diff options
| author | Chris Lattner <sabre@nondot.org> | 2001-12-14 16:42:30 +0000 |
|---|---|---|
| committer | Chris Lattner <sabre@nondot.org> | 2001-12-14 16:42:30 +0000 |
| commit | e917eaec6a473580033887d5745cc4e83240a36d (patch) | |
| tree | 6b7b5cb0aa1cc4dc3bd2badfdde55dcbf668437c /lib/VMCore/Constants.cpp | |
| parent | 6c42c310c6071ff418c48d6d0517ad8d70fa0d01 (diff) | |
Rename ConstPoolVals.cpp to Constants.cpp
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@1471 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/VMCore/Constants.cpp')
| -rw-r--r-- | lib/VMCore/Constants.cpp | 499 |
1 files changed, 499 insertions, 0 deletions
diff --git a/lib/VMCore/Constants.cpp b/lib/VMCore/Constants.cpp new file mode 100644 index 0000000000..257bd7622c --- /dev/null +++ b/lib/VMCore/Constants.cpp @@ -0,0 +1,499 @@ +//===-- ConstantVals.cpp - Implement Constant nodes --------------*- C++ -*--=// +// +// This file implements the Constant* classes... +// +//===----------------------------------------------------------------------===// + +#define __STDC_LIMIT_MACROS // Get defs for INT64_MAX and friends... +#include "llvm/ConstantVals.h" +#include "llvm/DerivedTypes.h" +#include "llvm/SymbolTable.h" +#include "llvm/GlobalValue.h" +#include "llvm/Module.h" +#include "llvm/Analysis/SlotCalculator.h" +#include "Support/StringExtras.h" +#include <algorithm> +#include <assert.h> + +ConstantBool *ConstantBool::True = new ConstantBool(true); +ConstantBool *ConstantBool::False = new ConstantBool(false); + + +//===----------------------------------------------------------------------===// +// Constant Class +//===----------------------------------------------------------------------===// + +// Specialize setName to take care of symbol table majik +void Constant::setName(const string &Name, SymbolTable *ST) { + assert(ST && "Type::setName - Must provide symbol table argument!"); + + if (Name.size()) ST->insert(Name, this); +} + +// Static constructor to create a '0' constant of arbitrary type... +Constant *Constant::getNullConstant(const Type *Ty) { + switch (Ty->getPrimitiveID()) { + case Type::BoolTyID: return ConstantBool::get(false); + case Type::SByteTyID: + case Type::ShortTyID: + case Type::IntTyID: + case Type::LongTyID: return ConstantSInt::get(Ty, 0); + + case Type::UByteTyID: + case Type::UShortTyID: + case Type::UIntTyID: + case Type::ULongTyID: return ConstantUInt::get(Ty, 0); + + case Type::FloatTyID: + case Type::DoubleTyID: return ConstantFP::get(Ty, 0); + + case Type::PointerTyID: + return ConstantPointerNull::get(cast<PointerType>(Ty)); + default: + return 0; + } +} + +#ifndef NDEBUG +#include "llvm/Assembly/Writer.h" +#endif + +void Constant::destroyConstantImpl() { + // When a Constant is destroyed, there may be lingering + // references to the constant by other constants in the constant pool. These + // constants are implicitly dependant on the module that is being deleted, + // but they don't know that. Because we only find out when the CPV is + // deleted, we must now notify all of our users (that should only be + // Constants) that they are, in fact, invalid now and should be deleted. + // + while (!use_empty()) { + Value *V = use_back(); +#ifndef NDEBUG // Only in -g mode... + if (!isa<Constant>(V)) { + cerr << "While deleting: " << this << endl; + cerr << "Use still stuck around after Def is destroyed: " << V << endl; + } +#endif + assert(isa<Constant>(V) && "References remain to ConstantPointerRef!"); + Constant *CPV = cast<Constant>(V); + CPV->destroyConstant(); + + // The constant should remove itself from our use list... + assert((use_empty() || use_back() == V) && "Constant not removed!"); + } + + // Value has no outstanding references it is safe to delete it now... + delete this; +} + +//===----------------------------------------------------------------------===// +// ConstantXXX Classes +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// Normal Constructors + +ConstantBool::ConstantBool(bool