diff options
author | Chris Lattner <sabre@nondot.org> | 2004-04-02 20:23:17 +0000 |
---|---|---|
committer | Chris Lattner <sabre@nondot.org> | 2004-04-02 20:23:17 +0000 |
commit | 53e677abadadf71ef33f2f69533a32c1fa3d168f (patch) | |
tree | ac6dfe22c0b018c95404da39ce9121b067fd2d7b /lib | |
parent | 7aa773bc07fd6125c0e4a965760fa06c5679cc8d (diff) |
Add a new analysis
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12619 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib')
-rw-r--r-- | lib/Analysis/ScalarEvolution.cpp | 2482 |
1 files changed, 2482 insertions, 0 deletions
diff --git a/lib/Analysis/ScalarEvolution.cpp b/lib/Analysis/ScalarEvolution.cpp new file mode 100644 index 0000000000..ab0ed4be61 --- /dev/null +++ b/lib/Analysis/ScalarEvolution.cpp @@ -0,0 +1,2482 @@ +//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains the implementation of the scalar evolution analysis +// engine, which is used primarily to analyze expressions involving induction +// variables in loops. +// +// There are several aspects to this library. First is the representation of +// scalar expressions, which are represented as subclasses of the SCEV class. +// These classes are used to represent certain types of subexpressions that we +// can handle. These classes are reference counted, managed by the SCEVHandle +// class. We only create one SCEV of a particular shape, so pointer-comparisons +// for equality are legal. +// +// One important aspect of the SCEV objects is that they are never cyclic, even +// if there is a cycle in the dataflow for an expression (ie, a PHI node). If +// the PHI node is one of the idioms that we can represent (e.g., a polynomial +// recurrence) then we represent it directly as a recurrence node, otherwise we +// represent it as a SCEVUnknown node. +// +// In addition to being able to represent expressions of various types, we also +// have folders that are used to build the *canonical* representation for a +// particular expression. These folders are capable of using a variety of +// rewrite rules to simplify the expressions. +// +// Once the folders are defined, we can implement the more interesting +// higher-level code, such as the code that recognizes PHI nodes of various +// types, computes the execution count of a loop, etc. +// +// Orthogonal to the analysis of code above, this file also implements the +// ScalarEvolutionRewriter class, which is used to emit code that represents the +// various recurrences present in a loop, in canonical forms. +// +// TODO: We should use these routines and value representations to implement +// dependence analysis! +// +//===----------------------------------------------------------------------===// +// +// There are several good references for the techniques used in this analysis. +// +// Chains of recurrences -- a method to expedite the evaluation +// of closed-form functions +// Olaf Bachmann, Paul S. Wang, Eugene V. Zima +// +// On computational properties of chains of recurrences +// Eugene V. Zima +// +// Symbolic Evaluation of Chains of Recurrences for Loop Optimization +// Robert A. van Engelen +// +// Efficient Symbolic Analysis for Optimizing Compilers +// Robert A. van Engelen +// +// Using the chains of recurrences algebra for data dependence testing and +// induction variable substitution +// MS Thesis, Johnie Birch +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Instructions.h" +#include "llvm/Type.h" +#include "llvm/Value.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Assembly/Writer.