aboutsummaryrefslogtreecommitdiff
path: root/docs/CodeGenerator.html
diff options
context:
space:
mode:
Diffstat (limited to 'docs/CodeGenerator.html')
-rw-r--r--docs/CodeGenerator.html3190
1 files changed, 0 insertions, 3190 deletions
diff --git a/docs/CodeGenerator.html b/docs/CodeGenerator.html
deleted file mode 100644
index 651eb96603..0000000000
--- a/docs/CodeGenerator.html
+++ /dev/null
@@ -1,3190 +0,0 @@
-<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
- "http://www.w3.org/TR/html4/strict.dtd">
-<html>
-<head>
- <meta http-equiv="content-type" content="text/html; charset=utf-8">
- <title>The LLVM Target-Independent Code Generator</title>
- <link rel="stylesheet" href="_static/llvm.css" type="text/css">
-
- <style type="text/css">
- .unknown { background-color: #C0C0C0; text-align: center; }
- .unknown:before { content: "?" }
- .no { background-color: #C11B17 }
- .no:before { content: "N" }
- .partial { background-color: #F88017 }
- .yes { background-color: #0F0; }
- .yes:before { content: "Y" }
- </style>
-
-</head>
-<body>
-
-<h1>
- The LLVM Target-Independent Code Generator
-</h1>
-
-<ol>
- <li><a href="#introduction">Introduction</a>
- <ul>
- <li><a href="#required">Required components in the code generator</a></li>
- <li><a href="#high-level-design">The high-level design of the code
- generator</a></li>
- <li><a href="#tablegen">Using TableGen for target description</a></li>
- </ul>
- </li>
- <li><a href="#targetdesc">Target description classes</a>
- <ul>
- <li><a href="#targetmachine">The <tt>TargetMachine</tt> class</a></li>
- <li><a href="#targetdata">The <tt>TargetData</tt> class</a></li>
- <li><a href="#targetlowering">The <tt>TargetLowering</tt> class</a></li>
- <li><a href="#targetregisterinfo">The <tt>TargetRegisterInfo</tt> class</a></li>
- <li><a href="#targetinstrinfo">The <tt>TargetInstrInfo</tt> class</a></li>
- <li><a href="#targetframeinfo">The <tt>TargetFrameInfo</tt> class</a></li>
- <li><a href="#targetsubtarget">The <tt>TargetSubtarget</tt> class</a></li>
- <li><a href="#targetjitinfo">The <tt>TargetJITInfo</tt> class</a></li>
- </ul>
- </li>
- <li><a href="#codegendesc">The "Machine" Code Generator classes</a>
- <ul>
- <li><a href="#machineinstr">The <tt>MachineInstr</tt> class</a></li>
- <li><a href="#machinebasicblock">The <tt>MachineBasicBlock</tt>
- class</a></li>
- <li><a href="#machinefunction">The <tt>MachineFunction</tt> class</a></li>
- <li><a href="#machineinstrbundle"><tt>MachineInstr Bundles</tt></a></li>
- </ul>
- </li>
- <li><a href="#mc">The "MC" Layer</a>
- <ul>
- <li><a href="#mcstreamer">The <tt>MCStreamer</tt> API</a></li>
- <li><a href="#mccontext">The <tt>MCContext</tt> class</a>
- <li><a href="#mcsymbol">The <tt>MCSymbol</tt> class</a></li>
- <li><a href="#mcsection">The <tt>MCSection</tt> class</a></li>
- <li><a href="#mcinst">The <tt>MCInst</tt> class</a></li>
- </ul>
- </li>
- <li><a href="#codegenalgs">Target-independent code generation algorithms</a>
- <ul>
- <li><a href="#instselect">Instruction Selection</a>
- <ul>
- <li><a href="#selectiondag_intro">Introduction to SelectionDAGs</a></li>
- <li><a href="#selectiondag_process">SelectionDAG Code Generation
- Process</a></li>
- <li><a href="#selectiondag_build">Initial SelectionDAG
- Construction</a></li>
- <li><a href="#selectiondag_legalize_types">SelectionDAG LegalizeTypes Phase</a></li>
- <li><a href="#selectiondag_legalize">SelectionDAG Legalize Phase</a></li>
- <li><a href="#selectiondag_optimize">SelectionDAG Optimization
- Phase: the DAG Combiner</a></li>
- <li><a href="#selectiondag_select">SelectionDAG Select Phase</a></li>
- <li><a href="#selectiondag_sched">SelectionDAG Scheduling and Formation
- Phase</a></li>
- <li><a href="#selectiondag_future">Future directions for the
- SelectionDAG</a></li>
- </ul></li>
- <li><a href="#liveintervals">Live Intervals</a>
- <ul>
- <li><a href="#livevariable_analysis">Live Variable Analysis</a></li>
- <li><a href="#liveintervals_analysis">Live Intervals Analysis</a></li>
- </ul></li>
- <li><a href="#regalloc">Register Allocation</a>
- <ul>
