diff options
23 files changed, 15 insertions, 4028 deletions
diff --git a/CMakeLists.txt b/CMakeLists.txt index 7e4da7140b..33dd12314d 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -72,7 +72,6 @@ set(LLVM_LIBDIR_SUFFIX "" CACHE STRING "Define suffix of library directory name set(LLVM_ALL_TARGETS ARM - CBackend CellSPU CppBackend Hexagon diff --git a/autoconf/configure.ac b/autoconf/configure.ac index c0027191d7..b21d3d9318 100644 --- a/autoconf/configure.ac +++ b/autoconf/configure.ac @@ -632,7 +632,7 @@ if test "$enableval" = host-only ; then enableval=host fi case "$enableval" in - all) TARGETS_TO_BUILD="X86 Sparc PowerPC ARM Mips CellSPU XCore MSP430 CBackend CppBackend MBlaze PTX Hexagon" ;; + all) TARGETS_TO_BUILD="X86 Sparc PowerPC ARM Mips CellSPU XCore MSP430 CppBackend MBlaze PTX Hexagon" ;; *)for a_target in `echo $enableval|sed -e 's/,/ /g' ` ; do case "$a_target" in x86) TARGETS_TO_BUILD="X86 $TARGETS_TO_BUILD" ;; @@ -645,7 +645,6 @@ case "$enableval" in spu) TARGETS_TO_BUILD="CellSPU $TARGETS_TO_BUILD" ;; xcore) TARGETS_TO_BUILD="XCore $TARGETS_TO_BUILD" ;; msp430) TARGETS_TO_BUILD="MSP430 $TARGETS_TO_BUILD" ;; - cbe) TARGETS_TO_BUILD="CBackend $TARGETS_TO_BUILD" ;; cpp) TARGETS_TO_BUILD="CppBackend $TARGETS_TO_BUILD" ;; hexagon) TARGETS_TO_BUILD="Hexagon $TARGETS_TO_BUILD" ;; mblaze) TARGETS_TO_BUILD="MBlaze $TARGETS_TO_BUILD" ;; @@ -723,21 +722,6 @@ AC_SUBST(LLVM_ENUM_ASM_PRINTERS) AC_SUBST(LLVM_ENUM_ASM_PARSERS) AC_SUBST(LLVM_ENUM_DISASSEMBLERS) -dnl Prevent the CBackend from using printf("%a") for floating point so older -dnl C compilers that cannot deal with the 0x0p+0 hex floating point format -dnl can still compile the CBE's output -AC_ARG_ENABLE([cbe-printf-a],AS_HELP_STRING([--enable-cbe-printf-a], - [Enable C Backend output with hex floating point via %a (default is YES)]),, - enableval=default) -case "$enableval" in - yes) AC_SUBST(ENABLE_CBE_PRINTF_A,[1]) ;; - no) AC_SUBST(ENABLE_CBE_PRINTF_A,[0]) ;; - default) AC_SUBST(ENABLE_CBE_PRINTF_A,[1]) ;; - *) AC_MSG_ERROR([Invalid setting for --enable-cbe-printf-a. Use "yes" or "no"]) ;; -esac -AC_DEFINE_UNQUOTED([ENABLE_CBE_PRINTF_A],$ENABLE_CBE_PRINTF_A, - [Define if CBE is enabled for printf %a output]) - dnl Override the option to use for optimized builds. AC_ARG_WITH(optimize-option, AS_HELP_STRING([--with-optimize-option], @@ -705,7 +705,6 @@ LLVM_ENUM_TARGETS LLVM_ENUM_ASM_PRINTERS LLVM_ENUM_ASM_PARSERS LLVM_ENUM_DISASSEMBLERS -ENABLE_CBE_PRINTF_A OPTIMIZE_OPTION EXTRA_OPTIONS EXTRA_LD_OPTIONS @@ -1422,8 +1421,6 @@ Optional Features: target1,target2,... Valid targets are: host, x86, x86_64, sparc, powerpc, arm, mips, spu, hexagon, xcore, msp430, ptx, cbe, and cpp (default=all) - --enable-cbe-printf-a Enable C Backend output with hex floating point via - %a (default is YES) --enable-bindings Build specific language bindings: all,auto,none,{binding-name} (default=auto) --enable-libffi Check for the presence of libffi (default is NO) @@ -5310,7 +5307,7 @@ if test "$enableval" = host-only ; then enableval=host fi case "$enableval" in - all) TARGETS_TO_BUILD="X86 Sparc PowerPC ARM Mips CellSPU XCore MSP430 CBackend CppBackend MBlaze PTX Hexagon" ;; + all) TARGETS_TO_BUILD="X86 Sparc PowerPC ARM Mips CellSPU XCore MSP430 CppBackend MBlaze PTX Hexagon" ;; *)for a_target in `echo $enableval|sed -e 's/,/ /g' ` ; do case "$a_target" in x86) TARGETS_TO_BUILD="X86 $TARGETS_TO_BUILD" ;; @@ -5323,7 +5320,6 @@ case "$enableval" in spu) TARGETS_TO_BUILD="CellSPU $TARGETS_TO_BUILD" ;; xcore) TARGETS_TO_BUILD="XCore $TARGETS_TO_BUILD" ;; msp430) TARGETS_TO_BUILD="MSP430 $TARGETS_TO_BUILD" ;; - cbe) TARGETS_TO_BUILD="CBackend $TARGETS_TO_BUILD" ;; cpp) TARGETS_TO_BUILD="CppBackend $TARGETS_TO_BUILD" ;; hexagon) TARGETS_TO_BUILD="Hexagon $TARGETS_TO_BUILD" ;; mblaze) TARGETS_TO_BUILD="MBlaze $TARGETS_TO_BUILD" ;; @@ -5420,30 +5416,6 @@ done -# Check whether --enable-cbe-printf-a was given. -if test "${enable_cbe_printf_a+set}" = set; then - enableval=$enable_cbe_printf_a; -else - enableval=default -fi - -case "$enableval" in - yes) ENABLE_CBE_PRINTF_A=1 - ;; - no) ENABLE_CBE_PRINTF_A=0 - ;; - default) ENABLE_CBE_PRINTF_A=1 - ;; - *) { { echo "$as_me:$LINENO: error: Invalid setting for --enable-cbe-printf-a. Use \"yes\" or \"no\"" >&5 -echo "$as_me: error: Invalid setting for --enable-cbe-printf-a. Use \"yes\" or \"no\"" >&2;} - { (exit 1); exit 1; }; } ;; -esac - -cat >>confdefs.h <<_ACEOF -#define ENABLE_CBE_PRINTF_A $ENABLE_CBE_PRINTF_A -_ACEOF - - # Check whether --with-optimize-option was given. if test "${with_optimize_option+set}" = set; then @@ -10402,7 +10374,7 @@ else lt_dlunknown=0; lt_dlno_uscore=1; lt_dlneed_uscore=2 lt_status=$lt_dlunknown cat > conftest.$ac_ext <<EOF -#line 10405 "configure" +#line 10377 "configure" #include "confdefs.h" #if HAVE_DLFCN_H @@ -13686,7 +13658,6 @@ echo "$as_me: error: /* | [A-Za-z]:[\\/]*) INTEL_JITEVENTS_INCDIR=$withval/include INTEL_JITEVENTS_LIBDIR=$withval/$llvm_intel_jitevents_archdir ;; *) ;; - esac @@ -22186,7 +22157,6 @@ LLVM_ENUM_TARGETS!$LLVM_ENUM_TARGETS$ac_delim LLVM_ENUM_ASM_PRINTERS!$LLVM_ENUM_ASM_PRINTERS$ac_delim LLVM_ENUM_ASM_PARSERS!$LLVM_ENUM_ASM_PARSERS$ac_delim LLVM_ENUM_DISASSEMBLERS!$LLVM_ENUM_DISASSEMBLERS$ac_delim -ENABLE_CBE_PRINTF_A!$ENABLE_CBE_PRINTF_A$ac_delim OPTIMIZE_OPTION!$OPTIMIZE_OPTION$ac_delim EXTRA_OPTIONS!$EXTRA_OPTIONS$ac_delim EXTRA_LD_OPTIONS!$EXTRA_LD_OPTIONS$ac_delim @@ -22275,7 +22245,7 @@ LIBOBJS!$LIBOBJS$ac_delim LTLIBOBJS!$LTLIBOBJS$ac_delim _ACEOF - if test `sed -n "s/.*$ac_delim\$/X/p" conf$$subs.sed | grep -c X` = 93; then + if test `sed -n "s/.*$ac_delim\$/X/p" conf$$subs.sed | grep -c X` = 92; then break elif $ac_last_try; then { { echo "$as_me:$LINENO: error: could not make $CONFIG_STATUS" >&5 diff --git a/docs/ExtendingLLVM.html b/docs/ExtendingLLVM.html index ca8d3e990b..f8ba19545b 100644 --- a/docs/ExtendingLLVM.html +++ b/docs/ExtendingLLVM.html @@ -105,19 +105,6 @@ function and then be turned into an instruction if warranted.</p> support for it. Generally you must do the following steps:</p> <dl> -<dt>Add support to the C backend in <tt>lib/Target/CBackend/</tt></dt> - -<dd>Depending on the intrinsic, there are a few ways to implement this. For - most intrinsics, it makes sense to add code to lower your intrinsic in - <tt>LowerIntrinsicCall</tt> in <tt>lib/CodeGen/IntrinsicLowering.cpp</tt>. - Second, if it makes sense to lower the intrinsic to an expanded sequence of - C code in all cases, just emit the expansion in <tt>visitCallInst</tt> in - <tt>Writer.cpp</tt>. If the intrinsic has some way to express it with GCC - (or any other compiler) extensions, it can be conditionally supported based - on the compiler compiling the CBE output (see <tt>llvm.prefetch</tt> for an - example). Third, if the intrinsic really has no way to be lowered, just - have the code generator emit code that prints an error message and calls - abort if executed.</dd> <dt>Add support to the .td file for the target(s) of your choice in <tt>lib/Target/*/*.td</tt>.</dt> diff --git a/docs/GettingStarted.html b/docs/GettingStarted.html index 4d41208ea5..575ec04a86 100644 --- a/docs/GettingStarted.html +++ b/docs/GettingStarted.html @@ -1389,7 +1389,7 @@ different <a href="#tools">tools</a>.</p> <dd> This directory contains files that describe various target architectures for code generation. For example, the <tt>llvm/lib/Target/X86</tt> directory holds the X86 machine description while - <tt>llvm/lib/Target/CBackend</tt> implements the LLVM-to-C converter.</dd> + <tt>llvm/lib/Target/ARM</tt> implements the ARM backend.</dd> <dt><tt><b>llvm/lib/CodeGen/</b></tt></dt> <dd> This directory contains the major parts of the code generator: Instruction diff --git a/include/llvm/Config/config.h.in b/include/llvm/Config/config.h.in index 723a5f68bb..3095fabd7b 100644 --- a/include/llvm/Config/config.h.in +++ b/include/llvm/Config/config.h.in @@ -12,9 +12,6 @@ /* Directories clang will search for headers */ #undef C_INCLUDE_DIRS -/* Define if CBE is enabled for printf %a output */ -#undef ENABLE_CBE_PRINTF_A - /* Define if position independent code is enabled */ #undef ENABLE_PIC diff --git a/lib/Target/CBackend/CBackend.cpp b/lib/Target/CBackend/CBackend.cpp deleted file mode 100644 index b6b209eb06..0000000000 --- a/lib/Target/CBackend/CBackend.cpp +++ /dev/null @@ -1,3616 +0,0 @@ -//===-- CBackend.cpp - Library for converting LLVM code to C --------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This library converts LLVM code to C code, compilable by GCC and other C -// compilers. -// -//===----------------------------------------------------------------------===// - -#include "CTargetMachine.h" -#include "llvm/CallingConv.h" -#include "llvm/Constants.h" -#include "llvm/DerivedTypes.h" -#include "llvm/Module.h" -#include "llvm/Instructions.h" -#include "llvm/Pass.h" -#include "llvm/PassManager.h" -#include "llvm/Intrinsics.h" -#include "llvm/IntrinsicInst.h" -#include "llvm/InlineAsm.h" -#include "llvm/ADT/StringExtras.h" -#include "llvm/ADT/SmallString.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/Analysis/ConstantsScanner.h" -#include "llvm/Analysis/FindUsedTypes.h" -#include "llvm/Analysis/LoopInfo.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/CodeGen/Passes.h" -#include "llvm/CodeGen/IntrinsicLowering.h" -#include "llvm/Target/Mangler.h" -#include "llvm/Transforms/Scalar.h" -#include "llvm/MC/MCAsmInfo.h" -#include "llvm/MC/MCContext.h" -#include "llvm/MC/MCInstrInfo.h" -#include "llvm/MC/MCObjectFileInfo.h" -#include "llvm/MC/MCRegisterInfo.h" -#include "llvm/MC/MCSubtargetInfo.h" -#include "llvm/MC/MCSymbol.h" -#include "llvm/Target/TargetData.h" -#include "llvm/Support/CallSite.h" -#include "llvm/Support/CFG.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/FormattedStream.h" -#include "llvm/Support/GetElementPtrTypeIterator.h" -#include "llvm/Support/InstVisitor.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Support/TargetRegistry.h" -#include "llvm/Support/Host.h" -#include "llvm/Config/config.h" -#include <algorithm> -// Some ms header decided to define setjmp as _setjmp, undo this for this file. -#ifdef _MSC_VER -#undef setjmp -#endif -using namespace llvm; - -extern "C" void LLVMInitializeCBackendTarget() { - // Register the target. - RegisterTargetMachine<CTargetMachine> X(TheCBackendTarget); -} - -namespace { - class CBEMCAsmInfo : public MCAsmInfo { - public: - CBEMCAsmInfo() { - GlobalPrefix = ""; - PrivateGlobalPrefix = ""; - } - }; - - /// CWriter - This class is the main chunk of code that converts an LLVM - /// module to a C translation unit. - class CWriter : public FunctionPass, public InstVisitor<CWriter> { - formatted_raw_ostream &Out; - IntrinsicLowering *IL; - Mangler *Mang; - LoopInfo *LI; - const Module *TheModule; - const MCAsmInfo* TAsm; - const MCRegisterInfo *MRI; - const MCObjectFileInfo *MOFI; - MCContext *TCtx; - const TargetData* TD; - - std::map<const ConstantFP *, unsigned> FPConstantMap; - std::set<Function*> intrinsicPrototypesAlreadyGenerated; - std::set<const Argument*> ByValParams; - unsigned FPCounter; - unsigned OpaqueCounter; - DenseMap<const Value*, unsigned> AnonValueNumbers; - unsigned NextAnonValueNumber; - - /// UnnamedStructIDs - This contains a unique ID for each struct that is - /// either anonymous or has no name. - DenseMap<StructType*, unsigned> UnnamedStructIDs; - - public: - static char ID; - explicit CWriter(formatted_raw_ostream &o) - : FunctionPass(ID), Out(o), IL(0), Mang(0), LI(0), - TheModule(0), TAsm(0), MRI(0), MOFI(0), TCtx(0), TD(0), - OpaqueCounter(0), NextAnonValueNumber(0) { - initializeLoopInfoPass(*PassRegistry::getPassRegistry()); - FPCounter = 0; - } - - virtual const char *getPassName() const { return "C backend"; } - - void getAnalysisUsage(AnalysisUsage &AU) const { - AU.addRequired<LoopInfo>(); - AU.setPreservesAll(); - } - - virtual bool doInitialization(Module &M); - - bool runOnFunction(Function &F) { - // Do not codegen any 'available_externally' functions at all, they have - // definitions outside the translation unit. - if (F.hasAvailableExternallyLinkage()) - return false; - - LI = &getAnalysis<LoopInfo>(); - - // Get rid of intrinsics we can't handle. - lowerIntrinsics(F); - - // Output all floating point constants that cannot be printed accurately. - printFloatingPointConstants(F); - - printFunction(F); - return false; - } - - virtual bool doFinalization(Module &M) { - // Free memory... - delete IL; - delete TD; - delete Mang; - delete TCtx; - delete TAsm; - delete MRI; - delete MOFI; - FPConstantMap.clear(); - ByValParams.clear(); - intrinsicPrototypesAlreadyGenerated.clear(); - UnnamedStructIDs.clear(); - return false; - } - - raw_ostream &printType(raw_ostream &Out, Type *Ty, - bool isSigned = false, - const std::string &VariableName = "", - bool IgnoreName = false, - const AttrListPtr &PAL = AttrListPtr()); - raw_ostream &printSimpleType(raw_ostream &Out, Type *Ty, - bool isSigned, - const std::string &NameSoFar = ""); - - void printStructReturnPointerFunctionType(raw_ostream &Out, - const AttrListPtr &PAL, - PointerType *Ty); - - std::string getStructName(StructType *ST); - - /// writeOperandDeref - Print the result of dereferencing the specified - /// operand with '*'. This is equivalent to printing '*' then using - /// writeOperand, but avoids excess syntax in some cases. - void writeOperandDeref(Value *Operand) { - if (isAddressExposed(Operand)) { - // Already something with an address exposed. - writeOperandInternal(Operand); - } else { - Out << "*("; - writeOperand(Operand); - Out << ")"; - } - } - - void writeOperand(Value *Operand, bool Static = false); - void writeInstComputationInline(Instruction &I); - void writeOperandInternal(Value *Operand, bool Static = false); - void writeOperandWithCast(Value* Operand, unsigned Opcode); - void writeOperandWithCast(Value* Operand, const ICmpInst &I); - bool writeInstructionCast(const Instruction &I); - - void writeMemoryAccess(Value *Operand, Type *OperandType, - bool IsVolatile, unsigned Alignment); - - private : - std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c); - - void lowerIntrinsics(Function &F); - /// Prints the definition of the intrinsic function F. Supports the - /// intrinsics which need to be explicitly defined in the CBackend. - void printIntrinsicDefinition(const Function &F, raw_ostream &Out); - - void printModuleTypes(); - void printContainedStructs(Type *Ty, SmallPtrSet<Type *, 16> &); - void printFloatingPointConstants(Function &F); - void printFloatingPointConstants(const Constant *C); - void printFunctionSignature(const Function *F, bool Prototype); - - void printFunction(Function &); - void printBasicBlock(BasicBlock *BB); - void printLoop(Loop *L); - - void printCast(unsigned opcode, Type *SrcTy, Type *DstTy); - void printConstant(Constant *CPV, bool Static); - void printConstantWithCast(Constant *CPV, unsigned Opcode); - bool printConstExprCast(const ConstantExpr *CE, bool Static); - void printConstantArray(ConstantArray *CPA, bool Static); - void printConstantVector(ConstantVector *CV, bool Static); - void printConstantDataSequential(ConstantDataSequential *CDS, bool Static); - - - /// isAddressExposed - Return true if the specified value's name needs to - /// have its address taken in order to get a C value of the correct type. - /// This happens for global variables, byval parameters, and direct allocas. - bool isAddressExposed(const Value *V) const { - if (const Argument *A = dyn_cast<Argument>(V)) - return ByValParams.count(A); - return isa<GlobalVariable>(V) || isDirectAlloca(V); - } - - // isInlinableInst - Attempt to inline instructions into their uses to build - // trees as much as possible. To do this, we have to consistently decide - // what is acceptable to inline, so that variable declarations don't get - // printed and an extra copy of the expr is not emitted. - // - static bool isInlinableInst(const Instruction &I) { - // Always inline cmp instructions, even if they are shared by multiple - // expressions. GCC generates horrible code if we don't. - if (isa<CmpInst>(I)) - return true; - - // Must be an expression, must be used exactly once. If it is dead, we - // emit it inline where it would go. - if (I.getType() == Type::getVoidTy(I.getContext()) || !I.hasOneUse() || - isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) || - isa<LoadInst>(I) || isa<VAArgInst>(I) || isa<InsertElementInst>(I) || - isa<InsertValueInst>(I)) - // Don't inline a load across a store or other bad things! - return false; - - // Must not be used in inline asm, extractelement, or shufflevector. - if (I.hasOneUse()) { - const Instruction &User = cast<Instruction>(*I.use_back()); - if (isInlineAsm(User) || isa<ExtractElementInst>(User) || - isa<ShuffleVectorInst>(User)) - return false; - } - - // Only inline instruction it if it's use is in the same BB as the inst. - return I.getParent() == cast<Instruction>(I.use_back())->getParent(); - } - - // isDirectAlloca - Define fixed sized allocas in the entry block as direct - // variables which are accessed with the & operator. This causes GCC to - // generate significantly better code than to emit alloca calls directly. - // - static const AllocaInst *isDirectAlloca(const Value *V) { - const AllocaInst *AI = dyn_cast<AllocaInst>(V); - if (!AI) return 0; - if (AI->isArrayAllocation()) - return 0; // FIXME: we can also inline fixed size array allocas! - if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock()) - return 0; - return AI; - } - - // isInlineAsm - Check if the instruction is a call to an inline asm chunk. - static bool isInlineAsm(const Instruction& I) { - if (const CallInst *CI = dyn_cast<CallInst>(&I)) - return isa<InlineAsm>(CI->getCalledValue()); - return false; - } - - // Instruction visitation functions - friend class InstVisitor<CWriter>; - - void