a new target, you will need - to <a href="#targetimpls">implement the target description</a> classes for - your new target and understand the <a href="LangRef.html">LLVM code - representation</a>. If you are interested in implementing a - new <a href="#codegenalgs">code generation algorithm</a>, it should only - depend on the target-description and machine code representation classes, - ensuring that it is portable.</p> - -<!-- ======================================================================= --> -<h3> - <a name="required">Required components in the code generator</a> -</h3> - -<div> - -<p>The two pieces of the LLVM code generator are the high-level interface to the - code generator and the set of reusable components that can be used to build - target-specific backends. The two most important interfaces - (<a href="#targetmachine"><tt>TargetMachine</tt></a> - and <a href="#targetdata"><tt>TargetData</tt></a>) are the only ones that are - required to be defined for a backend to fit into the LLVM system, but the - others must be defined if the reusable code generator components are going to - be used.</p> - -<p>This design has two important implications. The first is that LLVM can - support completely non-traditional code generation targets. For example, the - C backend does not require register allocation, instruction selection, or any - of the other standard components provided by the system. As such, it only - implements these two interfaces, and does its own thing. Note that C backend - was removed from the trunk since LLVM 3.1 release. Another example of - a code generator like this is a (purely hypothetical) backend that converts - LLVM to the GCC RTL form and uses GCC to emit machine code for a target.</p> - -<p>This design also implies that it is possible to design and implement - radically different code generators in the LLVM system that do not make use - of any of the built-in components. Doing so is not recommended at all, but - could be required for radically different targets that do not fit into the - LLVM machine description model: FPGAs for example.</p> - -</div> - -<!-- ======================================================================= --> -<h3> - <a name="high-level-design">The high-level design of the code generator</a> -</h3> - -<div> - -<p>The LLVM target-independent code generator is designed to support efficient - and quality code generation for standard register-based microprocessors. - Code generation in this model is divided into the following stages:</p> - -<ol> - <li><b><a href="#instselect">Instruction Selection</a></b> — This phase - determines an efficient way to express the input LLVM code in the target - instruction set. This stage produces the initial code for the program in - the target instruction set, then makes use of virtual registers in SSA - form and physical registers that represent any required register - assignments due to target constraints or calling conventions. This step - turns the LLVM code into a DAG of target instructions.</li> - - <li><b><a href="#selectiondag_sched">Scheduling and Formation</a></b> — - This phase takes the DAG of target instructions produced by the - instruction selection phase, determines an ordering of the instructions, - then emits the instructions - as <tt><a href="#machineinstr">MachineInstr</a></tt>s with that ordering. - Note that we describe this in the <a href="#instselect">instruction - selection section</a> because it operates on - a <a href="#selectiondag_intro">SelectionDAG</a>.</li> - - <li><b><a href="#ssamco">SSA-based Machine Code Optimizations</a></b> — - This optional stage consists of a series of machine-code optimizations - that operate on the SSA-form produced by the instruction selector. - Optimizations like modulo-scheduling or peephole optimization work - here.</li> - - <li><b><a href="#regalloc">Register Allocation</a></b> — The target code - is transformed from an infinite virtual register file in SSA form to the - concrete register file used by the target. This phase introduces spill - code and eliminates all virtual register references from the program.</li> - - <li><b><a href="#proepicode">Prolog/Epilog Code Insertion</a></b> — Once - the machine code has been generated for the function and the amount of - stack space required is known (used for LLVM alloca's and spill slots), - the prolog and epilog code for the function can be inserted and "abstract - stack location references" can be eliminated. This stage is responsible - for implementing optimizations like frame-pointer elimination and stack - packing.</li> - - <li><b><a href="#latemco">Late Machine Code Optimizations</a></b> — - Optimizations that operate on "final" machine code can go here, such as - spill code scheduling and peephole optimizations.</li> - - <li><b><a href="#codeemit">Code Emission</a></b> — The final stage - actually puts out the code for the current function, either in the target - assembler format or in machine code.