- <li><a href="#regAlloc_represent">How registers are represented in
- LLVM</a></li>
- <li><a href="#regAlloc_howTo">Mapping virtual registers to physical
- registers</a></li>
- <li><a href="#regAlloc_twoAddr">Handling two address instructions</a></li>
- <li><a href="#regAlloc_ssaDecon">The SSA deconstruction phase</a></li>
- <li><a href="#regAlloc_fold">Instruction folding</a></li>
- <li><a href="#regAlloc_builtIn">Built in register allocators</a></li>
- </ul></li>
- <li><a href="#codeemit">Code Emission</a></li>
- <li><a href="#vliw_packetizer">VLIW Packetizer</a>
- <ul>
- <li><a href="#vliw_mapping">Mapping from instructions to functional
- units</a></li>
- <li><a href="#vliw_repr">How the packetization tables are
- generated and used</a></li>
- </ul>
- </li>
- </ul>
- </li>
- <li><a href="#nativeassembler">Implementing a Native Assembler</a></li>
-
- <li><a href="#targetimpls">Target-specific Implementation Notes</a>
- <ul>
- <li><a href="#targetfeatures">Target Feature Matrix</a></li>
- <li><a href="#tailcallopt">Tail call optimization</a></li>
- <li><a href="#sibcallopt">Sibling call optimization</a></li>
- <li><a href="#x86">The X86 backend</a></li>
- <li><a href="#ppc">The PowerPC backend</a>
- <ul>
- <li><a href="#ppc_abi">LLVM PowerPC ABI</a></li>
- <li><a href="#ppc_frame">Frame Layout</a></li>
- <li><a href="#ppc_prolog">Prolog/Epilog</a></li>
- <li><a href="#ppc_dynamic">Dynamic Allocation</a></li>
- </ul></li>
- <li><a href="#ptx">The PTX backend</a></li>
- </ul></li>
-
-</ol>
-
-<div class="doc_author">
- <p>Written by the LLVM Team.</p>
-</div>
-
-<div class="doc_warning">
- <p>Warning: This is a work in progress.</p>
-</div>
-
-<!-- *********************************************************************** -->
-<h2>
- <a name="introduction">Introduction</a>
-</h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>The LLVM target-independent code generator is a framework that provides a
- suite of reusable components for translating the LLVM internal representation
- to the machine code for a specified target&mdash;either in assembly form
- (suitable for a static compiler) or in binary machine code format (usable for
- a JIT compiler). The LLVM target-independent code generator consists of six
- main components:</p>
-
-<ol>
- <li><a href="#targetdesc">Abstract target description</a> interfaces which
- capture important properties about various aspects of the machine,
- independently of how they will be used. These interfaces are defined in
- <tt>include/llvm/Target/</tt>.</li>
-
- <li>Classes used to represent the <a href="#codegendesc">code being
- generated</a> for a target. These classes are intended to be abstract
- enough to represent the machine code for <i>any</i> target machine. These
- classes are defined in <tt>include/llvm/CodeGen/</tt>. At this level,
- concepts like "constant pool entries" and "jump tables" are explicitly
- exposed.</li>
-
- <li>Classes and algorithms used to represent code as the object file level,
- the <a href="#mc">MC Layer</a>. These classes represent assembly level
- constructs like labels, sections, and instructions. At this level,
- concepts like "constant pool entries" and "jump tables" don't exist.</li>
-
- <li><a href="#codegenalgs">Target-independent algorithms</a> used to implement
- various phases of native code generation (register allocation, scheduling,
- stack frame representation, etc). This code lives
- in <tt>lib/CodeGen/</tt>.</li>
-
- <li><a href="#targetimpls">Implementations of the abstract target description
- interfaces</a> for particular targets. These machine descriptions make
- use of the components provided by LLVM, and can optionally provide custom
- target-specific passes, to build complete code generators for a specific
- target. Target descriptions live in <tt>lib/Target/</tt>.</li>
-
- <li><a href="#jit">The target-independent JIT components</a>. The LLVM JIT is
- completely target independent (it uses the <tt>TargetJITInfo</tt>
- structure to interface for target-specific issues. The code for the
- target-independent JIT lives in <tt>lib/ExecutionEngine/JIT</tt>.</li>
-</ol>
-