V) : Constant(Type::BoolTy) { + Val = V; +} + +ConstantInt::ConstantInt(const Type *Ty, uint64_t V) : Constant(Ty) { + Val.Unsigned = V; +} + +ConstantSInt::ConstantSInt(const Type *Ty, int64_t V) : ConstantInt(Ty, V) { + assert(isValueValidForType(Ty, V) && "Value too large for type!"); +} + +ConstantUInt::ConstantUInt(const Type *Ty, uint64_t V) : ConstantInt(Ty, V) { + assert(isValueValidForType(Ty, V) && "Value too large for type!"); +} + +ConstantFP::ConstantFP(const Type *Ty, double V) : Constant(Ty) { + assert(isValueValidForType(Ty, V) && "Value too large for type!"); + Val = V; +} + +ConstantArray::ConstantArray(const ArrayType *T, + const vector<Constant*> &V) : Constant(T) { + for (unsigned i = 0; i < V.size(); i++) { + assert(V[i]->getType() == T->getElementType()); + Operands.push_back(Use(V[i], this)); + } +} + +ConstantStruct::ConstantStruct(const StructType *T, + const vector<Constant*> &V) : Constant(T) { + const StructType::ElementTypes &ETypes = T->getElementTypes(); + + for (unsigned i = 0; i < V.size(); i++) { + assert(V[i]->getType() == ETypes[i]); + Operands.push_back(Use(V[i], this)); + } +} + +ConstantPointerRef::ConstantPointerRef(GlobalValue *GV) + : ConstantPointer(GV->getType()) { + Operands.push_back(Use(GV, this)); +} + + + +//===----------------------------------------------------------------------===// +// getStrValue implementations + +string ConstantBool::getStrValue() const { + return Val ? "true" : "false"; +} + +string ConstantSInt::getStrValue() const { + return itostr(Val.Signed); +} + +string ConstantUInt::getStrValue() const { + return utostr(Val.Unsigned); +} + +string ConstantFP::getStrValue() const { + return ftostr(Val); +} + +string ConstantArray::getStrValue() const { + string Result; + + // As a special case, print the array as a string if it is an array of + // ubytes or an array of sbytes with positive values. + // + const Type *ETy = cast<ArrayType>(getType())->getElementType(); + bool isString = (ETy == Type::SByteTy || ETy == Type::UByteTy); + + if (ETy == Type::SByteTy) { + for (unsigned i = 0; i < Operands.size(); ++i) + if (ETy == Type::SByteTy && + cast<ConstantSInt>(Operands[i])->getValue() < 0) { + isString = false; + break; + } + } + + if (isString) { + Result = "c\""; + for (unsigned i = 0; i < Operands.size(); ++i) { + unsigned char C = (ETy == Type::SByteTy) ? + (unsigned char)cast<ConstantSInt>(Operands[i])->getValue() : + (unsigned char)cast<ConstantUInt>(Operands[i])->getValue(); + + if (isprint(C)) { + Result += C; + } else { + Result += '\\'; + Result += ( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'); + Result += ((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'); + } + } + Result += "\""; + + } else { + Result = "["; + if (Operands.size()) { + Result += " " + Operands[0]->getType()->getDescription() + + " " + cast<Constant>(Operands[0])->getStrValue(); + for (unsigned i = 1; i < Operands.size(); i++) + Result += ", " + Operands[i]->getType()->getDescription() + + " " + cast<Constant>(Operands[i])->getStrValue(); + } + Result += " ]"; + } + + return Result; +} + +string ConstantStruct::getStrValue() const { + string Result = "{"; + if (Operands.size()) { + Result += " " + Operands[0]->getType()->getDescription() + + " " + cast<Constant>(Operands[0])->getStrValue(); + for (unsigned i = 1; i < Operands.size(); i++) + Result += ", " + Operands[i]->getType()->getDescription() + + " " + cast<Constant>(Operands[i])->getStrValue(); + } + + return Result + " }"; +} + +string ConstantPointerNull::getStrValue() const { + return "null"; +} + +string ConstantPointerRef::getStrValue() const { + const GlobalValue *V = getValue(); + if (V->hasName()) return "%" + V->getName(); + + SlotCalculator *Table = new SlotCalculator(V->getParent(), true); + int Slot = Table->getValSlot(V); + delete Table; + + if (Slot >= 0) return string(" %") + itostr(Slot); + else return "<pointer reference badref>"; +} + + +//===----------------------------------------------------------------------===// +// classof