aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--lib/Transforms/ExprTypeConvert.cpp475
1 files changed, 298 insertions, 177 deletions
diff --git a/lib/Transforms/ExprTypeConvert.cpp b/lib/Transforms/ExprTypeConvert.cpp
index 2e7c297907..327cb6301d 100644
--- a/lib/Transforms/ExprTypeConvert.cpp
+++ b/lib/Transforms/ExprTypeConvert.cpp
@@ -14,6 +14,7 @@
#include "llvm/ConstPoolVals.h"
#include "llvm/Optimizations/ConstantHandling.h"
#include "llvm/Optimizations/DCE.h"
+#include "llvm/Analysis/Expressions.h"
#include <map>
#include <algorithm>
@@ -21,45 +22,158 @@
//#define DEBUG_EXPR_CONVERT 1
-static inline const Type *getTy(const Value *V, ValueTypeCache &CT) {
- ValueTypeCache::iterator I = CT.find(V);
- if (I == CT.end()) return V->getType();
- return I->second;
+static bool OperandConvertableToType(User *U, Value *V, const Type *Ty,
+ ValueTypeCache &ConvertedTypes);
+
+static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal,
+ ValueMapCache &VMC);
+
+// AllIndicesZero - Return true if all of the indices of the specified memory
+// access instruction are zero, indicating an effectively nil offset to the
+// pointer value.
+//
+static bool AllIndicesZero(const MemAccessInst *MAI) {
+ for (User::op_const_iterator S = MAI->idx_begin(), E = MAI->idx_end();
+ S != E; ++S)
+ if (!isa<ConstPoolVal>(*S) || !cast<ConstPoolVal>(*S)->isNullValue())
+ return false;
+ return true;
+}
+
+static unsigned getBaseTypeSize(const Type *Ty) {
+ if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty))
+ if (ATy->isUnsized())
+ return getBaseTypeSize(ATy->getElementType());
+ return TD.getTypeSize(Ty);
}
-GetElementPtrInst *getAddToGEPResult(const Type *Ty, const Value *V) {
- const StructType *StructTy = getPointedToStruct(Ty);
- if (StructTy == 0) return 0; // Must be a pointer to a struct...
-
- // Must be a constant unsigned offset value... get it now...
- if (!isa<ConstPoolUInt>(V)) return 0;
- unsigned Offset = cast<ConstPoolUInt>(V)->getValue();
-
- // Check to make sure the offset is somewhat legitiment w.r.t the struct
- // type...
- if (Offset >= TD.getTypeSize(StructTy)) return 0;
+
+// Peephole Malloc instructions: we take a look at the use chain of the
+// malloc instruction, and try to find out if the following conditions hold:
+// 1. The malloc is of the form: 'malloc [sbyte], uint <constant>'
+// 2. The only users of the malloc are cast & add instructions
+// 3. Of the cast instructions, there is only one destination pointer type
+// [RTy] where the size of the pointed to object is equal to the number
+// of bytes allocated.
+//
+// If these conditions hold, we convert the malloc to allocate an [RTy]
+// element. TODO: This comment is out of date WRT arrays
+//
+static bool MallocConvertableToType(MallocInst *MI, const Type *Ty,
+ ValueTypeCache &CTMap) {
+ if (!MI->isArrayAllocation() || // No array allocation?
+ !isa<PointerType>(Ty)) return false; // Malloc always returns pointers
+
+ // Deal with the type to allocate, not the pointer type...
+ Ty = cast<PointerType>(Ty)->getValueType();
+
+ // Analyze the number of bytes allocated...
+ analysis::ExprType Expr = analysis::ClassifyExpression(MI->getArraySize());
+
+ // Must have a scale or offset to analyze it...
+ if (!Expr.Offset && !Expr.Scale) return false;
+
+ if (Expr.Offset && (Expr.Scale || Expr.Var)) {
+ // This is wierd, shouldn't happen, but if it does, I wanna know about it!