visitReturnInst(ReturnInst &I); - void visitBranchInst(BranchInst &I); - void visitSwitchInst(SwitchInst &I); - void visitIndirectBrInst(IndirectBrInst &I); - void visitInvokeInst(InvokeInst &I) { - llvm_unreachable("Lowerinvoke pass didn't work!"); - } - void visitResumeInst(ResumeInst &I) { - llvm_unreachable("DwarfEHPrepare pass didn't work!"); - } - void visitUnreachableInst(UnreachableInst &I); - - void visitPHINode(PHINode &I); - void visitBinaryOperator(Instruction &I); - void visitICmpInst(ICmpInst &I); - void visitFCmpInst(FCmpInst &I); - - void visitCastInst (CastInst &I); - void visitSelectInst(SelectInst &I); - void visitCallInst (CallInst &I); - void visitInlineAsm(CallInst &I); - bool visitBuiltinCall(CallInst &I, Intrinsic::ID ID, bool &WroteCallee); - - void visitAllocaInst(AllocaInst &I); - void visitLoadInst (LoadInst &I); - void visitStoreInst (StoreInst &I); - void visitGetElementPtrInst(GetElementPtrInst &I); - void visitVAArgInst (VAArgInst &I); - - void visitInsertElementInst(InsertElementInst &I); - void visitExtractElementInst(ExtractElementInst &I); - void visitShuffleVectorInst(ShuffleVectorInst &SVI); - - void visitInsertValueInst(InsertValueInst &I); - void visitExtractValueInst(ExtractValueInst &I); - - void visitInstruction(Instruction &I) { -#ifndef NDEBUG - errs() << "C Writer does not know about " << I; -#endif - llvm_unreachable(0); - } - - void outputLValue(Instruction *I) { - Out << " " << GetValueName(I) << " = "; - } - - bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To); - void printPHICopiesForSuccessor(BasicBlock *CurBlock, - BasicBlock *Successor, unsigned Indent); - void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock, - unsigned Indent); - void printGEPExpression(Value *Ptr, gep_type_iterator I, - gep_type_iterator E, bool Static); - - std::string GetValueName(const Value *Operand); - }; -} - -char CWriter::ID = 0; - - - -static std::string CBEMangle(const std::string &S) { - std::string Result; - - for (unsigned i = 0, e = S.size(); i != e; ++i) - if (isalnum(S[i]) || S[i] == '_') { - Result += S[i]; - } else { - Result += '_'; - Result += 'A'+(S[i]&15); - Result += 'A'+((S[i]>>4)&15); - Result += '_'; - } - return Result; -} - -std::string CWriter::getStructName(StructType *ST) { - if (!ST->isLiteral() && !ST->getName().empty()) - return CBEMangle("l_"+ST->getName().str()); - - return "l_unnamed_" + utostr(UnnamedStructIDs[ST]); -} - - -/// printStructReturnPointerFunctionType - This is like printType for a struct -/// return type, except, instead of printing the type as void (*)(Struct*, ...) -/// print it as "Struct (*)(...)", for struct return functions. -void CWriter::printStructReturnPointerFunctionType(raw_ostream &Out, - const AttrListPtr &PAL, - PointerType *TheTy) { - FunctionType *FTy = cast<FunctionType>(TheTy->getElementType()); - std::string tstr; - raw_string_ostream FunctionInnards(tstr); - FunctionInnards << " (*) ("; - bool PrintedType = false; - - FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end(); - Type *RetTy = cast<PointerType>(*I)->getElementType(); - unsigned Idx = 1; - for (++I, ++Idx; I != E; ++I, ++Idx) { - if (PrintedType) - FunctionInnards << ", "; - Type *ArgTy = *I; - if (PAL.paramHasAttr(Idx, Attribute::ByVal)) { - assert(ArgTy->isPointerTy()); - ArgTy = cast<PointerType>(ArgTy)->getElementType(); - } - printType(FunctionInnards, ArgTy, - /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), ""); - PrintedType = true; - } - if (FTy->isVarArg()) { - if (!PrintedType) - FunctionInnards << " int"; //dummy argument for empty vararg functs - FunctionInnards << ", ..."; - } else if (!PrintedType) { - FunctionInnards << "void"; - } - FunctionInnards << ')'; - printType(Out, RetTy, - /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), FunctionInnards.str()); -} - -raw_ostream & -CWriter::printSimpleType(raw_ostream &Out, Type *Ty, bool isSigned, - const std::string &NameSoFar) { - assert((Ty->isPrimitiveType() || Ty->isIntegerTy() || Ty->isVectorTy()) && - "Invalid type for printSimpleType"); - switch (Ty->getTypeID()) { - case Type::VoidTyID: return Out << "void " << NameSoFar; - case Type::IntegerTyID: { - unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); - if (NumBits == 1) - return Out << "bool " << NameSoFar; - else if (NumBits <= 8) - return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar; - else if (NumBits <= 16) - return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar; - else if (NumBits <= 32) - return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar; - else if (NumBits <= 64) - return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar; - else { - assert(NumBits <= 128 && "Bit widths > 128 not implemented yet"); - return Out << (isSigned?"llvmInt128":"llvmUInt128") << " " << NameSoFar; - } - } - case Type::FloatTyID: return Out << "float " << NameSoFar; - case Type::DoubleTyID: return Out << "double " << NameSoFar; - // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is - // present matches host 'long double'. - case Type::X86_FP80TyID: - case Type::PPC_FP128TyID: - case Type::FP128TyID: return Out << "long double " << NameSoFar; - - case Type::X86_MMXTyID: - return printSimpleType(Out, Type::getInt32Ty(Ty->getContext()), isSigned, - " __attribute__((vector_size(64))) " + NameSoFar); - - case Type::VectorTyID: { - VectorType *VTy = cast<VectorType>(Ty); - return printSimpleType(Out, VTy->getElementType(), isSigned, - " __attribute__((vector_size(" + - utostr(TD->getTypeAllocSize(VTy)) + " ))) " + NameSoFar); - } - - default: -#ifndef NDEBUG - errs() << "Unknown primitive type: " << *Ty << "\n"; -#endif - llvm_unreachable(0); - } -} - -// Pass the Type* and the variable name and this prints out the variable -// declaration. -// -raw_ostream &CWriter::printType(raw_ostream &Out, Type *Ty, - bool isSigned, const std::string &NameSoFar, - bool IgnoreName, const AttrListPtr &PAL) { - if (Ty->isPrimitiveType() || Ty->isIntegerTy() || Ty->isVectorTy()) { - printSimpleType(Out, Ty, isSigned, NameSoFar); - return Out; - } - - switch (Ty->getTypeID()) { - case Type::FunctionTyID: { - FunctionType *FTy = cast<FunctionType>(Ty); - std::string tstr; - raw_string_ostream FunctionInnards(tstr); - FunctionInnards << " (" << NameSoFar << ") ("; - unsigned Idx = 1; - for (FunctionType::param_iterator I = FTy->param_begin(), - E = FTy->param_end(); I != E; ++I) { - Type *ArgTy = *I; - if (PAL.paramHasAttr(Idx, Attribute::ByVal)) { - assert(ArgTy->isPointerTy()); - ArgTy = cast<PointerType>(ArgTy)->getElementType(); - } - if (I != FTy->param_begin()) - FunctionInnards << ", "; - printType(FunctionInnards, ArgTy, - /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), ""); - ++Idx; - } - if (FTy->isVarArg()) { - if (!FTy->getNumParams()) - FunctionInnards << " int"; //dummy argument for empty vaarg functs - FunctionInnards << ", ..."; - } else if (!FTy->getNumParams()) { - FunctionInnards << "void"; - } - FunctionInnards << ')'; - printType(Out, FTy->getReturnType(), - /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), FunctionInnards.str()); - return Out; - } - case Type::StructTyID: { - StructType *STy = cast<StructType>(Ty); - - // Check to see if the type is named. - if (!IgnoreName) - return Out << getStructName(STy) << ' ' << NameSoFar; - - Out << NameSoFar + " {\n"; - unsigned Idx = 0; - for (StructType::element_iterator I = STy->element_begin(), - E = STy->element_end(); I != E; ++I) { - Out << " "; - printType(Out, *I, false, "field" + utostr(Idx++)); - Out << ";\n"; - } - Out << '}'; - if (STy->isPacked()) - Out << " __attribute__ ((packed))"; - return Out; - } - - case Type::PointerTyID: { - PointerType *PTy = cast<PointerType>(Ty); - std::string ptrName = "*" + NameSoFar; - - if (PTy->getElementType()->isArrayTy() || - PTy->getElementType()->isVectorTy()) - ptrName = "(" + ptrName + ")"; - - if (!PAL.isEmpty()) - // Must be a function ptr cast! - return printType(Out, PTy->getElementType(), false, ptrName, true, PAL); - return printType(Out, PTy->getElementType(), false, ptrName); - } - - case Type::ArrayTyID: { - ArrayType *ATy = cast<ArrayType>(Ty); - unsigned NumElements = ATy->getNumElements(); - if (NumElements == 0) NumElements = 1; - // Arrays are wrapped in structs to allow them to have normal - // value semantics (avoiding the array "decay"). - Out << NameSoFar << " { "; - printType(Out, ATy->getElementType(), false, - "array[" + utostr(NumElements) + "]"); - return Out << "; }"; - } - - default: - llvm_unreachable("Unhandled case in getTypeProps!"); - } -} - -void CWriter::printConstantArray(ConstantArray *CPA, bool Static) { - Out << "{ "; - printConstant(cast<Constant>(CPA->getOperand(0)), Static); - for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) { - Out << ", "; - printConstant(cast<Constant>(CPA->getOperand(i)), Static); - } - Out << " }"; -} - -void CWriter::printConstantVector(ConstantVector *CP, bool Static) { - Out << "{ "; - printConstant(cast<Constant>(CP->getOperand(0)), Static); - for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) { - Out << ", "; - printConstant(cast<Constant>(CP->getOperand(i)), Static); - } - Out << " }"; -} - -void CWriter::printConstantDataSequential(ConstantDataSequential *CDS, - bool Static) { - // As a special case, print the array as a string if it is an array of - // ubytes or an array of sbytes with positive values. - // - if (CDS->isCString()) { - Out << '\"'; - // Keep track of whether the last number was a hexadecimal escape. - bool LastWasHex = false; - - StringRef Bytes = CDS->getAsCString(); - - // Do not include the last character, which we know is null - for (unsigned i = 0, e = Bytes.size(); i != e; ++i) { - unsigned char C = Bytes[i]; - - // Print it out literally if it is a printable character. The only thing - // to be careful about is when the last letter output was a hex escape - // code, in which case we have to be careful not to print out hex digits - // explicitly (the C compiler thinks it is a continuation of the previous - // character, sheesh...) - // - if (isprint(C) && (!LastWasHex || !isxdigit(C))) { - LastWasHex = false; - if (C == '"' || C == '\\') - Out << "\\" << (char)C; - else - Out << (char)C; - } else { - LastWasHex = false; - switch (C) { - case '\n': Out << "\\n"; break; - case '\t': Out << "\\t"; break; - case '\r': Out << "\\r"; break; - case '\v': Out << "\\v"; break; - case '\a': Out << "\\a"; break; - case '\"': Out << "\\\""; break; - case '\'': Out << "\\\'"; break; - default: - Out << "\\x"; - Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A')); - Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A')); - LastWasHex = true; - break; - } - } - } - Out << '\"'; - } else { - Out << "{ "; - printConstant(CDS->getElementAsConstant(0), Static); - for (unsigned i = 1, e = CDS->getNumElements(); i != e; ++i) { - Out << ", "; - printConstant(CDS->getElementAsConstant(i), Static); - } - Out << " }"; - } -} - - -// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out -// textually as a double (rather than as a reference to a stack-allocated -// variable). We decide this by converting CFP to a string and back into a -// double, and then checking whether the conversion results in a bit-equal -// double to the original value of CFP. This depends on us and the target C -// compiler agreeing on the conversion process (which is pretty likely since we -// only deal in IEEE FP). -// -static bool isFPCSafeToPrint(const ConstantFP *CFP) { - bool ignored; - // Do long doubles in hex for now. - if (CFP->getType() != Type::getFloatTy(CFP->getContext()) && - CFP->getType() != Type::getDoubleTy(CFP->getContext())) - return false; - APFloat APF = APFloat(CFP->getValueAPF()); // copy - if (CFP->getType() == Type::getFloatTy(CFP->getContext())) - APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored); -#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A - char Buffer[100]; - sprintf(Buffer, "%a", APF.convertToDouble()); - if (!strncmp(Buffer, "0x", 2) || - !strncmp(Buffer, "-0x", 3) || - !strncmp(Buffer, "+0x", 3)) - return APF.bitwiseIsEqual(APFloat(atof(Buffer))); - return false; -#else - std::string StrVal = ftostr(APF); - - while (StrVal[0] == ' ') - StrVal.erase(StrVal.begin()); - - // Check to make sure that the stringized number is not some string like "Inf" - // or NaN. Check that the string matches the "[-+]?[0-9]" regex. - if ((StrVal[0] >= '0' && StrVal[0] <= '9') || - ((StrVal[0] == '-' || StrVal[0] == '+') && - (StrVal[1] >= '0' && StrVal[1] <= '9'))) - // Reparse stringized version! - return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str()))); - return false; -#endif -} - -/// Print out the casting for a cast operation. This does the double casting -/// necessary for conversion to the destination type, if necessary. -/// @brief Print a cast -void CWriter::printCast(unsigned opc, Type *SrcTy, Type *DstTy) { - // Print the destination type cast - switch (opc) { - case Instruction::UIToFP: - case Instruction::SIToFP: - case Instruction::IntToPtr: - case Instruction::Trunc: - case Instruction::BitCast: - case Instruction::FPExt: - case Instruction::FPTrunc: // For these the DstTy sign doesn't matter - Out << '('; - printType(Out, DstTy); - Out << ')'; - break; - case Instruction::ZExt: - case Instruction::PtrToInt: - case Instruction::FPToUI: // For these, make sure we get an unsigned dest - Out << '('; - printSimpleType(Out, DstTy, false); - Out << ')'; - break; - case Instruction::SExt: - case Instruction::FPToSI: // For these, make sure we get a signed dest - Out << '('; - printSimpleType(Out, DstTy, true); - Out << ')'; - break; - default: - llvm_unreachable("Invalid cast opcode"); - } - - // Print the source type cast - switch (opc) { - case Instruction::UIToFP: - case Instruction::ZExt: - Out << '('; - printSimpleType(Out, SrcTy, false); - Out << ')'; - break; - case Instruction::SIToFP: - case Instruction::SExt: - Out << '('; - printSimpleType(Out, SrcTy, true); - Out << ')'; - break; - case Instruction::IntToPtr: - case Instruction::PtrToInt: - // Avoid "cast to pointer from integer of different size" warnings - Out << "(unsigned long)"; - break; - case Instruction::Trunc: - case Instruction::BitCast: - case Instruction::FPExt: - case Instruction::FPTrunc: - case Instruction::FPToSI: - case Instruction::FPToUI: - break; // These don't need a source cast. - default: - llvm_unreachable("Invalid cast opcode"); - } -} - -// printConstant - The LLVM Constant to C Constant converter. -void CWriter::printConstant(Constant *CPV, bool Static) { - if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) { - switch (CE->getOpcode()) { - case Instruction::Trunc: - case Instruction::ZExt: - case Instruction::SExt: - case Instruction::FPTrunc: - case Instruction::FPExt: - case Instruction::UIToFP: - case Instruction::SIToFP: - case Instruction::FPToUI: - case Instruction::FPToSI: - case Instruction::PtrToInt: - case Instruction::IntToPtr: - case Instruction::BitCast: - Out << "("; - printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType()); - if (CE->getOpcode() == Instruction::SExt && - CE->getOperand(0)->getType() == Type::getInt1Ty(CPV->getContext())) { - // Make sure we really sext from bool here by subtracting from 0 - Out << "0-"; - } - printConstant(CE->getOperand(0), Static); - if (CE->getType() == Type::getInt1Ty(CPV->getContext()) && - (CE->getOpcode() == Instruction::Trunc || - CE->getOpcode() == Instruction::FPToUI || - CE->getOpcode() == Instruction::FPToSI || - CE->getOpcode() == Instruction::PtrToInt)) { - // Make sure we really truncate to bool here by anding with 1 - Out << "&1u"; - } - Out << ')'; - return; - - case Instruction::GetElementPtr: - Out << "("; - printGEPExpression(CE->getOperand(0), gep_type_begin(CPV), - gep_type_end(CPV), Static); - Out << ")"; - return; - case Instruction::Select: - Out << '('; - printConstant(CE->getOperand(0), Static); - Out << '?'; - printConstant(CE->getOperand(1), Static); - Out << ':'; - printConstant(CE->getOperand(2), Static); - Out << ')'; - return; - case Instruction::Add: - case Instruction::FAdd: - case Instruction::Sub: - case Instruction::FSub: - case Instruction::Mul: - case Instruction::FMul: - case Instruction::SDiv: - case Instruction::UDiv: - case Instruction::FDiv: - case Instruction::URem: - case Instruction::SRem: - case Instruction::FRem: - case Instruction::And: - case Instruction::Or: - case Instruction::Xor: - case Instruction::ICmp: - case Instruction::Shl: - case Instruction::LShr: - case Instruction::AShr: - { - Out << '('; - bool NeedsClosingParens = printConstExprCast(CE, Static); - printConstantWithCast(CE->getOperand(0), CE->getOpcode()); - switch (CE->getOpcode()) { - case Instruction::Add: - case Instruction::FAdd: Out << " + "; break; - case Instruction::Sub: - case Instruction::FSub: Out << " - "; break; - case Instruction::Mul: - case Instruction::FMul: Out << " * "; break; - case Instruction::URem: - case Instruction::SRem: - case Instruction::FRem: Out << " % "; break; - case Instruction::UDiv: - case Instruction::SDiv: - case Instruction::FDiv: Out << " / "; break; - case Instruction::And: Out << " & "; break; - case Instruction::Or: Out << " | "; break; - case Instruction::Xor: Out << " ^ "; break; - case Instruction::Shl: Out << " << "; break; - case Instruction::LShr: - case Instruction::AShr: Out << " >> "; break; - case Instruction::ICmp: - switch (CE->getPredicate()) { - case ICmpInst::ICMP_EQ: Out << " == "; break; - case ICmpInst::ICMP_NE: Out << " != "; break; - case ICmpInst::ICMP_SLT: - case ICmpInst::ICMP_ULT: Out << " < "; break; - case ICmpInst::ICMP_SLE: - case ICmpInst::ICMP_ULE: Out << " <= "; break; - case ICmpInst::ICMP_SGT: - case ICmpInst::ICMP_UGT: Out << " > "; break; - case ICmpInst::ICMP_SGE: - case ICmpInst::ICMP_UGE: Out << " >= "; break; - default: llvm_unreachable("Illegal