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Support/CFG.h" +#include "llvm/Support/ConstantRange.h" +#include "llvm/Support/InstIterator.h" +#include "Support/Statistic.h" +using namespace llvm; + +namespace { + RegisterAnalysis<ScalarEvolution> + R("scalar-evolution", "Scalar Evolution Analysis Printer"); + + Statistic<> + NumBruteForceEvaluations("scalar-evolution", + "Number of brute force evaluations needed to calculate high-order polynomial exit values"); + Statistic<> + NumTripCountsComputed("scalar-evolution", + "Number of loops with predictable loop counts"); + Statistic<> + NumTripCountsNotComputed("scalar-evolution", + "Number of loops without predictable loop counts"); +} + +//===----------------------------------------------------------------------===// +// SCEV class definitions +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// Implementation of the SCEV class. +// +namespace { + enum SCEVTypes { + // These should be ordered in terms of increasing complexity to make the + // folders simpler. + scConstant, scTruncate, scZeroExtend, scAddExpr, scMulExpr, scUDivExpr, + scAddRecExpr, scUnknown, scCouldNotCompute + }; + + /// SCEVComplexityCompare - Return true if the complexity of the LHS is less + /// than the complexity of the RHS. If the SCEVs have identical complexity, + /// order them by their addresses. This comparator is used to canonicalize + /// expressions. + struct SCEVComplexityCompare { + bool operator()(SCEV *LHS, SCEV *RHS) { + if (LHS->getSCEVType() < RHS->getSCEVType()) + return true; + if (LHS->getSCEVType() == RHS->getSCEVType()) + return LHS < RHS; + return false; + } + }; +} + +SCEV::~SCEV() {} +void SCEV::dump() const { + print(std::cerr); +} + +/// getValueRange - Return the tightest constant bounds that this value is +/// known to have. This method is only valid on integer SCEV objects. +ConstantRange SCEV::getValueRange() const { + const Type *Ty = getType(); + assert(Ty->isInteger() && "Can't get range for a non-integer SCEV!"); + Ty = Ty->getUnsignedVersion(); + // Default to a full range if no better information is available. + return ConstantRange(getType()); +} + + +SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {} + +bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { + assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); +} + +const Type *SCEVCouldNotCompute::getType() const { + assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); +} + +bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { + assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); + return false; +} + +Value *SCEVCouldNotCompute::expandCodeFor(ScalarEvolutionRewriter &SER, + Instruction *InsertPt) { + assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); + return 0; +} + + +void SCEVCouldNotCompute::print(std::ostream &OS) const { + OS << "***COULDNOTCOMPUTE***"; +} + +bool SCEVCouldNotCompute::classof(const SCEV *S) { + return S->getSCEVType() == scCouldNotCompute; +} + + +//===----------------------------------------------------------------------===// +// SCEVConstant - This class represents a constant integer value. +// +namespace { + class SCEVConstant; + // SCEVConstants - Only allow the creation of one SCEVConstant for any + // particular value. Don't use a SCEVHandle here, or else the object will + // never be deleted! + std::map<ConstantInt*, SCEVConstant*> SCEVConstants; + + class SCEVConstant : public SCEV { + ConstantInt *V; + SCEVConstant(ConstantInt *v) : SCEV(scConstant), V(v) {} + + virtual ~SCEVConstant() { + SCEVConstants.erase(V); + } + public: + /// get method - This just gets and returns a new SCEVConstant object. + /// + static SCEVHandle get(ConstantInt *V) { + // Make sure that SCEVConstant instances are all unsigned. + if (V->getType()->isSigned()) { + const Type *NewTy = V->getType()->getUnsignedVersion(); + V = cast<ConstantUInt>(ConstantExpr::getCast(V, NewTy)); + } + + SCEVConstant *&R = SCEVConstants[V]; + if (R == 0) R = new SCEVConstant(V); + return R; + } + + ConstantInt *getValue() const { return V; } + + /// getValueRange - Return the tightest constant bounds that this value is + /// known to have. This method is only valid on integer SCEV objects. + virtual ConstantRange getValueRange() const { + return ConstantRange(V); + } + + virtual bool isLoopInvariant(const Loop *L) const { + return true; + } + + virtual bool hasComputableLoopEvolution(const Loop *L) const { + return false; // Not loop variant + } + + virtual const Type *getType() const { return V->getType(); } + + Value *expandCodeFor(ScalarEvolutionRewriter &SER, + Instruction *InsertPt) { + return getValue(); + } + + virtual void print(std::ostream &OS) const { + WriteAsOperand(OS, V, false); + } + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const