-<p>Depending on which part of the code generator you are interested in working
- on, different pieces of this will be useful to you. In any case, you should
- be familiar with the <a href="#targetdesc">target description</a>
- and <a href="#codegendesc">machine code representation</a> classes. If you
- want to add a backend for a new target, you will need
- to <a href="#targetimpls">implement the target description</a> classes for
- your new target and understand the <a href="LangRef.html">LLVM code
- representation</a>. If you are interested in implementing a
- new <a href="#codegenalgs">code generation algorithm</a>, it should only
- depend on the target-description and machine code representation classes,
- ensuring that it is portable.</p>
-
-<!-- ======================================================================= -->
-<h3>
- <a name="required">Required components in the code generator</a>
-</h3>
-
-<div>
-
-<p>The two pieces of the LLVM code generator are the high-level interface to the
- code generator and the set of reusable components that can be used to build
- target-specific backends. The two most important interfaces
- (<a href="#targetmachine"><tt>TargetMachine</tt></a>
- and <a href="#targetdata"><tt>TargetData</tt></a>) are the only ones that are
- required to be defined for a backend to fit into the LLVM system, but the
- others must be defined if the reusable code generator components are going to
- be used.</p>
-
-<p>This design has two important implications. The first is that LLVM can
- support completely non-traditional code generation targets. For example, the
- C backend does not require register allocation, instruction selection, or any
- of the other standard components provided by the system. As such, it only
- implements these two interfaces, and does its own thing. Note that C backend
- was removed from the trunk since LLVM 3.1 release. Another example of
- a code generator like this is a (purely hypothetical) backend that converts
- LLVM to the GCC RTL form and uses GCC to emit machine code for a target.</p>
-
-<p>This design also implies that it is possible to design and implement
- radically different code generators in the LLVM system that do not make use
- of any of the built-in components. Doing so is not recommended at all, but
- could be required for radically different targets that do not fit into the
- LLVM machine description model: FPGAs for example.</p>
-
-</div>
-
-<!-- ======================================================================= -->
-<h3>
- <a name="high-level-design">The high-level design of the code generator</a>
-</h3>
-
-<div>
-
-<p>The LLVM target-independent code generator is designed to support efficient
- and quality code generation for standard register-based microprocessors.
- Code generation in this model is divided into the following stages:</p>
-
-<ol>
- <li><b><a href="#instselect">Instruction Selection</a></b> &mdash; This phase
- determines an efficient way to express the input LLVM code in the target
- instruction set. This stage produces the initial code for the program in
- the target instruction set, then makes use of virtual registers in SSA
- form and physical registers that represent any required register
- assignments due to target constraints or calling conventions. This step
- turns the LLVM code into a DAG of target instructions.</li>
-
- <li><b><a href="#selectiondag_sched">Scheduling and Formation</a></b> &mdash;
- This phase takes the DAG of target instructions produced by the
- instruction selection phase, determines an ordering of the instructions,
- then emits the instructions
- as <tt><a href="#machineinstr">MachineInstr</a></tt>s with that ordering.
- Note that we describe this in the <a href="#instselect">instruction
- selection section</a> because it operates on
- a <a href="#selectiondag_intro">SelectionDAG</a>.</li>
-
- <li><b><a href="#ssamco">SSA-based Machine Code Optimizations</a></b> &mdash;
- This optional stage consists of a series of machine-code optimizations
- that operate on the SSA-form produced by the instruction selector.