ICmp predicate"); - } - break; - default: llvm_unreachable("Illegal opcode here!"); - } - printConstantWithCast(CE->getOperand(1), CE->getOpcode()); - if (NeedsClosingParens) - Out << "))"; - Out << ')'; - return; - } - case Instruction::FCmp: { - Out << '('; - bool NeedsClosingParens = printConstExprCast(CE, Static); - if (CE->getPredicate() == FCmpInst::FCMP_FALSE) - Out << "0"; - else if (CE->getPredicate() == FCmpInst::FCMP_TRUE) - Out << "1"; - else { - const char* op = 0; - switch (CE->getPredicate()) { - default: llvm_unreachable("Illegal FCmp predicate"); - case FCmpInst::FCMP_ORD: op = "ord"; break; - case FCmpInst::FCMP_UNO: op = "uno"; break; - case FCmpInst::FCMP_UEQ: op = "ueq"; break; - case FCmpInst::FCMP_UNE: op = "une"; break; - case FCmpInst::FCMP_ULT: op = "ult"; break; - case FCmpInst::FCMP_ULE: op = "ule"; break; - case FCmpInst::FCMP_UGT: op = "ugt"; break; - case FCmpInst::FCMP_UGE: op = "uge"; break; - case FCmpInst::FCMP_OEQ: op = "oeq"; break; - case FCmpInst::FCMP_ONE: op = "one"; break; - case FCmpInst::FCMP_OLT: op = "olt"; break; - case FCmpInst::FCMP_OLE: op = "ole"; break; - case FCmpInst::FCMP_OGT: op = "ogt"; break; - case FCmpInst::FCMP_OGE: op = "oge"; break; - } - Out << "llvm_fcmp_" << op << "("; - printConstantWithCast(CE->getOperand(0), CE->getOpcode()); - Out << ", "; - printConstantWithCast(CE->getOperand(1), CE->getOpcode()); - Out << ")"; - } - if (NeedsClosingParens) - Out << "))"; - Out << ')'; - return; - } - default: -#ifndef NDEBUG - errs() << "CWriter Error: Unhandled constant expression: " - << *CE << "\n"; -#endif - llvm_unreachable(0); - } - } else if (isa<UndefValue>(CPV) && CPV->getType()->isSingleValueType()) { - Out << "(("; - printType(Out, CPV->getType()); // sign doesn't matter - Out << ")/*UNDEF*/"; - if (!CPV->getType()->isVectorTy()) { - Out << "0)"; - } else { - Out << "{})"; - } - return; - } - - if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) { - Type* Ty = CI->getType(); - if (Ty == Type::getInt1Ty(CPV->getContext())) - Out << (CI->getZExtValue() ? '1' : '0'); - else if (Ty == Type::getInt32Ty(CPV->getContext())) - Out << CI->getZExtValue() << 'u'; - else if (Ty->getPrimitiveSizeInBits() > 32) - Out << CI->getZExtValue() << "ull"; - else { - Out << "(("; - printSimpleType(Out, Ty, false) << ')'; - if (CI->isMinValue(true)) - Out << CI->getZExtValue() << 'u'; - else - Out << CI->getSExtValue(); - Out << ')'; - } - return; - } - - switch (CPV->getType()->getTypeID()) { - case Type::FloatTyID: - case Type::DoubleTyID: - case Type::X86_FP80TyID: - case Type::PPC_FP128TyID: - case Type::FP128TyID: { - ConstantFP *FPC = cast<ConstantFP>(CPV); - std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC); - if (I != FPConstantMap.end()) { - // Because of FP precision problems we must load from a stack allocated - // value that holds the value in hex. - Out << "(*(" << (FPC->getType() == Type::getFloatTy(CPV->getContext()) ? - "float" : - FPC->getType() == Type::getDoubleTy(CPV->getContext()) ? - "double" : - "long double") - << "*)&FPConstant" << I->second << ')'; - } else { - double V; - if (FPC->getType() == Type::getFloatTy(CPV->getContext())) - V = FPC->getValueAPF().convertToFloat(); - else if (FPC->getType() == Type::getDoubleTy(CPV->getContext())) - V = FPC->getValueAPF().convertToDouble(); - else { - // Long double. Convert the number to double, discarding precision. - // This is not awesome, but it at least makes the CBE output somewhat - // useful. - APFloat Tmp = FPC->getValueAPF(); - bool LosesInfo; - Tmp.convert(APFloat::IEEEdouble, APFloat::rmTowardZero, &LosesInfo); - V = Tmp.convertToDouble(); - } - - if (IsNAN(V)) { - // The value is NaN - - // FIXME the actual NaN bits should be emitted. - // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN, - // it's 0x7ff4. - const unsigned long QuietNaN = 0x7ff8UL; - //const unsigned long SignalNaN = 0x7ff4UL; - - // We need to grab the first part of the FP # - char Buffer[100]; - - uint64_t ll = DoubleToBits(V); - sprintf(Buffer, "0x%llx", static_cast<long long>(ll)); - - std::string Num(&Buffer[0], &Buffer[6]); - unsigned long Val = strtoul(Num.c_str(), 0, 16); - - if (FPC->getType() == Type::getFloatTy(FPC->getContext())) - Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\"" - << Buffer << "\") /*nan*/ "; - else - Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\"" - << Buffer << "\") /*nan*/ "; - } else if (IsInf(V)) { - // The value is Inf - if (V < 0) Out << '-'; - Out << "LLVM_INF" << - (FPC->getType() == Type::getFloatTy(FPC->getContext()) ? "F" : "") - << " /*inf*/ "; - } else { - std::string Num; -#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A - // Print out the constant as a floating point number. - char Buffer[100]; - sprintf(Buffer, "%a", V); - Num = Buffer; -#else - Num = ftostr(FPC->getValueAPF()); -#endif - Out << Num; - } - } - break; - } - - case Type::ArrayTyID: - // Use C99 compound expression literal initializer syntax. - if (!Static) { - Out << "("; - printType(Out, CPV->getType()); - Out << ")"; - } - Out << "{ "; // Arrays are wrapped in struct types. - if (ConstantArray *CA = dyn_cast<ConstantArray>(CPV)) { - printConstantArray(CA, Static); - } else if (ConstantDataSequential *CDS = - dyn_cast<ConstantDataSequential>(CPV)) { - printConstantDataSequential(CDS, Static); - } else { - assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)); - ArrayType *AT = cast<ArrayType>(CPV->getType()); - Out << '{'; - if (AT->getNumElements()) { - Out << ' '; - Constant *CZ = Constant::getNullValue(AT->getElementType()); - printConstant(CZ, Static); - for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) { - Out << ", "; - printConstant(CZ, Static); - } - } - Out << " }"; - } - Out << " }"; // Arrays are wrapped in struct types. - break; - - case Type::VectorTyID: - // Use C99 compound expression literal initializer syntax. - if (!Static) { - Out << "("; - printType(Out, CPV->getType()); - Out << ")"; - } - if (ConstantVector *CV = dyn_cast<ConstantVector>(CPV)) { - printConstantVector(CV, Static); - } else if (ConstantDataSequential *CDS = - dyn_cast<ConstantDataSequential>(CPV)) { - printConstantDataSequential(CDS, Static); - } else { - assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)); - VectorType *VT = cast<VectorType>(CPV->getType()); - Out << "{ "; - Constant *CZ = Constant::getNullValue(VT->getElementType()); - printConstant(CZ, Static); - for (unsigned i = 1, e = VT->getNumElements(); i != e; ++i) { - Out << ", "; - printConstant(CZ, Static); - } - Out << " }"; - } - break; - - case Type::StructTyID: - // Use C99 compound expression literal initializer syntax. - if (!Static) { - Out << "("; - printType(Out, CPV->getType()); - Out << ")"; - } - if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) { - StructType *ST = cast<StructType>(CPV->getType()); - Out << '{'; - if (ST->getNumElements()) { - Out << ' '; - printConstant(Constant::getNullValue(ST->getElementType(0)), Static); - for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) { - Out << ", "; - printConstant(Constant::getNullValue(ST->getElementType(i)), Static); - } - } - Out << " }"; - } else { - Out << '{'; - if (CPV->getNumOperands()) { - Out << ' '; - printConstant(cast<Constant>(CPV->getOperand(0)), Static); - for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) { - Out << ", "; - printConstant(cast<Constant>(CPV->getOperand(i)), Static); - } - } - Out << " }"; - } - break; - - case Type::PointerTyID: - if (isa<ConstantPointerNull>(CPV)) { - Out << "(("; - printType(Out, CPV->getType()); // sign doesn't matter - Out << ")/*NULL*/0)"; - break; - } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) { - writeOperand(GV, Static); - break; - } - // FALL THROUGH - default: -#ifndef NDEBUG - errs() << "Unknown constant type: " << *CPV << "\n"; -#endif - llvm_unreachable(0); - } -} - -// Some constant expressions need to be casted back to the original types -// because their operands were casted to the expected type. This function takes -// care of detecting that case and printing the cast for the ConstantExpr. -bool CWriter::printConstExprCast(const ConstantExpr* CE, bool Static) { - bool NeedsExplicitCast = false; - Type *Ty = CE->getOperand(0)->getType(); - bool TypeIsSigned = false; - switch (CE->getOpcode()) { - case Instruction::Add: - case Instruction::Sub: - case Instruction::Mul: - // We need to cast integer arithmetic so that it is always performed - // as unsigned, to avoid undefined behavior on overflow. - case Instruction::LShr: - case Instruction::URem: - case Instruction::UDiv: NeedsExplicitCast = true; break; - case Instruction::AShr: - case Instruction::SRem: - case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break; - case Instruction::SExt: - Ty = CE->getType(); - NeedsExplicitCast = true; - TypeIsSigned = true; - break; - case Instruction::ZExt: - case Instruction::Trunc: - case Instruction::FPTrunc: - case Instruction::FPExt: - case Instruction::UIToFP: - case Instruction::SIToFP: - case Instruction::FPToUI: - case Instruction::FPToSI: - case Instruction::PtrToInt: - case Instruction::IntToPtr: - case Instruction::BitCast: - Ty = CE->getType(); - NeedsExplicitCast = true; - break; - default: break; - } - if (NeedsExplicitCast) { - Out << "(("; - if (Ty->isIntegerTy() && Ty != Type::getInt1Ty(Ty->getContext())) - printSimpleType(Out, Ty, TypeIsSigned); - else - printType(Out, Ty); // not integer, sign doesn't matter - Out << ")("; - } - return NeedsExplicitCast; -} - -// Print a constant assuming that it is the operand for a given Opcode. The -// opcodes that care about sign need to cast their operands to the expected -// type before the operation proceeds. This function does the casting. -void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) { - - // Extract the operand's type, we'll need it. - Type* OpTy = CPV->getType(); - - // Indicate whether to do the cast or not. - bool shouldCast = false; - bool typeIsSigned = false; - - // Based on the Opcode for which this Constant is being written, determine - // the new type to which the operand should be casted by setting the value - // of OpTy. If we change OpTy, also set shouldCast to true so it gets - // casted below. - switch (Opcode) { - default: - // for most instructions, it doesn't matter - break; - case Instruction::Add: - case Instruction::Sub: - case Instruction::Mul: - // We need to cast integer arithmetic so that it is always performed - // as unsigned, to avoid undefined behavior on overflow. - case Instruction::LShr: - case Instruction::UDiv: - case Instruction::URem: - shouldCast = true; - break; - case Instruction::AShr: - case Instruction::SDiv: - case Instruction::SRem: - shouldCast = true; - typeIsSigned = true; - break; - } - - // Write out the casted constant if we should, otherwise just write the - // operand. - if (shouldCast) { - Out << "(("; - printSimpleType(Out, OpTy, typeIsSigned); - Out << ")"; - printConstant(CPV, false); - Out << ")"; - } else - printConstant(CPV, false); -} - -std::string CWriter::GetValueName(const Value *Operand) { - - // Resolve potential alias. - if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Operand)) { - if (const Value *V = GA->resolveAliasedGlobal(false)) - Operand = V; - } - - // Mangle globals with the standard mangler interface for LLC compatibility. - if (const GlobalValue *GV = dyn_cast<GlobalValue>(Operand)) { - SmallString<128> Str; - Mang->getNameWithPrefix(Str, GV, false); - return CBEMangle(Str.str().str()); - } - - std::string Name = Operand->getName(); - - if (Name.empty()) { // Assign unique names to local temporaries. - unsigned &No = AnonValueNumbers[Operand]; - if (No == 0) - No = ++NextAnonValueNumber; - Name = "tmp__" + utostr(No); - } - - std::string VarName; - VarName.reserve(Name.capacity()); - - for (std::string::iterator I = Name.begin(), E = Name.end(); - I != E; ++I) { - char ch = *I; - - if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') || - (ch >= '0' && ch <= '9') || ch == '_')) { - char buffer[5]; - sprintf(buffer, "_%x_", ch); - VarName += buffer; - } else - VarName += ch; - } - - return "llvm_cbe_" + VarName; -} - -/// writeInstComputationInline - Emit the computation for the specified -/// instruction inline, with no destination provided. -void CWriter::writeInstComputationInline(Instruction &I) { - // We can't currently support integer types other than 1, 8, 16, 32, 64. - // Validate this. - Type *Ty = I.getType(); - if (Ty->isIntegerTy() && (Ty!=Type::getInt1Ty(I.getContext()) && - Ty!=Type::getInt8Ty(I.getContext()) && - Ty!=Type::getInt16Ty(I.getContext()) && - Ty!=Type::getInt32Ty(I.getContext()) && - Ty!=Type::getInt64Ty(I.getContext()))) { - report_fatal_error("The C backend does not currently support integer " - "types of widths other than 1, 8, 16, 32, 64.\n" - "This is being tracked as PR 4158."); - } - - // If this is a non-trivial bool computation, make sure to truncate down to - // a 1 bit value. This is important because we want "add i1 x, y" to return - // "0" when x and y are true, not "2" for example. - bool NeedBoolTrunc = false; - if (I.getType() == Type::getInt1Ty(I.getContext()) && - !isa<ICmpInst>(I) && !isa<FCmpInst>(I)) - NeedBoolTrunc = true; - - if (NeedBoolTrunc) - Out << "(("; - - visit(I); - - if (NeedBoolTrunc) - Out << ")&1)"; -} - - -void CWriter::writeOperandInternal(Value *Operand, bool Static) { - if (Instruction *I = dyn_cast<Instruction>(Operand)) - // Should we inline this instruction to build a tree? - if (isInlinableInst(*I) && !isDirectAlloca(I)) { - Out << '('; - writeInstComputationInline(*I); - Out << ')'; - return; - } - - Constant* CPV = dyn_cast<Constant>(Operand); - - if (CPV && !isa<GlobalValue>(CPV)) - printConstant(CPV, Static); - else - Out << GetValueName(Operand); -} - -void CWriter::writeOperand(Value *Operand, bool Static) { - bool isAddressImplicit = isAddressExposed(Operand); - if (isAddressImplicit) - Out << "(&"; // Global variables are referenced as their addresses by llvm - - writeOperandInternal(Operand, Static); - - if (isAddressImplicit) - Out << ')'; -} - -// Some instructions need to have their result value casted back to the -// original types because their operands were casted to the expected type. -// This function takes care of detecting that case and printing the cast -// for the Instruction. -bool CWriter::writeInstructionCast(const Instruction &I) { - Type *Ty = I.getOperand(0)->getType(); - switch (I.getOpcode()) { - case Instruction::Add: - case Instruction::Sub: - case Instruction::Mul: - // We need to cast integer arithmetic so that it is always performed - // as unsigned, to avoid undefined behavior on overflow. - case Instruction::LShr: - case Instruction::URem: - case Instruction::UDiv: - Out << "(("; - printSimpleType(Out, Ty, false); - Out << ")("; - return true; - case Instruction::AShr: - case Instruction::SRem: - case Instruction::SDiv: - Out << "(("; - printSimpleType(Out, Ty, true); - Out << ")("; - return true; - default: break; - } - return false; -} - -// Write the operand with a cast to another type based on the Opcode being used. -// This will be used in cases where an instruction has specific type -// requirements (usually signedness) for its operands. -void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) { - - // Extract the operand's type, we'll need it. - Type* OpTy = Operand->getType(); - - // Indicate whether to do the cast or not. - bool shouldCast = false; - - // Indicate whether the cast should be to a signed type or not. - bool castIsSigned = false; - - // Based on the Opcode for which this Operand is being written, determine - // the new type to which the operand should be casted by setting the value - // of OpTy. If we change OpTy, also set shouldCast to true. - switch (Opcode) { - default: - // for most instructions, it doesn't matter - break; - case Instruction::Add: - case Instruction::Sub: - case Instruction::Mul: - // We need to cast integer arithmetic so that it is always performed - // as unsigned, to avoid undefined behavior on overflow. - case Instruction::LShr: - case Instruction::UDiv: - case Instruction::URem: // Cast to unsigned first - shouldCast = true; - castIsSigned = false; - break; - case Instruction::GetElementPtr: - case Instruction::AShr: - case Instruction::SDiv: - case Instruction::SRem: // Cast to signed first - shouldCast = true; - castIsSigned = true; - break; - } - - // Write out the casted operand if we should, otherwise just write the - // operand. - if (shouldCast) { - Out << "(("; - printSimpleType(Out, OpTy, castIsSigned); - Out << ")"; - writeOperand(Operand); - Out << ")"; - } else - writeOperand(Operand); -} - -// Write the operand with a cast to another type based on the icmp predicate -// being used. -void CWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) { - // This has to do a cast to ensure the operand has the right signedness. - // Also, if the operand is a pointer, we make sure to cast to an integer when - // doing the comparison both for signedness and so that the C compiler doesn't - // optimize things like "p < NULL" to false (p may contain an integer value - // f.e.). - bool shouldCast = Cmp.isRelational(); - - // Write out the casted operand if we should, otherwise just write the - // operand. - if (!shouldCast) { - writeOperand(Operand); - return; - } - - // Should this be a signed comparison? If so, convert to signed. - bool castIsSigned = Cmp.isSigned(); - - // If the operand was a pointer, convert to a large integer type. - Type* OpTy = Operand->getType(); - if (OpTy->isPointerTy()) - OpTy = TD->getIntPtrType(Operand->getContext()); - - Out << "(("; - printSimpleType(Out, OpTy, castIsSigned); - Out << ")"; - writeOperand(Operand); - Out << ")"; -} - -// generateCompilerSpecificCode - This is where we add conditional compilation -// directives to cater to