+ cerr << "LevelRaise.cpp: Crazy allocation detected!\n";
+ return false;
+ }
+
+ // Get the number of bytes allocated...
+ int SizeVal = getConstantValue(Expr.Offset ? Expr.Offset : Expr.Scale);
+ if (SizeVal <= 0) {
+ cerr << "malloc of a negative number???\n";
+ return false;
+ }
+ unsigned Size = (unsigned)SizeVal;
+ unsigned ReqTypeSize = getBaseTypeSize(Ty);
+
+ // Does the size of the allocated type match the number of bytes
+ // allocated?
+ //
+ if (ReqTypeSize == Size)
+ return true;
+
+ // If not, it's possible that an array of constant size is being allocated.
+ // In this case, the Size will be a multiple of the data size.
+ //
+ if (!Expr.Offset) return false; // Offset must be set, not scale...
+
+#if 1
+ return false;
+#else // THIS CAN ONLY BE RUN VERY LATE, after several passes to make sure
+ // things are adequately raised!
+ // See if the allocated amount is a multiple of the type size...
+ if (Size/ReqTypeSize*ReqTypeSize != Size)
+ return false; // Nope.
+
+ // Unfortunately things tend to be powers of two, so there may be
+ // many false hits. We don't want to optimistically assume that we
+ // have the right type on the first try, so scan the use list of the
+ // malloc instruction, looking for the cast to the biggest type...
+ //
+ for (Value::use_iterator I = MI->use_begin(), E = MI->use_end(); I != E; ++I)
+ if (CastInst *CI = dyn_cast<CastInst>(*I))
+ if (const PointerType *PT =
+ dyn_cast<PointerType>(CI->getOperand(0)->getType()))
+ if (getBaseTypeSize(PT->getValueType()) > ReqTypeSize)
+ return false; // We found a type bigger than this one!
- // If we get this far, we have succeeded... TODO: We need to handle array
- // indexing as well...
- const StructLayout *SL = TD.getStructLayout(StructTy);
- vector<ConstPoolVal*> Offsets;
- unsigned ActualOffset = Offset;
- const Type *ElTy = getStructOffsetType(StructTy, ActualOffset, Offsets);
-
- if (ActualOffset != Offset) return 0; // TODO: Handle Array indexing...
-
- // Success! Return the GEP instruction, with a dummy first argument.
- ConstPoolVal *Dummy = ConstPoolVal::getNullConstant(Ty);
- return new GetElementPtrInst(Dummy, Offsets);
+ return true;
+#endif
}
+static Instruction *ConvertMallocToType(MallocInst *MI, const Type *Ty,
+ const string &Name, ValueMapCache &VMC){
+ BasicBlock *BB = MI->getParent();
+ BasicBlock::iterator It = BB->end();
+ // Analyze the number of bytes allocated...
+ analysis::ExprType Expr = analysis::ClassifyExpression(MI->getArraySize());
-static bool OperandConvertableToType(User *U, Value *V, const Type *Ty,
- ValueTypeCache &ConvertedTypes);
+ const PointerType *AllocTy = cast<PointerType>(Ty);
+ const Type *ElType = AllocTy->getValueType();
-static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal,
- ValueMapCache &VMC);
+ if (Expr.Var && !isa<ArrayType>(ElType)) {
+ ElType = ArrayType::get(AllocTy->getValueType());
+ AllocTy = PointerType::get(ElType);
+ }
+
+ // If the array size specifier is not an unsigned integer, insert a cast now.
+ if (Expr.Var && Expr.Var->getType() != Type::UIntTy) {
+ It = find(BB->getInstList().begin(), BB->getInstList().end(), MI);
+ CastInst *SizeCast = new CastInst(Expr.Var, Type::UIntTy);
+ It = BB->getInstList().insert(It, SizeCast)+1;
+ Expr.Var = SizeCast;
+ }
+
+ // Check to see if they are allocating a constant sized array of a type...