</li> -</ol> - -<p>The code generator is based on the assumption that the instruction selector - will use an optimal pattern matching selector to create high-quality - sequences of native instructions. Alternative code generator designs based - on pattern expansion and aggressive iterative peephole optimization are much - slower. This design permits efficient compilation (important for JIT - environments) and aggressive optimization (used when generating code offline) - by allowing components of varying levels of sophistication to be used for any - step of compilation.</p> - -<p>In addition to these stages, target implementations can insert arbitrary - target-specific passes into the flow. For example, the X86 target uses a - special pass to handle the 80x87 floating point stack architecture. Other - targets with unusual requirements can be supported with custom passes as - needed.</p> - -</div> - -<!-- ======================================================================= --> -<h3> - <a name="tablegen">Using TableGen for target description</a> -</h3> - -<div> - -<p>The target description classes require a detailed description of the target - architecture. These target descriptions often have a large amount of common - information (e.g., an <tt>add</tt> instruction is almost identical to a - <tt>sub</tt> instruction). In order to allow the maximum amount of - commonality to be factored out, the LLVM code generator uses - the <a href="TableGenFundamentals.html">TableGen</a> tool to describe big - chunks of the target machine, which allows the use of domain-specific and - target-specific abstractions to reduce the amount of repetition.</p> - -<p>As LLVM continues to be developed and refined, we plan to move more and more - of the target description to the <tt>.td</tt> form. Doing so gives us a - number of advantages. The most important is that it makes it easier to port - LLVM because it reduces the amount of C++ code that has to be written, and - the surface area of the code generator that needs to be understood before - someone can get something working. Second, it makes it easier to change - things. In particular, if tables and other things are all emitted - by <tt>tblgen</tt>, we only need a change in one place (<tt>tblgen</tt>) to - update all of the targets to a new interface.</p> - -</div> - -</div> - -<!-- *********************************************************************** --> -<h2> - <a name="targetdesc">Target description classes</a> -</h2> -<!-- *********************************************************************** --> - -<div> - -<p>The LLVM target description classes (located in the - <tt>include/llvm/Target</tt> directory) provide an abstract description of - the target machine independent of any particular client. These classes are - designed to capture the <i>abstract</i> properties of the target (such as the - instructions and registers it has), and do not incorporate any particular - pieces of code generation algorithms.</p> - -<p>All of the target description classes (except the - <tt><a href="#targetdata">TargetData</a></tt> class) are designed to be - subclassed by the concrete target implementation, and have virtual methods - implemented. To get to these implementations, the - <tt><a href="#targetmachine">TargetMachine</a></tt> class provides accessors - that should be implemented by the target.</p> - -<!-- ======================================================================= --> -<h3> - <a name="targetmachine">The <tt>TargetMachine</tt> class</a> -</h3> - -<div> - -<p>The <tt>TargetMachine</tt> class provides virtual methods that are used to - access the target-specific implementations of the various target description - classes via the <tt>get*Info</tt> methods (<tt>getInstrInfo</tt>, - <tt>getRegisterInfo</tt>, <tt>getFrameInfo</tt>, etc.). This class is - designed to be specialized by a concrete target implementation - (e.g., <tt>X86TargetMachine</tt>) which implements the various virtual - methods. The only required target description class is - the <a href="#targetdata"><tt>TargetData</tt></a> class, but if the code - generator components are to be used, the other interfaces should be - implemented as well.</p> - -</div> - -<!-- ======================================================================= --> -<h3> - <a name="targetdata">The <tt>TargetData</tt> class</a> -</h3> - -<div> - -<p>The <tt>TargetData</tt> class is the only required target description class, - and it is the only class that is not extensible (you cannot derived a new - class from it). <tt>TargetData</tt> specifies information about how the - target lays out memory for structures, the alignment requirements for various - data types, the size of pointers in the target, and whether the target is - little-endian or big-endian.</p> - -</div> - -<!-- ======================================================================= --> -<h3> - <a name="targetlowering">The <tt>TargetLowering</tt> class</a> -</h3> - -<div> - -<p>The <tt>TargetLowering</tt> class is used by SelectionDAG based instruction - selectors primarily to describe how LLVM code should be lowered to - SelectionDAG operations. Among other things, this class indicates:</p> - -<ul> - <li>an initial register class to use for various <tt>ValueType</tt>s,</li> - - <li>which operations are natively supported by the target machine,</li> - - <li>the return type of <tt>setcc</tt> operations,</li> - - <li>the type to use for shift amounts, and</li> - - <li>various high-level characteristics, like whether it is profitable to turn - division by a constant into a multiplication sequence</li> -</ul> - -</div> - -<!