specific compilers as need be. -// -static void generateCompilerSpecificCode(formatted_raw_ostream& Out, - const TargetData *TD) { - // Alloca is hard to get, and we don't want to include stdlib.h here. - Out << "/* get a declaration for alloca */\n" - << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n" - << "#define alloca(x) __builtin_alloca((x))\n" - << "#define _alloca(x) __builtin_alloca((x))\n" - << "#elif defined(__APPLE__)\n" - << "extern void *__builtin_alloca(unsigned long);\n" - << "#define alloca(x) __builtin_alloca(x)\n" - << "#define longjmp _longjmp\n" - << "#define setjmp _setjmp\n" - << "#elif defined(__sun__)\n" - << "#if defined(__sparcv9)\n" - << "extern void *__builtin_alloca(unsigned long);\n" - << "#else\n" - << "extern void *__builtin_alloca(unsigned int);\n" - << "#endif\n" - << "#define alloca(x) __builtin_alloca(x)\n" - << "#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__) || defined(__arm__)\n" - << "#define alloca(x) __builtin_alloca(x)\n" - << "#elif defined(_MSC_VER)\n" - << "#define inline _inline\n" - << "#define alloca(x) _alloca(x)\n" - << "#else\n" - << "#include <alloca.h>\n" - << "#endif\n\n"; - - // We output GCC specific attributes to preserve 'linkonce'ness on globals. - // If we aren't being compiled with GCC, just drop these attributes. - Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n" - << "#define __attribute__(X)\n" - << "#endif\n\n"; - - // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))". - Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n" - << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n" - << "#elif defined(__GNUC__)\n" - << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n" - << "#else\n" - << "#define __EXTERNAL_WEAK__\n" - << "#endif\n\n"; - - // For now, turn off the weak linkage attribute on Mac OS X. (See above.) - Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n" - << "#define __ATTRIBUTE_WEAK__\n" - << "#elif defined(__GNUC__)\n" - << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n" - << "#else\n" - << "#define __ATTRIBUTE_WEAK__\n" - << "#endif\n\n"; - - // Add hidden visibility support. FIXME: APPLE_CC? - Out << "#if defined(__GNUC__)\n" - << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n" - << "#endif\n\n"; - - // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise - // From the GCC documentation: - // - // double __builtin_nan (const char *str) - // - // This is an implementation of the ISO C99 function nan. - // - // Since ISO C99 defines this function in terms of strtod, which we do - // not implement, a description of the parsing is in order. The string is - // parsed as by strtol; that is, the base is recognized by leading 0 or - // 0x prefixes. The number parsed is placed in the significand such that - // the least significant bit of the number is at the least significant - // bit of the significand. The number is truncated to fit the significand - // field provided. The significand is forced to be a quiet NaN. - // - // This function, if given a string literal, is evaluated early enough - // that it is considered a compile-time constant. - // - // float __builtin_nanf (const char *str) - // - // Similar to __builtin_nan, except the return type is float. - // - // double __builtin_inf (void) - // - // Similar to __builtin_huge_val, except a warning is generated if the - // target floating-point format does not support infinities. This - // function is suitable for implementing the ISO C99 macro INFINITY. - // - // float __builtin_inff (void) - // - // Similar to __builtin_inf, except the return type is float. - Out << "#ifdef __GNUC__\n" - << "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n" - << "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n" - << "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n" - << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n" - << "#define LLVM_INF __builtin_inf() /* Double */\n" - << "#define LLVM_INFF __builtin_inff() /* Float */\n" - << "#define LLVM_PREFETCH(addr,rw,locality) " - "__builtin_prefetch(addr,rw,locality)\n" - << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n" - << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n" - << "#define LLVM_ASM __asm__\n" - << "#else\n" - << "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n" - << "#define LLVM_NANF(NanStr) 0.0F /* Float */\n" - << "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n" - << "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n" - << "#define LLVM_INF ((double)0.0) /* Double */\n" - << "#define LLVM_INFF 0.0F /* Float */\n" - << "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n" - << "#define __ATTRIBUTE_CTOR__\n" - << "#define __ATTRIBUTE_DTOR__\n" - << "#define LLVM_ASM(X)\n" - << "#endif\n\n"; - - Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n" - << "#define __builtin_stack_save() 0 /* not implemented */\n" - << "#define __builtin_stack_restore(X) /* noop */\n" - << "#endif\n\n"; - - // Output typedefs for 128-bit integers. If these are needed with a - // 32-bit target or with a C compiler that doesn't support mode(TI), - // more drastic measures will be needed. - Out << "#if __GNUC__ && __LP64__ /* 128-bit integer types */\n" - << "typedef int __attribute__((mode(TI))) llvmInt128;\n" - << "typedef unsigned __attribute__((mode(TI))) llvmUInt128;\n" - << "#endif\n\n"; - - // Output target-specific code that should be inserted into main. - Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n"; -} - -/// FindStaticTors - Given a static ctor/dtor list, unpack its contents into -/// the StaticTors set. -static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){ - ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); - if (!InitList) return; - - for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) - if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){ - if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. - - if (CS->getOperand(1)->isNullValue()) - return; // Found a null terminator, exit printing. - Constant *FP = CS->getOperand(1); - if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) - if (CE->isCast()) - FP = CE->getOperand(0); - if (Function *F = dyn_cast<Function>(FP)) - StaticTors.insert(F); - } -} - -enum SpecialGlobalClass { - NotSpecial = 0, - GlobalCtors, GlobalDtors, - NotPrinted -}; - -/// getGlobalVariableClass - If this is a global that is specially recognized -/// by LLVM, return a code that indicates how we should handle it. -static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) { - // If this is a global ctors/dtors list, handle it now. - if (GV->hasAppendingLinkage() && GV->use_empty()) { - if (GV->getName() == "llvm.global_ctors") - return GlobalCtors; - else if (GV->getName() == "llvm.global_dtors") - return GlobalDtors; - } - - // Otherwise, if it is other metadata, don't print it. This catches things - // like debug information. - if (GV->getSection() == "llvm.metadata") - return NotPrinted; - - return NotSpecial; -} - -// PrintEscapedString - Print each character of the specified string, escaping -// it if it is not printable or if it is an escape char. -static void PrintEscapedString(const char *Str, unsigned Length, - raw_ostream &Out) { - for (unsigned i = 0; i != Length; ++i) { - unsigned char C = Str[i]; - if (isprint(C) && C != '\\' && C != '"') - Out << C; - else if (C == '\\') - Out << "\\\\"; - else if (C == '\"') - Out << "\\\""; - else if (C == '\t') - Out << "\\t"; - else - Out << "\\x" << hexdigit(C >> 4) << hexdigit(C & 0x0F); - } -} - -// PrintEscapedString - Print each character of the specified string, escaping -// it if it is not printable or if it is an escape char. -static void PrintEscapedString(const std::string &Str, raw_ostream &Out) { - PrintEscapedString(Str.c_str(), Str.size(), Out); -} - -bool CWriter::doInitialization(Module &M) { - FunctionPass::doInitialization(M); - - // Initialize - TheModule = &M; - - TD = new TargetData(&M); - IL = new IntrinsicLowering(*TD); - IL->AddPrototypes(M); - -#if 0 - std::string Triple = TheModule->getTargetTriple(); - if (Triple.empty()) - Triple = llvm::sys::getDefaultTargetTriple(); - - std::string E; - if (const Target *Match = TargetRegistry::lookupTarget(Triple, E)) - TAsm = Match->createMCAsmInfo(Triple); -#endif - TAsm = new CBEMCAsmInfo(); - MRI = new MCRegisterInfo(); - TCtx = new MCContext(*TAsm, *MRI, NULL); - Mang = new Mangler(*TCtx, *TD); - - // Keep track of which functions are static ctors/dtors so they can have - // an attribute added to their prototypes. - std::set<Function*> StaticCtors, StaticDtors; - for (Module::global_iterator I = M.global_begin(), E = M.global_end(); - I != E; ++I) { - switch (getGlobalVariableClass(I)) { - default: break; - case GlobalCtors: - FindStaticTors(I, StaticCtors); - break; - case GlobalDtors: - FindStaticTors(I, StaticDtors); - break; - } - } - - // get declaration for alloca - Out << "/* Provide Declarations */\n"; - Out << "#include <stdarg.h>\n"; // Varargs support - Out << "#include <setjmp.h>\n"; // Unwind support - Out << "#include <limits.h>\n"; // With overflow intrinsics support. - generateCompilerSpecificCode(Out, TD); - - // Provide a definition for `bool' if not compiling with a C++ compiler. - Out << "\n" - << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n" - - << "\n\n/* Support for floating point constants */\n" - << "typedef unsigned long long ConstantDoubleTy;\n" - << "typedef unsigned int ConstantFloatTy;\n" - << "typedef struct { unsigned long long f1; unsigned short f2; " - "unsigned short pad[3]; } ConstantFP80Ty;\n" - // This is used for both kinds of 128-bit long double; meaning differs. - << "typedef struct { unsigned long long f1; unsigned long long f2; }" - " ConstantFP128Ty;\n" - << "\n\n/* Global Declarations */\n"; - - // First output all the declarations for the program, because C requires - // Functions & globals to be declared before they are used. - // - if (!M.getModuleInlineAsm().empty()) { - Out << "/* Module asm statements */\n" - << "asm("; - - // Split the string into lines, to make it easier to read the .ll file. - std::string Asm = M.getModuleInlineAsm(); - size_t CurPos = 0; - size_t NewLine = Asm.find_first_of('\n', CurPos); - while (NewLine != std::string::npos) { - // We found a newline, print the portion of the asm string from the - // last newline up to this newline. - Out << "\""; - PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine), - Out); - Out << "\\n\"\n"; - CurPos = NewLine+1; - NewLine = Asm.find_first_of('\n', CurPos); - } - Out << "\""; - PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out); - Out << "\");\n" - << "/* End Module asm statements */\n"; - } - - // Loop over the symbol table, emitting all named constants. - printModuleTypes(); - - // Global variable declarations... - if (!M.global_empty()) { - Out << "\n/* External Global Variable Declarations */\n"; - for (Module::global_iterator I = M.global_begin(), E = M.global_end(); - I != E; ++I) { - - if (I->hasExternalLinkage() || I->hasExternalWeakLinkage() || - I->hasCommonLinkage()) - Out << "extern "; - else if (I->hasDLLImportLinkage()) - Out << "__declspec(dllimport) "; - else - continue; // Internal Global - - // Thread Local Storage - if (I->isThreadLocal()) - Out << "__thread "; - - printType(Out, I->getType()->getElementType(), false, GetValueName(I)); - - if (I->hasExternalWeakLinkage()) - Out << " __EXTERNAL_WEAK__"; - Out << ";\n"; - } - } - - // Function declarations - Out << "\n/* Function Declarations */\n"; - Out << "double fmod(double, double);\n"; // Support for FP rem - Out << "float fmodf(float, float);\n"; - Out << "long double fmodl(long double, long double);\n"; - - // Store the intrinsics which will be declared/defined below. - SmallVector<const Function*, 8> intrinsicsToDefine; - - for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) { - // Don't print declarations for intrinsic functions. - // Store the used intrinsics, which need to be explicitly defined. - if (I->isIntrinsic()) { - switch (I->getIntrinsicID()) { - default: - break; - case Intrinsic::uadd_with_overflow: - case Intrinsic::sadd_with_overflow: - intrinsicsToDefine.push_back(I); - break; - } - continue; - } - - if (I->getName() == "setjmp" || - I->getName() == "longjmp" || I->getName() == "_setjmp") - continue; - - if (I->hasExternalWeakLinkage()) - Out << "extern "; - printFunctionSignature(I, true); - if (I->hasWeakLinkage() || I->hasLinkOnceLinkage()) - Out << " __ATTRIBUTE_WEAK__"; - if (I->hasExternalWeakLinkage()) - Out << " __EXTERNAL_WEAK__"; - if (StaticCtors.count(I)) - Out << " __ATTRIBUTE_CTOR__"; - if (StaticDtors.count(I)) - Out << " __ATTRIBUTE_DTOR__"; - if (I->hasHiddenVisibility()) - Out << " __HIDDEN__"; - - if (I->hasName() && I->getName()[0] == 1) - Out << " LLVM_ASM(\"" << I->getName().substr(1) << "\")"; - - Out << ";\n"; - } - - // Output the global variable declarations - if (!M.global_empty()) { - Out << "\n\n/* Global Variable Declarations */\n"; - for (Module::global_iterator I = M.global_begin(), E = M.global_end(); - I != E; ++I) - if (!I->isDeclaration()) { - // Ignore special globals, such as debug info. - if (getGlobalVariableClass(I)) - continue; - - if (I->hasLocalLinkage()) - Out << "static "; - else - Out << "extern "; - - // Thread Local Storage - if (I->isThreadLocal()) - Out << "__thread "; - - printType(Out, I->getType()->getElementType(), false, - GetValueName(I)); - - if (I->hasLinkOnceLinkage()) - Out << " __attribute__((common))"; - else if (I->hasCommonLinkage()) // FIXME is this right? - Out << " __ATTRIBUTE_WEAK__"; - else if (I->hasWeakLinkage()) - Out << " __ATTRIBUTE_WEAK__"; - else if (I->hasExternalWeakLinkage()) - Out << " __EXTERNAL_WEAK__"; - if (I->hasHiddenVisibility()) - Out << " __HIDDEN__"; - Out << ";\n"; - } - } - - // Output the global variable definitions and contents... - if (!M.global_empty()) { - Out << "\n\n/* Global Variable Definitions and Initialization */\n"; - for (Module::global_iterator I = M.global_begin(), E = M.global_end(); - I != E; ++I) - if (!I->isDeclaration()) { - // Ignore special globals, such as debug info. - if (getGlobalVariableClass(I)) - continue; - - if (I->hasLocalLinkage()) - Out << "static "; - else if (I->hasDLLImportLinkage()) - Out << "__declspec(dllimport) "; - else if (I->hasDLLExportLinkage()) - Out << "__declspec(dllexport) "; - - // Thread Local Storage - if (I->isThreadLocal()) - Out << "__thread "; - - printType(Out, I->getType()->getElementType(), false, - GetValueName(I)); - if (I->hasLinkOnceLinkage()) - Out << " __attribute__((common))"; - else if (I->hasWeakLinkage()) - Out << " __ATTRIBUTE_WEAK__"; - else if (I->hasCommonLinkage()) - Out << " __ATTRIBUTE_WEAK__"; - - if (I->hasHiddenVisibility()) - Out << " __HIDDEN__"; - - // If the initializer is not null, emit the initializer. If it is null, - // we try to avoid emitting large amounts of zeros. The problem with - // this, however, occurs when the variable has weak linkage. In this - // case, the assembler will complain about the variable being both weak - // and common, so we disable this optimization. - // FIXME common linkage should avoid this problem. - if (!I->getInitializer()->isNullValue()) { - Out << " = " ; - writeOperand(I->getInitializer(), true); - } else if (I->hasWeakLinkage()) { - // We have to specify an initializer, but it doesn't have to be - // complete. If the value is an aggregate, print out { 0 }, and let - // the compiler figure out the rest of the zeros. - Out << " = " ; - if (I->getInitializer()->getType()->isStructTy() || - I->getInitializer()->getType()->isVectorTy()) { - Out << "{ 0 }"; - } else if (I->getInitializer()->getType()->isArrayTy()) { - // As with structs and vectors, but with an extra set of braces - // because arrays are wrapped in structs. - Out << "{ { 0 } }"; - } else { - // Just print it out normally. - writeOperand(I->getInitializer(), true); - } - } - Out << ";\n"; - } - } - - if (!M.empty()) - Out << "\n\n/* Function Bodies */\n"; - - // Emit some helper functions for dealing with FCMP instruction's - // predicates - Out << "static inline int llvm_fcmp_ord(double X, double Y) { "; - Out << "return X == X && Y == Y; }\n"; - Out << "static inline int llvm_fcmp_uno(double X, double Y) { "; - Out << "return X != X || Y != Y; }\n"; - Out << "static inline int llvm_fcmp_ueq(double X, double Y) { "; - Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n"; - Out << "static inline int llvm_fcmp_une(double X, double Y) { "; - Out << "return X != Y; }\n"; - Out << "static inline int llvm_fcmp_ult(double X, double Y) { "; - Out << "return X < Y || llvm_fcmp_uno(X, Y); }\n"; - Out << "static inline int llvm_fcmp_ugt(double X, double Y) { "; - Out << "return X > Y || llvm_fcmp_uno(X, Y); }\n"; - Out << "static inline int llvm_fcmp_ule(double X, double Y) { "; - Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n"; - Out << "static inline int llvm_fcmp_uge(double X, double Y) { "; - Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n"; - Out << "static inline int llvm_fcmp_oeq(double X, double Y) { "; - Out << "return X == Y ; }\n"; - Out << "static inline int llvm_fcmp_one(double X, double Y) { "; - Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n"; - Out << "static inline int llvm_fcmp_olt(double X, double Y) { "; - Out << "return X < Y ; }\n"; - Out << "static inline int llvm_fcmp_ogt(double X, double Y) { "; - Out << "return X > Y ; }\n"; - Out << "static inline int llvm_fcmp_ole(double X, double Y) { "; - Out << "return X <= Y ; }\n"; - Out << "static inline int llvm_fcmp_oge(double X, double Y) { "; - Out << "return X >= Y ; }\n"; - - // Emit definitions of the intrinsics. - for (SmallVector<const Function*, 8>::const_iterator - I = intrinsicsToDefine.begin(), - E = intrinsicsToDefine.end(); I != E; ++I) { - printIntrinsicDefinition(**I, Out); - } - - return