- Optimizations like modulo-scheduling or peephole optimization work
- here.</li>
-
- <li><b><a href="#regalloc">Register Allocation</a></b> &mdash; The target code
- is transformed from an infinite virtual register file in SSA form to the
- concrete register file used by the target. This phase introduces spill
- code and eliminates all virtual register references from the program.</li>
-
- <li><b><a href="#proepicode">Prolog/Epilog Code Insertion</a></b> &mdash; Once
- the machine code has been generated for the function and the amount of
- stack space required is known (used for LLVM alloca's and spill slots),
- the prolog and epilog code for the function can be inserted and "abstract
- stack location references" can be eliminated. This stage is responsible
- for implementing optimizations like frame-pointer elimination and stack
- packing.</li>
-
- <li><b><a href="#latemco">Late Machine Code Optimizations</a></b> &mdash;
- Optimizations that operate on "final" machine code can go here, such as
- spill code scheduling and peephole optimizations.</li>
-
- <li><b><a href="#codeemit">Code Emission</a></b> &mdash; The final stage
- actually puts out the code for the current function, either in the target
- assembler format or in machine code.</li>
-</ol>
-
-<p>The code generator is based on the assumption that the instruction selector
- will use an optimal pattern matching selector to create high-quality
- sequences of native instructions. Alternative code generator designs based
- on pattern expansion and aggressive iterative peephole optimization are much
- slower. This design permits efficient compilation (important for JIT
- environments) and aggressive optimization (used when generating code offline)
- by allowing components of varying levels of sophistication to be used for any
- step of compilation.</p>
-
-<p>In addition to these stages, target implementations can insert arbitrary
- target-specific passes into the flow. For example, the X86 target uses a
- special pass to handle the 80x87 floating point stack architecture. Other
- targets with unusual requirements can be supported with custom passes as
- needed.</p>
-
-</div>
-
-<!-- ======================================================================= -->
-<h3>
- <a name="tablegen">Using TableGen for target description</a>
-</h3>
-
-<div>
-
-<p>The target description classes require a detailed description of the target
- architecture. These target descriptions often have a large amount of common
- information (e.g., an <tt>add</tt> instruction is almost identical to a
- <tt>sub</tt> instruction). In order to allow the maximum amount of
- commonality to be factored out, the LLVM code generator uses
- the <a href="TableGenFundamentals.html">TableGen</a> tool to describe big
- chunks of the target machine, which allows the use of domain-specific and
- target-specific abstractions to reduce the amount of repetition.</p>
-
-<p>As LLVM continues to be developed and refined, we plan to move more and more
- of the target description to the <tt>.td</tt> form. Doing so gives us a
- number of advantages. The most important is that it makes it easier to port
- LLVM because it reduces the amount of C++ code that has to be written, and
- the surface area of the code generator that needs to be understood before
- someone can get something working. Second, it makes it easier to change
- things. In particular, if tables and other things are all emitted
- by <tt>tblgen</tt>, we only need a change in one place (<tt>tblgen</tt>) to
- update all of the targets to a new interface.</p>
-
-</div>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2>
- <a name="targetdesc">Target description classes</a>
-</h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>The LLVM target description classes (located in the
- <tt>include/llvm/Target</tt> directory) provide an abstract description of
- the target machine independent of any particular client. These classes are
- designed to capture the <i>abstract</i> properties of the target (such as the
- instructions and registers it has), and do not incorporate any particular
- pieces of code generation algorithms.</p>
-
-<p>All of the target description classes (except the
- <tt><a href="#targetdata">TargetData</a></tt> class) are designed to be
- subclassed by the concrete target implementation, and have virtual methods
- implemented. To get to these implementations, the
- <tt><a href="#targetmachine">TargetMachine</a></tt> class provides accessors
- that should be implemented by the target.</p>
-
-<!-- ======================================================================= -->
-<h3>
- <a name="targetmachine">The <tt>TargetMachine</tt> class</a>
-</h3>
-
-<div>
-
-<p>The <tt>TargetMachine</tt> class provides virtual methods that are used to