-- ======================================================================= --> -<h3> - <a name="targetregisterinfo">The <tt>TargetRegisterInfo</tt> class</a> -</h3> - -<div> - -<p>The <tt>TargetRegisterInfo</tt> class is used to describe the register file - of the target and any interactions between the registers.</p> - -<p>Registers in the code generator are represented in the code generator by - unsigned integers. Physical registers (those that actually exist in the - target description) are unique small numbers, and virtual registers are - generally large. Note that register #0 is reserved as a flag value.</p> - -<p>Each register in the processor description has an associated - <tt>TargetRegisterDesc</tt> entry, which provides a textual name for the - register (used for assembly output and debugging dumps) and a set of aliases - (used to indicate whether one register overlaps with another).</p> - -<p>In addition to the per-register description, the <tt>TargetRegisterInfo</tt> - class exposes a set of processor specific register classes (instances of the - <tt>TargetRegisterClass</tt> class). Each register class contains sets of - registers that have the same properties (for example, they are all 32-bit - integer registers). Each SSA virtual register created by the instruction - selector has an associated register class. When the register allocator runs, - it replaces virtual registers with a physical register in the set.</p> - -<p>The target-specific implementations of these classes is auto-generated from - a <a href="TableGenFundamentals.html">TableGen</a> description of the - register file.</p> - -</div> - -<!-- ======================================================================= --> -<h3> - <a name="targetinstrinfo">The <tt>TargetInstrInfo</tt> class</a> -</h3> - -<div> - -<p>The <tt>TargetInstrInfo</tt> class is used to describe the machine - instructions supported by the target. It is essentially an array of - <tt>TargetInstrDescriptor</tt> objects, each of which describes one - instruction the target supports. Descriptors define things like the mnemonic - for the opcode, the number of operands, the list of implicit register uses - and defs, whether the instruction has certain target-independent properties - (accesses memory, is commutable, etc), and holds any target-specific - flags.</p> - -</div> - -<!-- ======================================================================= --> -<h3> - <a name="targetframeinfo">The <tt>TargetFrameInfo</tt> class</a> -</h3> - -<div> - -<p>The <tt>TargetFrameInfo</tt> class is used to provide information about the - stack frame layout of the target. It holds the direction of stack growth, the - known stack alignment on entry to each function, and the offset to the local - area. The offset to the local area is the offset from the stack pointer on - function entry to the first location where function data (local variables, - spill locations) can be stored.</p> - -</div> - -<!-- ======================================================================= --> -<h3> - <a name="targetsubtarget">The <tt>TargetSubtarget</tt> class</a> -</h3> - -<div> - -<p>The <tt>TargetSubtarget</tt> class is used to provide information about the - specific chip set being targeted. A sub-target informs code generation of - which instructions are supported, instruction latencies and instruction - execution itinerary; i.e., which processing units are used, in what order, - and for how long.</p> - -</div> - - -<!-- ======================================================================= --> -<h3> - <a name="targetjitinfo">The <tt>TargetJITInfo</tt> class</a> -</h3> - -<div> - -<p>The <tt>TargetJITInfo</tt> class exposes an abstract interface used by the - Just-In-Time code generator to perform target-specific activities, such as - emitting stubs. If a <tt>TargetMachine</tt> supports JIT code generation, it - should provide one of these objects through the <tt>getJITInfo</tt> - method.</p> - -</div> - -</div> - -<!-- *********************************************************************** --> -<h2> - <a name="codegendesc">Machine code description classes</a> -</h2> -<!-- *********************************************************************** --> - -<div> - -<p>At the high-level, LLVM code is translated to a machine specific - representation formed out of - <a href="#machinefunction"><tt>MachineFunction</tt></a>, - <a href="#machinebasicblock"><tt>MachineBasicBlock</tt></a>, - and <a href="#machineinstr"><tt>MachineInstr</tt></a> instances (defined - in <tt>include/llvm/CodeGen</tt>). This representation is completely target - agnostic, representing instructions in their most abstract form: an opcode - and a series of operands. This representation is designed to support both an - SSA representation for machine code, as well as a register allocated, non-SSA - form.</p> - -<!