+#if 0 // THIS CAN ONLY BE RUN VERY LATE
+ if (!Expr.Var) {
+ unsigned OffsetAmount = (unsigned)getConstantValue(Expr.Offset);
+ unsigned DataSize = TD.getTypeSize(ElType);
+
+ if (OffsetAmount > DataSize) // Allocate a sized array amount...
+ Expr.Var = ConstPoolUInt::get(Type::UIntTy, OffsetAmount/DataSize);
+ }
+#endif
+
+ Instruction *NewI = new MallocInst(AllocTy, Expr.Var, Name);
+
+ if (AllocTy != Ty) { // Create a cast instruction to cast it to the correct ty
+ if (It == BB->end())
+ It = find(BB->getInstList().begin(), BB->getInstList().end(), MI);
+
+ // Insert the new malloc directly into the code ourselves
+ assert(It != BB->getInstList().end());
+ It = BB->getInstList().insert(It, NewI)+1;
+
+ // Return the cast as the value to use...
+ NewI = new CastInst(NewI, Ty);
+ }
+
+ return NewI;
+}
// ExpressionConvertableToType - Return true if it is possible
@@ -94,7 +208,7 @@ bool ExpressionConvertableToType(Value *V, const Type *Ty,
case Instruction::Cast:
// We can convert the expr if the cast destination type is losslessly
// convertable to the requested type.
- if (!losslessCastableTypes(Ty, I->getType())) return false;
+ if (!Ty->isLosslesslyConvertableTo(I->getType())) return false;
#if 1
// We also do not allow conversion of a cast that casts from a ptr to array
// of X to a *X. For example: cast [4 x %List *] * %val to %List * *
@@ -105,7 +219,7 @@ bool ExpressionConvertableToType(Value *V, const Type *Ty,
if (AT->getElementType() == DPT->getValueType())
return false;
#endif
- return true;
+ break;
case Instruction::Add:
case Instruction::Sub:
@@ -123,12 +237,10 @@ bool ExpressionConvertableToType(Value *V, const Type *Ty,
case Instruction::Load: {
LoadInst *LI = cast<LoadInst>(I);
- if (LI->hasIndices()) {
+ if (LI->hasIndices() && !AllIndicesZero(LI)) {
// We can't convert a load expression if it has indices... unless they are
// all zero.
- const vector<ConstPoolVal*> &CPV = LI->getIndices();
- for (unsigned i = 0; i < CPV.size(); ++i)
- if (!CPV[i]->isNullValue()) return false;
+ return false;
}
if (!ExpressionConvertableToType(LI->getPointerOperand(),
@@ -144,6 +256,12 @@ bool ExpressionConvertableToType(Value *V, const Type *Ty,
break;
}
+ case Instruction::Malloc:
+ if (!MallocConvertableToType(cast<MallocInst>(I), Ty, CTMap))
+ return false;
+ break;
+
+#if 1
case Instruction::GetElementPtr: {
// GetElementPtr's are directly convertable to a pointer type if they have
// a number of zeros at the end. Because removing these values does not
@@ -162,19 +280,24 @@ bool ExpressionConvertableToType(Value *V, const Type *Ty,
// index array. If there are, check to see if removing them causes us to
// get to the right type...
//
- vector<ConstPoolVal*> Indices = GEP->getIndices();
+ vector<Value*> Indices = GEP->copyIndices();
const Type *BaseType = GEP->getPointerOperand()->getType();
+ const Type *ElTy = 0;
- while (Indices.size() &&
+ while (!Indices.empty() && isa<ConstPoolUInt>(Indices.back()) &&
cast<ConstPoolUInt>(Indices.back())->getValue() == 0) {
Indices.pop_back();
- const Type *ElTy = GetElementPtrInst::getIndexedType(BaseType, Indices,
+ ElTy = GetElementPtrInst::getIndexedType(BaseType, Indices,
true);
if (ElTy == PTy->getValueType())
break; // Found a match!!