- access the target-specific implementations of the various target description
- classes via the <tt>get*Info</tt> methods (<tt>getInstrInfo</tt>,
- <tt>getRegisterInfo</tt>, <tt>getFrameInfo</tt>, etc.). This class is
- designed to be specialized by a concrete target implementation
- (e.g., <tt>X86TargetMachine</tt>) which implements the various virtual
- methods. The only required target description class is
- the <a href="#targetdata"><tt>TargetData</tt></a> class, but if the code
- generator components are to be used, the other interfaces should be
- implemented as well.</p>
-
-</div>
-
-<!-- ======================================================================= -->
-<h3>
- <a name="targetdata">The <tt>TargetData</tt> class</a>
-</h3>
-
-<div>
-
-<p>The <tt>TargetData</tt> class is the only required target description class,
- and it is the only class that is not extensible (you cannot derived a new
- class from it). <tt>TargetData</tt> specifies information about how the
- target lays out memory for structures, the alignment requirements for various
- data types, the size of pointers in the target, and whether the target is
- little-endian or big-endian.</p>
-
-</div>
-
-<!-- ======================================================================= -->
-<h3>
- <a name="targetlowering">The <tt>TargetLowering</tt> class</a>
-</h3>
-
-<div>
-
-<p>The <tt>TargetLowering</tt> class is used by SelectionDAG based instruction
- selectors primarily to describe how LLVM code should be lowered to
- SelectionDAG operations. Among other things, this class indicates:</p>
-
-<ul>
- <li>an initial register class to use for various <tt>ValueType</tt>s,</li>
-
- <li>which operations are natively supported by the target machine,</li>
-
- <li>the return type of <tt>setcc</tt> operations,</li>
-
- <li>the type to use for shift amounts, and</li>
-
- <li>various high-level characteristics, like whether it is profitable to turn
- division by a constant into a multiplication sequence</li>
-</ul>
-
-</div>
-
-<!-- ======================================================================= -->
-<h3>
- <a name="targetregisterinfo">The <tt>TargetRegisterInfo</tt> class</a>
-</h3>
-
-<div>
-
-<p>The <tt>TargetRegisterInfo</tt> class is used to describe the register file
- of the target and any interactions between the registers.</p>
-
-<p>Registers in the code generator are represented in the code generator by
- unsigned integers. Physical registers (those that actually exist in the
- target description) are unique small numbers, and virtual registers are
- generally large. Note that register #0 is reserved as a flag value.</p>
-
-<p>Each register in the processor description has an associated
- <tt>TargetRegisterDesc</tt> entry, which provides a textual name for the
- register (used for assembly output and debugging dumps) and a set of aliases
- (used to indicate whether one register overlaps with another).</p>
-
-<p>In addition to the per-register description, the <tt>TargetRegisterInfo</tt>
- class exposes a set of processor specific register classes (instances of the
- <tt>TargetRegisterClass</tt> class). Each register class contains sets of
- registers that have the same properties (for example, they are all 32-bit
- integer registers). Each SSA virtual register created by the instruction
- selector has an associated register class. When the register allocator runs,
- it replaces virtual registers with a physical register in the set.</p>
-
-<p>The target-specific implementations of these classes is auto-generated from
- a <a href="TableGenFundamentals.html">TableGen</a> description of the
- register file.</p>
-
-</div>
-
-<!-- ======================================================================= -->
-<h3>
- <a name="targetinstrinfo">The <tt>TargetInstrInfo</tt> class</a>
-</h3>
-
-<div>
-
-<p>The <tt>TargetInstrInfo</tt> class is used to describe the machine
- instructions supported by the target. It is essentially an array of
- <tt>TargetInstrDescriptor</tt> objects, each of which describes one
- instruction the target supports. Descriptors define things like the mnemonic
- for the opcode, the number of operands, the list of implicit register uses
- and defs, whether the instruction has certain target-independent properties
- (accesses memory, is commutable, etc), and holds any target-specific
- flags.</p>
-
-</div>
-
-<!-- ======================================================================= -->
-<h3>
- <a name="targetframeinfo">The <tt>TargetFrameInfo</tt> class</a>
-</h3>
-
-<div>
-
-<p>The <tt>TargetFrameInfo</tt> class is used to provide information about the
- stack frame layout of the target. It holds the direction of stack growth, the
- known stack alignment on entry to each function, and the offset to the local
- area. The offset to the local area is the offset from the stack pointer on