-- ======================================================================= --> -<h3> - <a name="machineinstr">The <tt>MachineInstr</tt> class</a> -</h3> - -<div> - -<p>Target machine instructions are represented as instances of the - <tt>MachineInstr</tt> class. This class is an extremely abstract way of - representing machine instructions. In particular, it only keeps track of an - opcode number and a set of operands.</p> - -<p>The opcode number is a simple unsigned integer that only has meaning to a - specific backend. All of the instructions for a target should be defined in - the <tt>*InstrInfo.td</tt> file for the target. The opcode enum values are - auto-generated from this description. The <tt>MachineInstr</tt> class does - not have any information about how to interpret the instruction (i.e., what - the semantics of the instruction are); for that you must refer to the - <tt><a href="#targetinstrinfo">TargetInstrInfo</a></tt> class.</p> - -<p>The operands of a machine instruction can be of several different types: a - register reference, a constant integer, a basic block reference, etc. In - addition, a machine operand should be marked as a def or a use of the value - (though only registers are allowed to be defs).</p> - -<p>By convention, the LLVM code generator orders instruction operands so that - all register definitions come before the register uses, even on architectures - that are normally printed in other orders. For example, the SPARC add - instruction: "<tt>add %i1, %i2, %i3</tt>" adds the "%i1", and "%i2" registers - and stores the result into the "%i3" register. In the LLVM code generator, - the operands should be stored as "<tt>%i3, %i1, %i2</tt>": with the - destination first.</p> - -<p>Keeping destination (definition) operands at the beginning of the operand - list has several advantages. In particular, the debugging printer will print - the instruction like this:</p> - -<div class="doc_code"> -<pre> -%r3 = add %i1, %i2 -</pre> -</div> - -<p>Also if the first operand is a def, it is easier to <a href="#buildmi">create - instructions</a> whose only def is the first operand.</p> - -<!-- _______________________________________________________________________ --> -<h4> - <a name="buildmi">Using the <tt>MachineInstrBuilder.h</tt> functions</a> -</h4> - -<div> - -<p>Machine instructions are created by using the <tt>BuildMI</tt> functions, - located in the <tt>include/llvm/CodeGen/MachineInstrBuilder.h</tt> file. The - <tt>BuildMI</tt> functions make it easy to build arbitrary machine - instructions. Usage of the <tt>BuildMI</tt> functions look like this:</p> - -<div class="doc_code"> -<pre> -// Create a 'DestReg = mov 42' (rendered in X86 assembly as 'mov DestReg, 42') -// instruction. The '1' specifies how many operands will be added. -MachineInstr *MI = BuildMI(X86::MOV32ri, 1, DestReg).addImm(42); - -// Create the same instr, but insert it at the end of a basic block. -MachineBasicBlock &MBB = ... -BuildMI(MBB, X86::MOV32ri, 1, DestReg).addImm(42); - -// Create the same instr, but insert it before a specified iterator point. -MachineBasicBlock::iterator MBBI = ... -BuildMI(MBB, MBBI, X86::MOV32ri, 1, DestReg).addImm(42); - -// Create a 'cmp Reg, 0' instruction, no destination reg. -MI = BuildMI(X86::CMP32ri, 2).addReg(Reg).addImm(0); -// Create an 'sahf' instruction which takes no operands and stores nothing. -MI = BuildMI(X86::SAHF, 0); - -// Create a self looping branch instruction. -BuildMI(MBB, X86::JNE, 1).addMBB(&MBB); -</pre> -</div> - -<p>The key thing to remember with the <tt>BuildMI</tt> functions is that you - have to specify the number of operands that the machine instruction will - take. This allows for efficient memory allocation. You also need to specify - if operands default to be uses of values, not definitions. If you need to - add a definition operand (other than the optional destination register), you - must explicitly mark it as such:</p> - -<div class="doc_code"> -<pre> -MI.addReg(Reg, RegState::Define); -</pre> -</div> - -</div> - -<!-- _______________________________________________________________________ --> -<h4> - <a name="fixedregs">Fixed (preassigned) registers</a> -</h4> - -<div> - -<p>One important issue that the code generator needs to be aware of is the - presence of fixed registers. In particular, there are often places in the - instruction stream where the register allocator <em>must</em> arrange for a - particular value to be in a particular register. This can occur due to - limitations of the instruction set (e.g., the X86 can only do a 32-bit divide - with the <tt>EAX</tt>/<tt>EDX</tt> registers), or external factors like - calling conventions. In any case, the instruction selector should emit code - that copies a virtual register into or out of a physical register when - needed.