diff options
author | Wojciech Matyjewicz <wmatyjewicz@fastmail.fm> | 2008-06-23 19:39:50 +0000 |
---|---|---|
committer | Wojciech Matyjewicz <wmatyjewicz@fastmail.fm> | 2008-06-23 19:39:50 +0000 |
commit | 300c6c5167d2869d1568d783d0e3e48bf4b03a6c (patch) | |
tree | 6cdbf87bd8a4d8048a3ad81750f225520ce21b39 /lib/Support/APInt.cpp | |
parent | 180c1691c7fd79e2376bdd59e962d190607e20fa (diff) |
First step to fix PR2088. Implement routine to compute the
multiplicative inverse of a given number. Modify udivrem to allow input and
output pairs of arguments to overlap. Patch is based on the work by Chandler
Carruth.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52638 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Support/APInt.cpp')
-rw-r--r-- | lib/Support/APInt.cpp | 55 |
1 files changed, 48 insertions, 7 deletions
diff --git a/lib/Support/APInt.cpp b/lib/Support/APInt.cpp index 38b379005a..b0577b3680 100644 --- a/lib/Support/APInt.cpp +++ b/lib/Support/APInt.cpp @@ -1426,6 +1426,50 @@ APInt APInt::sqrt() const { return x_old + 1; } +/// Computes the multiplicative inverse of this APInt for a given modulo. The +/// iterative extended Euclidean algorithm is used to solve for this value, +/// however we simplify it to speed up calculating only the inverse, and take +/// advantage of div+rem calculations. We also use some tricks to avoid copying +/// (potentially large) APInts around. +APInt APInt::multiplicativeInverse(const APInt& modulo) const { + assert(ult(modulo) && "This APInt must be smaller than the modulo"); + + // Using the properties listed at the following web page (accessed 06/21/08): + // http://www.numbertheory.org/php/euclid.html + // (especially the properties numbered 3, 4 and 9) it can be proved that + // BitWidth bits suffice for all the computations in the algorithm implemented + // below. More precisely, this number of bits suffice if the multiplicative + // inverse exists, but may not suffice for the general extended Euclidean + // algorithm. + + APInt r[2] = { modulo, *this }; + APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) }; + APInt q(BitWidth, 0); + + unsigned i; + for (i = 0; r[i^1] != 0; i ^= 1) { + // An overview of the math without the confusing bit-flipping: + // q = r[i-2] / r[i-1] + // r[i] = r[i-2] % r[i-1] + // t[i] = t[i-2] - t[i-1] * q + udivrem(r[i], r[i^1], q, r[i]); + t[i] -= t[i^1] * q; + } + + // If this APInt and the modulo are not coprime, there is no multiplicative + // inverse, so return 0. We check this by looking at the next-to-last + // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean + // algorithm. + if (r[i] != 1) + return APInt(BitWidth, 0); + + // The next-to-last t is the multiplicative inverse. However, we are + // interested in a positive inverse. Calcuate a positive one from a negative + // one if necessary. A simple addition of the modulo suffices because + // abs(t[i]) is known to less than *this/2 (see the link above). + return t[i].isNegative() ? t[i] + modulo : t[i]; +} + /// Implementation of Knuth's Algorithm D (Division of nonnegative integers) /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The /// variables here have the same names as in the algorithm. Comments explain @@ -1882,13 +1926,10 @@ void APInt::udivrem(const APInt &LHS, const APInt &RHS, if (lhsWords == 1 && rhsWords == 1) { // There is only one word to consider so use the native versions. - if (LHS.isSingleWord()) { - Quotient = APInt(LHS.getBitWidth(), LHS.VAL / RHS.VAL); - Remainder = APInt(LHS.getBitWidth(), LHS.VAL % RHS.VAL); - } else { - Quotient = APInt(LHS.getBitWidth(), LHS.pVal[0] / RHS.pVal[0]); - Remainder = APInt(LHS.getBitWidth(), LHS.pVal[0] % RHS.pVal[0]); - } + uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0]; + uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]; + Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue); + Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue); return; } |