false; -} - - -/// Output all floating point constants that cannot be printed accurately... -void CWriter::printFloatingPointConstants(Function &F) { - // Scan the module for floating point constants. If any FP constant is used - // in the function, we want to redirect it here so that we do not depend on - // the precision of the printed form, unless the printed form preserves - // precision. - // - for (constant_iterator I = constant_begin(&F), E = constant_end(&F); - I != E; ++I) - printFloatingPointConstants(*I); - - Out << '\n'; -} - -void CWriter::printFloatingPointConstants(const Constant *C) { - // If this is a constant expression, recursively check for constant fp values. - if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { - for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) - printFloatingPointConstants(CE->getOperand(i)); - return; - } - - // Otherwise, check for a FP constant that we need to print. - const ConstantFP *FPC = dyn_cast<ConstantFP>(C); - if (FPC == 0 || - // Do not put in FPConstantMap if safe. - isFPCSafeToPrint(FPC) || - // Already printed this constant? - FPConstantMap.count(FPC)) - return; - - FPConstantMap[FPC] = FPCounter; // Number the FP constants - - if (FPC->getType() == Type::getDoubleTy(FPC->getContext())) { - double Val = FPC->getValueAPF().convertToDouble(); - uint64_t i = FPC->getValueAPF().bitcastToAPInt().getZExtValue(); - Out << "static const ConstantDoubleTy FPConstant" << FPCounter++ - << " = 0x" << utohexstr(i) - << "ULL; /* " << Val << " */\n"; - } else if (FPC->getType() == Type::getFloatTy(FPC->getContext())) { - float Val = FPC->getValueAPF().convertToFloat(); - uint32_t i = (uint32_t)FPC->getValueAPF().bitcastToAPInt(). - getZExtValue(); - Out << "static const ConstantFloatTy FPConstant" << FPCounter++ - << " = 0x" << utohexstr(i) - << "U; /* " << Val << " */\n"; - } else if (FPC->getType() == Type::getX86_FP80Ty(FPC->getContext())) { - // api needed to prevent premature destruction - APInt api = FPC->getValueAPF().bitcastToAPInt(); - const uint64_t *p = api.getRawData(); - Out << "static const ConstantFP80Ty FPConstant" << FPCounter++ - << " = { 0x" << utohexstr(p[0]) - << "ULL, 0x" << utohexstr((uint16_t)p[1]) << ",{0,0,0}" - << "}; /* Long double constant */\n"; - } else if (FPC->getType() == Type::getPPC_FP128Ty(FPC->getContext()) || - FPC->getType() == Type::getFP128Ty(FPC->getContext())) { - APInt api = FPC->getValueAPF().bitcastToAPInt(); - const uint64_t *p = api.getRawData(); - Out << "static const ConstantFP128Ty FPConstant" << FPCounter++ - << " = { 0x" - << utohexstr(p[0]) << ", 0x" << utohexstr(p[1]) - << "}; /* Long double constant */\n"; - - } else { - llvm_unreachable("Unknown float type!"); - } -} - - -/// printSymbolTable - Run through symbol table looking for type names. If a -/// type name is found, emit its declaration... -/// -void CWriter::printModuleTypes() { - Out << "/* Helper union for bitcasts */\n"; - Out << "typedef union {\n"; - Out << " unsigned int Int32;\n"; - Out << " unsigned long long Int64;\n"; - Out << " float Float;\n"; - Out << " double Double;\n"; - Out << "} llvmBitCastUnion;\n"; - - // Get all of the struct types used in the module. - std::vector<StructType*> StructTypes; - TheModule->findUsedStructTypes(StructTypes); - - if (StructTypes.empty()) return; - - Out << "/* Structure forward decls */\n"; - - unsigned NextTypeID = 0; - - // If any of them are missing names, add a unique ID to UnnamedStructIDs. - // Print out forward declarations for structure types. - for (unsigned i = 0, e = StructTypes.size(); i != e; ++i) { - StructType *ST = StructTypes[i]; - - if (ST->isLiteral() || ST->getName().empty()) - UnnamedStructIDs[ST] = NextTypeID++; - - std::string Name = getStructName(ST); - - Out << "typedef struct " << Name << ' ' << Name << ";\n"; - } - - Out << '\n'; - - // Keep track of which structures have been printed so far. - SmallPtrSet<Type *, 16> StructPrinted; - - // Loop over all structures then push them into the stack so they are - // printed in the correct order. - // - Out << "/* Structure contents */\n"; - for (unsigned i = 0, e = StructTypes.size(); i != e; ++i) - if (StructTypes[i]->isStructTy()) - // Only print out used types! - printContainedStructs(StructTypes[i], StructPrinted); -} - -// Push the struct onto the stack and recursively push all structs -// this one depends on. -// -// TODO: Make this work properly with vector types -// -void CWriter::printContainedStructs(Type *Ty, - SmallPtrSet<Type *, 16> &StructPrinted) { - // Don't walk through pointers. - if (Ty->isPointerTy() || Ty->isPrimitiveType() || Ty->isIntegerTy()) - return; - - // Print all contained types first. - for (Type::subtype_iterator I = Ty->subtype_begin(), - E = Ty->subtype_end(); I != E; ++I) - printContainedStructs(*I, StructPrinted); - - if (StructType *ST = dyn_cast<StructType>(Ty)) { - // Check to see if we have already printed this struct. - if (!StructPrinted.insert(Ty)) return; - - // Print structure type out. - printType(Out, ST, false, getStructName(ST), true); - Out << ";\n\n"; - } -} - -void CWriter::printFunctionSignature(const Function *F, bool Prototype) { - /// isStructReturn - Should this function actually return a struct by-value? - bool isStructReturn = F->hasStructRetAttr(); - - if (F->hasLocalLinkage()) Out << "static "; - if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) "; - if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) "; - switch (F->getCallingConv()) { - case CallingConv::X86_StdCall: - Out << "__attribute__((stdcall)) "; - break; - case CallingConv::X86_FastCall: - Out << "__attribute__((fastcall)) "; - break; - case CallingConv::X86_ThisCall: - Out << "__attribute__((thiscall)) "; - break; - default: - break; - } - - // Loop over the arguments, printing them... - FunctionType *FT = cast<FunctionType>(F->getFunctionType()); - const AttrListPtr &PAL = F->getAttributes(); - - std::string tstr; - raw_string_ostream FunctionInnards(tstr); - - // Print out the name... - FunctionInnards << GetValueName(F) << '('; - - bool PrintedArg = false; - if (!F->isDeclaration()) { - if (!F->arg_empty()) { - Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); - unsigned Idx = 1; - - // If this is a struct-return function, don't print the hidden - // struct-return argument. - if (isStructReturn) { - assert(I != E && "Invalid struct return function!"); - ++I; - ++Idx; - } - - std::string ArgName; - for (; I != E; ++I) { - if (PrintedArg) FunctionInnards << ", "; - if (I->hasName() || !Prototype) - ArgName = GetValueName(I); - else - ArgName = ""; - Type *ArgTy = I->getType(); - if (PAL.paramHasAttr(Idx, Attribute::ByVal)) { - ArgTy = cast<PointerType>(ArgTy)->getElementType(); - ByValParams.insert(I); - } - printType(FunctionInnards, ArgTy, - /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), - ArgName); - PrintedArg = true; - ++Idx; - } - } - } else { - // Loop over the arguments, printing them. - FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end(); - unsigned Idx = 1; - - // If this is a struct-return function, don't print the hidden - // struct-return argument. - if (isStructReturn) { - assert(I != E && "Invalid struct return function!"); - ++I; - ++Idx; - } - - for (; I != E; ++I) { - if (PrintedArg) FunctionInnards << ", "; - Type *ArgTy = *I; - if (PAL.paramHasAttr(Idx, Attribute::ByVal)) { - assert(ArgTy->isPointerTy()); - ArgTy = cast<PointerType>(ArgTy)->getElementType(); - } - printType(FunctionInnards, ArgTy, - /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt)); - PrintedArg = true; - ++Idx; - } - } - - if (!PrintedArg && FT->isVarArg()) { - FunctionInnards << "int vararg_dummy_arg"; - PrintedArg = true; - } - - // Finish printing arguments... if this is a vararg function, print the ..., - // unless there are no known types, in which case, we just emit (). - // - if (FT->isVarArg() && PrintedArg) { - FunctionInnards << ",..."; // Output varargs portion of signature! - } else if (!FT->isVarArg() && !PrintedArg) { - FunctionInnards << "void"; // ret() -> ret(void) in C. - } - FunctionInnards << ')'; - - // Get the return tpe for the function. - Type *RetTy; - if (!isStructReturn) - RetTy = F->getReturnType(); - else { - // If this is a struct-return function, print the struct-return type. - RetTy = cast<PointerType>(FT->getParamType(0))->getElementType(); - } - - // Print out the return type and the signature built above. - printType(Out, RetTy, - /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), - FunctionInnards.str()); -} - -static inline bool isFPIntBitCast(const Instruction &I) { - if (!isa<BitCastInst>(I)) - return false; - Type *SrcTy = I.getOperand(0)->getType(); - Type *DstTy = I.getType(); - return (SrcTy->isFloatingPointTy() && DstTy->isIntegerTy()) || - (DstTy->isFloatingPointTy() && SrcTy->isIntegerTy()); -} - -void CWriter::printFunction(Function &F) { - /// isStructReturn - Should this function actually return a struct by-value? - bool isStructReturn = F.hasStructRetAttr(); - - printFunctionSignature(&F, false); - Out << " {\n"; - - // If this is a struct return function, handle the result with magic. - if (isStructReturn) { - Type *StructTy = - cast<PointerType>(F.arg_begin()->getType())->getElementType(); - Out << " "; - printType(Out, StructTy, false, "StructReturn"); - Out << "; /* Struct return temporary */\n"; - - Out << " "; - printType(Out, F.arg_begin()->getType(), false, - GetValueName(F.arg_begin())); - Out << " = &StructReturn;\n"; - } - - bool PrintedVar = false; - - // print local variable information for the function - for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) { - if (const AllocaInst *AI = isDirectAlloca(&*I)) { - Out << " "; - printType(Out, AI->getAllocatedType(), false, GetValueName(AI)); - Out << "; /* Address-exposed local */\n"; - PrintedVar = true; - } else if (I->getType() != Type::getVoidTy(F.getContext()) && - !isInlinableInst(*I)) { - Out << " "; - printType(Out, I->getType(), false, GetValueName(&*I)); - Out << ";\n"; - - if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well... - Out << " "; - printType(Out, I->getType(), false, - GetValueName(&*I)+"__PHI_TEMPORARY"); - Out << ";\n"; - } - PrintedVar = true; - } - // We need a temporary for the BitCast to use so it can pluck a value out - // of a union to do the BitCast. This is separate from the need for a - // variable to hold the result of the BitCast. - if (isFPIntBitCast(*I)) { - Out << " llvmBitCastUnion " << GetValueName(&*I) - << "__BITCAST_TEMPORARY;\n"; - PrintedVar = true; - } - } - - if (PrintedVar) - Out << '\n'; - - if (F.hasExternalLinkage() && F.getName() == "main") - Out << " CODE_FOR_MAIN();\n"; - - // print the basic blocks - for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { - if (Loop *L = LI->getLoopFor(BB)) { - if (L->getHeader() == BB && L->getParentLoop() == 0) - printLoop(L); - } else { - printBasicBlock(BB); - } - } - - Out << "}\n\n"; -} - -void CWriter::printLoop(Loop *L) { - Out << " do { /* Syntactic loop '" << L->getHeader()->getName() - << "' to make GCC happy */\n"; - for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) { - BasicBlock *BB = L->getBlocks()[i]; - Loop *BBLoop = LI->getLoopFor(BB); - if (BBLoop == L) - printBasicBlock(BB); - else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L) - printLoop(BBLoop); - } - Out << " } while (1); /* end of syntactic loop '" - << L->getHeader()->getName() << "' */\n"; -} - -void CWriter::printBasicBlock(BasicBlock *BB) { - - // Don't print the label for the basic block if there are no uses, or if - // the only terminator use is the predecessor basic block's terminator. - // We have to scan the use list because PHI nodes use basic blocks too but - // do not require a label to be generated. - // - bool NeedsLabel = false; - for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) - if (isGotoCodeNecessary(*PI, BB)) { - NeedsLabel = true; - break; - } - - if (NeedsLabel) Out << GetValueName(BB) << ":\n"; - - // Output all of the instructions in the basic block... - for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E; - ++II) { - if (!isInlinableInst(*II) && !isDirectAlloca(II)) { - if (II->getType() != Type::getVoidTy(BB->getContext()) && - !isInlineAsm(*II)) - outputLValue(II); - else - Out << " "; - writeInstComputationInline(*II); - Out << ";\n"; - } - } - - // Don't emit prefix or suffix for the terminator. - visit(*BB->getTerminator()); -} - - -// Specific Instruction type classes... note that all of the casts are -// necessary because we use the instruction classes as opaque types... -// -void CWriter::visitReturnInst(ReturnInst &I) { - // If this is a struct return function, return the temporary struct. - bool isStructReturn = I.getParent()->getParent()->hasStructRetAttr(); - - if (isStructReturn) { - Out << " return StructReturn;\n"; - return; - } - - // Don't output a void return if this is the last basic block in the function - if (I.getNumOperands() == 0 && - &*--I.getParent()->getParent()->end() == I.getParent() && - !I.getParent()->size() == 1) { - return; - } - - Out << " return"; - if (I.getNumOperands()) { - Out << ' '; - writeOperand(I.getOperand(0)); - } - Out << ";\n"; -} - -void CWriter::visitSwitchInst(SwitchInst &SI) { - - Value* Cond = SI.getCondition(); - - Out << " switch ("; - writeOperand(Cond); - Out << ") {\n default:\n"; - printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2); - printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2); - Out << ";\n"; - - // Skip the first item since that's the default case. - for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) { - ConstantInt* CaseVal = i.getCaseValue(); - BasicBlock* Succ = i.getCaseSuccessor(); - Out << " case "; - writeOperand(CaseVal); - Out << ":\n"; - printPHICopiesForSuccessor (SI.getParent(), Succ, 2); - printBranchToBlock(SI.getParent(), Succ, 2); - if (Function::iterator(Succ) == - llvm::next(Function::iterator(SI.getParent()))) - Out << " break;\n"; - } - - Out << " }\n"; -} - -void CWriter::visitIndirectBrInst(IndirectBrInst &IBI) { - Out << " goto *(void*)("; - writeOperand(IBI.getOperand(0)); - Out << ");\n"; -} - -void CWriter::visitUnreachableInst(UnreachableInst &I) { - Out << " /*UNREACHABLE*/;\n"; -} - -bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) { - /// FIXME: This should be reenabled, but loop reordering safe!! - return true; - - if (llvm::next(Function::iterator(From)) != Function::iterator(To)) - return true; // Not the direct successor, we need a goto. - - //isa<SwitchInst>(From->getTerminator()) - - if (LI->getLoopFor(From) != LI->getLoopFor(To)) - return true; - return false; -} - -void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock, - BasicBlock *Successor, - unsigned Indent) { - for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) { - PHINode *PN = cast<PHINode>(I); - // Now we have to do the printing. - Value *IV = PN->getIncomingValueForBlock(CurBlock); - if (!isa<UndefValue>(IV)) { - Out << std::string(Indent, ' '); - Out << " " << GetValueName(I) << "__PHI_TEMPORARY = "; - writeOperand(IV); - Out << "; /* for PHI node */\n"; - } - } -} - -void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ, - unsigned Indent) { - if (isGotoCodeNecessary(CurBB, Succ)) { - Out << std::string(Indent, ' ') << " goto "; - writeOperand(Succ); - Out << ";\n"; - } -} - -// Branch instruction printing - Avoid printing out a branch to a basic block -// that immediately succeeds the current one. -// -void CWriter::visitBranchInst(BranchInst &I) { - - if (I.isConditional()) { - if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) { - Out << " if ("; - writeOperand(I.getCondition()); - Out << ") {\n"; - - printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2); - printBranchToBlock(I.getParent(), I.getSuccessor(0), 2); - - if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) { - Out << " } else {\n"; - printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2); - printBranchToBlock(I.getParent(), I.getSuccessor(1), 2); - } - } else { - // First goto not necessary, assume second one is... - Out << " if (!"; - writeOperand(I.getCondition()); - Out << ") {\n"; - - printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2); - printBranchToBlock(I.getParent(), I.getSuccessor(1), 2); - } - - Out << " }\n"; - } else { - printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0); - printBranchToBlock(I.getParent(), I.getSuccessor(0), 0); - } - Out << "\n"; -} - -// PHI nodes get copied into temporary values at the end of predecessor basic -// blocks. We now need to copy these temporary values into the REAL value for -// the PHI. -void CWriter::visitPHINode(PHINode &I) { - writeOperand(&I); - Out << "__PHI_TEMPORARY"; -} - - -void CWriter::visitBinaryOperator(Instruction &I) { - // binary instructions, shift instructions, setCond instructions. - assert(!I.getType()->isPointerTy()); - - // We must cast the results of binary operations which might be promoted. - bool needsCast = false; - if ((I.getType() == Type::getInt8Ty(I.getContext())) || - (I.getType() == Type::getInt16Ty(I.getContext())) - || (I.getType() == Type::getFloatTy(I.getContext()))) { - needsCast = true; - Out << "(("; - printType(Out, I.getType(), false); - Out << ")("; - } - - // If this is a negation operation, print it out as such. For FP, we don't - // want to print "-0.0 - X". - if (BinaryOperator::isNeg(&I)) { - Out << "-("; - writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I))); - Out << ")"; - } else if (BinaryOperator::isFNeg(&I)) { - Out << "-("; - writeOperand(BinaryOperator::getFNegArgument(cast<BinaryOperator>(&I))); - Out << ")"; - } else if (I.getOpcode() == Instruction::FRem) { - // Output a call to fmod/fmodf instead of emitting a%b - if (I.getType() == Type::getFloatTy(I.getContext())) - Out << "fmodf("; - else if (I.getType() == Type::getDoubleTy(I.getContext())) - Out << "fmod("; - else // all 3 flavors of long double - Out << "fmodl("; - writeOperand(I.getOperand(0)); - Out << ", "; - writeOperand(I.getOperand(1)); - Out << ")"; - } else { - - // Write out the cast of the instruction's value back to the proper type - // if necessary. - bool NeedsClosingParens = writeInstructionCast(I); - - // Certain instructions require the operand to be forced to a specific type - // so we use writeOperandWithCast here instead of writeOperand. Similarly - // below for operand 1 - writeOperandWithCast(I.getOperand(0), I.getOpcode()); - - switch (I.getOpcode()) { - case Instruction::Add: - case Instruction::FAdd: Out << " + "; break; - case Instruction::Sub: - case Instruction::FSub: Out << " - "; break; - case Instruction::Mul: - case Instruction::FMul: Out << " * "; break; - case Instruction::URem: - case Instruction::SRem: - case Instruction::FRem: Out << " % "; break; - case Instruction::UDiv: - case Instruction::SDiv: - case Instruction::FDiv: Out << " / "; break; - case Instruction::And: Out << " & "; break; - case Instruction::Or: Out << " | "; break; - case Instruction::Xor: Out << " ^ "; break; - case Instruction::Shl : Out << " << "; break; - case Instruction::LShr: - case Instruction::AShr: Out << " >> "; break; - default: -#ifndef NDEBUG - errs() << "Invalid operator type!" << I; -#endif - llvm_unreachable(0); - } - - writeOperandWithCast(I.getOperand(1), I.getOpcode()); - if (NeedsClosingParens) - Out << "))"; - } - - if (needsCast) { - Out << "))"; - } -} - -void CWriter::visitICmpInst(ICmpInst &I) { - // We must cast the results of icmp which might be promoted. - bool needsCast = false; - - // Write out the cast of the instruction's value back to the proper type - // if necessary. - bool NeedsClosingParens = writeInstructionCast(I); - - // Certain icmp predicate require the operand to be forced to a specific type - // so we use writeOperandWithCast here instead of writeOperand. Similarly - // below for operand 1 - writeOperandWithCast(I.getOperand(0), I); - - switch (I.getPredicate()) { - case ICmpInst::ICMP_EQ: Out << " == "; break; - case ICmpInst::ICMP_NE: Out << " != "; break; - case ICmpInst::ICMP_ULE: - case ICmpInst::ICMP_SLE: Out << " <= "; break; - case ICmpInst::ICMP_UGE: - case ICmpInst::ICMP_SGE: Out << " >= "; break; - case ICmpInst::ICMP_ULT: - case ICmpInst::ICMP_SLT: Out << " < "; break; - case ICmpInst::ICMP_UGT: - case ICmpInst::ICMP_SGT: Out << " > "; break; - default: -#ifndef NDEBUG - errs() << "Invalid icmp predicate!" << I; -#endif - llvm_unreachable(0); - } - - writeOperandWithCast(I.getOperand(1), I); - if (NeedsClosingParens) - Out << "))"; - - if (needsCast) { - Out << "))"; - } -} - -void CWriter::visitFCmpInst(FCmpInst &I) { - if (I.getPredicate() == FCmpInst::FCMP_FALSE) { - Out << "0"; - return; - } - if (I.getPredicate() == FCmpInst::FCMP_TRUE) { - Out << "1"; - return; - } - - const char* op = 0; - switch (I.getPredicate()) { - default: llvm_unreachable("Illegal FCmp predicate"); - case FCmpInst::FCMP_ORD: op = "ord"; break; - case FCmpInst::FCMP_UNO: op = "uno"; break; - case FCmpInst::FCMP_UEQ: op = "ueq"; break; - case FCmpInst::FCMP_UNE: op = "une"; break; - case FCmpInst::FCMP_ULT: op = "ult"; break; - case FCmpInst::FCMP_ULE: op = "ule"; break; - case FCmpInst::FCMP_UGT: op = "ugt"; break; - case FCmpInst::FCMP_UGE: op = "uge"; break; - case FCmpInst::FCMP_OEQ: op = "oeq"; break; - case FCmpInst::FCMP_ONE: op = "one"; break; - case FCmpInst::FCMP_OLT: op = "olt"; break; - case FCmpInst::FCMP_OLE: op = "ole"; break; - case FCmpInst::FCMP_OGT: op = "ogt"; break; - case FCmpInst::FCMP_OGE: op = "oge"; break; - } - - Out << "llvm_fcmp_" << op << "("; - // Write the first operand - writeOperand(I.getOperand(0)); - Out << ", "; - // Write the second operand - writeOperand(I.getOperand(1)); - Out << ")"; -} - -static const char * getFloatBitCastField(Type *Ty) { - switch (Ty->getTypeID()) { - default: llvm_unreachable("Invalid Type"); - case Type::FloatTyID: return "Float"; - case Type::DoubleTyID: return "Double"; - case Type::IntegerTyID: { - unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); - if (NumBits <= 32) - return "Int32"; - else - return "Int64"; - } - } -} - -void CWriter::visitCastInst(CastInst &I) { - Type *DstTy = I.getType(); - Type *SrcTy = I.getOperand(0)->getType(); - if (isFPIntBitCast(I)) { - Out << '('; - // These int<->float and long<->double casts need to be handled specially - Out << GetValueName(&I) << "__BITCAST_TEMPORARY." - << getFloatBitCastField(I.getOperand(0)->getType()) << " = "; - writeOperand(I.getOperand(0)); - Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY." - << getFloatBitCastField(I.getType()); - Out << ')'; - return; - } - - Out << '('; - printCast(I.getOpcode(), SrcTy, DstTy); - - // Make a sext from i1 work by subtracting the i1 from 0 (an int). - if (SrcTy == Type::getInt1Ty(I.getContext()) && - I.getOpcode() == Instruction::SExt) - Out << "0-"; - - writeOperand(I.getOperand(0)); - - if (DstTy == Type::getInt1Ty(I.getContext()) && - (I.getOpcode() == Instruction::Trunc || - I.getOpcode() == Instruction::FPToUI || - I.getOpcode() == Instruction::FPToSI || - I.getOpcode() == Instruction::PtrToInt)) { - // Make sure we really get a trunc to bool by anding the operand with 1 - Out << "&1u"; - } - Out << ')'; -} - -void CWriter::visitSelectInst(SelectInst &I) { - Out << "(("; - writeOperand(I.getCondition()); - Out << ") ? ("; - writeOperand(I.getTrueValue()); - Out << ") : ("; - writeOperand(I.getFalseValue()); - Out << "))"; -} - -// Returns the macro name or value of the max or min of an integer type -// (as defined in limits.h). -static void printLimitValue(IntegerType &Ty, bool isSigned, bool isMax, - raw_ostream &Out) { - const char* type; - const char* sprefix = ""; - - unsigned NumBits = Ty.getBitWidth(); - if (NumBits <= 8) { - type = "CHAR"; - sprefix = "S"; - } else if (NumBits <= 16) { - type = "SHRT"; - } else if (NumBits <= 32) { - type = "INT"; - } else if (NumBits <= 64) { - type = "LLONG"; - } else { - llvm_unreachable("Bit widths > 64 not implemented yet"); - } - - if (isSigned) - Out << sprefix << type << (isMax ? "_MAX" : "_MIN"); - else - Out << "U" << type << (isMax ? "_MAX" : "0"); -} - -#ifndef NDEBUG -static bool isSupportedIntegerSize(IntegerType &T) { - return T.getBitWidth() == 8 || T.getBitWidth() == 16 || - T.getBitWidth() == 32 || T.getBitWidth() == 64; -} -#endif - -void CWriter::printIntrinsicDefinition(const Function &F, raw_ostream &Out) { - FunctionType *funT = F.getFunctionType(); - Type *retT = F.getReturnType(); - IntegerType *elemT = cast<IntegerType>(funT->getParamType(1)); - - assert(isSupportedIntegerSize(*elemT) && - "CBackend does not support arbitrary size integers."); - assert(cast<StructType>(retT)->getElementType(0) == elemT && - elemT == funT->getParamType(0) && funT->getNumParams() == 2); - - switch (F.getIntrinsicID()) { - default: - llvm_unreachable("Unsupported Intrinsic."); - case Intrinsic::uadd_with_overflow: - // static inline Rty uadd_ixx(unsigned ixx a, unsigned ixx b) { - // Rty r; - // r.field0 = a + b; - // r.field1 = (r.field0 < a); - // return r; - // } - Out << "static inline "; - printType(Out, retT); - Out << GetValueName(&F); - Out << "("; - printSimpleType(Out, elemT, false); - Out << "a,"; - printSimpleType(Out, elemT, false); - Out << "b) {\n "; - printType(Out, retT); - Out << "r;\n"; - Out << " r.field0 = a + b;\n"; - Out << " r.field1 = (r.field0 < a);\n"; - Out << " return r;\n}\n"; - break; - - case Intrinsic::sadd_with_overflow: - // static inline Rty sadd_ixx(ixx a, ixx b) { - // Rty r; - // r.field1 = (b > 0 && a > XX_MAX - b) || - // (b < 0 && a < XX_MIN - b); - // r.field0 = r.field1 ? 0 : a + b; - // return r; - // } - Out << "static "; - printType(Out, retT); - Out << GetValueName(&F); - Out << "("; - printSimpleType(Out, elemT, true); - Out << "a,"; - printSimpleType(Out, elemT, true); - Out << "b) {\n "; - printType(Out, retT); - Out << "r;\n"; - Out << " r.field1 = (b > 0 && a > "; - printLimitValue(*elemT, true, true, Out); - Out << " - b) || (b < 0 && a < "; - printLimitValue(*elemT, true, false, Out); - Out << " - b);\n"; - Out << " r.field0 = r.field1 ? 0 : a + b;\n"; - Out << " return r;\n}\n"; - break; - } -} - -void CWriter::lowerIntrinsics(Function &F) { - // This is used to keep track of intrinsics that get generated to a lowered - // function. We must generate the prototypes before the function body which - // will only be expanded on first use (by the loop below). - std::vector<Function*> prototypesToGen; - - // Examine all the instructions in this function to find the intrinsics that - // need to be lowered. - for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB) - for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) - if (CallInst *CI = dyn_cast<CallInst>(I++)) - if (Function *F = CI->getCalledFunction()) - switch (F->getIntrinsicID()) { - case Intrinsic::not_intrinsic: - case Intrinsic::vastart: - case Intrinsic::vacopy: - case Intrinsic::vaend: - case Intrinsic::returnaddress: - case Intrinsic::frameaddress: - case Intrinsic::setjmp: - case Intrinsic::longjmp: - case Intrinsic::prefetch: - case Intrinsic::powi: - case Intrinsic::x86_sse_cmp_ss: - case Intrinsic::x86_sse_cmp_ps: - case Intrinsic::x86_sse2_cmp_sd: - case Intrinsic::x86_sse2_cmp_pd: - case Intrinsic::ppc_altivec_lvsl: - case Intrinsic::uadd_with_overflow: - case Intrinsic::sadd_with_overflow: - // We directly implement these intrinsics - break; - default: - // If this is an intrinsic that directly corresponds to a GCC - // builtin, we handle it. - const char *BuiltinName = ""; -#define GET_GCC_BUILTIN_NAME -#include "llvm/Intrinsics.gen" -#undef GET_GCC_BUILTIN_NAME - // If we handle it, don't lower it. - if (BuiltinName[0]) break; - - // All other intrinsic calls we must lower. - Instruction *Before = 0; - if (CI != &BB->front()) - Before = prior(BasicBlock::iterator(CI)); - - IL->LowerIntrinsicCall(CI); - if (Before) { // Move iterator to instruction after call - I = Before; ++I; - } else { - I = BB->begin(); - } - // If the intrinsic got lowered to another call, and that call has - // a definition then we need to make sure its prototype is emitted - // before any calls to it. - if (CallInst *Call = dyn_cast<CallInst>(I)) - if (Function *NewF = Call->getCalledFunction()) - if (!NewF->isDeclaration()) - prototypesToGen.push_back(NewF); - - break; - } - - // We may have collected some prototypes to emit in the loop above. - // Emit them now, before the function that uses them is emitted. But, - // be careful not to emit them twice. - std::vector<Function*>::iterator I = prototypesToGen.begin(); - std::vector<Function*>::iterator E = prototypesToGen.end(); - for ( ; I != E; ++I) { - if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) { - Out << '\n'; - printFunctionSignature(*I, true); - Out << ";\n"; - } - } -} - -void CWriter::visitCallInst(CallInst &I) { - if (isa<InlineAsm>(I.getCalledValue())) - return visitInlineAsm(I); - - bool WroteCallee = false; - - // Handle intrinsic function calls first... - if (Function *F = I.getCalledFunction()) - if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) - if (visitBuiltinCall(I, ID, WroteCallee)) - return; - - Value *Callee = I.getCalledValue(); - - PointerType *PTy = cast<PointerType>(Callee->getType()); - FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); - - // If this is a call to a struct-return function, assign to the first - // parameter instead of passing it to the call. - const AttrListPtr &PAL = I.getAttributes(); - bool hasByVal = I.hasByValArgument(); - bool isStructRet = I.hasStructRetAttr(); - if (isStructRet) { - writeOperandDeref(I.getArgOperand(0)); - Out << " = "; - } - - if (I.isTailCall()) Out << " /*tail*/ "; - - if (!WroteCallee) { - // If this is an indirect call to a struct return function, we need to cast - // the pointer. Ditto for indirect calls with byval arguments. - bool NeedsCast = (hasByVal || isStructRet) && !isa<Function>(Callee); - - // GCC is a real PITA. It does not permit codegening casts of functions to - // function pointers if they are in a call (it generates a trap instruction - // instead!). We work around this by inserting a cast to void* in between - // the function and the function pointer cast. Unfortunately, we can't just - // form the constant expression here, because the folder will immediately - // nuke it. - // - // Note finally, that this is completely unsafe. ANSI C does not guarantee - // that void* and function pointers have the same size. :( To deal with this - // in the common case, we handle casts where the number of arguments passed - // match exactly. - // - if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee)) - if (CE->isCast()) - if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) { - NeedsCast = true; - Callee = RF; - } - - if (NeedsCast) { - // Ok, just cast the pointer type. - Out << "(("; - if (isStructRet) - printStructReturnPointerFunctionType(Out, PAL, - cast<PointerType>(I.getCalledValue()->getType())); - else if (hasByVal) - printType(Out, I.getCalledValue()->getType(), false, "", true, PAL); - else - printType(Out, I.getCalledValue()->getType()); - Out << ")(void*)"; - } - writeOperand(Callee); - if (NeedsCast) Out << ')'; - } - - Out << '('; - - bool PrintedArg = false; - if(FTy->isVarArg() && !FTy->getNumParams()) { - Out << "0 /*dummy arg*/"; - PrintedArg = true; - } - - unsigned NumDeclaredParams = FTy->getNumParams(); - CallSite CS(&I); - CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end(); - unsigned ArgNo = 0; - if (isStructRet) { // Skip struct return argument. - ++AI; - ++ArgNo; - } - - - for (; AI != AE; ++AI, ++ArgNo) { - if (PrintedArg) Out << ", "; - if (ArgNo < NumDeclaredParams && - (*AI)->getType() != FTy->getParamType(ArgNo)) { - Out << '('; - printType(Out, FTy->getParamType(ArgNo), - /*isSigned=*/PAL.paramHasAttr(ArgNo+1, Attribute::SExt)); - Out << ')'; - } - // Check if the argument is expected to be passed by value. - if (I.paramHasAttr(ArgNo+1, Attribute::ByVal)) - writeOperandDeref(*AI); - else - writeOperand(*AI); - PrintedArg = true; - } - Out << ')'; -} - -/// visitBuiltinCall - Handle the call to the specified builtin. Returns true -/// if the entire call is handled, return false if it wasn't handled, and -/// optionally set 'WroteCallee' if the callee has already been printed out. -bool CWriter::visitBuiltinCall(CallInst &I, Intrinsic::ID ID, - bool &WroteCallee) { - switch (ID) { - default: { - // If this is an intrinsic that directly corresponds to a GCC - // builtin, we emit it here. - const char *BuiltinName = ""; - Function *F = I.getCalledFunction(); -#define GET_GCC_BUILTIN_NAME -#include "llvm/Intrinsics.gen" -#undef GET_GCC_BUILTIN_NAME - assert(BuiltinName[0] && "Unknown LLVM intrinsic!"); - - Out << BuiltinName; - WroteCallee = true; - return false; - } - case Intrinsic::vastart: - Out << "0; "; - - Out << "va_start(*(va_list*)"; - writeOperand(I.getArgOperand(0)); - Out << ", "; - // Output the last argument to the enclosing function. - if (I.getParent()->getParent()->arg_empty()) - Out << "vararg_dummy_arg"; - else - writeOperand(--I.getParent()->getParent()->arg_end()); - Out << ')'; - return true; - case Intrinsic::vaend: - if (!isa<ConstantPointerNull>(I.getArgOperand(0))) { - Out << "0; va_end(*(va_list*)"; - writeOperand(I.getArgOperand(0)); - Out << ')'; - } else { - Out << "va_end(*(va_list*)0)"; - } - return true; - case Intrinsic::vacopy: - Out << "0; "; - Out << "va_copy(*(va_list*)"; - writeOperand(I.getArgOperand(0)); - Out << ", *(va_list*)"; - writeOperand(I.getArgOperand(1)); - Out << ')'; - return true; - case Intrinsic::returnaddress: - Out << "__builtin_return_address("; - writeOperand(I.getArgOperand(0)); - Out << ')'; - return true; - case Intrinsic::frameaddress: - Out << "__builtin_frame_address("; - writeOperand(I.getArgOperand(0)); - Out << ')'; - return true; - case Intrinsic::powi: - Out << "__builtin_powi("; - writeOperand(I.getArgOperand(0)); - Out << ", "; - writeOperand(I.getArgOperand(1)); - Out << ')'; - return true; - case Intrinsic::setjmp: - Out << "setjmp(*(jmp_buf*)"; - writeOperand(I.getArgOperand(0)); - Out << ')'; - return true; - case Intrinsic::longjmp: - Out << "longjmp(*(jmp_buf*)"; - writeOperand(I.getArgOperand(0)); - Out << ", "; - writeOperand(I.getArgOperand(1)); - Out << ')'; - return true; - case Intrinsic::prefetch: - Out << "LLVM_PREFETCH((const void *)"; - writeOperand(I.getArgOperand(0)); - Out << ", "; - writeOperand(I.getArgOperand(1)); - Out << ", "; - writeOperand(I.getArgOperand(2)); - Out << ")"; - return true; - case Intrinsic::stacksave: - // Emit this as: Val = 0; *((void**)&Val) = __builtin_stack_save() - // to work around GCC bugs (see PR1809). - Out << "0; *((void**)&" << GetValueName(&I) - << ") = __builtin_stack_save()"; - return true; - case Intrinsic::x86_sse_cmp_ss: - case Intrinsic::x86_sse_cmp_ps: - case Intrinsic::x86_sse2_cmp_sd: - case Intrinsic::x86_sse2_cmp_pd: - Out << '('; - printType(Out, I.getType()); - Out << ')'; - // Multiple GCC builtins multiplex onto this intrinsic. - switch (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()) { - default: llvm_unreachable("Invalid llvm.x86.sse.cmp!"); - case 0: Out << "__builtin_ia32_cmpeq"; break; - case 1: Out << "__builtin_ia32_cmplt"; break; - case 2: Out << "__builtin_ia32_cmple"; break; - case 3: Out << "__builtin_ia32_cmpunord"; break; - case 4: Out << "__builtin_ia32_cmpneq"; break; - case 5: Out << "__builtin_ia32_cmpnlt"; break; - case 6: Out << "__builtin_ia32_cmpnle"; break; - case 7: Out << "__builtin_ia32_cmpord"; break; - } - if (ID == Intrinsic::x86_sse_cmp_ps || ID == Intrinsic::x86_sse2_cmp_pd) - Out << 'p'; - else - Out << 's'; - if (ID == Intrinsic::x86_sse_cmp_ss || ID == Intrinsic::x86_sse_cmp_ps) - Out << 's'; - else - Out << 'd'; - - Out << "("; - writeOperand(I.getArgOperand(0)); - Out << ", "; - writeOperand(I.getArgOperand(1)); - Out << ")"; - return true; - case Intrinsic::ppc_altivec_lvsl: - Out << '('; - printType(Out, I.getType()); - Out << ')'; - Out << "__builtin_altivec_lvsl(0, (void*)"; - writeOperand(I.getArgOperand(0)); - Out << ")"; - return true; - case Intrinsic::uadd_with_overflow: - case Intrinsic::sadd_with_overflow: - Out << GetValueName(I.getCalledFunction()) << "("; - writeOperand(I.getArgOperand(0)); - Out << ", "; - writeOperand(I.getArgOperand(1)); - Out << ")"; - return true; - } -} - -//This converts the llvm constraint string to something gcc is expecting. -//TODO: work out platform independent constraints and factor those out -// of the per target tables -// handle multiple constraint codes -std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) { - assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle"); - - // Grab the translation table from MCAsmInfo if it exists. - const MCAsmInfo *TargetAsm; - std::string Triple = TheModule->getTargetTriple(); - if (Triple.empty()) - Triple = llvm::sys::getDefaultTargetTriple(); - - std::string E; - if (const Target *Match = TargetRegistry::lookupTarget(Triple, E)) - TargetAsm = Match->createMCAsmInfo(Triple); - else - return c.Codes[0]; - - const char *const *table = TargetAsm->getAsmCBE(); - - // Search the translation table if it exists. - for (int i = 0; table && table[i]; i += 2) - if (c.Codes[0] == table[i]) { - delete TargetAsm; - return table[i+1]; - } - - // Default is identity. - delete TargetAsm; - return c.Codes[0]; -} - -//TODO: import logic from AsmPrinter.cpp -static std::string gccifyAsm(std::string asmstr) { - for (std::string::size_type i = 0; i != asmstr.size(); ++i) - if (asmstr[i] == '\n') - asmstr.replace(i, 1, "\\n"); - else if (asmstr[i] == '\t') - asmstr.replace(i, 1, "\\t"); - else if (asmstr[i] == '$') { - if (asmstr[i + 1] == '{') { - std::string::size_type a = asmstr.find_first_of(':', i + 1); - std::string::size_type b = asmstr.find_first_of('}', i + 1); - std::string n = "%" + - asmstr.substr(a + 1, b - a - 1) + - asmstr.substr(i + 2, a - i - 2); - asmstr.replace(i, b - i + 1, n); - i += n.size() - 1; - } else - asmstr.replace(i, 1, "%"); - } - else if (asmstr[i] == '%')//grr - { asmstr.replace(i, 1, "%%"); ++i;} - - return asmstr; -} - -//TODO: assumptions about what consume arguments from the call are likely wrong -// handle communitivity -void CWriter::visitInlineAsm(CallInst &CI) { - InlineAsm* as = cast<InlineAsm>(CI.getCalledValue()); - InlineAsm::ConstraintInfoVector Constraints = as->ParseConstraints(); - - std::vector<std::pair<Value*, int> > ResultVals; - if (CI.getType() == Type::getVoidTy(CI.getContext())) - ; - else if (StructType *ST = dyn_cast<StructType>(CI.getType())) { - for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) - ResultVals.push_back(std::make_pair(&CI, (int)i)); - } else { - ResultVals.push_back(std::make_pair(&CI, -1)); - } - - // Fix up the asm string for gcc and emit it. - Out << "__asm__ volatile (\"" << gccifyAsm(as->getAsmString()) << "\"\n"; - Out << " :"; - - unsigned ValueCount = 0; - bool IsFirst = true; - - // Convert over all the output constraints. - for (InlineAsm::ConstraintInfoVector::iterator I = Constraints.begin(), - E = Constraints.end(); I != E; ++I) { - - if (I->Type != InlineAsm::isOutput) { - ++ValueCount; - continue; // Ignore non-output constraints. - } - - assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle"); - std::string C = InterpretASMConstraint(*I); - if (C.empty()) continue; - - if (!IsFirst) { - Out << ", "; - IsFirst = false; - } - - // Unpack the dest. - Value *DestVal; - int DestValNo = -1; - - if (ValueCount < ResultVals.size()) { - DestVal = ResultVals[ValueCount].first; - DestValNo = ResultVals[ValueCount].second; - } else - DestVal = CI.getArgOperand(ValueCount-ResultVals.size()); - - if (I->isEarlyClobber) - C = "&"+C; - - Out << "\"=" << C << "\"(" << GetValueName(DestVal); - if (DestValNo != -1) - Out << ".field" << DestValNo; // Multiple retvals. - Out << ")"; - ++ValueCount; - } - - - // Convert over all the input constraints. - Out << "\n :"; - IsFirst = true; - ValueCount = 0; - for (InlineAsm::ConstraintInfoVector::iterator I = Constraints.begin(), - E = Constraints.end(); I != E; ++I) { - if (I->Type != InlineAsm::isInput) { - ++ValueCount; - continue; // Ignore non-input constraints. - } - - assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle"); - std::string C = InterpretASMConstraint(*I); - if (C.empty()) continue; - - if (!IsFirst) { - Out << ", "; - IsFirst = false; - } - - assert(ValueCount >= ResultVals.size() && "Input can't refer to result"); - Value *SrcVal = CI.getArgOperand(ValueCount-ResultVals.size()); - - Out << "\"" << C << "\"("; - if (!I->isIndirect) - writeOperand(SrcVal); - else - writeOperandDeref(SrcVal); - Out << ")"; - } - - // Convert over the clobber constraints. - IsFirst = true; - for (InlineAsm::ConstraintInfoVector::iterator I = Constraints.begin(), - E = Constraints.end(); I != E; ++I) { - if (I->Type != InlineAsm::isClobber) - continue; // Ignore non-input constraints. - - assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle"); - std::string C = InterpretASMConstraint(*I); - if (C.empty()) continue; - - if (!IsFirst) { - Out << ", "; - IsFirst = false; - } - - Out << '\"' << C << '"'; - } - - Out << ")"; -} - -void CWriter::visitAllocaInst(AllocaInst &I) { - Out << '('; - printType(Out, I.getType()); - Out << ") alloca(sizeof("; - printType(Out, I.getType()->getElementType()); - Out << ')'; - if (I.isArrayAllocation()) { - Out << " * " ; - writeOperand(I.getOperand(0)); - } - Out << ')'; -} - -void CWriter::printGEPExpression(Value *Ptr, gep_type_iterator I, - gep_type_iterator E, bool Static) { - - // If there are no indices, just print out the pointer. - if (I == E) { - writeOperand(Ptr); - return; - } - - // Find out if the last index is into a vector. If so, we have to print this - // specially. Since vectors can't have elements of indexable type, only the - // last index could possibly be of a vector element. - VectorType *LastIndexIsVector = 0; - { - for (gep_type_iterator TmpI = I; TmpI != E; ++TmpI) - LastIndexIsVector = dyn_cast<VectorType>(*TmpI); - } - - Out << "("; - - // If the last index is into a vector, we can't print it as &a[i][j] because - // we can't index into a vector with j in GCC. Instead, emit this as - // (((float*)&a[i])+j) - if (LastIndexIsVector) { - Out << "(("; - printType(Out, PointerType::getUnqual(LastIndexIsVector->getElementType())); - Out << ")("; - } - - Out << '&'; - - // If the first index is 0 (very typical) we can do a number of - // simplifications to clean up the code. - Value *FirstOp = I.getOperand(); - if (!isa<Constant>(FirstOp) || !cast<Constant>(FirstOp)->isNullValue()) { - // First index isn't simple, print it the hard way. - writeOperand(Ptr); - } else { - ++I; // Skip the zero index. - - // Okay, emit the first operand. If Ptr is something that is already address - // exposed, like a global, avoid emitting (&foo)[0], just emit foo instead. - if (isAddressExposed(Ptr)) { - writeOperandInternal(Ptr, Static); - } else if (I != E && (*I)->isStructTy()) { - // If we didn't already emit the first operand, see if we can print it as - // P->f instead of "P[0].f" - writeOperand(Ptr); - Out << "->field" << cast<ConstantInt>(I.getOperand())->getZExtValue(); - ++I; // eat the struct index as well. - } else { - // Instead of emitting P[0][1], emit (*P)[1], which is more idiomatic. - Out << "(*"; - writeOperand(Ptr); - Out << ")"; - } - } - - for (; I != E; ++I) { - if ((*I)->isStructTy()) { - Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue(); - } else if ((*I)->isArrayTy()) { - Out << ".array["; - writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr); - Out << ']'; - } else if (!(*I)->isVectorTy()) { - Out << '['; - writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr); - Out << ']'; - } else { - // If the last index is into a vector, then print it out as "+j)". This - // works with the 'LastIndexIsVector' code above. - if (isa<Constant>(I.getOperand()) && - cast<Constant>(I.getOperand())->isNullValue()) { - Out << "))"; // avoid "+0". - } else { - Out << ")+("; - writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr); - Out << "))"; - } - } - } - Out << ")"; -} - -void CWriter::writeMemoryAccess(Value *Operand, Type *OperandType, - bool IsVolatile, unsigned Alignment) { - - bool IsUnaligned = Alignment && - Alignment < TD->getABITypeAlignment(OperandType); - - if (!IsUnaligned) - Out << '*'; - if (IsVolatile || IsUnaligned) { - Out << "(("; - if (IsUnaligned) - Out << "struct __attribute__ ((packed, aligned(" << Alignment << "))) {"; - printType(Out, OperandType, false, IsUnaligned ? "data" : "volatile*"); - if (IsUnaligned) { - Out << "; } "; - if (IsVolatile) Out << "volatile "; - Out << "*"; - } - Out << ")"; - } - - writeOperand(Operand); - - if (IsVolatile || IsUnaligned) { - Out << ')'; - if (IsUnaligned) - Out << "->data"; - } -} - -void CWriter::visitLoadInst(LoadInst &I) { - writeMemoryAccess(I.getOperand(0), I.getType(), I.isVolatile(), - I.getAlignment()); - -} - -void CWriter::visitStoreInst(StoreInst &I) { - writeMemoryAccess(I.getPointerOperand(), I.getOperand(0)->getType(), - I.isVolatile(), I.getAlignment()); - Out << " = "; - Value *Operand = I.getOperand(0); - Constant *BitMask = 0; - if (IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType())) - if (!ITy->isPowerOf2ByteWidth()) - // We have a bit width that doesn't match an even power-of-2 byte - // size. Consequently we must & the value with the type's bit mask - BitMask = ConstantInt::get(ITy, ITy->getBitMask()); - if (BitMask) - Out << "(("; - writeOperand(Operand); - if (BitMask) { - Out << ") & "; - printConstant(BitMask, false); - Out << ")"; - } -} - -void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) { - printGEPExpression(I.getPointerOperand(), gep_type_begin(I), - gep_type_end(I), false); -} - -void CWriter::visitVAArgInst(VAArgInst &I) { - Out << "va_arg(*(va_list*)"; - writeOperand(I.getOperand(0)); - Out << ", "; - printType(Out, I.getType()); - Out << ");\n "; -} - -void CWriter::visitInsertElementInst(InsertElementInst &I) { - Type *EltTy = I.getType()->getElementType(); - writeOperand(I.getOperand(0)); - Out << ";\n "; - Out << "(("; - printType(Out, PointerType::getUnqual(EltTy)); - Out << ")(&" << GetValueName(&I) << "))["; - writeOperand(I.getOperand(2)); - Out << "] = ("; - writeOperand(I.getOperand(1)); - Out << ")"; -} - -void CWriter::visitExtractElementInst(ExtractElementInst &I) { - // We know that our operand is not inlined. - Out << "(("; - Type *EltTy = - cast<VectorType>(I.getOperand(0)->getType())->getElementType(); - printType(Out, PointerType::getUnqual(EltTy)); - Out << ")(&" << GetValueName(I.getOperand(0)) << "))["; - writeOperand(I.getOperand(1)); - Out << "]"; -} - -void CWriter::visitShuffleVectorInst(ShuffleVectorInst &SVI) { - Out << "("; - printType(Out, SVI.getType()); - Out << "){ "; - VectorType *VT = SVI.getType(); - unsigned NumElts = VT->getNumElements(); - Type *EltTy = VT->getElementType(); - - for (unsigned i = 0; i != NumElts; ++i) { - if (i) Out << ", "; - int SrcVal = SVI.getMaskValue(i); - if ((unsigned)SrcVal >= NumElts*2) { - Out << " 0/*undef*/ "; - } else { - Value *Op = SVI.getOperand((unsigned)SrcVal >= NumElts); - if (isa<Instruction>(Op)) { - // Do an extractelement of this value from the appropriate input. - Out << "(("; - printType(Out, PointerType::getUnqual(EltTy)); - Out << ")(&" << GetValueName(Op) - << "))[" << (SrcVal & (NumElts-1)) << "]"; - } else if (isa<ConstantAggregateZero>(Op) || isa<UndefValue>(Op)) { - Out << "0"; - } else { - printConstant(cast<ConstantVector>(Op)->getOperand(SrcVal & - (NumElts-1)), - false); - } - } - } - Out << "}"; -} - -void CWriter::visitInsertValueInst(InsertValueInst &IVI) { - // Start by copying the entire aggregate value into the result variable. - writeOperand(IVI.getOperand(0)); - Out << ";\n "; - - // Then do the insert to update the field. - Out << GetValueName(&IVI); - for (const unsigned *b = IVI.idx_begin(), *i = b, *e = IVI.idx_end(); - i != e; ++i) { - Type *IndexedTy = - ExtractValueInst::getIndexedType(IVI.getOperand(0)->getType(), - makeArrayRef(b, i+1)); - if (IndexedTy->isArrayTy()) - Out << ".array[" << *i << "]"; - else - Out << ".field" << *i; - } - Out << " = "; - writeOperand(IVI.getOperand(1)); -} - -void CWriter::visitExtractValueInst(ExtractValueInst &EVI) { - Out << "("; - if (isa<UndefValue>(EVI.getOperand(0))) { - Out << "("; - printType(Out, EVI.getType()); - Out << ") 0/*UNDEF*/"; - } else { - Out << GetValueName(EVI.getOperand(0)); - for (const unsigned *b = EVI.idx_begin(), *i = b, *e = EVI.idx_end(); - i != e; ++i) { - Type *IndexedTy = - ExtractValueInst::getIndexedType(EVI.getOperand(0)->getType(), - makeArrayRef(b, i+1)); - if (IndexedTy->isArrayTy()) - Out << ".array[" << *i << "]"; - else - Out << ".field" << *i; - } - } - Out << ")"; -} - -//===----------------------------------------------------------------------===// -// External Interface declaration -//===----------------------------------------------------------------------===// - -bool CTargetMachine::addPassesToEmitFile(PassManagerBase &PM, - formatted_raw_ostream &o, - CodeGenFileType FileType, - bool DisableVerify) { - if (FileType != TargetMachine::CGFT_AssemblyFile) return true; - - PM.add(createGCLoweringPass()); - PM.add(createLowerInvokePass()); - PM.add(createCFGSimplificationPass()); // clean up after lower invoke. - PM.add(new CWriter(o)); - PM.add(createGCInfoDeleter()); - return false; -} diff --git a/lib/Target/CBackend/CMakeLists.txt b/lib/Target/CBackend/CMakeLists.txt deleted file mode 100644 index fa819a4e0b..0000000000 --- a/lib/Target/CBackend/CMakeLists.txt +++ /dev/null @@ -1,5 +0,0 @@ -add_llvm_target(CBackendCodeGen - CBackend.cpp - ) - -add_subdirectory(TargetInfo) diff --git a/lib/Target/CBackend/CTargetMachine.h b/lib/Target/CBackend/CTargetMachine.h deleted file mode 100644 index 8b2286ed6b..0000000000 --- a/lib/Target/CBackend/CTargetMachine.h +++ /dev/null @@ -1,42 +0,0 @@ -//===-- CTargetMachine.h - TargetMachine for the C backend ------*- C++ -*-===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file declares the TargetMachine that is used by the C backend. -// -//===----------------------------------------------------------------------===// - -#ifndef CTARGETMACHINE_H -#define CTARGETMACHINE_H - -#include "llvm/Target/TargetMachine.h" -#include "llvm/Target/TargetData.h" - -namespace llvm { - -struct CTargetMachine : public TargetMachine { - CTargetMachine(const Target &T, StringRef TT, - StringRef CPU, StringRef FS, const TargetOptions &Options, - Reloc::Model RM, CodeModel::Model CM, - CodeGenOpt::Level OL) - : TargetMachine(T, TT, CPU, FS, Options) { } - - virtual bool addPassesToEmitFile(PassManagerBase &PM, - formatted_raw_ostream &Out, - CodeGenFileType FileType, - bool DisableVerify); - - virtual const TargetData *getTargetData() const { return 0; } -}; - -extern Target TheCBackendTarget; - -} // End llvm namespace - - -#endif diff --git a/lib/Target/CBackend/LLVMBuild.txt b/lib/Target/CBackend/LLVMBuild.txt deleted file mode 100644 index e64feb0e60..0000000000 --- a/lib/Target/CBackend/LLVMBuild.txt +++ /dev/null @@ -1,31 +0,0 @@ -;===- ./lib/Target/CBackend/LLVMBuild.txt ----------------------*- Conf -*--===; -; -; The LLVM Compiler Infrastructure -; -; This file is distributed under the University of Illinois Open Source -; License. See LICENSE.TXT for details. -; -;===------------------------------------------------------------------------===; -; -; This is an LLVMBuild description file for the components in this subdirectory. -; -; For more information on the LLVMBuild system, please see: -; -; http://llvm.org/docs/LLVMBuild.html -; -;===------------------------------------------------------------------------===; - -[common] -subdirectories = TargetInfo - -[component_0] -type = TargetGroup -name = CBackend -parent = Target - -[component_1] -type = Library -name = CBackendCodeGen -parent = CBackend -required_libraries = Analysis CBackendInfo CodeGen Core MC Scalar Support Target TransformUtils -add_to_library_groups = CBackend diff --git a/lib/Target/CBackend/Makefile b/lib/Target/CBackend/Makefile deleted file mode 100644 index bac3474099..0000000000 --- a/lib/Target/CBackend/Makefile +++ /dev/null @@ -1,16 +0,0 @@ -##===- lib/Target/CBackend/Makefile ------------------------*- Makefile -*-===## -# -# The LLVM Compiler Infrastructure -# -# This file is distributed under the University of Illinois Open Source -# License. See LICENSE.TXT for details. -# -##===----------------------------------------------------------------------===## - -LEVEL = ../../.. -LIBRARYNAME = LLVMCBackendCodeGen -DIRS = TargetInfo - -include $(LEVEL)/Makefile.common - -CompileCommonOpts += -Wno-format diff --git a/lib/Target/CBackend/TargetInfo/CBackendTargetInfo.cpp b/lib/Target/CBackend/TargetInfo/CBackendTargetInfo.cpp deleted file mode 100644 index e8274ff9ce..0000000000 --- a/lib/Target/CBackend/TargetInfo/CBackendTargetInfo.cpp +++ /dev/null @@ -1,21 +0,0 @@ -//===-- CBackendTargetInfo.cpp - CBackend Target Implementation -----------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// - -#include "CTargetMachine.h" -#include "llvm/Module.h" -#include "llvm/Support/TargetRegistry.h" -using namespace llvm; - -Target llvm::TheCBackendTarget; - -extern "C" void LLVMInitializeCBackendTargetInfo() { - RegisterTarget<> X(TheCBackendTarget, "c", "C backend"); -} - -extern "C" void LLVMInitializeCBackendTargetMC() {} diff --git a/lib/Target/CBackend/TargetInfo/CMakeLists.txt b/lib/Target/CBackend/TargetInfo/CMakeLists.txt