- function entry to the first location where function data (local variables,
- spill locations) can be stored.</p>
-
-</div>
-
-<!-- ======================================================================= -->
-<h3>
- <a name="targetsubtarget">The <tt>TargetSubtarget</tt> class</a>
-</h3>
-
-<div>
-
-<p>The <tt>TargetSubtarget</tt> class is used to provide information about the
- specific chip set being targeted. A sub-target informs code generation of
- which instructions are supported, instruction latencies and instruction
- execution itinerary; i.e., which processing units are used, in what order,
- and for how long.</p>
-
-</div>
-
-
-<!-- ======================================================================= -->
-<h3>
- <a name="targetjitinfo">The <tt>TargetJITInfo</tt> class</a>
-</h3>
-
-<div>
-
-<p>The <tt>TargetJITInfo</tt> class exposes an abstract interface used by the
- Just-In-Time code generator to perform target-specific activities, such as
- emitting stubs. If a <tt>TargetMachine</tt> supports JIT code generation, it
- should provide one of these objects through the <tt>getJITInfo</tt>
- method.</p>
-
-</div>
-
-</div>
-
-<!-- *********************************************************************** -->
-<h2>
- <a name="codegendesc">Machine code description classes</a>
-</h2>
-<!-- *********************************************************************** -->
-
-<div>
-
-<p>At the high-level, LLVM code is translated to a machine specific
- representation formed out of
- <a href="#machinefunction"><tt>MachineFunction</tt></a>,
- <a href="#machinebasicblock"><tt>MachineBasicBlock</tt></a>,
- and <a href="#machineinstr"><tt>MachineInstr</tt></a> instances (defined
- in <tt>include/llvm/CodeGen</tt>). This representation is completely target
- agnostic, representing instructions in their most abstract form: an opcode
- and a series of operands. This representation is designed to support both an
- SSA representation for machine code, as well as a register allocated, non-SSA
- form.</p>
-
-<!-- ======================================================================= -->
-<h3>
- <a name="machineinstr">The <tt>MachineInstr</tt> class</a>
-</h3>
-
-<div>
-
-<p>Target machine instructions are represented as instances of the
- <tt>MachineInstr</tt> class. This class is an extremely abstract way of
- representing machine instructions. In particular, it only keeps track of an
- opcode number and a set of operands.</p>
-
-<p>The opcode number is a simple unsigned integer that only has meaning to a
- specific backend. All of the instructions for a target should be defined in
- the <tt>*InstrInfo.td</tt> file for the target. The opcode enum values are
- auto-generated from this description. The <tt>MachineInstr</tt> class does
- not have any information about how to interpret the instruction (i.e., what
- the semantics of the instruction are); for that you must refer to the
- <tt><a href="#targetinstrinfo">TargetInstrInfo</a></tt> class.</p>
-
-<p>The operands of a machine instruction can be of several different types: a
- register reference, a constant integer, a basic block reference, etc. In
- addition, a machine operand should be marked as a def or a use of the value
- (though only registers are allowed to be defs).</p>
-
-<p>By convention, the LLVM code generator orders instruction operands so that
- all register definitions come before the register uses, even on architectures
- that are normally printed in other orders. For example, the SPARC add
- instruction: "<tt>add %i1, %i2, %i3</tt>" adds the "%i1", and "%i2" registers
- and stores the result into the "%i3" register. In the LLVM code generator,
- the operands should be stored as "<tt>%i3, %i1, %i2</tt>": with the
- destination first.</p>
-
-<p>Keeping destination (definition) operands at the beginning of the operand
- list has several advantages. In particular, the debugging printer will print
- the instruction like this:</p>
-
-<div class="doc_code">
-<pre>
-%r3 = add %i1, %i2
-</pre>
-</div>
-
-<p>Also if the first operand is a def, it is easier to <a href="#buildmi">create
- instructions</a> whose only def is the first operand.</p>
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="buildmi">Using the <tt>MachineInstrBuilder.h</tt> functions</a>
-</h4>
-
-<div>
-
-<p>Machine instructions are created by using the <tt>BuildMI</tt> functions,
- located in the <tt>include/llvm/CodeGen/MachineInstrBuilder.h</tt> file. The
- <tt>BuildMI</tt> functions make it easy to build arbitrary machine
- instructions. Usage of the <tt>BuildMI</tt> functions look like this:</p>
-
-<div class="doc_code">
-<pre>
-// Create a 'DestReg = mov 42' (rendered in X86 assembly as 'mov DestReg, 42')
-// instruction. The '1' specifies how many operands will be added.