SCEVConstant *S) { return true; } + static inline bool classof(const SCEV *S) { + return S->getSCEVType() == scConstant; + } + }; +} + + +//===----------------------------------------------------------------------===// +// SCEVTruncateExpr - This class represents a truncation of an integer value to +// a smaller integer value. +// +namespace { + class SCEVTruncateExpr; + // SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any + // particular input. Don't use a SCEVHandle here, or else the object will + // never be deleted! + std::map<std::pair<SCEV*, const Type*>, SCEVTruncateExpr*> SCEVTruncates; + + class SCEVTruncateExpr : public SCEV { + SCEVHandle Op; + const Type *Ty; + SCEVTruncateExpr(const SCEVHandle &op, const Type *ty) + : SCEV(scTruncate), Op(op), Ty(ty) { + assert(Op->getType()->isInteger() && Ty->isInteger() && + Ty->isUnsigned() && + "Cannot truncate non-integer value!"); + assert(Op->getType()->getPrimitiveSize() > Ty->getPrimitiveSize() && + "This is not a truncating conversion!"); + } + + virtual ~SCEVTruncateExpr() { + SCEVTruncates.erase(std::make_pair(Op, Ty)); + } + public: + /// get method - This just gets and returns a new SCEVTruncate object + /// + static SCEVHandle get(const SCEVHandle &Op, const Type *Ty); + + const SCEVHandle &getOperand() const { return Op; } + virtual const Type *getType() const { return Ty; } + + virtual bool isLoopInvariant(const Loop *L) const { + return Op->isLoopInvariant(L); + } + + virtual bool hasComputableLoopEvolution(const Loop *L) const { + return Op->hasComputableLoopEvolution(L); + } + + /// getValueRange - Return the tightest constant bounds that this value is + /// known to have. This method is only valid on integer SCEV objects. + virtual ConstantRange getValueRange() const { + return getOperand()->getValueRange().truncate(getType()); + } + + Value *expandCodeFor(ScalarEvolutionRewriter &SER, + Instruction *InsertPt); + + virtual void print(std::ostream &OS) const { + OS << "(truncate " << *Op << " to " << *Ty << ")"; + } + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const SCEVTruncateExpr *S) { return true; } + static inline bool classof(const SCEV *S) { + return S->getSCEVType() == scTruncate; + } + }; +} + + +//===----------------------------------------------------------------------===// +// SCEVZeroExtendExpr - This class represents a zero extension of a small +// integer value to a larger integer value. +// +namespace { + class SCEVZeroExtendExpr; + // SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any + // particular input. Don't use a SCEVHandle here, or else the object will + // never be deleted! + std::map<std::pair<SCEV*, const Type*>, SCEVZeroExtendExpr*> SCEVZeroExtends; + + class SCEVZeroExtendExpr : public SCEV { + SCEVHandle Op; + const Type *Ty; + SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty) + : SCEV(scTruncate), Op(Op), Ty(ty) { + assert(Op->getType()->isInteger() && Ty->isInteger() && + Ty->isUnsigned() && + "Cannot zero extend non-integer value!"); + assert(Op->getType()->getPrimitiveSize() < Ty->getPrimitiveSize() && + "This is not an extending conversion!"); + } + + virtual ~SCEVZeroExtendExpr() { + SCEVZeroExtends.erase(std::make_pair(Op, Ty)); + } + public: + /// get method - This just gets and returns a new SCEVZeroExtend object + /// + static SCEVHandle get(const SCEVHandle &Op, const Type *Ty); + + const SCEVHandle &getOperand() const { return Op; } + virtual const Type *getType() const { return Ty; } + + virtual bool isLoopInvariant(const Loop *L) const { + return Op->isLoopInvariant(L); + } + + virtual bool hasComputableLoopEvolution(const Loop *L) const { + return Op->hasComputableLoopEvolution(L); + } + + /// getValueRange - Return the tightest constant bounds that this value is + /// known to have. This method is only valid on integer SCEV objects. + virtual ConstantRange getValueRange() const { + return getOperand()->getValueRange().zeroExtend(getType()); + } + + Value *expandCodeFor(ScalarEvolutionRewriter &SER, + Instruction *InsertPt); + + virtual void print(std::ostream &OS) const { + OS << "(zeroextend " << *Op << " to " << *Ty << ")"; + } + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const SCEVZeroExtendExpr *S) { return true; } + static inline bool classof(const SCEV *S) { + return S->getSCEVType() == scZeroExtend; + } + }; +} + + +//===----------------------------------------------------------------------===// +// SCEVCommutativeExpr - This node is the base class for n'ary commutative +// operators. + +namespace { + class SCEVCommutativeExpr; + // SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any + // particular input. Don't use a SCEVHandle here, or else the object will + // never be deleted! + std::map<std::pair<unsigned, std::vector<SCEV*> >, + SCEVCommutativeExpr*> SCEVCommExprs; + + class SCEVCommutativeExpr : public SCEV { + std::vector<SCEVHandle> Operands; + + protected: + SCEVCommutativeExpr(enum SCEVTypes T, const std::vector<SCEVHandle> &ops) + : SCEV(T) { + Operands.reserve(ops.size()); + Operands.insert(Operands.end(), ops.begin(), ops.end()); + } + + ~SCEVCommutativeExpr() { + SCEVCommExprs.erase(std::make_pair(getSCEVType(), + std::vector<SCEV*>(Operands.begin(), + Operands.end()))); + } + + public: + unsigned getNumOperands() const { return Operands.size(); } + const SCEVHandle &getOperand(unsigned i) const { + assert(i < Operands.size() && "Operand index out of range!"); + return Operands[i]; + } + + const std::vector<SCEVHandle> &getOperands() const { return Operands; } + typedef std::vector<SCEVHandle>::const_iterator op_iterator; + op_iterator op_begin() const { return Operands.begin(); } + op_iterator op_end() const { return Operands.end(); } + + + virtual bool isLoopInvariant(const Loop *L) const { + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) + if (!getOperand(i)->isLoopInvariant(L)) return false; + return true; + } + + virtual bool hasComputableLoopEvolution(const Loop *L) const { + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) + if (getOperand(i)->hasComputableLoopEvolution(L)) return true; + return false; + } + + virtual const Type *getType() const { return getOperand(0)->getType(); } + + virtual const char *getOperationStr() const = 0; + + virtual void print(std::ostream &OS) const { + assert(Operands.size() > 1 && "This plus expr shouldn't exist!"); + const char *OpStr = getOperationStr(); + OS << "(" << *Operands[0]; + for (unsigned i = 1, e = Operands.size(); i != e; ++i) + OS << OpStr << *Operands[i]; + OS << ")"; + } + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const SCEVCommutativeExpr *S) { return true; } + static inline bool classof(const SCEV *S) { + return S->getSCEVType() == scAddExpr || + S->getSCEVType() == scMulExpr; + } + }; +} + +//===----------------------------------------------------------------------===// +// SCEVAddExpr - This node represents an addition of some number of SCEV's. +// +namespace { + class SCEVAddExpr : public SCEVCommutativeExpr { + SCEVAddExpr(const std::vector<SCEVHandle> &ops) + : SCEVCommutativeExpr(scAddExpr, ops) { + } + + public: + static SCEVHandle get(std::vector<SCEVHandle> &Ops); + + static SCEVHandle get(const SCEVHandle &LHS, const SCEVHandle &RHS) { + std::vector<SCEVHandle> Ops; + Ops.push_back(LHS); + Ops.push_back(RHS); + return get(Ops); + } + + static SCEVHandle get(const SCEVHandle &Op0, const SCEVHandle &Op1, + const SCEVHandle &Op2) { + std::vector<SCEVHandle> Ops; + Ops.push_back(Op0); + Ops.push_back(Op1); + Ops.push_back(Op2); + return get(Ops); + } + + virtual const char *getOperationStr() const { return " + "; } + + Value *expandCodeFor(ScalarEvolutionRewriter &SER, + Instruction *InsertPt); + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const SCEVAddExpr *S) { return true; } + static inline bool classof(const SCEV *S) { + return S->getSCEVType() == scAddExpr; + } + }; +} + +//===----------------------------------------------------------------------===// +// SCEVMulExpr - This node represents multiplication of some number of SCEV's. +// +namespace { + class SCEVMulExpr : public SCEVCommutativeExpr { + SCEVMulExpr(const std::vector<SCEVHandle> &ops) + : SCEVCommutativeExpr(scMulExpr, ops) { + } + + public: + static SCEVHandle get(std::vector<SCEVHandle> &Ops); + + static