+ ElTy = 0;
}
+
+ if (ElTy) break;
return false; // No match, maybe next time.
}
+#endif
default:
return false;
@@ -184,11 +307,9 @@ bool ExpressionConvertableToType(Value *V, const Type *Ty,
// have this value converted. This makes use of the map to avoid infinite
// recursion.
//
- if (isa<Instruction>(V)) {
- for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I)
- if (!OperandConvertableToType(*I, V, Ty, CTMap))
- return false;
- }
+ for (Value::use_iterator It = I->use_begin(), E = I->use_end(); It != E; ++It)
+ if (!OperandConvertableToType(*It, I, Ty, CTMap))
+ return false;
return true;
}
@@ -256,15 +377,8 @@ Value *ConvertExpressionToType(Value *V, const Type *Ty, ValueMapCache &VMC) {
case Instruction::Load: {
LoadInst *LI = cast<LoadInst>(I);
-#ifndef NDEBUG
- if (LI->hasIndices()) {
- // We can't convert a load expression if it has indices... unless they are
- // all zero.
- const vector<ConstPoolVal*> &CPV = LI->getIndices();
- for (unsigned i = 0; i < CPV.size(); ++i)
- assert(CPV[i]->isNullValue() && "Load index not 0!");
- }
-#endif
+ assert(!LI->hasIndices() || AllIndicesZero(LI));
+
Res = new LoadInst(ConstPoolVal::getNullConstant(PointerType::get(Ty)),
Name);
VMC.ExprMap[I] = Res;
@@ -293,6 +407,11 @@ Value *ConvertExpressionToType(Value *V, const Type *Ty, ValueMapCache &VMC) {
break;
}
+ case Instruction::Malloc: {
+ Res = ConvertMallocToType(cast<MallocInst>(I), Ty, Name, VMC);
+ break;
+ }
+
case Instruction::GetElementPtr: {
// GetElementPtr's are directly convertable to a pointer type if they have
// a number of zeros at the end. Because removing these values does not
@@ -309,11 +428,11 @@ Value *ConvertExpressionToType(Value *V, const Type *Ty, ValueMapCache &VMC) {
// index array. If there are, check to see if removing them causes us to
// get to the right type...
//
- vector<ConstPoolVal*> Indices = GEP->getIndices();
+ vector<Value*> Indices = GEP->copyIndices();
const Type *BaseType = GEP->getPointerOperand()->getType();
const Type *PVTy = cast<PointerType>(Ty)->getValueType();
Res = 0;
- while (Indices.size() &&
+ while (!Indices.empty() && isa<ConstPoolUInt>(Indices.back()) &&
cast<ConstPoolUInt>(Indices.back())->getValue() == 0) {
Indices.pop_back();
if (GetElementPtrInst::getIndexedType(BaseType, Indices, true) == PVTy) {
@@ -366,6 +485,8 @@ Value *ConvertExpressionToType(Value *V, const Type *Ty, ValueMapCache &VMC) {
cerr << "EXPR DELETING: " << (void*)I << " " << I;
#endif
BIL.remove(I);
+ VMC.OperandsMapped.erase(I);
+ VMC.ExprMap.erase(I);
delete I;
}
@@ -374,15 +495,13 @@ Value *ConvertExpressionToType(Value *V, const Type *Ty, ValueMapCache &VMC) {
-// RetValConvertableToType - Return true if it is possible
-bool RetValConvertableToType(Value *V, const Type *Ty,
+// ValueConvertableToType - Return true if it is possible
+bool ValueConvertableToType(Value *V, const Type *Ty,
ValueTypeCache &ConvertedTypes) {
ValueTypeCache::iterator I = ConvertedTypes.find(V);
if (I != ConvertedTypes.end()) return I->second == Ty;
ConvertedTypes[V] = Ty;
- assert(isa<Instruction>(V) && "Can't convert ret val of non instruction");
-
// It is safe to convert the specified value to the specified type IFF all of
// the uses of the value can be converted to accept the new typed value.