-MachineInstr *MI = BuildMI(X86::MOV32ri, 1, DestReg).addImm(42);
-
-// Create the same instr, but insert it at the end of a basic block.
-MachineBasicBlock &amp;MBB = ...
-BuildMI(MBB, X86::MOV32ri, 1, DestReg).addImm(42);
-
-// Create the same instr, but insert it before a specified iterator point.
-MachineBasicBlock::iterator MBBI = ...
-BuildMI(MBB, MBBI, X86::MOV32ri, 1, DestReg).addImm(42);
-
-// Create a 'cmp Reg, 0' instruction, no destination reg.
-MI = BuildMI(X86::CMP32ri, 2).addReg(Reg).addImm(0);
-// Create an 'sahf' instruction which takes no operands and stores nothing.
-MI = BuildMI(X86::SAHF, 0);
-
-// Create a self looping branch instruction.
-BuildMI(MBB, X86::JNE, 1).addMBB(&amp;MBB);
-</pre>
-</div>
-
-<p>The key thing to remember with the <tt>BuildMI</tt> functions is that you
- have to specify the number of operands that the machine instruction will
- take. This allows for efficient memory allocation. You also need to specify
- if operands default to be uses of values, not definitions. If you need to
- add a definition operand (other than the optional destination register), you
- must explicitly mark it as such:</p>
-
-<div class="doc_code">
-<pre>
-MI.addReg(Reg, RegState::Define);
-</pre>
-</div>
-
-</div>
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="fixedregs">Fixed (preassigned) registers</a>
-</h4>
-
-<div>
-
-<p>One important issue that the code generator needs to be aware of is the
- presence of fixed registers. In particular, there are often places in the
- instruction stream where the register allocator <em>must</em> arrange for a
- particular value to be in a particular register. This can occur due to
- limitations of the instruction set (e.g., the X86 can only do a 32-bit divide
- with the <tt>EAX</tt>/<tt>EDX</tt> registers), or external factors like
- calling conventions. In any case, the instruction selector should emit code
- that copies a virtual register into or out of a physical register when
- needed.</p>
-
-<p>For example, consider this simple LLVM example:</p>
-
-<div class="doc_code">
-<pre>
-define i32 @test(i32 %X, i32 %Y) {
- %Z = udiv i32 %X, %Y
- ret i32 %Z
-}
-</pre>
-</div>
-
-<p>The X86 instruction selector produces this machine code for the <tt>div</tt>
- and <tt>ret</tt> (use "<tt>llc X.bc -march=x86 -print-machineinstrs</tt>" to
- get this):</p>
-
-<div class="doc_code">
-<pre>
-;; Start of div
-%EAX = mov %reg1024 ;; Copy X (in reg1024) into EAX
-%reg1027 = sar %reg1024, 31
-%EDX = mov %reg1027 ;; Sign extend X into EDX
-idiv %reg1025 ;; Divide by Y (in reg1025)
-%reg1026 = mov %EAX ;; Read the result (Z) out of EAX
-
-;; Start of ret
-%EAX = mov %reg1026 ;; 32-bit return value goes in EAX
-ret
-</pre>
-</div>
-
-<p>By the end of code generation, the register allocator has coalesced the
- registers and deleted the resultant identity moves producing the following
- code:</p>
-
-<div class="doc_code">
-<pre>
-;; X is in EAX, Y is in ECX
-mov %EAX, %EDX
-sar %EDX, 31
-idiv %ECX
-ret
-</pre>
-</div>
-
-<p>This approach is extremely general (if it can handle the X86 architecture, it
- can handle anything!) and allows all of the target specific knowledge about
- the instruction stream to be isolated in the instruction selector. Note that
- physical registers should have a short lifetime for good code generation, and
- all physical registers are assumed dead on entry to and exit from basic
- blocks (before register allocation). Thus, if you need a value to be live
- across basic block boundaries, it <em>must</em> live in a virtual
- register.</p>
-
-</div>
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="callclobber">Call-clobbered registers</a>
-</h4>
-
-<div>
-
-<p>Some machine instructions, like calls, clobber a large number of physical