</p> - -<p>For example, consider this simple LLVM example:</p> - -<div class="doc_code"> -<pre> -define i32 @test(i32 %X, i32 %Y) { - %Z = udiv i32 %X, %Y - ret i32 %Z -} -</pre> -</div> - -<p>The X86 instruction selector produces this machine code for the <tt>div</tt> - and <tt>ret</tt> (use "<tt>llc X.bc -march=x86 -print-machineinstrs</tt>" to - get this):</p> - -<div class="doc_code"> -<pre> -;; Start of div -%EAX = mov %reg1024 ;; Copy X (in reg1024) into EAX -%reg1027 = sar %reg1024, 31 -%EDX = mov %reg1027 ;; Sign extend X into EDX -idiv %reg1025 ;; Divide by Y (in reg1025) -%reg1026 = mov %EAX ;; Read the result (Z) out of EAX - -;; Start of ret -%EAX = mov %reg1026 ;; 32-bit return value goes in EAX -ret -</pre> -</div> - -<p>By the end of code generation, the register allocator has coalesced the - registers and deleted the resultant identity moves producing the following - code:</p> - -<div class="doc_code"> -<pre> -;; X is in EAX, Y is in ECX -mov %EAX, %EDX -sar %EDX, 31 -idiv %ECX -ret -</pre> -</div> - -<p>This approach is extremely general (if it can handle the X86 architecture, it - can handle anything!) and allows all of the target specific knowledge about - the instruction stream to be isolated in the instruction selector. Note that - physical registers should have a short lifetime for good code generation, and - all physical registers are assumed dead on entry to and exit from basic - blocks (before register allocation). Thus, if you need a value to be live - across basic block boundaries, it <em>must</em> live in a virtual - register.</p> - -</div> - -<!-- _______________________________________________________________________ --> -<h4> - <a name="callclobber">Call-clobbered registers</a> -</h4> - -<div> - -<p>Some machine instructions, like calls, clobber a large number of physical - registers. Rather than adding <code><def,dead></code> operands for - all of them, it is possible to use an <code>MO_RegisterMask</code> operand - instead. The register mask operand holds a bit mask of preserved registers, - and everything else is considered to be clobbered by the instruction. </p> - -</div> - -<!-- _______________________________________________________________________ --> -<h4> - <a name="ssa">Machine code in SSA form</a> -</h4> - -<div> - -<p><tt>MachineInstr</tt>'s are initially selected in SSA-form, and are - maintained in SSA-form until register allocation happens. For the most part, - this is trivially simple since LLVM is already in SSA form; LLVM PHI nodes - become machine code PHI nodes, and virtual registers are only allowed to have - a single definition.</p> - -<p>After register allocation, machine code is no longer in SSA-form because - there are no virtual registers left in the code.</p> - -</div> - -</div> - -<!-- ======================================================================= --> -<h3> - <a name="machinebasicblock">The <tt>MachineBasicBlock</tt> class</a> -</h3> - -<div> - -<p>The <tt>MachineBasicBlock</tt> class contains a list of machine instructions - (<tt><a href="#machineinstr">MachineInstr</a></tt> instances). It roughly - corresponds to the LLVM code input to the instruction selector, but there can - be a one-to-many mapping (i.e. one LLVM basic block can map to multiple - machine basic blocks). The <tt>MachineBasicBlock</tt> class has a - "<tt>getBasicBlock</tt>" method, which returns the LLVM basic block that it - comes from.</p> - -</div> - -<!-- ======================================================================= --> -<h3> - <a name="machinefunction">The <tt>MachineFunction</tt> class</a> -</h3> - -<div> - -<p>The <tt>MachineFunction</tt> class contains a list of machine basic blocks - (<tt><a href="#machinebasicblock">MachineBasicBlock</a></tt> instances). It - corresponds one-to-one with the LLVM function input to the instruction - selector. In addition to a list of basic blocks, - the <tt>MachineFunction</tt> contains a a <tt>MachineConstantPool</tt>, - a <tt>MachineFrameInfo</tt>, a <tt>MachineFunctionInfo</tt>, and a - <tt>MachineRegisterInfo</tt>. See - <tt>include/llvm/CodeGen/MachineFunction.h</tt> for more information.</p> - -</div> - -<!-- ======================================================================= --> -<h3> - <a name="machineinstrbundle"><tt>MachineInstr Bundles</tt></a> -</h3> - -<div> - -<p>LLVM code generator can model sequences of instructions as MachineInstr - bundles. A MI bundle can model a VLIW group / pack which contains an - arbitrary number of parallel instructions. It can also be used to model - a sequential list of instructions (potentially with data dependencies) that - cannot be legally separated (e.g. ARM Thumb2 IT blocks).</p> - -<p>Conceptually a MI bundle is a MI with a number of other MIs nested within: -</p> - -<div class="doc_code"> -<pre> --------------- -| Bundle | --------- --------------- \ - | ---------------- - | | MI | - | ---------------- - | | - | ---------------- - | | MI | - | ---------------- - | | - | ---------------- - | | MI | - | ---------------- - | --------------- -| Bundle | -------- --------------- \ - | ---------------- - | | MI | - | ---------------- - | | - | ---------------- - | | MI | - | ---------------- - | | - | ... - | --------------- -| Bundle | -------- --------------- \ - | - ... -</pre> -</div> - -<p> MI bundle support does not change the physical representations of - MachineBasicBlock and MachineInstr. All the MIs (including top level and - nested ones) are stored as sequential list of MIs. The "bundled" MIs are - marked with the 'InsideBundle' flag. A |