//
@@ -405,8 +524,7 @@ bool RetValConvertableToType(Value *V, const Type *Ty,
//
static bool OperandConvertableToType(User *U, Value *V, const Type *Ty,
ValueTypeCache &CTMap) {
- // TODO: IS THIS A BUG????
- if (V->getType() == Ty) return true; // Already the right type?
+ if (V->getType() == Ty) return true; // Operand already the right type?
// Expression type must be holdable in a register.
if (!isFirstClassType(Ty))
@@ -420,7 +538,7 @@ static bool OperandConvertableToType(User *U, Value *V, const Type *Ty,
assert(I->getOperand(0) == V);
// We can convert the expr if the cast destination type is losslessly
// convertable to the requested type.
- if (!losslessCastableTypes(Ty, I->getOperand(0)->getType()))
+ if (!Ty->isLosslesslyConvertableTo(I->getOperand(0)->getType()))
return false;
#if 1
// We also do not allow conversion of a cast that casts from a ptr to array
@@ -435,20 +553,24 @@ static bool OperandConvertableToType(User *U, Value *V, const Type *Ty,
return true;
case Instruction::Add:
- if (V == I->getOperand(0) && isa<CastInst>(I->getOperand(1))) {
- Instruction *GEP =
- getAddToGEPResult(Ty, cast<CastInst>(I->getOperand(1))->getOperand(0));
- if (GEP) { // If successful, this Add can be converted to a GEP.
- const Type *RetTy = GEP->getType(); // Get the new type...
- delete GEP; // We don't want the actual instruction yet...
+ if (V == I->getOperand(0) && isa<CastInst>(I->getOperand(1)) &&
+ isa<PointerType>(Ty)) {
+ Value *IndexVal = cast<CastInst>(I->getOperand(1))->getOperand(0);
+ vector<Value*> Indices;
+ if (const Type *ETy = ConvertableToGEP(Ty, IndexVal, Indices)) {
+ const Type *RetTy = PointerType::get(ETy);
+
// Only successful if we can convert this type to the required type
- return RetValConvertableToType(I, RetTy, CTMap);
+ if (ValueConvertableToType(I, RetTy, CTMap)) {
+ CTMap[I] = RetTy;
+ return true;
+ }
}
}
// FALLTHROUGH
case Instruction::Sub: {
Value *OtherOp = I->getOperand((V == I->getOperand(0)) ? 1 : 0);
- return RetValConvertableToType(I, Ty, CTMap) &&
+ return ValueConvertableToType(I, Ty, CTMap) &&
ExpressionConvertableToType(OtherOp, Ty, CTMap);
}
case Instruction::SetEQ:
@@ -461,38 +583,35 @@ static bool OperandConvertableToType(User *U, Value *V, const Type *Ty,
// FALL THROUGH
case Instruction::Shl:
assert(I->getOperand(0) == V);
- return RetValConvertableToType(I, Ty, CTMap);
+ return ValueConvertableToType(I, Ty, CTMap);
case Instruction::Load:
- assert(I->getOperand(0) == V);
+ // Cannot convert the types of any subscripts...
+ if (I->getOperand(0) != V) return false;
+
if (const PointerType *PT = dyn_cast<PointerType>(Ty)) {
LoadInst *LI = cast<LoadInst>(I);
- const Type *PVTy = PT->getValueType();
-
- if (LI->hasIndices() || isa<ArrayType>(PVTy))
+
+ if (LI->hasIndices() && !AllIndicesZero(LI))
return false;
- if (!isFirstClassType(PVTy)) {
- // They could be loading the first element of a structure type...
- if (const StructType *ST = dyn_cast<StructType>(PVTy)) {
- unsigned Offset = 0; // No offset, get first leaf.
- vector<ConstPoolVal*> Offsets; // Discarded...