implementations + +bool ConstantInt::classof(const Constant *CPV) { + return CPV->getType()->isIntegral(); +} +bool ConstantSInt::classof(const Constant *CPV) { + return CPV->getType()->isSigned(); +} +bool ConstantUInt::classof(const Constant *CPV) { + return CPV->getType()->isUnsigned(); +} +bool ConstantFP::classof(const Constant *CPV) { + const Type *Ty = CPV->getType(); + return Ty == Type::FloatTy || Ty == Type::DoubleTy; +} +bool ConstantArray::classof(const Constant *CPV) { + return isa<ArrayType>(CPV->getType()); +} +bool ConstantStruct::classof(const Constant *CPV) { + return isa<StructType>(CPV->getType()); +} +bool ConstantPointer::classof(const Constant *CPV) { + return isa<PointerType>(CPV->getType()); +} + + +//===----------------------------------------------------------------------===// +// isValueValidForType implementations + +bool ConstantSInt::isValueValidForType(const Type *Ty, int64_t Val) { + switch (Ty->getPrimitiveID()) { + default: + return false; // These can't be represented as integers!!! + + // Signed types... + case Type::SByteTyID: + return (Val <= INT8_MAX && Val >= INT8_MIN); + case Type::ShortTyID: + return (Val <= INT16_MAX && Val >= INT16_MIN); + case Type::IntTyID: + return (Val <= INT32_MAX && Val >= INT32_MIN); + case Type::LongTyID: + return true; // This is the largest type... + } + assert(0 && "WTF?"); + return false; +} + +bool ConstantUInt::isValueValidForType(const Type *Ty, uint64_t Val) { + switch (Ty->getPrimitiveID()) { + default: + return false; // These can't be represented as integers!!! + + // Unsigned types... + case Type::UByteTyID: + return (Val <= UINT8_MAX); + case Type::UShortTyID: + return (Val <= UINT16_MAX); + case Type::UIntTyID: + return (Val <= UINT32_MAX); + case Type::ULongTyID: + return true; // This is the largest type... + } + assert(0 && "WTF?"); + return false; +} + +bool ConstantFP::isValueValidForType(const Type *Ty, double Val) { + switch (Ty->getPrimitiveID()) { + default: + return false; // These can't be represented as floating point! + + // TODO: Figure out how to test if a double can be cast to a float! + case Type::FloatTyID: + /* + return (Val <= UINT8_MAX); + */ + case Type::DoubleTyID: + return true; // This is the largest type... + } +}; + +//===----------------------------------------------------------------------===// +// Hash Function Implementations +#if 0 +unsigned ConstantSInt::hash(const Type *Ty, int64_t V) { + return unsigned(Ty->getPrimitiveID() ^ V); +} + +unsigned ConstantUInt::hash(const Type *Ty, uint64_t V) { + return unsigned(Ty->getPrimitiveID() ^ V); +} + +unsigned ConstantFP::hash(const Type *Ty, double V) { + return Ty->getPrimitiveID() ^ unsigned(V); +} + +unsigned ConstantArray::hash(const ArrayType *Ty, + const vector<Constant*> &V) { + unsigned Result = (Ty->getUniqueID() << 5) ^ (Ty->getUniqueID() * 7); + for (unsigned i = 0; i < V.size(); ++i) + Result ^= V[i]->getHash() << (i & 7); + return Result; +} + +unsigned ConstantStruct::hash(const StructType *Ty, + const vector<Constant*> &V) { + unsigned Result = (Ty->getUniqueID() << 5) ^ (Ty->getUniqueID() * 7); + for (unsigned i = 0; i < V.size(); ++i) + Result ^= V[i]->getHash() << (i & 7); + return Result; +} +#endif + +//===----------------------------------------------------------------------===// +// Factory Function Implementation + +template<class ValType, class ConstantClass> +struct ValueMap { + typedef pair<const Type*, ValType> ConstHashKey; + map<ConstHashKey, ConstantClass *> Map; + + inline ConstantClass *get(const Type *Ty, ValType V) { + map<ConstHashKey,ConstantClass *>::iterator I = + Map.find(ConstHashKey(Ty, V)); + return (I != Map.end()) ? I->second : 0; + } + + inline void add(const Type *Ty, ValType V, ConstantClass *CP) { + Map.insert(make_pair(ConstHashKey(Ty, V), CP)); + } + + inline void remove(ConstantClass *CP) { + for (map<ConstHashKey,ConstantClass *>::iterator I = Map.begin(), + E = Map.end(); I != E;++I) + if (I->second == CP) { + Map.erase(I); + return; + } + } +}; + +//---- ConstantUInt::get() and ConstantSInt::get() implementations... +// +static ValueMap<uint64_t, ConstantInt> IntConstants; + +ConstantSInt *ConstantSInt::get(const Type *Ty, int64_t V) { + ConstantSInt *Result = (ConstantSInt*)IntConstants.get(Ty, (uint64_t)V); + if (!Result) // If no preexisting value, create one now... + IntConstants.add(Ty, V, Result = new ConstantSInt(Ty, V)); + return Result; +} + +ConstantUInt *ConstantUInt::get(const Type *Ty, uint64_t V) { + ConstantUInt *Result = (ConstantUInt*)IntConstants.get(Ty, V); + if (!Result) // If no preexisting value, create one now... + IntConstants.add(Ty, V, Result = new ConstantUInt(Ty, V)); + return Result; +} + +ConstantInt *ConstantInt::get(const Type *Ty, unsigned char V) { + assert(V <= 127 && "Can only be used with very small positive constants!"); + if (Ty->isSigned()) return ConstantSInt::get(Ty, V); + return ConstantUInt::get(Ty, V); +} + +//---- ConstantFP::get() implementation... +// +static ValueMap<double, ConstantFP> FPConstants; + +ConstantFP *ConstantFP::get(const Type *Ty, double V) { + ConstantFP *Result = FPConstants.get(Ty, V); + if (!Result) // If no preexisting value, create one now... + FPConstants.add(Ty, V, Result = new ConstantFP(Ty, V)); + return Result; +} + +//---- ConstantArray::get() implementation... +// +static ValueMap<vector<Constant*>, ConstantArray> ArrayConstants; + +ConstantArray *ConstantArray::get(const ArrayType *Ty, + const vector<Constant*> &V) { + ConstantArray *Result = ArrayConstants.get(Ty, V); + if (!Result) // If no preexisting value, create one now... + ArrayConstants.add(Ty, V, Result = new ConstantArray(Ty, V)); + return Result; +} + +// ConstantArray::get(const string&) - Return an array that is initialized to +// contain the specified string. A null terminator is added to the specified +// string so that it may be used in a natural way... +// +ConstantArray *ConstantArray::get(const string &Str) { + vector<Constant*> ElementVals; + + for (unsigned i = 0; i < Str.length(); ++i) + ElementVals.push_back(ConstantSInt::get(Type::SByteTy, Str[i])); + + // Add a null terminator to the string... + ElementVals.push_back(ConstantSInt::get(Type::SByteTy, 0)); + + ArrayType *ATy = ArrayType::get(Type::SByteTy, Str.length()+1); + return ConstantArray::get(ATy, ElementVals); +} + + +// destroyConstant - Remove the constant from the constant table... +// +void ConstantArray::destroyConstant() { + ArrayConstants.remove(this); + destroyConstantImpl(); +} + +//---- ConstantStruct::get() implementation... +// +static ValueMap<vector<Constant*>, ConstantStruct> StructConstants; + +ConstantStruct *ConstantStruct::get(const StructType *Ty, + const vector<Constant*> &V) { + ConstantStruct *Result = StructConstants.get(Ty, V); + if (!Result) // If no preexisting value, create one now... + StructConstants.add(Ty, V, Result = new ConstantStruct(Ty, V)); + return Result; +} + +// destroyConstant - Remove the constant from the constant table... +// +void ConstantStruct::destroyConstant() { + StructConstants.remove(this); + destroyConstantImpl(); +} + +//---- ConstantPointerNull::get() implementation... +// +static ValueMap<char, ConstantPointerNull> NullPtrConstants; + +ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) { + ConstantPointerNull *Result = NullPtrConstants.get(Ty, 0); + if (!Result) // If no preexisting value, create one now... + NullPtrConstants.add(Ty, 0, Result = new ConstantPointerNull(Ty)); + return Result; +} + +//---- ConstantPointerRef::get() implementation... +// +ConstantPointerRef *ConstantPointerRef::get(GlobalValue *GV) { + assert(GV->getParent() && "Global Value must be attached to a module!"); + + // The Module handles the pointer reference sharing... + return GV->getParent()->getConstantPointerRef(GV); +} + + +void ConstantPointerRef::mutateReference(GlobalValue *NewGV) { + getValue()->getParent()->mutateConstantPointerRef(getValue(), NewGV); + Operands[0] = NewGV; +} |
