diff options
author | Duncan Sands <baldrick@free.fr> | 2008-06-17 14:27:01 +0000 |
---|---|---|
committer | Duncan Sands <baldrick@free.fr> | 2008-06-17 14:27:01 +0000 |
commit | 69b01e92a29ce6d7e435171aeea3fbc987b81586 (patch) | |
tree | 5d1ea52d6c49439229957559901114b55b955cb1 /lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp | |
parent | de9256ad2e33a203e97328e285c3909f67aad4b0 (diff) |
Split type expansion into ExpandInteger and ExpandFloat
rather than bundling them together. Rename FloatToInt
to PromoteFloat (better, if not perfect). Reorganize
files by types rather than by operations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52408 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp')
-rw-r--r-- | lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp | 2174 |
1 files changed, 2174 insertions, 0 deletions
diff --git a/lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp b/lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp new file mode 100644 index 0000000000..4b927fec08 --- /dev/null +++ b/lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp @@ -0,0 +1,2174 @@ +//===----- LegalizeIntegerTypes.cpp - Legalization of integer types -------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements integer type expansion and promotion for LegalizeTypes. +// Promotion is the act of changing a computation in an illegal type into a +// computation in a larger type. For example, implementing i8 arithmetic in an +// i32 register (often needed on powerpc). +// Expansion is the act of changing a computation in an illegal type into a +// computation in multiple registers of a smaller type. For example, +// implementing i64 arithmetic in two i32 registers (often needed on 32-bit +// targets). +// +//===----------------------------------------------------------------------===// + +#include "LegalizeTypes.h" +#include "llvm/Constants.h" +using namespace llvm; + +//===----------------------------------------------------------------------===// +// Integer Result Promotion +//===----------------------------------------------------------------------===// + +/// PromoteIntegerResult - This method is called when a result of a node is +/// found to be in need of promotion to a larger type. At this point, the node +/// may also have invalid operands or may have other results that need +/// expansion, we just know that (at least) one result needs promotion. +void DAGTypeLegalizer::PromoteIntegerResult(SDNode *N, unsigned ResNo) { + DEBUG(cerr << "Promote integer result: "; N->dump(&DAG); cerr << "\n"); + SDOperand Result = SDOperand(); + + switch (N->getOpcode()) { + default: +#ifndef NDEBUG + cerr << "PromoteIntegerResult #" << ResNo << ": "; + N->dump(&DAG); cerr << "\n"; +#endif + assert(0 && "Do not know how to promote this operator!"); + abort(); + case ISD::UNDEF: Result = PromoteIntRes_UNDEF(N); break; + case ISD::Constant: Result = PromoteIntRes_Constant(N); break; + + case ISD::TRUNCATE: Result = PromoteIntRes_TRUNCATE(N); break; + case ISD::SIGN_EXTEND: + case ISD::ZERO_EXTEND: + case ISD::ANY_EXTEND: Result = PromoteIntRes_INT_EXTEND(N); break; + case ISD::FP_ROUND: Result = PromoteIntRes_FP_ROUND(N); break; + case ISD::FP_TO_SINT: + case ISD::FP_TO_UINT: Result = PromoteIntRes_FP_TO_XINT(N); break; + case ISD::SETCC: Result = PromoteIntRes_SETCC(N); break; + case ISD::LOAD: Result = PromoteIntRes_LOAD(cast<LoadSDNode>(N)); break; + case ISD::BUILD_PAIR: Result = PromoteIntRes_BUILD_PAIR(N); break; + case ISD::BIT_CONVERT: Result = PromoteIntRes_BIT_CONVERT(N); break; + + case ISD::AND: + case ISD::OR: + case ISD::XOR: + case ISD::ADD: + case ISD::SUB: + case ISD::MUL: Result = PromoteIntRes_SimpleIntBinOp(N); break; + + case ISD::SDIV: + case ISD::SREM: Result = PromoteIntRes_SDIV(N); break; + + case ISD::UDIV: + case ISD::UREM: Result = PromoteIntRes_UDIV(N); break; + + case ISD::SHL: Result = PromoteIntRes_SHL(N); break; + case ISD::SRA: Result = PromoteIntRes_SRA(N); break; + case ISD::SRL: Result = PromoteIntRes_SRL(N); break; + + case ISD::SELECT: Result = PromoteIntRes_SELECT(N); break; + case ISD::SELECT_CC: Result = PromoteIntRes_SELECT_CC(N); break; + + case ISD::CTLZ: Result = PromoteIntRes_CTLZ(N); break; + case ISD::CTPOP: Result = PromoteIntRes_CTPOP(N); break; + case ISD::CTTZ: Result = PromoteIntRes_CTTZ(N); break; + + case ISD::EXTRACT_VECTOR_ELT: + Result = PromoteIntRes_EXTRACT_VECTOR_ELT(N); + break; + } + + // If Result is null, the sub-method took care of registering the result. + if (Result.Val) + SetPromotedInteger(SDOperand(N, ResNo), Result); +} + +SDOperand DAGTypeLegalizer::PromoteIntRes_UNDEF(SDNode *N) { + return DAG.getNode(ISD::UNDEF, TLI.getTypeToTransformTo(N->getValueType(0))); +} + +SDOperand DAGTypeLegalizer::PromoteIntRes_Constant(SDNode *N) { + MVT VT = N->getValueType(0); + // Zero extend things like i1, sign extend everything else. It shouldn't + // matter in theory which one we pick, but this tends to give better code? + unsigned Opc = VT.isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; + SDOperand Result = DAG.getNode(Opc, TLI.getTypeToTransformTo(VT), + SDOperand(N, 0)); + assert(isa<ConstantSDNode>(Result) && "Didn't constant fold ext?"); + return Result; +} + +SDOperand DAGTypeLegalizer::PromoteIntRes_TRUNCATE(SDNode *N) { + SDOperand Res; + + switch (getTypeAction(N->getOperand(0).getValueType())) { + default: assert(0 && "Unknown type action!"); + case Legal: + case ExpandInteger: + Res = N->getOperand(0); + break; + case PromoteInteger: + Res = GetPromotedInteger(N->getOperand(0)); + break; + } + + MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0)); + assert(Res.getValueType().getSizeInBits() >= NVT.getSizeInBits() && + "Truncation doesn't make sense!"); + if (Res.getValueType() == NVT) + return Res; + + // Truncate to NVT instead of VT + return DAG.getNode(ISD::TRUNCATE, NVT, Res); +} + +SDOperand DAGTypeLegalizer::PromoteIntRes_INT_EXTEND(SDNode *N) { + MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0)); + + if (getTypeAction(N->getOperand(0).getValueType()) == PromoteInteger) { + SDOperand Res = GetPromotedInteger(N->getOperand(0)); + assert(Res.getValueType().getSizeInBits() <= NVT.getSizeInBits() && + "Extension doesn't make sense!"); + + // If the result and operand types are the same after promotion, simplify + // to an in-register extension. + if (NVT == Res.getValueType()) { + // The high bits are not guaranteed to be anything. Insert an extend. + if (N->getOpcode() == ISD::SIGN_EXTEND) + return DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Res, + DAG.getValueType(N->getOperand(0).getValueType())); + if (N->getOpcode() == ISD::ZERO_EXTEND) + return DAG.getZeroExtendInReg(Res, N->getOperand(0).getValueType()); + assert(N->getOpcode() == ISD::ANY_EXTEND && "Unknown integer extension!"); + return Res; + } + } + + // Otherwise, just extend the original operand all the way to the larger type. + return DAG.getNode(N->getOpcode(), NVT, N->getOperand(0)); +} + +SDOperand DAGTypeLegalizer::PromoteIntRes_FP_ROUND(SDNode *N) { + // NOTE: Assumes input is legal. + if (N->getConstantOperandVal(1) == 0) + return DAG.getNode(ISD::FP_ROUND_INREG, N->getOperand(0).getValueType(), + N->getOperand(0), DAG.getValueType(N->getValueType(0))); + // If the precision discard isn't needed, just return the operand unrounded. + return N->getOperand(0); +} + +SDOperand DAGTypeLegalizer::PromoteIntRes_FP_TO_XINT(SDNode *N) { + unsigned NewOpc = N->getOpcode(); + MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0)); + + // If we're promoting a UINT to a larger size, check to see if the new node + // will be legal. If it isn't, check to see if FP_TO_SINT is legal, since + // we can use that instead. This allows us to generate better code for + // FP_TO_UINT for small destination sizes on targets where FP_TO_UINT is not + // legal, such as PowerPC. + if (N->getOpcode() == ISD::FP_TO_UINT) { + if (!TLI.isOperationLegal(ISD::FP_TO_UINT, NVT) && + (TLI.isOperationLegal(ISD::FP_TO_SINT, NVT) || + TLI.getOperationAction(ISD::FP_TO_SINT, NVT)==TargetLowering::Custom)) + NewOpc = ISD::FP_TO_SINT; + } + + return DAG.getNode(NewOpc, NVT, N->getOperand(0)); +} + +SDOperand DAGTypeLegalizer::PromoteIntRes_SETCC(SDNode *N) { + assert(isTypeLegal(TLI.getSetCCResultType(N->getOperand(0))) + && "SetCC type is not legal??"); + return DAG.getNode(ISD::SETCC, TLI.getSetCCResultType(N->getOperand(0)), + N->getOperand(0), N->getOperand(1), N->getOperand(2)); +} + +SDOperand DAGTypeLegalizer::PromoteIntRes_LOAD(LoadSDNode *N) { + // FIXME: Add support for indexed loads. + MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0)); + ISD::LoadExtType ExtType = + ISD::isNON_EXTLoad(N) ? ISD::EXTLOAD : N->getExtensionType(); + SDOperand Res = DAG.getExtLoad(ExtType, NVT, N->getChain(), N->getBasePtr(), + N->getSrcValue(), N->getSrcValueOffset(), + N->getMemoryVT(), N->isVolatile(), + N->getAlignment()); + + // Legalized the chain result - switch anything that used the old chain to + // use the new one. + ReplaceValueWith(SDOperand(N, 1), Res.getValue(1)); + return Res; +} + +SDOperand DAGTypeLegalizer::PromoteIntRes_BUILD_PAIR(SDNode *N) { + // The pair element type may be legal, or may not promote to the same type as + // the result, for example i14 = BUILD_PAIR (i7, i7). Handle all cases. + return DAG.getNode(ISD::ANY_EXTEND, + TLI.getTypeToTransformTo(N->getValueType(0)), + JoinIntegers(N->getOperand(0), N->getOperand(1))); +} + +SDOperand DAGTypeLegalizer::PromoteIntRes_BIT_CONVERT(SDNode *N) { + SDOperand InOp = N->getOperand(0); + MVT InVT = InOp.getValueType(); + MVT NInVT = TLI.getTypeToTransformTo(InVT); + MVT OutVT = TLI.getTypeToTransformTo(N->getValueType(0)); + + switch (getTypeAction(InVT)) { + default: + assert(false && "Unknown type action!"); + break; + case Legal: + break; + case PromoteInteger: + if (OutVT.getSizeInBits() == NInVT.getSizeInBits()) + // The input promotes to the same size. Convert the promoted value. + return DAG.getNode(ISD::BIT_CONVERT, OutVT, GetPromotedInteger(InOp)); + break; + case PromoteFloat: + // Promote the integer operand by hand. + return DAG.getNode(ISD::ANY_EXTEND, OutVT, GetPromotedFloat(InOp)); + case ExpandInteger: + case ExpandFloat: + break; + case Scalarize: + // Convert the element to an integer and promote it by hand. + return DAG.getNode(ISD::ANY_EXTEND, OutVT, + BitConvertToInteger(GetScalarizedVector(InOp))); + case Split: + // For example, i32 = BIT_CONVERT v2i16 on alpha. Convert the split + // pieces of the input into integers and reassemble in the final type. + SDOperand Lo, Hi; + GetSplitVector(N->getOperand(0), Lo, Hi); + Lo = BitConvertToInteger(Lo); + Hi = BitConvertToInteger(Hi); + + if (TLI.isBigEndian()) + std::swap(Lo, Hi); + + InOp = DAG.getNode(ISD::ANY_EXTEND, + MVT::getIntegerVT(OutVT.getSizeInBits()), + JoinIntegers(Lo, Hi)); + return DAG.getNode(ISD::BIT_CONVERT, OutVT, InOp); + } + + // Otherwise, lower the bit-convert to a store/load from the stack, then + // promote the load. + SDOperand Op = CreateStackStoreLoad(InOp, N->getValueType(0)); + return PromoteIntRes_LOAD(cast<LoadSDNode>(Op.Val)); +} + +SDOperand DAGTypeLegalizer::PromoteIntRes_SimpleIntBinOp(SDNode *N) { + // The input may have strange things in the top bits of the registers, but + // these operations don't care. They may have weird bits going out, but + // that too is okay if they are integer operations. + SDOperand LHS = GetPromotedInteger(N->getOperand(0)); + SDOperand RHS = GetPromotedInteger(N->getOperand(1)); + return DAG.getNode(N->getOpcode(), LHS.getValueType(), LHS, RHS); +} + +SDOperand DAGTypeLegalizer::PromoteIntRes_SDIV(SDNode *N) { + // Sign extend the input. + SDOperand LHS = GetPromotedInteger(N->getOperand(0)); + SDOperand RHS = GetPromotedInteger(N->getOperand(1)); + MVT VT = N->getValueType(0); + LHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, LHS.getValueType(), LHS, + DAG.getValueType(VT)); + RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, RHS.getValueType(), RHS, + DAG.getValueType(VT)); + + return DAG.getNode(N->getOpcode(), LHS.getValueType(), LHS, RHS); +} + +SDOperand DAGTypeLegalizer::PromoteIntRes_UDIV(SDNode *N) { + // Zero extend the input. + SDOperand LHS = GetPromotedInteger(N->getOperand(0)); + SDOperand RHS = GetPromotedInteger(N->getOperand(1)); + MVT VT = N->getValueType(0); + LHS = DAG.getZeroExtendInReg(LHS, VT); + RHS = DAG.getZeroExtendInReg(RHS, VT); + + return DAG.getNode(N->getOpcode(), LHS.getValueType(), LHS, RHS); +} + +SDOperand DAGTypeLegalizer::PromoteIntRes_SHL(SDNode *N) { + return DAG.getNode(ISD::SHL, TLI.getTypeToTransformTo(N->getValueType(0)), + GetPromotedInteger(N->getOperand(0)), N->getOperand(1)); +} + +SDOperand DAGTypeLegalizer::PromoteIntRes_SRA(SDNode *N) { + // The input value must be properly sign extended. + MVT VT = N->getValueType(0); + MVT NVT = TLI.getTypeToTransformTo(VT); + SDOperand Res = GetPromotedInteger(N->getOperand(0)); + Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Res, DAG.getValueType(VT)); + return DAG.getNode(ISD::SRA, NVT, Res, N->getOperand(1)); +} + +SDOperand DAGTypeLegalizer::PromoteIntRes_SRL(SDNode *N) { + // The input value must be properly zero extended. + MVT VT = N->getValueType(0); + MVT NVT = TLI.getTypeToTransformTo(VT); + SDOperand Res = ZExtPromotedInteger(N->getOperand(0)); + return DAG.getNode(ISD::SRL, NVT, Res, N->getOperand(1)); +} + +SDOperand DAGTypeLegalizer::PromoteIntRes_SELECT(SDNode *N) { + SDOperand LHS = GetPromotedInteger(N->getOperand(1)); + SDOperand RHS = GetPromotedInteger(N->getOperand(2)); + return DAG.getNode(ISD::SELECT, LHS.getValueType(), N->getOperand(0),LHS,RHS); +} + +SDOperand DAGTypeLegalizer::PromoteIntRes_SELECT_CC(SDNode *N) { + SDOperand LHS = GetPromotedInteger(N->getOperand(2)); + SDOperand RHS = GetPromotedInteger(N->getOperand(3)); + return DAG.getNode(ISD::SELECT_CC, LHS.getValueType(), N->getOperand(0), + N->getOperand(1), LHS, RHS, N->getOperand(4)); +} + +SDOperand DAGTypeLegalizer::PromoteIntRes_CTLZ(SDNode *N) { + SDOperand Op = GetPromotedInteger(N->getOperand(0)); + MVT OVT = N->getValueType(0); + MVT NVT = Op.getValueType(); + // Zero extend to the promoted type and do the count there. + Op = DAG.getNode(ISD::CTLZ, NVT, DAG.getZeroExtendInReg(Op, OVT)); + // Subtract off the extra leading bits in the bigger type. + return DAG.getNode(ISD::SUB, NVT, Op, + DAG.getConstant(NVT.getSizeInBits() - + OVT.getSizeInBits(), NVT)); +} + +SDOperand DAGTypeLegalizer::PromoteIntRes_CTPOP(SDNode *N) { + SDOperand Op = GetPromotedInteger(N->getOperand(0)); + MVT OVT = N->getValueType(0); + MVT NVT = Op.getValueType(); + // Zero extend to the promoted type and do the count there. + return DAG.getNode(ISD::CTPOP, NVT, DAG.getZeroExtendInReg(Op, OVT)); +} + +SDOperand DAGTypeLegalizer::PromoteIntRes_CTTZ(SDNode *N) { + SDOperand Op = GetPromotedInteger(N->getOperand(0)); + MVT OVT = N->getValueType(0); + MVT NVT = Op.getValueType(); + // The count is the same in the promoted type except if the original + // value was zero. This can be handled by setting the bit just off + // the top of the original type. + Op = DAG.getNode(ISD::OR, NVT, Op, + // FIXME: Do this using an APINT constant. + DAG.getConstant(1UL << OVT.getSizeInBits(), NVT)); + return DAG.getNode(ISD::CTTZ, NVT, Op); +} + +SDOperand DAGTypeLegalizer::PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N) { + MVT OldVT = N->getValueType(0); + SDOperand OldVec = N->getOperand(0); + unsigned OldElts = OldVec.getValueType().getVectorNumElements(); + + if (OldElts == 1) { + assert(!isTypeLegal(OldVec.getValueType()) && + "Legal one-element vector of a type needing promotion!"); + // It is tempting to follow GetScalarizedVector by a call to + // GetPromotedInteger, but this would be wrong because the + // scalarized value may not yet have been processed. + return DAG.getNode(ISD::ANY_EXTEND, TLI.getTypeToTransformTo(OldVT), + GetScalarizedVector(OldVec)); + } + + // Convert to a vector half as long with an element type of twice the width, + // for example <4 x i16> -> <2 x i32>. + assert(!(OldElts & 1) && "Odd length vectors not supported!"); + MVT NewVT = MVT::getIntegerVT(2 * OldVT.getSizeInBits()); + assert(OldVT.isSimple() && NewVT.isSimple()); + + SDOperand NewVec = DAG.getNode(ISD::BIT_CONVERT, + MVT::getVectorVT(NewVT, OldElts / 2), + OldVec); + + // Extract the element at OldIdx / 2 from the new vector. + SDOperand OldIdx = N->getOperand(1); + SDOperand NewIdx = DAG.getNode(ISD::SRL, OldIdx.getValueType(), OldIdx, + DAG.getConstant(1, TLI.getShiftAmountTy())); + SDOperand Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, NewVT, NewVec, NewIdx); + + // Select the appropriate half of the element: Lo if OldIdx was even, + // Hi if it was odd. + SDOperand Lo = Elt; + SDOperand Hi = DAG.getNode(ISD::SRL, NewVT, Elt, + DAG.getConstant(OldVT.getSizeInBits(), + TLI.getShiftAmountTy())); + if (TLI.isBigEndian()) + std::swap(Lo, Hi); + + SDOperand Odd = DAG.getNode(ISD::AND, OldIdx.getValueType(), OldIdx, + DAG.getConstant(1, TLI.getShiftAmountTy())); + return DAG.getNode(ISD::SELECT, NewVT, Odd, Hi, Lo); +} + +//===----------------------------------------------------------------------===// +// Integer Operand Promotion +//===----------------------------------------------------------------------===// + +/// PromoteIntegerOperand - This method is called when the specified operand of +/// the specified node is found to need promotion. At this point, all of the +/// result types of the node are known to be legal, but other operands of the +/// node may need promotion or expansion as well as the specified one. +bool DAGTypeLegalizer::PromoteIntegerOperand(SDNode *N, unsigned OpNo) { + DEBUG(cerr << "Promote integer operand: "; N->dump(&DAG); cerr << "\n"); + SDOperand Res; + switch (N->getOpcode()) { + default: +#ifndef NDEBUG + cerr << "PromoteIntegerOperand Op #" << OpNo << ": "; + N->dump(&DAG); cerr << "\n"; +#endif + assert(0 && "Do not know how to promote this operator's operand!"); + abort(); + + case ISD::ANY_EXTEND: Res = PromoteIntOp_ANY_EXTEND(N); break; + case ISD::ZERO_EXTEND: Res = PromoteIntOp_ZERO_EXTEND(N); break; + case ISD::SIGN_EXTEND: Res = PromoteIntOp_SIGN_EXTEND(N); break; + case ISD::TRUNCATE: Res = PromoteIntOp_TRUNCATE(N); break; + case ISD::FP_EXTEND: Res = PromoteIntOp_FP_EXTEND(N); break; + case ISD::FP_ROUND: Res = PromoteIntOp_FP_ROUND(N); break; + case ISD::SINT_TO_FP: + case ISD::UINT_TO_FP: Res = PromoteIntOp_INT_TO_FP(N); break; + case ISD::BUILD_PAIR: Res = PromoteIntOp_BUILD_PAIR(N); break; + + case ISD::SELECT: Res = PromoteIntOp_SELECT(N, OpNo); break; + case ISD::BRCOND: Res = PromoteIntOp_BRCOND(N, OpNo); break; + case ISD::BR_CC: Res = PromoteIntOp_BR_CC(N, OpNo); break; + case ISD::SETCC: Res = PromoteIntOp_SETCC(N, OpNo); break; + + case ISD::STORE: Res = PromoteIntOp_STORE(cast<StoreSDNode>(N), + OpNo); break; + + case ISD::BUILD_VECTOR: Res = PromoteIntOp_BUILD_VECTOR(N); break; + case ISD::INSERT_VECTOR_ELT: + Res = PromoteIntOp_INSERT_VECTOR_ELT(N, OpNo); + break; + + case ISD::MEMBARRIER: Res = PromoteIntOp_MEMBARRIER(N); break; + } + + // If the result is null, the sub-method took care of registering results etc. + if (!Res.Val) return false; + // If the result is N, the sub-method updated N in place. + if (Res.Val == N) { + // Mark N as new and remark N and its operands. This allows us to correctly + // revisit N if it needs another step of promotion and allows us to visit + // any new operands to N. + ReanalyzeNode(N); + return true; + } + + assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 && + "Invalid operand expansion"); + + ReplaceValueWith(SDOperand(N, 0), Res); + return false; +} + +SDOperand