- const Type *Ty = getStructOffsetType(ST, Offset, Offsets, false);
- assert(Offset == 0 && "Offset changed from zero???");
- if (!isFirstClassType(Ty)) return false;
-
- // See if the leaf type is compatible with the old return type...
- if (TD.getTypeSize(Ty) != TD.getTypeSize(LI->getType()))
- return false;
- return RetValConvertableToType(LI, Ty, CTMap);
- }
- return false;
+ const Type *LoadedTy = PT->getValueType();
+
+ // They could be loading the first element of a composite type...
+ if (const CompositeType *CT = dyn_cast<CompositeType>(LoadedTy)) {
+ unsigned Offset = 0; // No offset, get first leaf.
+ vector<Value*> Indices; // Discarded...
+ LoadedTy = getStructOffsetType(CT, Offset, Indices, false);
+ assert(Offset == 0 && "Offset changed from zero???");
}
- if (TD.getTypeSize(PVTy) != TD.getTypeSize(LI->getType()))
+ if (!isFirstClassType(LoadedTy))
+ return false;
+
+ if (TD.getTypeSize(LoadedTy) != TD.getTypeSize(LI->getType()))
return false;
- return RetValConvertableToType(LI, PVTy, CTMap);
+ return ValueConvertableToType(LI, LoadedTy, CTMap);
}
return false;
@@ -521,53 +640,50 @@ static bool OperandConvertableToType(User *U, Value *V, const Type *Ty,
return false;
}
+ case Instruction::GetElementPtr:
+ // Convert a getelementptr [sbyte] * %reg111, uint 16 freely back to
+ // anything that is a pointer type...
+ //
+ if (I->getType() != PointerType::get(Type::SByteTy) ||
+ I->getNumOperands() != 2 || V != I->getOperand(0) ||
+ I->getOperand(1)->getType() != Type::UIntTy || !isa<PointerType>(Ty))
+ return false;
+ return true;
+
case Instruction::PHINode: {
PHINode *PN = cast<PHINode>(I);
for (unsigned i = 0; i < PN->getNumIncomingValues(); ++i)
if (!ExpressionConvertableToType(PN->getIncomingValue(i), Ty, CTMap))
return false;
- return RetValConvertableToType(PN, Ty, CTMap);
+ return ValueConvertableToType(PN, Ty, CTMap);
}
-#if 0
- case Instruction::GetElementPtr: {
- // GetElementPtr's are directly convertable to a pointer type if they have
- // a number of zeros at the end. Because removing these values does not
- // change the logical offset of the GEP, it is okay and fair to remove them.
- // This can change this:
- // %t1 = getelementptr %Hosp * %hosp, ubyte 4, ubyte 0 ; <%List **>
- // %t2 = cast %List * * %t1 to %List *
- // into
- // %t2 = getelementptr %Hosp * %hosp, ubyte 4 ; <%List *>
- //
- GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
- const PointerType *PTy = dyn_cast<PointerType>(Ty);
- if (!PTy) return false;
+ case Instruction::Call: {
+ User::op_iterator OI = find(I->op_begin(), I->op_end(), V);
+ assert (OI != I->op_end() && "Not using value!");
+ unsigned OpNum = OI - I->op_begin();
- // Check to see if there are zero elements that we can remove from the
- // index array. If there are, check to see if removing them causes us to
- // get to the right type...
- //
- vector<ConstPoolVal*> Indices = GEP->getIndices();
- const Type *BaseType = GEP->getPointerOperand()->getType();
+ if (OpNum == 0)
+ return false; // Can't convert method pointer type yet. FIXME
+
+ const PointerType *MPtr = cast<PointerType>(I->getOperand(0)->getType());
+ const MethodType *MTy = cast<MethodType>(MPtr->getValueType());
+ if (!MTy->isVarArg()) return false;
- while (Indices.size() &&
- cast<ConstPoolUInt>(Indices.back())->getValue() == 0) {
- Indices.pop_back();
- const Type *ElTy = GetElementPtrInst::getIndexedType(BaseType, Indices,
- true);
- if (ElTy == PTy->getValueType())
- return true; // Found a match!!