SCEVHandle get(const SCEVHandle &LHS, const SCEVHandle &RHS) { + std::vector<SCEVHandle> Ops; + Ops.push_back(LHS); + Ops.push_back(RHS); + return get(Ops); + } + + virtual const char *getOperationStr() const { return " * "; } + + Value *expandCodeFor(ScalarEvolutionRewriter &SER, + Instruction *InsertPt); + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const SCEVMulExpr *S) { return true; } + static inline bool classof(const SCEV *S) { + return S->getSCEVType() == scMulExpr; + } + }; +} + + +//===----------------------------------------------------------------------===// +// SCEVUDivExpr - This class represents a binary unsigned division operation. +// +namespace { + class SCEVUDivExpr; + // SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular + // input. Don't use a SCEVHandle here, or else the object will never be + // deleted! + std::map<std::pair<SCEV*, SCEV*>, SCEVUDivExpr*> SCEVUDivs; + + class SCEVUDivExpr : public SCEV { + SCEVHandle LHS, RHS; + SCEVUDivExpr(const SCEVHandle &lhs, const SCEVHandle &rhs) + : SCEV(scUDivExpr), LHS(lhs), RHS(rhs) {} + + virtual ~SCEVUDivExpr() { + SCEVUDivs.erase(std::make_pair(LHS, RHS)); + } + public: + /// get method - This just gets and returns a new SCEVUDiv object. + /// + static SCEVHandle get(const SCEVHandle &LHS, const SCEVHandle &RHS); + + const SCEVHandle &getLHS() const { return LHS; } + const SCEVHandle &getRHS() const { return RHS; } + + virtual bool isLoopInvariant(const Loop *L) const { + return LHS->isLoopInvariant(L) && RHS->isLoopInvariant(L); + } + + virtual bool hasComputableLoopEvolution(const Loop *L) const { + return LHS->hasComputableLoopEvolution(L) && + RHS->hasComputableLoopEvolution(L); + } + + virtual const Type *getType() const { + const Type *Ty = LHS->getType(); + if (Ty->isSigned()) Ty = Ty->getUnsignedVersion(); + return Ty; + } + + Value *expandCodeFor(ScalarEvolutionRewriter &SER, + Instruction *InsertPt); + + virtual void print(std::ostream &OS) const { + OS << "(" << *LHS << " /u " << *RHS << ")"; + } + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const SCEVUDivExpr *S) { return true; } + static inline bool classof(const SCEV *S) { + return S->getSCEVType() == scUDivExpr; + } + }; +} + + +//===----------------------------------------------------------------------===// + +// SCEVAddRecExpr - This node represents a polynomial recurrence on the trip +// count of the specified loop. +// +// All operands of an AddRec are required to be loop invariant. +// +namespace { + class SCEVAddRecExpr; + // SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any + // particular input. Don't use a SCEVHandle here, or else the object will + // never be deleted! + std::map<std::pair<const Loop *, std::vector<SCEV*> >, + SCEVAddRecExpr*> SCEVAddRecExprs; + + class SCEVAddRecExpr : public SCEV { + std::vector<SCEVHandle> Operands; + const Loop *L; + + SCEVAddRecExpr(const std::vector<SCEVHandle> &ops, const Loop *l) + : SCEV(scAddRecExpr), Operands(ops), L(l) { + for (unsigned i = 0, e = Operands.size(); i != e; ++i) + assert(Operands[i]->isLoopInvariant(l) && + "Operands of AddRec must be loop-invariant!"); + } + ~SCEVAddRecExpr() { + SCEVAddRecExprs.erase(std::make_pair(L, + std::vector<SCEV*>(Operands.begin(), + Operands.end()))); + } + public: + static SCEVHandle get(const SCEVHandle &Start, const SCEVHandle &Step, + const Loop *); + static SCEVHandle get(std::vector<SCEVHandle> &Operands, + const Loop *); + static SCEVHandle get(const std::vector<SCEVHandle> &Operands, + const Loop *L) { + std::vector<SCEVHandle> NewOp(Operands); + return get(NewOp, L); + } + + typedef std::vector<SCEVHandle>::const_iterator op_iterator; + op_iterator op_begin() const { return Operands.begin(); } + op_iterator op_end() const { return Operands.end(); } + + unsigned getNumOperands() const { return Operands.size(); } + const SCEVHandle &getOperand(unsigned i) const { return Operands[i]; } + const SCEVHandle &getStart() const { return Operands[0]; } + const Loop *getLoop() const { return L; } + + + /// getStepRecurrence - This method constructs and returns the recurrence + /// indicating how much this expression