DAGTypeLegalizer::PromoteIntOp_ANY_EXTEND(SDNode *N) { + SDOperand Op = GetPromotedInteger(N->getOperand(0)); + return DAG.getNode(ISD::ANY_EXTEND, N->getValueType(0), Op); +} + +SDOperand DAGTypeLegalizer::PromoteIntOp_ZERO_EXTEND(SDNode *N) { + SDOperand Op = GetPromotedInteger(N->getOperand(0)); + Op = DAG.getNode(ISD::ANY_EXTEND, N->getValueType(0), Op); + return DAG.getZeroExtendInReg(Op, N->getOperand(0).getValueType()); +} + +SDOperand DAGTypeLegalizer::PromoteIntOp_SIGN_EXTEND(SDNode *N) { + SDOperand Op = GetPromotedInteger(N->getOperand(0)); + Op = DAG.getNode(ISD::ANY_EXTEND, N->getValueType(0), Op); + return DAG.getNode(ISD::SIGN_EXTEND_INREG, Op.getValueType(), + Op, DAG.getValueType(N->getOperand(0).getValueType())); +} + +SDOperand DAGTypeLegalizer::PromoteIntOp_TRUNCATE(SDNode *N) { + SDOperand Op = GetPromotedInteger(N->getOperand(0)); + return DAG.getNode(ISD::TRUNCATE, N->getValueType(0), Op); +} + +SDOperand DAGTypeLegalizer::PromoteIntOp_FP_EXTEND(SDNode *N) { + SDOperand Op = GetPromotedInteger(N->getOperand(0)); + return DAG.getNode(ISD::FP_EXTEND, N->getValueType(0), Op); +} + +SDOperand DAGTypeLegalizer::PromoteIntOp_FP_ROUND(SDNode *N) { + SDOperand Op = GetPromotedInteger(N->getOperand(0)); + return DAG.getNode(ISD::FP_ROUND, N->getValueType(0), Op, + DAG.getIntPtrConstant(0)); +} + +SDOperand DAGTypeLegalizer::PromoteIntOp_INT_TO_FP(SDNode *N) { + SDOperand In = GetPromotedInteger(N->getOperand(0)); + MVT OpVT = N->getOperand(0).getValueType(); + if (N->getOpcode() == ISD::UINT_TO_FP) + In = DAG.getZeroExtendInReg(In, OpVT); + else + In = DAG.getNode(ISD::SIGN_EXTEND_INREG, In.getValueType(), + In, DAG.getValueType(OpVT)); + + return DAG.UpdateNodeOperands(SDOperand(N, 0), In); +} + +SDOperand DAGTypeLegalizer::PromoteIntOp_BUILD_PAIR(SDNode *N) { + // Since the result type is legal, the operands must promote to it. + MVT OVT = N->getOperand(0).getValueType(); + SDOperand Lo = GetPromotedInteger(N->getOperand(0)); + SDOperand Hi = GetPromotedInteger(N->getOperand(1)); + assert(Lo.getValueType() == N->getValueType(0) && "Operand over promoted?"); + + Lo = DAG.getZeroExtendInReg(Lo, OVT); + Hi = DAG.getNode(ISD::SHL, N->getValueType(0), Hi, + DAG.getConstant(OVT.getSizeInBits(), + TLI.getShiftAmountTy())); + return DAG.getNode(ISD::OR, N->getValueType(0), Lo, Hi); +} + +SDOperand DAGTypeLegalizer::PromoteIntOp_SELECT(SDNode *N, unsigned OpNo) { + assert(OpNo == 0 && "Only know how to promote condition"); + SDOperand Cond = GetPromotedInteger(N->getOperand(0)); // Promote condition. + + // The top bits of the promoted condition are not necessarily zero, ensure + // that the value is properly zero extended. + unsigned BitWidth = Cond.getValueSizeInBits(); + if (!DAG.MaskedValueIsZero(Cond, + APInt::getHighBitsSet(BitWidth, BitWidth-1))) + Cond = DAG.getZeroExtendInReg(Cond, MVT::i1); + + // The chain (Op#0) and basic block destination (Op#2) are always legal types. + return DAG.UpdateNodeOperands(SDOperand(N, 0), Cond, N->getOperand(1), + N->getOperand(2)); +} + +SDOperand DAGTypeLegalizer::PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo) { + assert(OpNo == 1 && "only know how to promote condition"); + SDOperand Cond = GetPromotedInteger(N->getOperand(1)); // Promote condition. + + // The top bits of the promoted condition are not necessarily zero, ensure + // that the value is properly zero extended. + unsigned BitWidth = Cond.getValueSizeInBits(); + if (!DAG.MaskedValueIsZero(Cond, + APInt::getHighBitsSet(BitWidth, BitWidth-1))) + Cond = DAG.getZeroExtendInReg(Cond, MVT::i1); + + // The chain (Op#0) and basic block destination (Op#2) are always legal types. + return DAG.UpdateNodeOperands(SDOperand(N, 0), N->getOperand(0), Cond, + N->getOperand(2)); +} + +SDOperand DAGTypeLegalizer::PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo) { + assert(OpNo == 2 && "Don't know how to promote this operand"); + + SDOperand LHS = N->getOperand(2); + SDOperand RHS = N->getOperand(3); + PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(1))->get()); + + // The chain (Op#0), CC (#1) and basic block destination (Op#4) are always + // legal types. + return DAG.UpdateNodeOperands(SDOperand(N, 0), N->getOperand(0), + N->getOperand(1), LHS, RHS, N->getOperand(4)); +} + +SDOperand DAGTypeLegalizer::PromoteIntOp_SETCC(SDNode *N, unsigned OpNo) { + assert(OpNo == 0 && "Don't know how to promote this operand"); + + SDOperand LHS = N->getOperand(0); + SDOperand RHS = N->getOperand(1); + PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(2))->get()); + + // The CC (#2) is always legal. + return DAG.UpdateNodeOperands(SDOperand(N, 0), LHS, RHS, N->getOperand(2)); +} + +/// PromoteSetCCOperands - Promote the operands of a comparison. This code is +/// shared among BR_CC, SELECT_CC, and SETCC handlers. +void DAGTypeLegalizer::PromoteSetCCOperands(SDOperand &NewLHS,SDOperand &NewRHS, + ISD::CondCode CCCode) { + MVT VT = NewLHS.getValueType(); + + // Get the promoted values. + NewLHS = GetPromotedInteger(NewLHS); + NewRHS = GetPromotedInteger(NewRHS); + + // If this is an FP compare, the operands have already been extended. + if (!NewLHS.getValueType().isInteger()) + return; + + // Otherwise, we have to insert explicit sign or zero extends. Note + // that we could insert sign extends for ALL conditions, but zero extend + // is cheaper on many machines (an AND instead of two shifts), so prefer + // it. + switch (CCCode) { + default: assert(0 && "Unknown integer comparison!"); + case ISD::SETEQ: + case ISD::SETNE: + case ISD::SETUGE: + case ISD::SETUGT: + case ISD::SETULE: + case ISD::SETULT: + // ALL of these operations will work if we either sign or zero extend + // the operands (including the unsigned comparisons!). Zero extend is + // usually a simpler/cheaper operation, so prefer it. + NewLHS = DAG.getZeroExtendInReg(NewLHS, VT); + NewRHS = DAG.getZeroExtendInReg(NewRHS, VT); + return; + case ISD::SETGE: + case ISD::SETGT: + case ISD::SETLT: + case ISD::SETLE: + NewLHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, NewLHS.getValueType(), NewLHS, + DAG.getValueType(VT)); + NewRHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, NewRHS.getValueType(), NewRHS, + DAG.getValueType(VT)); + return; + } +} + +SDOperand DAGTypeLegalizer::PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo){ + // FIXME: Add support for indexed stores. + SDOperand Ch = N->getChain(), Ptr = N->getBasePtr(); + int SVOffset = N->getSrcValueOffset(); + unsigned Alignment = N->getAlignment(); + bool isVolatile = N->isVolatile(); + + SDOperand Val = GetPromotedInteger(N->getValue()); // Get promoted value. + + assert(!N->isTruncatingStore() && "Cannot promote this store operand!"); + + // Truncate the value and store the result. + return DAG.getTruncStore(Ch, Val, Ptr, N->getSrcValue(), + SVOffset, N->getMemoryVT(), + isVolatile, Alignment); +} + +SDOperand DAGTypeLegalizer::PromoteIntOp_BUILD_VECTOR(SDNode *N) { + // The vector type is legal but the element type is not. This implies + // that the vector is a power-of-two in length and that the element + // type does not have a strange size (eg: it is not i1). + MVT VecVT = N->getValueType(0); + unsigned NumElts = VecVT.getVectorNumElements(); + assert(!(NumElts & 1) && "Legal vector of one illegal element?"); + + // Build a vector of half the length out of elements of twice the bitwidth. + // For example <4 x i16> -> <2 x i32>. + MVT OldVT = N->getOperand(0).getValueType(); + MVT NewVT = MVT::getIntegerVT(2 * OldVT.getSizeInBits()); + assert(OldVT.isSimple() && NewVT.isSimple()); + + std::vector<SDOperand> NewElts; + NewElts.reserve(NumElts/2); + + for (unsigned i = 0; i < NumElts; i += 2) { + // Combine two successive elements into one promoted element. + SDOperand Lo = N->getOperand(i); + SDOperand Hi = N->getOperand(i+1); + if (TLI.isBigEndian()) + std::swap(Lo, Hi); + NewElts.push_back(JoinIntegers(Lo, Hi)); + } + + SDOperand NewVec = DAG.getNode(ISD::BUILD_VECTOR, + MVT::getVectorVT(NewVT, NewElts.size()), + &NewElts[0], NewElts.size()); + + // Convert the new vector to the old vector type. + return DAG.getNode(ISD::BIT_CONVERT, VecVT, NewVec); +} + +SDOperand DAGTypeLegalizer::PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, + unsigned OpNo) { + if (OpNo == 1) { + // Promote the inserted value. This is valid because the type does not + // have to match the vector element type. + + // Check that any extra bits introduced will be truncated away. + assert(N->getOperand(1).getValueType().getSizeInBits() >= + N->getValueType(0).getVectorElementType().getSizeInBits() && + "Type of inserted value narrower than vector element type!"); + return DAG.UpdateNodeOperands(SDOperand(N, 0), N->getOperand(0), + GetPromotedInteger(N->getOperand(1)), + N->getOperand(2)); + } + + assert(OpNo == 2 && "Different operand and result vector types?"); + + // Promote the index. + SDOperand Idx = N->getOperand(2); + Idx = DAG.getZeroExtendInReg(GetPromotedInteger(Idx), Idx.getValueType()); + return DAG.UpdateNodeOperands(SDOperand(N, 0), N->getOperand(0), + N->getOperand(1), Idx); +} + +SDOperand DAGTypeLegalizer::PromoteIntOp_MEMBARRIER(SDNode *N) { + SDOperand NewOps[6]; + NewOps[0] = N->getOperand(0); + for (unsigned i = 1; i < array_lengthof(NewOps); ++i) { + SDOperand Flag = GetPromotedInteger(N->getOperand(i)); + NewOps[i] = DAG.getZeroExtendInReg(Flag, MVT::i1); + } + return DAG.UpdateNodeOperands(SDOperand (N, 0), NewOps, + array_lengthof(NewOps)); +} + + +//===----------------------------------------------------------------------===// +// Integer Result Expansion +//===----------------------------------------------------------------------===// + +/// ExpandIntegerResult - This method is called when the specified result of the +/// specified node is found to need expansion. At this point, the node may also +/// have invalid operands or may have other