- }
- break; // No match, maybe next time.
+ if ((OpNum-1) < MTy->getParamTypes().size())
+ return false; // It's not in the varargs section...
+
+ // If we get this far, we know the value is in the varargs section of the
+ // method! We can convert if we don't reinterpret the value...
+ //
+ return Ty->isLosslesslyConvertableTo(V->getType());
}
-#endif
}
return false;
}
-void ConvertUsersType(Value *V, Value *NewVal, ValueMapCache &VMC) {
+void ConvertValueToNewType(Value *V, Value *NewVal, ValueMapCache &VMC) {
ValueHandle VH(VMC, V);
unsigned NumUses = V->use_size();
@@ -616,12 +732,19 @@ static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal,
break;
case Instruction::Add:
- if (OldVal == I->getOperand(0) && isa<CastInst>(I->getOperand(1))) {
- Res = getAddToGEPResult(NewVal->getType(),
- cast<CastInst>(I->getOperand(1))->getOperand(0));
- if (Res) { // If successful, this Add should be converted to a GEP.
+ if (OldVal == I->getOperand(0) && isa<CastInst>(I->getOperand(1)) &&
+ isa<PointerType>(NewTy)) {
+ Value *IndexVal = cast<CastInst>(I->getOperand(1))->getOperand(0);
+ vector<Value*> Indices;
+ BasicBlock::iterator It = find(BIL.begin(), BIL.end(), I);
+
+ if (const Type *ETy = ConvertableToGEP(NewTy, IndexVal, Indices, &It)) {
+ // If successful, convert the add to a GEP
+ const Type *RetTy = PointerType::get(ETy);
// First operand is actually the given pointer...
- Res->setOperand(0, NewVal);
+ Res = new GetElementPtrInst(NewVal, Indices);
+ assert(cast<PointerType>(Res->getType())->getValueType() == ETy &&
+ "ConvertableToGEP broken!");
break;
}
}
@@ -651,19 +774,21 @@ static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal,
case Instruction::Load: {
assert(I->getOperand(0) == OldVal && isa<PointerType>(NewVal->getType()));
- const Type *PVTy = cast<PointerType>(NewVal->getType())->getValueType();
- if (!isFirstClassType(PVTy)) { // Must be an indirect load then...
- assert(isa<StructType>(PVTy));
+ const Type *LoadedTy = cast<PointerType>(NewVal->getType())->getValueType();
+
+ vector<Value*> Indices;
+
+ if (const CompositeType *CT = dyn_cast<CompositeType>(LoadedTy)) {
unsigned Offset = 0; // No offset, get first leaf.
- vector<ConstPoolVal*> Offsets; // Discarded...
- const Type *Ty = getStructOffsetType(PVTy, Offset, Offsets, false);
- Res = new LoadInst(NewVal, Offsets, Name);
- } else {
- Res = new LoadInst(NewVal, Name);
+ LoadedTy = getStructOffsetType(CT, Offset, Indices, false);
}
+ assert(isFirstClassType(LoadedTy));
+
+ Res = new LoadInst(NewVal, Indices, Name);
assert(isFirstClassType(Res->getType()) && "Load of structure or array!");
break;
}
+
case Instruction::Store: {
if (I->getOperand(0) == OldVal) { // Replace the source value
const PointerType *NewPT = PointerType::get(NewTy);
@@ -679,6 +804,27 @@ static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal,
break;
}
+
+ case Instruction::GetElementPtr: {
+ // Convert a getelementptr [sbyte] * %reg111, uint 16 freely back to
+ // anything that is a pointer type...
+ //
+ BasicBlock::iterator It = find(BIL.begin(), BIL.end(), I);
+
+ // Insert a cast right before this instruction of the index value...