steps by. If this is a polynomial + /// of degree N, it returns a chrec of degree N-1. + SCEVHandle getStepRecurrence() const { + if (getNumOperands() == 2) return getOperand(1); + return SCEVAddRecExpr::get(std::vector<SCEVHandle>(op_begin()+1,op_end()), + getLoop()); + } + + virtual bool hasComputableLoopEvolution(const Loop *QL) const { + if (L == QL) return true; + /// FIXME: What if the start or step value a recurrence for the specified + /// loop? + return false; + } + + + virtual bool isLoopInvariant(const Loop *QueryLoop) const { + // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't + // contain L. + return !QueryLoop->contains(L->getHeader()); + } + + virtual const Type *getType() const { return Operands[0]->getType(); } + + Value *expandCodeFor(ScalarEvolutionRewriter &SER, + Instruction *InsertPt); + + + /// isAffine - Return true if this is an affine AddRec (i.e., it represents + /// an expressions A+B*x where A and B are loop invariant values. + bool isAffine() const { + // We know that the start value is invariant. This expression is thus + // affine iff the step is also invariant. + return getNumOperands() == 2; + } + + /// isQuadratic - Return true if this is an quadratic AddRec (i.e., it + /// represents an expressions A+B*x+C*x^2 where A, B and C are loop + /// invariant values. This corresponds to an addrec of the form {L,+,M,+,N} + bool isQuadratic() const { + return getNumOperands() == 3; + } + + /// evaluateAtIteration - Return the value of this chain of recurrences at + /// the specified iteration number. + SCEVHandle evaluateAtIteration(SCEVHandle It) const; + + /// getNumIterationsInRange - Return the number of iterations of this loop + /// that produce values in the specified constant range. Another way of + /// looking at this is that it returns the first iteration number where the + /// value is not in the condition, thus computing the exit count. If the + /// iteration count can't be computed, an instance of SCEVCouldNotCompute is + /// returned. + SCEVHandle getNumIterationsInRange(ConstantRange Range) const; + + + virtual void print(std::ostream &OS) const { + OS << "{" << *Operands[0]; + for (unsigned i = 1, e = Operands.size(); i != e; ++i) + OS << ",+," << *Operands[i]; + OS << "}<" << L->getHeader()->getName() + ">"; + } + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const SCEVAddRecExpr *S) { return true; } + static inline bool classof(const SCEV *S) { + return S->getSCEVType() == scAddRecExpr; + } + }; +} + + +//===----------------------------------------------------------------------===// +// SCEVUnknown - This means that we are dealing with an entirely unknown SCEV +// value, and only represent it as it's LLVM Value. This is the "bottom" value +// for the analysis. +// +namespace { + class SCEVUnknown; + // SCEVUnknowns - Only allow the creation of one SCEVUnknown for any + // particular value. Don't use a SCEVHandle here, or else the object will + // never be deleted! + std::map<Value*, SCEVUnknown*> SCEVUnknowns; + + class SCEVUnknown : public SCEV { + Value *V; + SCEVUnknown(Value *v) : SCEV(scUnknown), V(v) {} + + protected: + ~SCEVUnknown() { SCEVUnknowns.erase(V); } + public: + /// get method - For SCEVUnknown, this just gets and returns a new + /// SCEVUnknown. + static SCEVHandle get(Value *V) { + if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) + return SCEVConstant::get(CI); + SCEVUnknown *&Result = SCEVUnknowns[V]; + if (Result == 0) Result = new SCEVUnknown(V); + return Result; + } + + Value *getValue() const { return V; } + + Value *expandCodeFor(ScalarEvolutionRewriter &SER, + Instruction *InsertPt) { + return V; + } + + virtual bool isLoopInvariant(const Loop *L) const { + // All non-instruction values are loop invariant. All instructions are + // loop invariant if they are not contained in the specified loop. + if (Instruction *I = dyn_cast<Instruction>(V)) + return !L->contains(I->getParent()); + return true; + } + + virtual bool hasComputableLoopEvolution(const Loop *QL) const { + return false; // not computable + } + + virtual const Type *getType() const { return V->getType(); } + + virtual void