- registers. Rather than adding <code>&lt;def,dead&gt;</code> operands for
- all of them, it is possible to use an <code>MO_RegisterMask</code> operand
- instead. The register mask operand holds a bit mask of preserved registers,
- and everything else is considered to be clobbered by the instruction. </p>
-
-</div>
-
-<!-- _______________________________________________________________________ -->
-<h4>
- <a name="ssa">Machine code in SSA form</a>
-</h4>
-
-<div>
-
-<p><tt>MachineInstr</tt>'s are initially selected in SSA-form, and are
- maintained in SSA-form until register allocation happens. For the most part,
- this is trivially simple since LLVM is already in SSA form; LLVM PHI nodes
- become machine code PHI nodes, and virtual registers are only allowed to have
- a single definition.</p>
-
-<p>After register allocation, machine code is no longer in SSA-form because
- there are no virtual registers left in the code.</p>
-
-</div>
-
-</div>
-
-<!-- ======================================================================= -->
-<h3>
- <a name="machinebasicblock">The <tt>MachineBasicBlock</tt> class</a>
-</h3>
-
-<div>
-
-<p>The <tt>MachineBasicBlock</tt> class contains a list of machine instructions
- (<tt><a href="#machineinstr">MachineInstr</a></tt> instances). It roughly
- corresponds to the LLVM code input to the instruction selector, but there can
- be a one-to-many mapping (i.e. one LLVM basic block can map to multiple
- machine basic blocks). The <tt>MachineBasicBlock</tt> class has a
- "<tt>getBasicBlock</tt>" method, which returns the LLVM basic block that it
- comes from.</p>
-
-</div>
-
-<!-- ======================================================================= -->
-<h3>
- <a name="machinefunction">The <tt>MachineFunction</tt> class</a>
-</h3>
-
-<div>
-
-<p>The <tt>MachineFunction</tt> class contains a list of machine basic blocks
- (<tt><a href="#machinebasicblock">MachineBasicBlock</a></tt> instances). It
- corresponds one-to-one with the LLVM function input to the instruction
- selector. In addition to a list of basic blocks,
- the <tt>MachineFunction</tt> contains a a <tt>MachineConstantPool</tt>,
- a <tt>MachineFrameInfo</tt>, a <tt>MachineFunctionInfo</tt>, and a
- <tt>MachineRegisterInfo</tt>. See
- <tt>include/llvm/CodeGen/MachineFunction.h</tt> for more information.</p>
-
-</div>
-
-<!-- ======================================================================= -->
-<h3>
- <a name="machineinstrbundle"><tt>MachineInstr Bundles</tt></a>
-</h3>
-
-<div>
-
-<p>LLVM code generator can model sequences of instructions as MachineInstr
- bundles. A MI bundle can model a VLIW group / pack which contains an
- arbitrary number of parallel instructions. It can also be used to model
- a sequential list of instructions (potentially with data dependencies) that
- cannot be legally separated (e.g. ARM Thumb2 IT blocks).</p>
-
-<p>Conceptually a MI bundle is a MI with a number of other MIs nested within:
-</p>
-
-<div class="doc_code">
-<pre>
---------------
-| Bundle | ---------
--------------- \
- | ----------------
- | | MI |
- | ----------------
- | |
- | ----------------
- | | MI |
- | ----------------
- | |
- | ----------------
- | | MI |
- | ----------------
- |
---------------
-| Bundle | --------
--------------- \
- | ----------------
- | | MI |
- | ----------------
- | |
- | ----------------
- | | MI |
- | ----------------
- | |
- | ...
- |
---------------
-| Bundle | --------
--------------- \
- |
- ...
-</pre>
-</div>
-
-<p> MI bundle support does not change the physical representations of
- MachineBasicBlock and MachineInstr. All the MIs (including top level and
- nested ones) are stored as sequential list of MIs. The "bundled" MIs are
- marked with the 'InsideBundle' flag. A