deleted file mode 100644 index 62036161fd..0000000000 --- a/lib/Target/CBackend/TargetInfo/CMakeLists.txt +++ /dev/null @@ -1,5 +0,0 @@ -include_directories( ${CMAKE_CURRENT_BINARY_DIR}/.. ${CMAKE_CURRENT_SOURCE_DIR}/.. ) - -add_llvm_library(LLVMCBackendInfo - CBackendTargetInfo.cpp - ) diff --git a/lib/Target/CBackend/TargetInfo/LLVMBuild.txt b/lib/Target/CBackend/TargetInfo/LLVMBuild.txt deleted file mode 100644 index 1b47d8ebbe..0000000000 --- a/lib/Target/CBackend/TargetInfo/LLVMBuild.txt +++ /dev/null @@ -1,23 +0,0 @@ -;===- ./lib/Target/CBackend/TargetInfo/LLVMBuild.txt -----------*- Conf -*--===; -; -; The LLVM Compiler Infrastructure -; -; This file is distributed under the University of Illinois Open Source -; License. See LICENSE.TXT for details. -; -;===------------------------------------------------------------------------===; -; -; This is an LLVMBuild description file for the components in this subdirectory. -; -; For more information on the LLVMBuild system, please see: -; -; http://llvm.org/docs/LLVMBuild.html -; -;===------------------------------------------------------------------------===; - -[component_0] -type = Library -name = CBackendInfo -parent = CBackend -required_libraries = MC Support Target -add_to_library_groups = CBackend diff --git a/lib/Target/CBackend/TargetInfo/Makefile b/lib/Target/CBackend/TargetInfo/Makefile deleted file mode 100644 index d4d5e15b40..0000000000 --- a/lib/Target/CBackend/TargetInfo/Makefile +++ /dev/null @@ -1,15 +0,0 @@ -##===- lib/Target/CBackend/TargetInfo/Makefile -------------*- Makefile -*-===## -# -# The LLVM Compiler Infrastructure -# -# This file is distributed under the University of Illinois Open Source -# License. See LICENSE.TXT for details. -# -##===----------------------------------------------------------------------===## -LEVEL = ../../../.. -LIBRARYNAME = LLVMCBackendInfo - -# Hack: we need to include 'main' target directory to grab private headers -CPPFLAGS = -I$(PROJ_OBJ_DIR)/.. -I$(PROJ_SRC_DIR)/.. - -include $(LEVEL)/Makefile.common diff --git a/lib/Target/LLVMBuild.txt b/lib/Target/LLVMBuild.txt index 5a42ca5efb..8ec5673470 100644 --- a/lib/Target/LLVMBuild.txt +++ b/lib/Target/LLVMBuild.txt @@ -16,7 +16,7 @@ ;===------------------------------------------------------------------------===; [common] -subdirectories = ARM CBackend CellSPU CppBackend Hexagon MBlaze MSP430 Mips PTX PowerPC Sparc X86 XCore +subdirectories = ARM CellSPU CppBackend Hexagon MBlaze MSP430 Mips PTX PowerPC Sparc X86 XCore ; This is a special group whose required libraries are extended (by llvm-build) ; with the best execution engine (the native JIT, if available, or the diff --git a/projects/sample/autoconf/configure.ac b/projects/sample/autoconf/configure.ac index 25d678af51..d52574fe15 100644 --- a/projects/sample/autoconf/configure.ac +++ b/projects/sample/autoconf/configure.ac @@ -554,7 +554,7 @@ if test "$enableval" = host-only ; then enableval=host fi case "$enableval" in - all) TARGETS_TO_BUILD="X86 Sparc PowerPC ARM Mips CellSPU XCore MSP430 Hexagon CBackend CppBackend MBlaze PTX" ;; + all) TARGETS_TO_BUILD="X86 Sparc PowerPC ARM Mips CellSPU XCore MSP430 Hexagon CppBackend MBlaze PTX" ;; *)for a_target in `echo $enableval|sed -e 's/,/ /g' ` ; do case "$a_target" in x86) TARGETS_TO_BUILD="X86 $TARGETS_TO_BUILD" ;; @@ -567,7 +567,6 @@ case "$enableval" in xcore) TARGETS_TO_BUILD="XCore $TARGETS_TO_BUILD" ;; msp430) TARGETS_TO_BUILD="MSP430 $TARGETS_TO_BUILD" ;; hexagon) TARGETS_TO_BUILD="Hexagon $TARGETS_TO_BUILD" ;; - cbe) TARGETS_TO_BUILD="CBackend $TARGETS_TO_BUILD" ;; cpp) TARGETS_TO_BUILD="CppBackend $TARGETS_TO_BUILD" ;; mblaze) TARGETS_TO_BUILD="MBlaze $TARGETS_TO_BUILD" ;; ptx) TARGETS_TO_BUILD="PTX $TARGETS_TO_BUILD" ;; @@ -644,21 +643,6 @@ AC_SUBST(LLVM_ENUM_ASM_PRINTERS) AC_SUBST(LLVM_ENUM_ASM_PARSERS) AC_SUBST(LLVM_ENUM_DISASSEMBLERS) -dnl Prevent the CBackend from using printf("%a") for floating point so older -dnl C compilers that cannot deal with the 0x0p+0 hex floating point format -dnl can still compile the CBE's output -AC_ARG_ENABLE([cbe-printf-a],AS_HELP_STRING([--enable-cbe-printf-a], - [Enable C Backend output with hex floating point via %a (default is YES)]),, - enableval=default) -case "$enableval" in - yes) AC_SUBST(ENABLE_CBE_PRINTF_A,[1]) ;; - no) AC_SUBST(ENABLE_CBE_PRINTF_A,[0]) ;; - default) AC_SUBST(ENABLE_CBE_PRINTF_A,[1]) ;; - *) AC_MSG_ERROR([Invalid setting for --enable-cbe-printf-a. Use "yes" or "no"]) ;; -esac -AC_DEFINE_UNQUOTED([ENABLE_CBE_PRINTF_A],$ENABLE_CBE_PRINTF_A, - [Define if CBE is enabled for printf %a output]) - dnl Override the option to use for optimized builds. AC_ARG_WITH(optimize-option, AS_HELP_STRING([--with-optimize-option], diff --git a/projects/sample/configure b/projects/sample/configure index db45550ce7..a362e63b26 100755 --- a/projects/sample/configure +++ b/projects/sample/configure @@ -704,7 +704,6 @@ LLVM_ENUM_TARGETS LLVM_ENUM_ASM_PRINTERS LLVM_ENUM_ASM_PARSERS LLVM_ENUM_DISASSEMBLERS -ENABLE_CBE_PRINTF_A OPTIMIZE_OPTION EXTRA_OPTIONS EXTRA_LD_OPTIONS @@ -1402,8 +1401,6 @@ Optional Features: target1,target2,... Valid targets are: host, x86, x86_64, sparc, powerpc, arm, mips, spu, hexagon, xcore, msp430, ptx, cbe, and cpp (default=all) - --enable-cbe-printf-a Enable C Backend output with hex floating point via - %a (default is YES) --enable-bindings Build specific language bindings: all,auto,none,{binding-name} (default=auto) --enable-libffi Check for the presence of libffi (default is NO) @@ -5229,7 +5226,7 @@ if test "$enableval" = host-only ; then enableval=host fi case "$enableval" in - all) TARGETS_TO_BUILD="X86 Sparc PowerPC ARM Mips CellSPU XCore MSP430 Hexagon CBackend CppBackend MBlaze PTX" ;; + all) TARGETS_TO_BUILD="X86 Sparc PowerPC ARM Mips CellSPU XCore MSP430 Hexagon CppBackend MBlaze PTX" ;; *)for a_target in `echo $enableval|sed -e 's/,/ /g' ` ; do case "$a_target" in x86) TARGETS_TO_BUILD="X86 $TARGETS_TO_BUILD" ;; @@ -5242,7 +5239,6 @@ case "$enableval" in xcore) TARGETS_TO_BUILD="XCore $TARGETS_TO_BUILD" ;; msp430) TARGETS_TO_BUILD="MSP430 $TARGETS_TO_BUILD" ;; hexagon) TARGETS_TO_BUILD="Hexagon $TARGETS_TO_BUILD" ;; - cbe) TARGETS_TO_BUILD="CBackend $TARGETS_TO_BUILD" ;; cpp) TARGETS_TO_BUILD="CppBackend $TARGETS_TO_BUILD" ;; mblaze) TARGETS_TO_BUILD="MBlaze $TARGETS_TO_BUILD" ;; ptx) TARGETS_TO_BUILD="PTX $TARGETS_TO_BUILD" ;; @@ -5342,30 +5338,6 @@ done -# Check whether --enable-cbe-printf-a was given. -if test "${enable_cbe_printf_a+set}" = set; then - enableval=$enable_cbe_printf_a; -else - enableval=default -fi - -case "$enableval" in - yes) ENABLE_CBE_PRINTF_A=1 - ;; - no) ENABLE_CBE_PRINTF_A=0 - ;; - default) ENABLE_CBE_PRINTF_A=1 - ;; - *) { { echo "$as_me:$LINENO: error: Invalid setting for --enable-cbe-printf-a. Use \"yes\" or \"no\"" >&5 -echo "$as_me: error: Invalid setting for --enable-cbe-printf-a. Use \"yes\" or \"no\"" >&2;} - { (exit 1); exit 1; }; } ;; -esac - -cat >>confdefs.h <<_ACEOF -#define ENABLE_CBE_PRINTF_A $ENABLE_CBE_PRINTF_A -_ACEOF - - # Check whether --with-optimize-option was given. if test "${with_optimize_option+set}" = set; then @@ -10297,7 +10269,7 @@ else lt_dlunknown=0; lt_dlno_uscore=1; lt_dlneed_uscore=2 lt_status=$lt_dlunknown cat > conftest.$ac_ext <<EOF -#line 10300 "configure" +#line 10272 "configure" #include "confdefs.h" #if HAVE_DLFCN_H @@ -21692,7 +21664,6 @@ LLVM_ENUM_TARGETS!$LLVM_ENUM_TARGETS$ac_delim LLVM_ENUM_ASM_PRINTERS!$LLVM_ENUM_ASM_PRINTERS$ac_delim LLVM_ENUM_ASM_PARSERS!$LLVM_ENUM_ASM_PARSERS$ac_delim LLVM_ENUM_DISASSEMBLERS!$LLVM_ENUM_DISASSEMBLERS$ac_delim -ENABLE_CBE_PRINTF_A!$ENABLE_CBE_PRINTF_A$ac_delim OPTIMIZE_OPTION!$OPTIMIZE_OPTION$ac_delim EXTRA_OPTIONS!$EXTRA_OPTIONS$ac_delim EXTRA_LD_OPTIONS!$EXTRA_LD_OPTIONS$ac_delim @@ -21776,7 +21747,7 @@ LIBOBJS!$LIBOBJS$ac_delim LTLIBOBJS!$LTLIBOBJS$ac_delim _ACEOF - if test `sed -n "s/.*$ac_delim\$/X/p" conf$$subs.sed | grep -c X` = 89; then + if test `sed -n "s/.*$ac_delim\$/X/p" conf$$subs.sed | grep -c X` = 88; then break elif $ac_last_try; then { { echo "$as_me:$LINENO: error: could not make $CONFIG_STATUS" >&5 diff --git a/tools/bugpoint/ExecutionDriver.cpp b/tools/bugpoint/ExecutionDriver.cpp index adf5587553..218a559d21 100644 --- a/tools/bugpoint/ExecutionDriver.cpp +++ b/tools/bugpoint/ExecutionDriver.cpp @@ -28,8 +28,7 @@ namespace { // for miscompilation. // enum OutputType { - AutoPick, RunLLI, RunJIT, RunLLC, RunLLCIA, RunCBE, CBE_bug, LLC_Safe, - CompileCustom, Custom + AutoPick, RunLLI, RunJIT, RunLLC, RunLLCIA, LLC_Safe, CompileCustom, Custom }; cl::opt<double> @@ -48,8 +47,6 @@ namespace { clEnumValN(RunLLC, "run-llc", "Compile with LLC"), clEnumValN(RunLLCIA, "run-llc-ia", "Compile with LLC with integrated assembler"), - clEnumValN(RunCBE, "run-cbe", "Compile with CBE"), - clEnumValN(CBE_bug,"cbe-bug", "Find CBE bugs"), clEnumValN(LLC_Safe, "llc-safe", "Use LLC for all"), clEnumValN(CompileCustom, "compile-custom", "Use -compile-command to define a command to " @@ -64,7 +61,6 @@ namespace { SafeInterpreterSel(cl::desc("Specify \"safe\" i.e. known-good backend:"), cl::values(clEnumValN(AutoPick, "safe-auto", "Use best guess"), clEnumValN(RunLLC, "safe-run-llc", "Compile with LLC"), - clEnumValN(RunCBE, "safe-run-cbe", "Compile with CBE"), clEnumValN(Custom, "safe-run-custom", "Use -exec-command to define a command to execute " "the bitcode. Useful for cross-compilation."), @@ -154,10 +150,6 @@ bool BugDriver::initializeExecutionEnvironment() { switch (InterpreterSel) { case AutoPick: - InterpreterSel = RunCBE; - Interpreter = - AbstractInterpreter::createCBE(getToolName(), Message, GCCBinary, - &ToolArgv, &GCCToolArgv); if (!Interpreter) { InterpreterSel = RunJIT; Interpreter = AbstractInterpreter::createJIT(getToolName(), Message, @@ -195,12 +187,6 @@ bool BugDriver::initializeExecutionEnvironment() { Interpreter = AbstractInterpreter::createJIT(getToolName(), Message, &ToolArgv); break; - case RunCBE: - case CBE_bug: - Interpreter = AbstractInterpreter::createCBE(getToolName(), Message, - GCCBinary, &ToolArgv, - &GCCToolArgv); - break; case CompileCustom: Interpreter = AbstractInterpreter::createCustomCompiler(Message, CustomCompileCommand); @@ -221,17 +207,6 @@ bool BugDriver::initializeExecutionEnvironment() { std::vector<std::string> SafeToolArgs = SafeToolArgv; switch (SafeInterpreterSel) { case AutoPick: - // In "cbe-bug" mode, default to using LLC as the "safe" backend. - if (!SafeInterpreter && - InterpreterSel == CBE_bug) { - SafeInterpreterSel = RunLLC; - SafeToolArgs.push_back("--relocation-model=pic"); - SafeInterpreter = AbstractInterpreter::createLLC(Path.c_str(), Message, - GCCBinary, - &SafeToolArgs, - &GCCToolArgv); - } - // In "llc-safe" mode, default to using LLC as the "safe" backend. if (!SafeInterpreter && InterpreterSel == LLC_Safe) { @@ -243,17 +218,6 @@ bool BugDriver::initializeExecutionEnvironment() { &GCCToolArgv); } - // Pick a backend that's different from the test backend. The JIT and - // LLC backends share a lot of code, so prefer to use the CBE as the - // safe back-end when testing them. - if (!SafeInterpreter && - InterpreterSel != RunCBE) { - SafeInterpreterSel = RunCBE; - SafeInterpreter = AbstractInterpreter::createCBE(Path.c_str(), Message, - GCCBinary, - &SafeToolArgs, - &GCCToolArgv); - } if (!SafeInterpreter && InterpreterSel != RunLLC && InterpreterSel != RunJIT) { @@ -277,11 +241,6 @@ bool BugDriver::initializeExecutionEnvironment() { &GCCToolArgv, SafeInterpreterSel == RunLLCIA); break; - case RunCBE: - SafeInterpreter = AbstractInterpreter::createCBE(Path.c_str(), Message, - GCCBinary, &SafeToolArgs, - &GCCToolArgv); - break; case Custom: SafeInterpreter = AbstractInterpreter::createCustomExecutor(Message, CustomExecCommand); @@ -459,8 +418,8 @@ bool BugDriver::createReferenceFile(Module *M, const std::string &Filename) { errs() << Error; if (Interpreter != SafeInterpreter) { errs() << "*** There is a bug running the \"safe\" backend. Either" - << " debug it (for example with the -run-cbe bugpoint option," - << " if CBE is being used as the \"safe\" backend), or fix the" + << " debug it (for example with the -run-jit bugpoint option," + << " if JIT is being used as the \"safe\" backend), or fix the" << " error some other way.\n"; } return false; diff --git a/tools/bugpoint/ToolRunner.cpp b/tools/bugpoint/ToolRunner.cpp index b80a5b4373..25a2baef7d 100644 --- a/tools/bugpoint/ToolRunner.cpp +++ b/tools/bugpoint/ToolRunner.cpp @@ -623,94 +623,6 @@ AbstractInterpreter *AbstractInterpreter::createJIT(const char *Argv0, return 0; } -GCC::FileType CBE::OutputCode(const std::string &Bitcode, - sys::Path &OutputCFile, std::string &Error, - unsigned Timeout, unsigned MemoryLimit) { - sys::Path uniqueFile(Bitcode+".cbe.c"); - std::string ErrMsg; - if (uniqueFile.makeUnique(true, &ErrMsg)) { - errs() << "Error making unique filename: " << ErrMsg << "\n"; - exit(1); - } - OutputCFile = uniqueFile; - std::vector<const char *> LLCArgs; - LLCArgs.push_back(LLCPath.c_str()); - - // Add any extra LLC args. - for (unsigned i = 0, e = ToolArgs.size(); i != e; ++i) - LLCArgs.push_back(ToolArgs[i].c_str()); - - LLCArgs.push_back("-o"); - LLCArgs.push_back(OutputCFile.c_str()); // Output to the C file - LLCArgs.push_back("-march=c"); // Output C language - LLCArgs.push_back(Bitcode.c_str()); // This is the input bitcode - LLCArgs.push_back(0); - - outs() << "<cbe>"; outs().flush(); - DEBUG(errs() << "\nAbout to run:\t"; - for (unsigned i = 0, e = LLCArgs.size()-1; i != e; ++i) - errs() << " " << LLCArgs[i]; - errs() << "\n"; - ); - if (RunProgramWithTimeout(LLCPath, &LLCArgs[0], sys::Path(), sys::Path(), - sys::Path(), Timeout, MemoryLimit)) - Error = ProcessFailure(LLCPath, &LLCArgs[0], Timeout, MemoryLimit); - return GCC::CFile; -} - -void CBE::compileProgram(const std::string &Bitcode, std::string *Error, - unsigned Timeout, unsigned MemoryLimit) { - sys::Path OutputCFile; - OutputCode(Bitcode, OutputCFile, *Error, Timeout, MemoryLimit); - OutputCFile.eraseFromDisk(); -} - -int CBE::ExecuteProgram(const std::string &Bitcode, - const std::vector<std::string> &Args, - const std::string &InputFile, - const std::string &OutputFile, - std::string *Error, - const std::vector<std::string> &ArgsForGCC, - const std::vector<std::string> &SharedLibs, - unsigned Timeout, - unsigned MemoryLimit) { - sys::Path OutputCFile; - OutputCode(Bitcode, OutputCFile, *Error, Timeout, MemoryLimit); - - FileRemover CFileRemove(OutputCFile.str(), !SaveTemps); - - std::vector<std::string> GCCArgs(ArgsForGCC); - GCCArgs.insert(GCCArgs.end(), SharedLibs.begin(), SharedLibs.end()); - - return gcc->ExecuteProgram(OutputCFile.str(), Args, GCC::CFile, - InputFile, OutputFile, Error, GCCArgs, - Timeout, MemoryLimit); -} - -/// createCBE - Try to find the 'llc' executable -/// -CBE *AbstractInterpreter::createCBE(const char *Argv0, - std::string &Message, - const std::string &GCCBinary, - const std::vector<std::string> *Args, - const std::vector<std::string> *GCCArgs) { - sys::Path LLCPath = - PrependMainExecutablePath("llc", Argv0, (void *)(intptr_t)&createCBE); - if (LLCPath.isEmpty()) { - Message = - "Cannot find `llc' in executable directory!\n"; - return 0; - } - - Message = "Found llc: " + LLCPath.str() + "\n"; - GCC *gcc = GCC::create(Message, GCCBinary, GCCArgs); - if (!gcc) { - errs() << Message << "\n"; - exit(1); - } - return new CBE(LLCPath, gcc, Args); -} - //===---------------------------------------------------------------------===// // GCC abstraction // diff --git a/utils/GenLibDeps.pl b/utils/GenLibDeps.pl index 0cd9e6ae00..656250c7e3 100755 --- a/utils/GenLibDeps.pl +++ b/utils/GenLibDeps.pl @@ -96,7 +96,6 @@ if ($PEROBJ) { $libpath =~ s/^AsmPrinter/CodeGen\/AsmPrinter/; $libpath =~ s/^BitReader/Bitcode\/Reader/; $libpath =~ s/^BitWriter/Bitcode\/Writer/; - $libpath =~ s/^CBackend/Target\/CBackend/; $libpath =~ s/^CppBackend/Target\/CppBackend/; $libpath =~ s/^MSIL/Target\/MSIL/; $libpath =~ s/^Core/VMCore/; @@ -138,7 +137,6 @@ if ($PEROBJ) { $libpath =~ s/^AsmPrinter/CodeGen\/AsmPrinter/; $libpath =~ s/^BitReader/Bitcode\/Reader/; $libpath =~ s/^BitWriter/Bitcode\/Writer/; - $libpath =~ s/^CBackend/Target\/CBackend/; $libpath =~ s/^CppBackend/Target\/CppBackend/; $libpath =~ s/^MSIL/Target\/MSIL/; $libpath =~ s/^Core/VMCore/; diff --git a/utils/lit/lit/ExampleTests/LLVM.InTree/test/site.exp b/utils/lit/lit/ExampleTests/LLVM.InTree/test/site.exp index 0cbfc4b70f..4bc58d7579 100644 --- a/utils/lit/lit/ExampleTests/LLVM.InTree/test/site.exp +++ b/utils/lit/lit/ExampleTests/LLVM.InTree/test/site.exp @@ -2,7 +2,7 @@ # Do not edit here. If you wish to override these values # edit the last section set target_triplet "x86_64-apple-darwin10" -set TARGETS_TO_BUILD "X86 Sparc PowerPC ARM Mips CellSPU PIC16 XCore MSP430 Blackfin CBackend MSIL CppBackend" +set TARGETS_TO_BUILD "X86 Sparc PowerPC ARM Mips CellSPU PIC16 XCore MSP430 Blackfin MSIL CppBackend" set srcroot "/Volumes/Data/ddunbar/llvm" set objroot "/Volumes/Data/ddunbar/llvm.obj.64" set srcdir "/Volumes/Data/ddunbar/llvm/test" diff --git a/utils/lit/lit/ExampleTests/LLVM.OutOfTree/obj/test/site.exp b/utils/lit/lit/ExampleTests/LLVM.OutOfTree/obj/test/site.exp index 0cbfc4b70f..4bc58d7579 100644 --- a/utils/lit/lit/ExampleTests/LLVM.OutOfTree/obj/test/site.exp +++ b/utils/lit/lit/ExampleTests/LLVM.OutOfTree/obj/test/site.exp @@ -2,7 +2,7 @@ # Do not edit here. If you wish to override these values # edit the last section set target_triplet "x86_64-apple-darwin10" -set TARGETS_TO_BUILD "X86 Sparc PowerPC ARM Mips CellSPU PIC16 XCore MSP430 Blackfin CBackend MSIL CppBackend" +set TARGETS_TO_BUILD "X86 Sparc PowerPC ARM Mips CellSPU PIC16 XCore MSP430 Blackfin MSIL CppBackend" set srcroot "/Volumes/Data/ddunbar/llvm" set objroot "/Volumes/Data/ddunbar/llvm.obj.64" set srcdir "/Volumes/Data/ddunbar/llvm/test" |