+ CastInst *CIdx = new CastInst(I->getOperand(1), NewTy);
+ It = BIL.insert(It, CIdx)+1;
+
+ // Insert an add right before this instruction
+ Instruction *AddInst = BinaryOperator::create(Instruction::Add, NewVal,
+ CIdx, Name);
+ It = BIL.insert(It, AddInst)+1;
+
+ // Finally, cast the result back to our previous type...
+ Res = new CastInst(AddInst, I->getType());
+ break;
+ }
+
case Instruction::PHINode: {
PHINode *OldPN = cast<PHINode>(I);
PHINode *NewPN = new PHINode(NewTy, Name);
@@ -695,44 +841,17 @@ static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal,
break;
}
-#if 0
- case Instruction::GetElementPtr: {
- // GetElementPtr's are directly convertable to a pointer type if they have
- // a number of zeros at the end. Because removing these values does not
- // change the logical offset of the GEP, it is okay and fair to remove them.
- // This can change this:
- // %t1 = getelementptr %Hosp * %hosp, ubyte 4, ubyte 0 ; <%List **>
- // %t2 = cast %List * * %t1 to %List *
- // into
- // %t2 = getelementptr %Hosp * %hosp, ubyte 4 ; <%List *>
- //
- GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
+ case Instruction::Call: {
+ Value *Meth = I->getOperand(0);
+ vector<Value*> Params(I->op_begin()+1, I->op_end());
- // Check to see if there are zero elements that we can remove from the
- // index array. If there are, check to see if removing them causes us to
- // get to the right type...
- //
- vector<ConstPoolVal*> Indices = GEP->getIndices();
- const Type *BaseType = GEP->getPointerOperand()->getType();
- const Type *PVTy = cast<PointerType>(Ty)->getValueType();
- Res = 0;
- while (Indices.size() &&
- cast<ConstPoolUInt>(Indices.back())->getValue() == 0) {
- Indices.pop_back();
- if (GetElementPtrInst::getIndexedType(BaseType, Indices, true) == PVTy) {
- if (Indices.size() == 0) {
- Res = new CastInst(GEP->getPointerOperand(), BaseType); // NOOP
- } else {
- Res = new GetElementPtrInst(GEP->getPointerOperand(), Indices, Name);
- }
- break;
- }
- }
- assert(Res && "Didn't find match!");
- break; // No match, maybe next time.
- }
-#endif
+ vector<Value*>::iterator OI = find(Params.begin(), Params.end(), OldVal);
+ assert (OI != Params.end() && "Not using value!");
+ *OI = NewVal;
+ Res = new CallInst(Meth, Params, Name);
+ break;
+ }
default:
assert(0 && "Expression convertable, but don't know how to convert?");
return;
@@ -751,7 +870,7 @@ static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal,
VMC.ExprMap[I] = Res;
if (I->getType() != Res->getType())
- ConvertUsersType(I, Res, VMC);
+ ConvertValueToNewType(I, Res, VMC);
else {
for (unsigned It = 0; It < I->use_size(); ) {
User *Use = *(I->use_begin()+It);
@@ -770,6 +889,8 @@ static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal,
cerr << "DELETING: " << (void*)I << " " << I;
#endif
BIL.remove(I);
+ VMC.OperandsMapped.erase(I);
+ VMC.ExprMap.erase(I);
delete I;
} else {
for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
@@ -780,8 +901,8 @@ static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal,
}
-ValueHandle::ValueHandle(ValueMapCache &VMC, Value *V) : Instruction(Type::VoidTy, UserOp1, ""),
- Cache(VMC) {
+ValueHandle::ValueHandle(ValueMapCache &VMC, Value *V)
+ : Instruction(Type::VoidTy, UserOp1, ""), Cache(VMC) {
#ifdef DEBUG_EXPR_CONVERT
cerr << "VH AQUIRING: " << (void*)V << " " << V;
#endif