print(std::ostream &OS) const { + WriteAsOperand(OS, V, false); + } + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const SCEVUnknown *S) { return true; } + static inline bool classof(const SCEV *S) { + return S->getSCEVType() == scUnknown; + } + }; +} + +//===----------------------------------------------------------------------===// +// Simple SCEV method implementations +//===----------------------------------------------------------------------===// + +/// getIntegerSCEV - Given an integer or FP type, create a constant for the +/// specified signed integer value and return a SCEV for the constant. +static SCEVHandle getIntegerSCEV(int Val, const Type *Ty) { + Constant *C; + if (Val == 0) + C = Constant::getNullValue(Ty); + else if (Ty->isFloatingPoint()) + C = ConstantFP::get(Ty, Val); + else if (Ty->isSigned()) + C = ConstantSInt::get(Ty, Val); + else { + C = ConstantSInt::get(Ty->getSignedVersion(), Val); + C = ConstantExpr::getCast(C, Ty); + } + return SCEVUnknown::get(C); +} + +/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the +/// input value to the specified type. If the type must be extended, it is zero +/// extended. +static SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty) { + const Type *SrcTy = V->getType(); + assert(SrcTy->isInteger() && Ty->isInteger() && + "Cannot truncate or zero extend with non-integer arguments!"); + if (SrcTy->getPrimitiveSize() == Ty->getPrimitiveSize()) + return V; // No conversion + if (SrcTy->getPrimitiveSize() > Ty->getPrimitiveSize()) + return SCEVTruncateExpr::get(V, Ty); + return SCEVZeroExtendExpr::get(V, Ty); +} + +/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V +/// +static SCEVHandle getNegativeSCEV(const SCEVHandle &V) { + if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) + return SCEVUnknown::get(ConstantExpr::getNeg(VC->getValue())); + + return SCEVMulExpr::get(V, getIntegerSCEV(-1, V->getType())); +} + +/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. +/// +static SCEVHandle getMinusSCEV(const SCEVHandle &LHS, const SCEVHandle &RHS) { + // X - Y --> X + -Y + return SCEVAddExpr::get(LHS, getNegativeSCEV(RHS)); +} + + +/// Binomial - Evaluate N!/((N-M)!*M!) . Note that N is often large and M is +/// often very small, so we try to reduce the number of N! terms we need to +/// evaluate by evaluating this as (N!/(N-M)!)/M! +static ConstantInt *Binomial(ConstantInt *N, unsigned M) { + uint64_t NVal = N->getRawValue(); + uint64_t FirstTerm = 1; + for (unsigned i = 0; i != M; ++i) + FirstTerm *= NVal-i; + + unsigned MFactorial = 1; + for (; M; --M) + MFactorial *= M; + + Constant *Result = ConstantUInt::get(Type::ULongTy, FirstTerm/MFactorial); + Result = ConstantExpr::getCast(Result, N->getType()); + assert(isa<ConstantInt>(Result) && "Cast of integer not folded??"); + return cast<ConstantInt>(Result); +} + +/// PartialFact - Compute V!/(V-NumSteps)! +static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps) { + // Handle this case efficiently, it is common to have constant iteration + // counts while computing loop exit values. + if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) { + uint64_t Val = SC->getValue()->getRawValue(); + uint64_t Result = 1; + for (; NumSteps; --NumSteps) + Result *= Val-(NumSteps-1); + Constant *Res = ConstantUInt::get(Type::ULongTy, Result); + return SCEVUnknown::get(ConstantExpr::getCast(Res, V->getType())); + } + + const Type *Ty = V->getType(); + if (NumSteps == 0) + return getIntegerSCEV(1, Ty); + + SCEVHandle Result = V; + for (unsigned i = 1; i != NumSteps; ++i) + Result = SCEVMulExpr::get(Result, getMinusSCEV(V, getIntegerSCEV(i, Ty))); + return Result; +} + + +/// evaluateAtIteration - Return the value of this chain of recurrences at +/// the specified iteration number. We can evaluate this recurrence by +/// multiplying each element in the chain by the binomial coefficient +/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: +/// +/// A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3) +/// +/// FIXME/VERIFY: I don't trust that this is correct in the face of overflow. +/// Is the binomial equation safe using modular arithmetic?? +/// +SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It) const { + SCEVHandle Result = getStart(); + int Divisor = 1; + const Type *Ty = It->getType(); + for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { + SCEVHandle BC = PartialFact(It, i); + Divisor *= i; + SCEVHandle Val = SCEVUDivExpr::get(SCEVMulExpr::get(BC, getOperand(i)), + getIntegerSCEV(Divisor, Ty)); + Result = SCEVAddExpr::get(Result, Val); + } + return Result; +} + + +//===----------------------------------------------------------------------===// +// SCEV Expression folder implementations +//===----------------------------------------------------------------------===// + +SCEVHandle SCEVTruncateExpr::get(const SCEVHandle &Op, const Type *Ty) { + if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) + return SCEVUnknown::get(ConstantExpr::getCast(SC->getValue(), Ty)); + + // If the input value is a chrec scev made out of constants, truncate + // all of the constants. + if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { + std::vector<SCEVHandle> Operands; + for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) + // FIXME: This should allow truncation of other expression types! + if (isa<SCEVConstant>(AddRec->getOperand(i))) + Operands.push_back(get(AddRec->getOperand(i), Ty)); + else + break; + if (Operands.size() == AddRec->getNumOperands()) + return SCEVAddRecExpr::get(Operands, AddRec->getLoop()); + } + + SCEVTruncateExpr *&Result = SCEVTruncates[std::make_pair(Op, Ty)]; + if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty); + return Result; +} + +SCEVHandle SCEVZeroExtendExpr::get(const SCEVHandle &Op, const Type *Ty) { + if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) + return SCEVUnknown::get(ConstantExpr::getCast(SC->getValue(), Ty)); + + // FIXME: If the input value is a chrec scev, and we can prove that the value + // did not overflow the old, smaller, value, we can zero extend all of the + // operands (often constants). This would allow analysis of something like + // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } + + SCEVZeroExtendExpr *&Result = SCEVZeroExtends[std::make_pair(Op, Ty)]; + if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty); + return Result; +} + +// get - Get a canonical add expression, or something simpler if possible. +SCEVHandle SCEVAddExpr::get(std::vector<SCEVHandle> &Ops) { + assert(!Ops.empty() && "Cannot get empty add!"); + + // Sort by complexity, this groups all similar expression types together. + std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare()); + + // If there are any constants, fold them together. + unsigned Idx = 0; + if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { + ++Idx; + while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { + // We found two constants, fold them together! + Constant *Fold = ConstantExpr::getAdd(LHSC->getValue(), RHSC->getValue()); + if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) { + Ops[0] = SCEVConstant::get(CI); + Ops.erase(Ops.begin()+1); // Erase the folded element + if (Ops.size() == 1) return Ops[0]; + } else { + // If we couldn't fold the expression, move to the next constant. Note + // that this is impossible to happen in practice because we always + // constant fold constant ints to constant ints. + ++Idx; + } + } + + // If we are left with a constant zero being added, strip it off. + if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) { + Ops.erase(Ops.begin()); + --Idx; + } + } + + if (Ops.size() == 1) + return Ops[0]; + + // Okay, check to see if the same value occurs in the operand list twice. If + // so, merge them together into an multiply expression. Since we sorted the + // list, these values are required to be adjacent. + const Type *Ty = Ops[0]->getType(); + for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) + if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 + // Found a match, merge the two values into a multiply, and add any + // remaining values to the result. + SCEVHandle Two = getIntegerSCEV(2, Ty); + SCEVHandle Mul = SCEVMulExpr::get(Ops[i], Two); + if (Ops.size() == 2) + return Mul; + Ops.erase(Ops.begin()+i, Ops.begin |