results that need promotion, we just +/// know that (at least) one result needs expansion. +void DAGTypeLegalizer::ExpandIntegerResult(SDNode *N, unsigned ResNo) { + DEBUG(cerr << "Expand integer result: "; N->dump(&DAG); cerr << "\n"); + SDOperand Lo, Hi; + Lo = Hi = SDOperand(); + + // See if the target wants to custom expand this node. + if (TLI.getOperationAction(N->getOpcode(), N->getValueType(0)) == + TargetLowering::Custom) { + // If the target wants to, allow it to lower this itself. + if (SDNode *P = TLI.ExpandOperationResult(N, DAG)) { + // Everything that once used N now uses P. We are guaranteed that the + // result value types of N and the result value types of P match. + ReplaceNodeWith(N, P); + return; + } + } + + switch (N->getOpcode()) { + default: +#ifndef NDEBUG + cerr << "ExpandIntegerResult #" << ResNo << ": "; + N->dump(&DAG); cerr << "\n"; +#endif + assert(0&&"Do not know how to expand the result of this operator!"); + abort(); + + case ISD::UNDEF: ExpandIntRes_UNDEF(N, Lo, Hi); break; + case ISD::Constant: ExpandIntRes_Constant(N, Lo, Hi); break; + case ISD::BUILD_PAIR: ExpandIntRes_BUILD_PAIR(N, Lo, Hi); break; + case ISD::MERGE_VALUES: ExpandIntRes_MERGE_VALUES(N, Lo, Hi); break; + case ISD::ANY_EXTEND: ExpandIntRes_ANY_EXTEND(N, Lo, Hi); break; + case ISD::ZERO_EXTEND: ExpandIntRes_ZERO_EXTEND(N, Lo, Hi); break; + case ISD::SIGN_EXTEND: ExpandIntRes_SIGN_EXTEND(N, Lo, Hi); break; + case ISD::AssertZext: ExpandIntRes_AssertZext(N, Lo, Hi); break; + case ISD::TRUNCATE: ExpandIntRes_TRUNCATE(N, Lo, Hi); break; + case ISD::BIT_CONVERT: ExpandIntRes_BIT_CONVERT(N, Lo, Hi); break; + case ISD::SIGN_EXTEND_INREG: ExpandIntRes_SIGN_EXTEND_INREG(N, Lo, Hi); break; + case ISD::FP_TO_SINT: ExpandIntRes_FP_TO_SINT(N, Lo, Hi); break; + case ISD::FP_TO_UINT: ExpandIntRes_FP_TO_UINT(N, Lo, Hi); break; + case ISD::LOAD: ExpandIntRes_LOAD(cast<LoadSDNode>(N), Lo, Hi); break; + + case ISD::AND: + case ISD::OR: + case ISD::XOR: ExpandIntRes_Logical(N, Lo, Hi); break; + case ISD::BSWAP: ExpandIntRes_BSWAP(N, Lo, Hi); break; + case ISD::ADD: + case ISD::SUB: ExpandIntRes_ADDSUB(N, Lo, Hi); break; + case ISD::ADDC: + case ISD::SUBC: ExpandIntRes_ADDSUBC(N, Lo, Hi); break; + case ISD::ADDE: + case ISD::SUBE: ExpandIntRes_ADDSUBE(N, Lo, Hi); break; + case ISD::SELECT: ExpandIntRes_SELECT(N, Lo, Hi); break; + case ISD::SELECT_CC: ExpandIntRes_SELECT_CC(N, Lo, Hi); break; + case ISD::MUL: ExpandIntRes_MUL(N, Lo, Hi); break; + case ISD::SDIV: ExpandIntRes_SDIV(N, Lo, Hi); break; + case ISD::SREM: ExpandIntRes_SREM(N, Lo, Hi); break; + case ISD::UDIV: ExpandIntRes_UDIV(N, Lo, Hi); break; + case ISD::UREM: ExpandIntRes_UREM(N, Lo, Hi); break; + case ISD::SHL: + case ISD::SRA: + case ISD::SRL: ExpandIntRes_Shift(N, Lo, Hi); break; + + case ISD::CTLZ: ExpandIntRes_CTLZ(N, Lo, Hi); break; + case ISD::CTPOP: ExpandIntRes_CTPOP(N, Lo, Hi); break; + case ISD::CTTZ: ExpandIntRes_CTTZ(N, Lo, Hi); break; + + case ISD::EXTRACT_VECTOR_ELT: + ExpandIntRes_EXTRACT_VECTOR_ELT(N, Lo, Hi); + break; + } + + // If Lo/Hi is null, the sub-method took care of registering results etc. + if (Lo.Val) + SetExpandedInteger(SDOperand(N, ResNo), Lo, Hi); +} + +void DAGTypeLegalizer::ExpandIntRes_UNDEF(SDNode *N, + SDOperand &Lo, SDOperand &Hi) { + MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0)); + Lo = Hi = DAG.getNode(ISD::UNDEF, NVT); +} + +void DAGTypeLegalizer::ExpandIntRes_Constant(SDNode *N, + SDOperand &Lo, SDOperand &Hi) { + MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0)); + unsigned NBitWidth = NVT.getSizeInBits(); + const APInt &Cst = cast<ConstantSDNode>(N)->getAPIntValue(); + Lo = DAG.getConstant(APInt(Cst).trunc(NBitWidth), NVT); + Hi = DAG.getConstant(Cst.lshr(NBitWidth).trunc(NBitWidth), NVT); +} + +void DAGTypeLegalizer::ExpandIntRes_BUILD_PAIR(SDNode *N, + SDOperand &Lo, SDOperand &Hi) { + // Return the operands. + Lo = N->getOperand(0); + Hi = N->getOperand(1); +} + +void DAGTypeLegalizer::ExpandIntRes_MERGE_VALUES(SDNode *N, + SDOperand &Lo, SDOperand &Hi) { + // A MERGE_VALUES node can produce any number of values. We know that the + // first illegal one needs to be expanded into Lo/Hi. + unsigned i; + + // The string of legal results gets turns into the input operands, which have + // the same type. + for (i = 0; isTypeLegal(N->getValueType(i)); ++i) + ReplaceValueWith(SDOperand(N, i), SDOperand(N->getOperand(i))); + + // The first illegal result must be the one that needs to be expanded. + GetExpandedInteger(N->getOperand(i), Lo, Hi); + + // Legalize the rest of the results into the input operands whether they are + // legal or not. + unsigned e = N->getNumValues(); + for (++i; i != e; ++i) + ReplaceValueWith(SDOperand(N, i), SDOperand(N->getOperand(i))); +} + +void DAGTypeLegalizer::ExpandIntRes_ANY_EXTEND(SDNode *N, + SDOperand &Lo, SDOperand &Hi) { + MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0)); + SDOperand Op = N->getOperand(0); + if (Op.getValueType().bitsLE(NVT)) { + // The low part is any extension of the input (which degenerates to a copy). + Lo = DAG.getNode(ISD::ANY_EXTEND, NVT, Op); + Hi = DAG.getNode(ISD::UNDEF, NVT); // The high part is undefined. + } else { + // For example, extension of an i48 to an i64. The operand type necessarily + // promotes to the result type, so will end up being expanded too. + assert(getTypeAction(Op.getValueType()) == PromoteInteger && + "Only know how to promote this result!"); + SDOperand Res = GetPromotedInteger(Op); + assert(Res.getValueType() == N->getValueType(0) && + "Operand over promoted?"); + // Split the promoted operand. This will simplify when it is expanded. + SplitInteger(Res, Lo, Hi); + } +} + +void DAGTypeLegalizer::ExpandIntRes_ZERO_EXTEND(SDNode *N, + SDOperand &Lo, SDOperand &Hi) { + MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0)); + SDOperand Op = N->getOperand(0); + if (Op.getValueType().bitsLE(NVT)) { + // The low part is zero extension of the input (which degenerates to a copy). + Lo = DAG.getNode(ISD::ZERO_EXTEND, NVT, N->getOperand(0)); + Hi = DAG.getConstant(0, NVT); // The high part is just a zero. + } else { + // For example, extension of an i48 to an i64. The operand type necessarily + // promotes to the result type, so will end up being expanded too. + assert(getTypeAction(Op.getValueType()) == PromoteInteger && + "Only know how to promote this result!"); + SDOperand Res = GetPromotedInteger(Op); + assert(Res.getValueType() == N->getValueType(0) && + "Operand over promoted?"); + // Split the promoted operand. This will simplify when it is expanded. + SplitInteger(Res, Lo, Hi); + unsigned ExcessBits = + Op.getValueType().getSizeInBits() - NVT.getSizeInBits(); + Hi = DAG.getZeroExtendInReg(Hi, MVT::getIntegerVT(ExcessBits)); + } +} + +void DAGTypeLegalizer::ExpandIntRes_SIGN_EXTEND(SDNode *N, + SDOperand &Lo, SDOperand &Hi) { + MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0)); + SDOperand Op = N->getOperand(0); + if (Op.getValueType().bitsLE(NVT)) { + // The low part is sign extension of the input (which degenerates to a copy). + Lo = DAG.getNode(ISD::SIGN_EXTEND, NVT, N->getOperand(0)); + // The high part is obtained by SRA'ing all but one of the bits of low part. + unsigned LoSize = NVT.getSizeInBits(); + Hi = DAG.getNode(ISD::SRA, NVT, Lo, + DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); + } else { + // For example, extension of an i48 to an i64. The operand type necessarily + // promotes to the result type, so will end up being expanded too. + assert(getTypeAction(Op.getValueType()) == PromoteInteger && + "Only know how to promote this result!"); + SDOperand Res = GetPromotedInteger(Op); + assert(Res.getValueType() == N->getValueType(0) && + "Operand over promoted?"); + // Split the promoted operand. This will simplify when it is expanded. + SplitInteger(Res, Lo, Hi); + unsigned ExcessBits = + Op.getValueType().getSizeInBits() - NVT.getSizeInBits(); + Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, Hi.getValueType(), Hi, + DAG.getValueType(MVT::getIntegerVT(ExcessBits))); + } +} + +void DAGTypeLegalizer::ExpandIntRes_AssertZext(SDNode *N, + SDOperand &Lo, SDOperand &Hi) { + GetExpandedInteger(N->getOperand(0), Lo, Hi); + MVT NVT = Lo.getValueType(); + MVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); + unsigned NVTBits = NVT.getSizeInBits(); + unsigned EVTBits = EVT.getSizeInBits(); + + if (NVTBits < EVTBits) { + Hi = DAG.getNode(ISD::AssertZext, NVT, Hi, + DAG.getValueType(MVT::getIntegerVT(EVTBits - NVTBits))); + } else { + Lo = DAG.getNode(ISD::AssertZext, NVT, Lo, DAG.getValueType(EVT)); + // The high part must be zero, make it explicit. + Hi = DAG.getConstant(0, NVT); + } +} + +void DAGTypeLegalizer::ExpandIntRes_TRUNCATE(SDNode *N, + SDOperand &Lo, SDOperand &Hi) { + MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0)); + Lo = DAG.getNode(ISD::TRUNCATE, NVT, N->getOperand(0)); + Hi = DAG.getNode(ISD::SRL, N->getOperand(0).getValueType(), N->getOperand(0), + DAG.getConstant(NVT.getSizeInBits(), + TLI.getShiftAmountTy())); + Hi = DAG.getNode(ISD::TRUNCATE, NVT, Hi); +} + +void DAGTypeLegalizer::ExpandIntRes_BIT_CONVERT(SDNode *N, + SDOperand &Lo, SDOperand &Hi) { + MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0)); + SDOperand InOp = N->getOperand(0); + MVT InVT = InOp.getValueType(); + + // Handle some special cases efficiently. + switch (getTypeAction(InVT)) { + default: + assert(false && "Unknown type action!"); + case Legal: + case PromoteInteger: + break; + case PromoteFloat: + // Convert the integer operand instead. + SplitInteger(GetPromotedFloat(InOp), Lo, Hi); + Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Lo); + Hi = DAG.getNode(ISD::BIT_CONVERT, NVT, Hi); + return; + case ExpandInteger: + // Convert the expanded pieces of the input. + GetExpandedInteger(InOp, Lo, Hi); + Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Lo); + Hi = DAG.getNode(ISD::BIT_CONVERT, NVT, Hi); + return; + case ExpandFloat: + // Convert the expanded pieces of the input. + GetExpandedFloat(InOp, Lo, Hi); + Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Lo); + Hi = DAG.getNode(ISD::BIT_CONVERT, NVT, Hi); + return; + case Split: + // Convert the split parts of the input if it was split in two. + GetSplitVector(InOp, Lo, Hi); + if (Lo.getValueType() == Hi.getValueType()) { + if (TLI.isBigEndian()) + std::swap(Lo, Hi); + Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Lo); + Hi = DAG.getNode(ISD::BIT_CONVERT, NVT, Hi); + return; + } + break; + case Scalarize: + // Convert the element instead. + SplitInteger(BitConvertToInteger(GetScalarizedVector(InOp)), Lo, Hi); + Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Lo); + Hi = DAG.getNode(ISD::BIT_CONVERT, NVT, Hi); + return; + } + + // Lower the bit-convert to a store/load from the stack, then expand the load. + SDOperand Op = CreateStackStoreLoad(InOp, N->getValueType(0)); + ExpandIntRes_LOAD(cast<LoadSDNode>(Op.Val), Lo, Hi); +} + +void DAGTypeLegalizer:: +ExpandIntRes_SIGN_EXTEND_INREG(SDNode *N, SDOperand &Lo, SDOperand &Hi) { + GetExpandedInteger(N->getOperand(0), Lo, Hi); + MVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); + + if (EVT.bitsLE(Lo.getValueType())) { + // sext_inreg the low part if needed. + Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, Lo.getValueType(), Lo, + N->getOperand(1)); + + // The high part gets the sign extension from the lo-part. This handles + // things like sextinreg V:i64 from i8. + Hi = DAG.getNode(ISD::SRA, Hi.getValueType(), Lo, + DAG.getConstant(Hi.getValueType().getSizeInBits()-1, + TLI.getShiftAmountTy())); + } else { + // For example, extension of an i48 to an i64. Leave the low part alone, + // sext_inreg the high part. + unsigned ExcessBits = + EVT.getSizeInBits() - Lo.getValueType().getSizeInBits(); + Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, Hi.getValueType(), Hi, + DAG.getValueType(MVT::getIntegerVT(ExcessBits))); + } +} + +void DAGTypeLegalizer::ExpandIntRes_FP_TO_SINT(SDNode *N, SDOperand &Lo, + SDOperand &Hi) { + MVT VT = N->getValueType(0); + SDOperand Op = N->getOperand(0); + RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; + if (VT == MVT::i64) { + if (Op.getValueType() == MVT::f32) + LC = RTLIB::FPTOSINT_F32_I64; + else if (Op.getValueType() == MVT::f64) + LC = RTLIB::FPTOSINT_F64_I64; + else if (Op.getValueType() == MVT::f80) + LC = RTLIB::FPTOSINT_F80_I64; + else if (Op.getValueType() == MVT::ppcf128) + LC = RTLIB::FPTOSINT_PPCF128_I64; + } else if (VT == MVT::i128) { + if (Op.getValueType() == MVT::f32) + LC = RTLIB::FPTOSINT_F32_I128; + else if (Op.getValueType() == MVT::f64) + LC = RTLIB::FPTOSINT_F64_I128; + else if (Op.getValueType() == MVT::f80) + LC = RTLIB::FPTOSINT_F80_I128; + else if (Op.getValueType() == MVT::ppcf128) + LC = RTLIB::FPTOSINT_PPCF128_I128; + } else { + assert(0 && "Unexpected fp-to-sint conversion!"); + } + SplitInteger(MakeLibCall(LC, VT, &Op, 1, true/*sign irrelevant*/), Lo, Hi); +} + +void DAGTypeLegalizer::ExpandIntRes_FP_TO_UINT(SDNode *N, SDOperand &Lo, + SDOperand &Hi) { + MVT VT = N->getValueType(0); + SDOperand Op = N->getOperand(0); + RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; + if (VT == MVT::i64) { + if (Op.getValueType() == MVT::f32) + LC = RTLIB::FPTOUINT_F32_I64; + else if (Op.getValueType() == MVT::f64) + LC = RTLIB::FPTOUINT_F64_I64; + else if (Op.getValueType() == MVT::f80) + LC = RTLIB::FPTOUINT_F80_I64; + else if (Op.getValueType() == MVT::ppcf128) + LC = RTLIB::FPTOUINT_PPCF128_I64; + } else if (VT == MVT::i128) { + if (Op.getValueType() == MVT::f32) + LC = RTLIB::FPTOUINT_F32_I128; + else if (Op.getValueType() == MVT::f64) + LC = RTLIB::FPTOUINT_F64_I128; + else if (Op.getValueType() == MVT::f80) + LC = RTLIB::FPTOUINT_F80_I128; + else if (Op.getValueType() == MVT::ppcf128) + LC = RTLIB::FPTOUINT_PPCF128_I128; + } else { + assert(0 && "Unexpected fp-to-uint conversion!"); + } + SplitInteger(MakeLibCall(LC, VT, &Op, 1, false/*sign irrelevant*/), Lo, Hi); +} + +void DAGTypeLegalizer::ExpandIntRes_LOAD(LoadSDNode *N, + SDOperand &Lo, SDOperand &Hi) { + // FIXME: Add support for indexed loads. + MVT VT = N->getValueType(0); + MVT NVT = TLI.getTypeToTransformTo(VT); + SDOperand Ch = N->getChain(); // Legalize the chain. + SDOperand Ptr = N->getBasePtr(); // Legalize the pointer. + ISD::LoadExtType ExtType = N->getExtensionType(); + int SVOffset = N->getSrcValueOffset(); + unsigned Alignment = N->getAlignment(); + bool isVolatile = N->isVolatile(); + + assert(!(NVT.getSizeInBits() & 7) && "Expanded type not byte sized!"); + + if (ExtType == ISD::NON_EXTLOAD) { + Lo = DAG.getLoad(NVT, Ch, Ptr, N->getSrcValue(), SVOffset, + isVolatile, Alignment); + // Increment the pointer to the other half. + unsigned IncrementSize = NVT.getSizeInBits()/8; + Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, + DAG.getIntPtrConstant(IncrementSize)); + Hi = DAG.getLoad(NVT, Ch, Ptr, N->getSrcValue(), SVOffset+IncrementSize, + isVolatile, MinAlign(Alignment, IncrementSize)); + + // Build a factor node to remember that this load is independent of the + // other one. + Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), + Hi.getValue(1)); + + // Handle endianness of the load. + if (TLI.isBigEndian()) + std::swap(Lo, Hi); + } else if (N->getMemoryVT().bitsLE(NVT)) { + MVT EVT = N->getMemoryVT(); + + Lo = DAG.getExtLoad(ExtType, NVT, Ch, Ptr, N->getSrcValue(), SVOffset, EVT, + isVolatile, Alignment); + + // Remember the chain. + Ch = Lo.getValue(1); + + if (ExtType == ISD::SEXTLOAD) { + // The high part is obtained by SRA'ing all but one of the bits of the + // lo part. + unsigned LoSize = Lo.getValueType().getSizeInBits(); + Hi = DAG.getNode(ISD::SRA, NVT, Lo, + DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); + } else if (ExtType == ISD::ZEXTLOAD) { + // The high part is just a zero. + Hi = DAG.getConstant(0, NVT); + } else { + assert(ExtType == ISD::EXTLOAD && "Unknown extload!"); + // The high part is undefined. + Hi = DAG.getNode(ISD::UNDEF, NVT); + } + } else if (TLI.isLittleEndian()) { + // Little-endian - low bits are at low addresses. + Lo = DAG.getLoad(NVT, Ch, Ptr, N->getSrcValue(), SVOffset, + isVolatile, Alignment); + + unsigned ExcessBits = + N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits(); + MVT NEVT = MVT::getIntegerVT(ExcessBits); + + // Increment the pointer to the other half. + unsigned IncrementSize = NVT.getSizeInBits()/8; + Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, + DAG.getIntPtrConstant(IncrementSize)); + Hi = DAG.getExtLoad(ExtType, NVT, Ch, Ptr, N->getSrcValue(), + SVOffset+IncrementSize, NEVT, + isVolatile, MinAlign(Alignment, IncrementSize)); + + // Build a factor node to remember that this load is independent of the + // other one. + Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), + Hi.getValue(1)); + } else { + // Big-endian - high bits are at low addresses. Favor aligned loads at + // the cost of some bit-fiddling. + MVT EVT = N->getMemoryVT(); + unsigned EBytes = EVT.getStoreSizeInBits()/8; + unsigned IncrementSize = NVT.getSizeInBits()/8; + unsigned ExcessBits = (EBytes - IncrementSize)*8; + + // Load both the high bits and maybe some of the low bits. + Hi = DAG.getExtLoad(ExtType, NVT, Ch, Ptr, N->getSrcValue(), SVOffset, + MVT::getIntegerVT(EVT.getSizeInBits() - ExcessBits), + isVolatile, Alignment); + + // Increment the pointer to the other half. + Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, + DAG.getIntPtrConstant(IncrementSize)); + // Load the rest of the low bits. + Lo = DAG.getExtLoad(ISD::ZEXTLOAD, NVT, Ch, Ptr, N->getSrcValue(), + SVOffset+IncrementSize, + MVT::getIntegerVT(ExcessBits), + isVolatile, MinAlign(Alignment, IncrementSize)); + + // Build a factor node to remember that this load is independent of the + // other one. + Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), + Hi.getValue(1)); + + if (ExcessBits < NVT.getSizeInBits()) { + // Transfer low bits from the bottom of Hi to the top of Lo. + Lo = DAG.getNode(ISD::OR, NVT, Lo, + DAG.getNode(ISD::SHL, NVT, Hi, + DAG.getConstant(ExcessBits, + TLI.getShiftAmountTy()))); + // Move high bits to the right position in Hi. + Hi = DAG.getNode(ExtType == ISD::SEXTLOAD ? ISD::SRA : ISD::SRL, NVT, Hi, + DAG.getConstant(NVT.getSizeInBits() - ExcessBits, + TLI.getShiftAmountTy())); + } + } + + // Legalized the chain result - switch anything that used the old chain to + // use the new one. + ReplaceValueWith(SDOperand(N, 1), Ch); +} + +void DAGTypeLegalizer::ExpandIntRes_Logical(SDNode *N, + SDOperand &Lo, SDOperand &Hi) { + SDOperand LL, LH, RL, RH; + GetExpandedInteger(N->getOperand(0), LL, LH); + GetExpandedInteger(N->getOperand(1), RL, RH); + Lo = DAG.getNode(N->getOpcode(), LL.getValueType(), LL, RL); + Hi = DAG.getNode(N->getOpcode(), LL.getValueType(), LH, RH); +} + +void DAGTypeLegalizer::ExpandIntRes_BSWAP(SDNode *N, + SDOperand &Lo, SDOperand &Hi) { + GetExpandedInteger(N->getOperand(0), Hi, Lo); // Note swapped operands. + Lo = DAG.getNode(ISD::BSWAP, Lo.getValueType(), Lo); + Hi = DAG.getNode(ISD::BSWAP, Hi.getValueType(), Hi); +} + +void DAGTypeLegalizer::ExpandIntRes_SELECT(SDNode *N, + SDOperand &Lo, SDOperand &Hi) { + SDOperand LL, LH, RL, RH; + GetExpandedInteger(N->getOperand(1), LL, LH); + GetExpandedInteger(N->getOperand(2), RL, RH); + Lo = DAG.getNode(ISD::SELECT, LL.getValueType(), N->getOperand(0), LL, RL); + Hi = DAG.getNode(ISD::SELECT, LL.getValueType(), N->getOperand(0), LH, RH); +} + +void DAGTypeLegalizer::ExpandIntRes_SELECT_CC(SDNode *N, + SDOperand &Lo, SDOperand &Hi) { + SDOperand LL, LH, RL, RH; + GetExpandedInteger(N->getOperand(2), LL, LH); + GetExpandedInteger(N->getOperand(3), RL, RH); + Lo = DAG.getNode(ISD::SELECT_CC, LL.getValueType(), N->getOperand(0), + N->getOperand(1), LL, RL, N->getOperand(4)); + Hi = DAG.getNode(ISD::SELECT_CC, LL.getValueType(), N->getOperand(0), + N->getOperand(1), LH, RH, N->getOperand(4)); +} + +void DAGTypeLegalizer::ExpandIntRes_ADDSUB(SDNode *N, + SDOperand &Lo, SDOperand &Hi) { + // Expand the subcomponents. + SDOperand LHSL, LHSH, RHSL, RHSH; + GetExpandedInteger(N->getOperand(0), LHSL, LHSH); + GetExpandedInteger(N->getOperand(1), RHSL, RHSH); + SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); + SDOperand LoOps[2] = { LHSL, RHSL }; + SDOperand HiOps[3] = { LHSH, RHSH }; + + if (N->getOpcode() == ISD::ADD) { + Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); + HiOps[2] = Lo.getValue(1); + Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); + } else { + Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2); + HiOps[2] = Lo.getValue(1); + Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3); + } +} + +void DAGTypeLegalizer::ExpandIntRes_ADDSUBC(SDNode *N, + SDOperand &Lo, SDOperand &Hi) { + // Expand the subcomponents. + SDOperand LHSL, LHSH, RHSL, RHSH; + GetExpandedInteger(N->getOperand(0), LHSL, LHSH); + GetExpandedInteger(N->getOperand(1), RHSL, RHSH); + SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); + SDOperand LoOps[2] = { LHSL, RHSL }; + SDOperand HiOps[3] = { LHSH, RHSH }; + + if (N->getOpcode() == ISD::ADDC) { + Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); + HiOps[2] = Lo.getValue(1); + Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); + } else { + Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2); + HiOps[2] = Lo.getValue(1); + Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3); + } + + // Legalized the flag result - switch anything that used the old flag to + // use the new one. + ReplaceValueWith(SDOperand(N, 1), Hi.getValue(1)); +} + +void DAGTypeLegalizer::ExpandIntRes_ADDSUBE(SDNode *N, + SDOperand &Lo, SDOperand &Hi) { + // Expand the subcomponents. + SDOperand LHSL, LHSH, RHSL, RHSH; + GetExpandedInteger(N->getOperand(0), LHSL, LHSH); + GetExpandedInteger(N->getOperand(1), RHSL, RHSH); + SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); + SDOperand LoOps[3] = { LHSL, RHSL, N->getOperand(2) }; + SDOperand HiOps[3] = { LHSH, RHSH }; + + Lo = DAG.getNode(N->getOpcode(), VTList, LoOps, 3); + HiOps[2] = Lo.getValue(1); + Hi = DAG.getNode(N->getOpcode(), VTList, HiOps, 3); + + // Legalized the flag result - switch anything that used the old flag to + // use the new one. + ReplaceValueWith(SDOperand(N, 1), Hi.getValue(1)); +} + +void DAGTypeLegalizer::ExpandIntRes_MUL(SDNode *N, + SDOperand &Lo, SDOperand &Hi) { + MVT VT = N->getValueType(0); + MVT NVT = TLI.getTypeToTransformTo(VT); + + bool HasMULHS = TLI.isOperationLegal(ISD::MULHS, NVT); + bool HasMULHU = TLI.isOperationLegal(ISD::MULHU, NVT); + bool HasSMUL_LOHI = TLI.isOperationLegal(ISD::SMUL_LOHI, NVT); + bool HasUMUL_LOHI = TLI.isOperationLegal(ISD::UMUL_LOHI, NVT); + if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) { + SDOperand LL, LH, RL, RH; + GetExpandedInteger(N->getOperand(0), LL, LH); + GetExpandedInteger(N->getOperand(1), RL, RH); + unsigned OuterBitSize = VT.getSizeInBits(); + unsigned BitSize = NVT.getSizeInBits(); + unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0)); + unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1)); + + if (DAG.MaskedValueIsZero(N->getOperand(0), + APInt::getHighBitsSet(OuterBitSize, LHSSB)) && + DAG.MaskedValueIsZero(N->getOperand(1), + APInt::getHighBitsSet(OuterBitSize, RHSSB))) { + // The inputs are both zero-extended. + if (HasUMUL_LOHI) { + // We can emit a umul_lohi. + Lo = DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL); + Hi = SDOperand(Lo.Val, 1); + return; + } + if (HasMULHU) { + // We can emit a mulhu+mul. + Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); + Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL); + return; + } + } + if (LHSSB > BitSize && RHSSB > BitSize) { + // The input values are both sign-extended. + if (HasSMUL_LOHI) { + // We can emit a smul_lohi. + Lo = DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL); + Hi = SDOperand(Lo.Val, 1); + return; + } + if (HasMULHS) { + // We can emit a mulhs+mul. + Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); + Hi = DAG.getNode(ISD::MULHS, NVT, LL, RL); + return; + } + } + if (HasUMUL_LOHI) { + // Lo,Hi = umul LHS, RHS. + SDOperand UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, + DAG.getVTList(NVT, NVT), LL, RL); + Lo = UMulLOHI; + Hi = UMulLOHI.getValue(1); + RH = DAG.getNode(ISD::MUL, NVT, LL, RH); + LH = DAG.getNode(ISD::MUL, NVT, LH, RL); + Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH); + Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH); + return; + } + } + + // If nothing else, we can make a libcall. + SDOperand Ops[2] = { N->getOperand(0), N->getOperand(1) }; + SplitInteger(MakeLibCall(RTLIB::MUL_I64, VT, Ops, 2, true/*sign irrelevant*/), + Lo, Hi); +} + +void DAGTypeLegalizer::ExpandIntRes_SDIV(SDNode *N, + SDOperand &Lo, SDOperand &Hi) { + assert(N->getValueType(0) == MVT::i64 && "Unsupported sdiv!"); + SDOperand Ops[2] = { N->getOperand(0), N->getOperand(1) }; + SplitInteger(MakeLibCall(RTLIB::SDIV_I64, N->getValueType(0), Ops, 2, true), + Lo, Hi); +} + +void DAGTypeLegalizer::ExpandIntRes_SREM(SDNode *N, + SDOperand &Lo, SDOperand &Hi) { + assert(N->getValueType(0) == MVT::i64 && "Unsupported srem!"); + SDOperand Ops[2] = { N->getOperand(0), N->getOperand(1) }; + SplitInteger(MakeLibCall(RTLIB::SREM_I64, N->getValueType(0), Ops, 2, true), + Lo, Hi); +} + +void DAGTypeLegalizer::ExpandIntRes_UDIV(SDNode *N, + SDOperand &Lo, SDOperand &Hi) { + assert(N->getValueType(0) == MVT::i64 && "Unsupported udiv!"); + SDOperand Ops[2] = { N->getOperand(0), N->getOperand(1) }; + SplitInteger(MakeLibCall(RTLIB::UDIV_I64, N->getValueType(0), Ops, 2, false), + Lo, Hi); +} + +void DAGTypeLegalizer::ExpandIntRes_UREM(SDNode *N, + SDOperand &Lo, SDOperand &Hi) { + assert(N->getValueType(0) == MVT::i64 && "Unsupported urem!"); + SDOperand Ops[2] = { N->getOperand(0), N->getOperand(1) }; + SplitInteger(MakeLibCall(RTLIB::UREM_I64, N->getValueType(0), Ops, 2, false), + Lo, Hi); +} + +void DAGTypeLegalizer::ExpandIntRes_Shift(SDNode *N, + SDOperand &Lo, SDOperand &Hi) { + MVT VT = N->getValueType(0); + + // If we can emit an efficient shift operation, do so now. Check to see if + // the RHS is a constant. + if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1))) + return ExpandShiftByConstant(N, CN->getValue(), Lo, Hi); + + // If we can determine that the high bit of the shift is zero or one, even if + // the low bits are variable, emit this shift in an optimized form. + if (ExpandShiftWithKnownAmountBit(N, Lo, Hi)) + return; + + // If this target supports shift_PARTS, use it. First, map to the _PARTS opc. + unsigned PartsOpc; + if (N->getOpcode() == ISD::SHL) { + PartsOpc = ISD::SHL_PARTS; + } else if (N->getOpcode() == ISD::SRL) { + PartsOpc = ISD::SRL_PARTS; + } else { + assert(N->getOpcode() == ISD::SRA && "Unknown shift!"); + PartsOpc = ISD::SRA_PARTS; + } + + // Next check to see if the target supports this SHL_PARTS operation or if it + // will custom expand it. + MVT NVT = TLI.getTypeToTransformTo(VT); + TargetLowering::LegalizeAction Action = TLI.getOperationAction(PartsOpc, NVT); + if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || + Action == TargetLowering::Custom) { + // Expand the subcomponents. + SDOperand LHSL, LHSH; + GetExpandedInteger(N->getOperand(0), LHSL, LHSH); + + SDOperand Ops[] = { LHSL, LHSH, N->getOperand(1) }; + MVT VT = LHSL.getValueType(); + Lo = DAG.getNode(PartsOpc, DAG.getNodeValueTypes(VT, VT), 2, Ops, 3); + Hi = Lo.getValue(1); + return; + } + + // Otherwise, emit a libcall. + assert(VT == MVT::i64 && "Unsupported shift!"); + + RTLIB::Libcall LC; + bool isSigned; + if (N->getOpcode() == ISD::SHL) { + LC = RTLIB::SHL_I64; + isSigned = false; /*sign irrelevant*/ + } else if (N->getOpcode() == ISD::SRL) { + LC = RTLIB::SRL_I64; + isSigned = false; + } else { + assert(N->getOpcode() == ISD::SRA && "Unknown shift!"); + LC = RTLIB::SRA_I64; + isSigned = true; + } + + SDOperand Ops[2] = { N->getOperand(0), N->getOperand(1) }; + SplitInteger(MakeLibCall(LC, VT, Ops, 2, isSigned), Lo, Hi); +} + +void DAGTypeLegalizer::ExpandIntRes_CTLZ(SDNode *N, + SDOperand &Lo, SDOperand &Hi) { + // ctlz (HiLo) -> Hi != 0 ? ctlz(Hi) : (ctlz(Lo)+32) + GetExpandedInteger(N->getOperand(0), Lo, Hi); + MVT NVT = Lo.getValueType(); + + SDOperand HiNotZero = DAG.getSetCC(TLI.getSetCCResultType(Hi), Hi, + DAG.getConstant(0, NVT), ISD::SETNE); + + SDOperand LoLZ = DAG.getNode(ISD::CTLZ, NVT, Lo); + SDOperand HiLZ = DAG.getNode(ISD::CTLZ, NVT, Hi); + + Lo = DAG.getNode(ISD::SELECT, NVT, HiNotZero, HiLZ, + DAG.getNode(ISD::ADD, NVT, LoLZ, + DAG.getConstant(NVT.getSizeInBits(), NVT))); + Hi = DAG.getConstant(0, NVT); +} + +void DAGTypeLegalizer::ExpandIntRes_CTPOP(SDNode *N, + SDOperand &Lo, SDOperand &Hi) { + // ctpop(HiLo) -> ctpop(Hi)+ctpop(Lo) + GetExpandedInteger(N->getOperand(0), Lo, Hi); + MVT NVT = Lo.getValueType(); + Lo = DAG.getNode(ISD::ADD, NVT, DAG.getNode(ISD::CTPOP, NVT, Lo), + DAG.getNode(ISD::CTPOP, NVT, Hi)); + Hi = DAG.getConstant(0, NVT); +} + +void DAGTypeLegalizer::ExpandIntRes_CTTZ(SDNode *N, + SDOperand &Lo, SDOperand &Hi) { + // cttz (HiLo) -> Lo != 0 ? cttz(Lo) : (cttz(Hi)+32) + GetExpandedInteger(N->getOperand(0), Lo, Hi); + MVT NVT = Lo.getValueType(); + + SDOperand LoNotZero = DAG.getSetCC(TLI.getSetCCResultType(Lo), Lo, + DAG.getConstant(0, NVT), ISD::SETNE); + + SDOperand LoLZ = DAG.getNode(ISD::CTTZ, NVT, Lo); + SDOperand HiLZ = DAG.getNode(ISD::CTTZ, NVT, Hi); + + Lo = DAG.getNode(ISD::SELECT, NVT, LoNotZero, LoLZ, + DAG.getNode(ISD::ADD, NVT, HiLZ, + DAG.getConstant(NVT.getSizeInBits(), NVT))); + Hi = DAG.getConstant(0, NVT); +} + +void DAGTypeLegalizer::ExpandIntRes_EXTRACT_VECTOR_ELT(SDNode *N, + SDOperand &Lo, + SDOperand &Hi) { + SDOperand OldVec = N->getOperand(0); + unsigned OldElts = OldVec.getValueType().getVectorNumElements(); + + // Convert to a vector of the expanded element type, for example + // <2 x i64> -> <4 x i32>. + MVT OldVT = N->getValueType(0); + MVT NewVT = TLI.getTypeToTransformTo(OldVT); + assert(OldVT.getSizeInBits() == 2 * NewVT.getSizeInBits() && + "Do not know how to handle this expansion!"); + + SDOperand NewVec = DAG.getNode(ISD::BIT_CONVERT, + MVT::getVectorVT(NewVT, 2*OldElts), + OldVec); + + // Extract the elements at 2 * Idx and 2 * Idx + 1 from the new vector. + SDOperand Idx = N->getOperand(1); + + // Make sure the type of Idx is big enough to hold the new values. + if (Idx.getValueType().bitsLT(TLI.getPointerTy())) + Idx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), Idx); + + Idx = DAG.getNode(ISD::ADD, Idx.getValueType(), Idx, Idx); + Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, NewVT, NewVec, Idx); + + Idx = DAG.getNode(ISD::ADD, Idx.getValueType(), Idx, + DAG.getConstant(1, Idx.getValueType())); + Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, NewVT, NewVec, Idx); + + if (TLI.isBigEndian()) + std::swap(Lo, Hi); +} + +/// ExpandShiftByConstant - N is a shift by a value that needs to be expanded, +/// and the shift amount is a constant 'Amt'. Expand the operation. +void DAGTypeLegalizer::ExpandShiftByConstant(SDNode *N, unsigned Amt, + SDOperand &Lo, SDOperand &Hi) { + // Expand the incoming operand to be shifted, so that we have its parts + SDOperand InL, InH; + GetExpandedInteger(N->getOperand(0), InL, InH); + + MVT NVT = InL.getValueType(); + unsigned VTBits = N->getValueType(0).getSizeInBits(); + unsigned NVTBits = NVT.getSizeInBits(); + MVT ShTy = N->getOperand(1).getValueType(); + + if (N->getOpcode() == ISD::SHL) { + if (Amt > VTBits) { + Lo = Hi = DAG.getConstant(0, NVT); + } else if (Amt > NVTBits) { + Lo = DAG.getConstant(0, NVT); + Hi = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Amt-NVTBits,ShTy)); + } else if (Amt == NVTBits) { + Lo = DAG.getConstant(0, NVT); + Hi = InL; + } else { + Lo = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Amt, ShTy)); + Hi = DAG.getNode(ISD::OR, NVT, + DAG.getNode(ISD::SHL, NVT, InH, + DAG.getConstant(Amt, ShTy)), + DAG.getNode(ISD::SRL, NVT, InL, + DAG.getConstant(NVTBits-Amt, ShTy))); + } + return; + } + + if (N->getOpcode() == ISD::SRL) { + if (Amt > VTBits) { + Lo = DAG.getConstant(0, NVT); + Hi = DAG.getConstant(0, NVT); + } else if (Amt > NVTBits) { + Lo = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Amt-NVTBits,ShTy)); + Hi = DAG.getConstant(0, NVT); + } else if (Amt == NVTBits) { + Lo = InH; + Hi = DAG.getConstant(0, NVT); + } else { + Lo = DAG.getNode(ISD::OR, NVT, + DAG.getNode(ISD::SRL, NVT, InL, + DAG.getConstant(Amt, ShTy)), + DAG.getNode(ISD::SHL, NVT, InH, + DAG.getConstant(NVTBits-Amt, ShTy))); + Hi = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Amt, ShTy)); + } + return; + } + + assert(N->getOpcode() == ISD::SRA && "Unknown shift!"); + if (Amt > VTBits) { + Hi = Lo = DAG.getNode(ISD::SRA, NVT, InH, + DAG.getConstant(NVTBits-1, ShTy)); + } else if (Amt > NVTBits) { + Lo = DAG.getNode(ISD::SRA, NVT, InH, + DAG.getConstant(Amt-NVTBits, ShTy)); + Hi = DAG.getNode(ISD::SRA, NVT, InH, + DAG.getConstant(NVTBits-1, ShTy)); + } else if (Amt == NVTBits) { + Lo = InH; + Hi = DAG.getNode(ISD::SRA, NVT, InH, + DAG.getConstant(NVTBits-1, ShTy)); + } else { + Lo = DAG.getNode(ISD::OR, NVT, + DAG.getNode(ISD::SRL, NVT, InL, + DAG.getConstant(Amt, ShTy)), + DAG.getNode(ISD::SHL, NVT, InH, + DAG.getConstant(NVTBits-Amt, ShTy))); + Hi = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(Amt, ShTy)); + } +} + +/// ExpandShiftWithKnownAmountBit - Try to determine whether we can simplify +/// this shift based on knowledge of the high bit of the shift amount. If we +/// can tell this, we know that it is >= 32 or < 32, without knowing the actual +/// shift amount. +bool DAGTypeLegalizer:: +ExpandShiftWithKnownAmountBit(SDNode *N, SDOperand &Lo, SDOperand &Hi) { + SDOperand Amt = N->getOperand(1); + MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0)); + MVT ShTy = Amt.getValueType(); + unsigned ShBits = ShTy.getSizeInBits(); + unsigned NVTBits = NVT.getSizeInBits(); + assert(isPowerOf2_32(NVTBits) && + "Expanded integer type size not a power of two!"); + + APInt HighBitMask = APInt::getHighBitsSet(ShBits, ShBits - Log2_32(NVTBits)); + APInt KnownZero, KnownOne; + DAG.ComputeMaskedBits(N->getOperand(1), HighBitMask, KnownZero, KnownOne); + + // If we don't know anything about the high bits, exit. + if (((KnownZero|KnownOne) & HighBitMask) == 0) + return false; + + // Get the incoming operand to be shifted. + SDOperand InL, InH; + GetExpandedInteger(N->getOperand(0), InL, InH); + + // If we know that any of the high bits of the shift amount are one, then we + // can do this as a couple of simple shifts. + if (KnownOne.intersects(HighBitMask)) { + // Mask out the high bit, which we know is set. + Amt = DAG.getNode(ISD::AND, ShTy, Amt, + DAG.getConstant(~HighBitMask, ShTy)); + + switch (N->getOpcode()) { + default: assert(0 && "Unknown shift"); + case ISD::SHL: + Lo = DAG.getConstant(0, NVT); // Low part is zero. + Hi = DAG.getNode(ISD::SHL, NVT, InL, Amt); // High part from Lo part. + return true; + case ISD::SRL: + Hi = DAG.getConstant(0, NVT); // Hi part is zero. + Lo = DAG.getNode(ISD::SRL, NVT, InH, Amt); // Lo part from Hi part. + return true; + case ISD::SRA: + Hi = DAG.getNode(ISD::SRA, NVT, InH, // Sign extend high part. + DAG.getConstant(NVTBits-1, ShTy)); + Lo = DAG.getNode(ISD::SRA, NVT, InH, Amt); // Lo part from Hi part. + return true; + } + } + + // If we know that all of the high bits of the shift amount are zero, then we + // can do this as a couple of simple shifts. + if ((KnownZero & HighBitMask) == HighBitMask) { + // Compute 32-amt. + SDOperand Amt2 = DAG.getNode(ISD::SUB, ShTy, + DAG.getConstant(NVTBits, ShTy), + Amt); + unsigned Op1, Op2; + switch (N->getOpcode()) { + default: assert(0 && "Unknown shift"); + case ISD::SHL: Op1 = ISD::SHL; Op2 = ISD::SRL; break; + case ISD::SRL: + case ISD::SRA: Op1 = ISD::SRL; Op2 = ISD::SHL; break; + } + + Lo = DAG.getNode(N->getOpcode(), NVT, InL, Amt); + Hi = DAG.getNode(ISD::OR, NVT, + DAG.getNode(Op1, NVT, InH, Amt), + DAG.getNode(Op2, NVT, InL, Amt2)); + return true; + } + + return false; +} + + +//===----------------------------------------------------------------------===// +// Integer Operand Expansion +//===----------------------------------------------------------------------===// + +/// ExpandIntegerOperand - This method is called when the specified operand of +/// the specified node is found to need expansion. At this point, all of the +/// result types of the node are known to be legal, but other operands of the +/// node may need promotion or expansion as well as the specified one. +bool DAGTypeLegalizer::ExpandIntegerOperand(SDNode *N, unsigned OpNo) { + DEBUG(cerr << "Expand integer operand: "; N->dump(&DAG); cerr << "\n"); + SDOperand Res(0, 0); + + if (TLI.getOperationAction(N->getOpcode(), N->getOperand(OpNo).getValueType()) + == TargetLowering::Custom) + Res = TLI.LowerOperation(SDOperand(N, 0), DAG); + + if (Res.Val == 0) { + switch (N->getOpcode()) { + default: + #ifndef NDEBUG + cerr << "ExpandIntegerOperand Op #" << OpNo << ": "; + N->dump(&DAG); cerr << "\n"; + #endif + assert(0 && "Do not know how to expand this operator's operand!"); + abort(); + + case ISD::TRUNCATE: Res = ExpandIntOp_TRUNCATE(N); break; + case ISD::BIT_CONVERT: Res = ExpandIntOp_BIT_CONVERT(N); break; + + case ISD::SINT_TO_FP: + Res = ExpandIntOp_SINT_TO_FP(N->getOperand(0), N->getValueType(0)); + break; + case ISD::UINT_TO_FP: + Res = ExpandIntOp_UINT_TO_FP(N->getOperand(0), N->getValueType(0)); + break; + case ISD::EXTRACT_ELEMENT: Res = ExpandIntOp_EXTRACT_ELEMENT(N); break; + + case ISD::BR_CC: Res = ExpandIntOp_BR_CC(N); break; + case ISD::SETCC: Res = ExpandIntOp_SETCC(N); break; + + case ISD::STORE: + Res = ExpandIntOp_STORE(cast<StoreSDNode>(N), OpNo); + break; + + case ISD::BUILD_VECTOR: Res = ExpandIntOp_BUILD_VECTOR(N); break; + } + } + + // If the result is null, the sub-method took care of registering results etc. + if (!Res.Val) return false; + // If the result is N, the sub-method updated N in place. Check to see if any + // operands are new, and if so, mark them. + if (Res.Val == N) { + // Mark N as new and remark N and its operands. This allows us to correctly + // revisit N if it needs another step of expansion and allows us to visit + // any new operands to N. + ReanalyzeNode(N); + return true; + } + + assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 && + "Invalid operand expansion"); + + ReplaceValueWith(SDOperand(N, 0), Res); + return false; +} + +SDOperand DAGTypeLegalizer::ExpandIntOp_TRUNCATE(SDNode *N) { + SDOperand InL, InH; + GetExpandedInteger(N->getOperand(0), InL, InH); + // Just truncate the low part of the source. + return DAG.getNode(ISD::TRUNCATE, N->getValueType(0), InL); +} + +SDOperand DAGTypeLegalizer::ExpandIntOp_BIT_CONVERT(SDNode *N) { + if (N->getValueType(0).isVector()) { + // An illegal integer type is being converted to a legal vector type. + // Make a two element vector out of the expanded parts and convert that + // instead, but only if the new vector type is legal (otherwise there + // is no point, and it might create expansion loops). For example, on + // x86 this turns v1i64 = BIT_CONVERT i64 into v1i64 = BIT_CONVERT v2i32. + MVT OVT = N->getOperand(0).getValueType(); + MVT NVT = MVT::getVectorVT(TLI.getTypeToTransformTo(OVT), 2); + + if (isTypeLegal(NVT)) { + SDOperand Parts[2]; + GetExpandedInteger(N->getOperand(0), Parts[0], Parts[1]); + + if (TLI.isBigEndian()) + std::swap(Parts[0], Parts[1]); + + SDOperand Vec = DAG.getNode(ISD::BUILD_VECTOR, NVT, Parts, 2); + return DAG.getNode(ISD::BIT_CONVERT, N->getValueType(0), Vec); + } + } + + // Otherwise, store to a temporary and load out again as the new type. + return CreateStackStoreLoad(N->getOperand(0), N->getValueType(0)); +} + +SDOperand DAGTypeLegalizer::ExpandIntOp_SINT_TO_FP(SDOperand Source, + MVT DestTy) { + // We know the destination is legal, but that the input needs to be expanded. + MVT SourceVT = Source.getValueType(); + + // Check to see if the target has a custom way to lower this. If so, use it. + switch (TLI.getOperationAction(ISD::SINT_TO_FP, SourceVT)) { + default: assert(0 && "This action not implemented for this operation!"); + case TargetLowering::Legal: + case TargetLowering::Expand: + break; // This case is handled below. + case TargetLowering::Custom: + SDOperand NV = TLI.LowerOperation(DAG.getNode(ISD::SINT_TO_FP, DestTy, + Source), DAG); + if (NV.Val) return NV; + break; // The target lowered this. + } + + RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; + if (SourceVT == MVT::i64) { + if (DestTy == MVT::f32) + LC = RTLIB::SINTTOFP_I64_F32; + else { + assert(DestTy == MVT::f64 && "Unknown fp value type!"); + LC = RTLIB::SINTTOFP_I64_F64; + } + } else if (SourceVT == MVT::i128) { + if (DestTy == MVT::f32) + LC = RTLIB::SINTTOFP_I128_F32; + else if (DestTy == MVT::f64) + LC = RTLIB::SINTTOFP_I128_F64; + else if (DestTy == MVT::f80) + LC = RTLIB::SINTTOFP_I128_F80; + else { + assert(DestTy == MVT::ppcf128 && "Unknown fp value type!"); + LC = RTLIB::SINTTOFP_I128_PPCF128; + } + } else { + assert(0 && "Unknown int value type!"); + } + + assert(LC != RTLIB::UNKNOWN_LIBCALL && + "Don't know how to expand this SINT_TO_FP!"); + return MakeLibCall(LC, DestTy, &Source, 1, true); +} + +SDOperand DAGTypeLegalizer::ExpandIntOp_UINT_TO_FP(SDOperand Source, + MVT DestTy) { + // We know the destination is legal, but that the input needs to be expanded. + assert(getTypeAction(Source.getValueType()) == ExpandInteger && + "This is not an expansion!"); + + // If this is unsigned, and not supported, first perform the conversion to + // signed, then adjust the result if the sign bit is set. + SDOperand SignedConv = ExpandIntOp_SINT_TO_FP(Source, DestTy); + + // The 64-bit value loaded will be incorrectly if the 'sign bit' of the + // incoming integer is set. To handle this, we dynamically test to see if + // it is set, and, if so, add a fudge factor. + SDOperand Lo, Hi; + GetExpandedInteger(Source, Lo, Hi); + + SDOperand SignSet = DAG.getSetCC(TLI.getSetCCResultType(Hi), Hi, + DAG.getConstant(0, Hi.getValueType()), + ISD::SETLT); + SDOperand Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); + SDOperand CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(), + SignSet, Four, Zero); + uint64_t FF = 0x5f800000ULL; + if (TLI.isLittleEndian()) FF <<= 32; + Constant *FudgeFactor = ConstantInt::get((Type*)Type::Int64Ty, FF); + + SDOperand CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); + CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset); + SDOperand FudgeInReg; + if (DestTy == MVT::f32) + FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx, NULL, 0); + else if (DestTy.bitsGT(MVT::f32)) + // FIXME: Avoid the extend by construction the right constantpool? + FudgeInReg = DAG.getExtLoad(ISD::EXTLOAD, DestTy, DAG.getEntryNode(), + CPIdx, NULL, 0, MVT::f32); + else + assert(0 && "Unexpected conversion"); + + return DAG.getNode(ISD::FADD, DestTy, SignedConv, FudgeInReg); +} + +SDOperand DAGTypeLegalizer::ExpandIntOp_EXTRACT_ELEMENT(SDNode *N) { + SDOperand Lo, Hi; + GetExpandedInteger(N->getOperand(0), Lo, Hi); + return cast<ConstantSDNode>(N->getOperand(1))->getValue() ? Hi : Lo; +} + +SDOperand DAGTypeLegalizer::ExpandIntOp_BR_CC(SDNode *N) { + SDOperand NewLHS = N->getOperand(2), NewRHS = N->getOperand(3); + ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(1))->get(); + ExpandSetCCOperands(NewLHS, NewRHS, CCCode); + + // If ExpandSetCCOperands returned a scalar, we need to compare the result + // against zero to select between true and false values. + if (NewRHS.Val == 0) { + NewRHS = DAG.getConstant(0, NewLHS.getValueType()); + CCCode = ISD::SETNE; + } + + // Update N to have the operands specified. + return DAG.UpdateNodeOperands(SDOperand(N, 0), N->getOperand(0), + DAG.getCondCode(CCCode), NewLHS, NewRHS, + N->getOperand(4)); +} + +SDOperand DAGTypeLegalizer::ExpandIntOp_SETCC(SDNode *N) { + SDOperand NewLHS = N->getOperand(0), NewRHS = N->getOperand(1); + ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(2))->get(); + ExpandSetCCOperands(NewLHS, NewRHS, CCCode); + + // If ExpandSetCCOperands returned a scalar, use it. + if (NewRHS.Val == 0) return NewLHS; + + // Otherwise, update N to have the operands specified. + return DAG.UpdateNodeOperands(SDOperand(N, 0), NewLHS, NewRHS, + DAG.getCondCode(CCCode)); +} + +/// ExpandSetCCOperands - Expand the operands of a comparison. This code is +/// shared among BR_CC, SELECT_CC, and SETCC handlers. +void DAGTypeLegalizer::ExpandSetCCOperands(SDOperand &NewLHS, SDOperand &NewRHS, + ISD::CondCode &CCCode) { + SDOperand LHSLo, LHSHi, RHSLo, RHSHi; + GetExpandedInteger(NewLHS, LHSLo, LHSHi); + GetExpandedInteger(NewRHS, RHSLo, RHSHi); + + MVT VT = NewLHS.getValueType(); + if (VT == MVT::ppcf128) { + // FIXME: This generated code sucks. We want to generate + // FCMP crN, hi1, hi2 + // BNE crN, L: + // FCMP crN, lo1, lo2 + // The following can be improved, but not that much. + SDOperand Tmp1, Tmp2, Tmp3; + Tmp1 = DAG.getSetCC(TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi, ISD::SETEQ); + Tmp2 = DAG.getSetCC(TLI.getSetCCResultType(LHSLo), LHSLo, RHSLo, CCCode); + Tmp3 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2); + Tmp1 = DAG.getSetCC(TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi, ISD::SETNE); + Tmp2 = DAG.getSetCC(TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi, CCCode); + Tmp1 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2); + NewLHS = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp3); + NewRHS = SDOperand(); // LHS is the result, not a compare. + return; + } + + if (CCCode == ISD::SETEQ || CCCode == ISD::SETNE) { + if (RHSLo == RHSHi) + if (ConstantSDNode *RHSCST = dyn_cast<ConstantSDNode>(RHSLo)) + if (RHSCST->isAllOnesValue()) { + // Equality comparison to -1. + NewLHS = DAG.getNode(ISD::AND, LHSLo.getValueType(), LHSLo, LHSHi); + NewRHS = RHSLo; + return; + } + + NewLHS = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSLo, RHSLo); + NewRHS = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSHi, RHSHi); + NewLHS = DAG.getNode(ISD::OR, NewLHS.getValueType(), NewLHS, NewRHS); + NewRHS = DAG.getConstant(0, NewLHS.getValueType()); + return; + } + + // If this is a comparison of the sign bit, just look at the top part. + // X > -1, x < 0 + if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(NewRHS)) + if ((CCCode == ISD::SETLT && CST->isNullValue()) || // X < 0 + (CCCode == ISD::SETGT && CST->isAllOnesValue())) { // X > -1 + NewLHS = LHSHi; + NewRHS = RHSHi; + return; + } + + // FIXME: This generated code sucks. + ISD::CondCode LowCC; + switch (CCCode) { + default: assert(0 && "Unknown integer setcc!"); + case ISD::SETLT: + case ISD::SETULT: LowCC = ISD::SETULT; break; + case ISD::SETGT: + case ISD::SETUGT: LowCC = ISD::SETUGT; break; + case ISD::SETLE: + case ISD::SETULE: LowCC = ISD::SETULE; break; + case ISD::SETGE: + case ISD::SETUGE: LowCC = ISD::SETUGE; break; + } + + // Tmp1 = lo(op1) < lo(op2) // Always unsigned comparison + // Tmp2 = hi(op1) < hi(op2) // Signedness depends on operands + // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2; + + // NOTE: on targets without efficient SELECT of bools, we can always use + // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3) + TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, false, true, NULL); + SDOperand Tmp1, Tmp2; + Tmp1 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSLo), LHSLo, RHSLo, LowCC, + false, DagCombineInfo); + if (!Tmp1.Val) + Tmp1 = DAG.getSetCC(TLI.getSetCCResultType(LHSLo), LHSLo, RHSLo, LowCC); + Tmp2 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi, + CCCode, false, DagCombineInfo); + if (!Tmp2.Val) + Tmp2 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi, + DAG.getCondCode(CCCode)); + + ConstantSDNode *Tmp1C = dyn_cast<ConstantSDNode>(Tmp1.Val); + ConstantSDNode *Tmp2C = dyn_cast<ConstantSDNode>(Tmp2.Val); + if ((Tmp1C && Tmp1C->isNullValue()) || + (Tmp2C && Tmp2C->isNullValue() && + (CCCode == ISD::SETLE || CCCode == ISD::SETGE || + CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) || + (Tmp2C && Tmp2C->getAPIntValue() == 1 && + (CCCode == ISD::SETLT || CCCode == ISD::SETGT || + CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) { + // low part is known false, returns high part. + // For LE / GE, if high part is known false, ignore the low part. + // For LT / GT, if high part is known true, ignore the low part. + NewLHS = Tmp2; + NewRHS = SDOperand(); + return; + } + + NewLHS = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi, + ISD::SETEQ, false, DagCombineInfo); + if (!NewLHS.Val) + NewLHS = DAG.getSetCC(TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi, + ISD::SETEQ); + NewLHS = DAG.getNode(ISD::SELECT, Tmp1.getValueType(), + NewLHS, Tmp1, Tmp2); + NewRHS = SDOperand(); +} + +SDOperand DAGTypeLegalizer::ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo) { + // FIXME: Add support for indexed stores. + assert(OpNo == 1 && "Can only expand the stored value so far"); + + MVT VT = N->getOperand(1).getValueType(); + MVT NVT = TLI.getTypeToTransformTo(VT); + SDOperand Ch = N->getChain(); + SDOperand Ptr = N->getBasePtr(); + int SVOffset = N->getSrcValueOffset(); + unsigned Alignment = N->getAlignment(); + bool isVolatile = N->isVolatile(); + SDOperand Lo, Hi; + + assert(!(NVT.getSizeInBits() & 7) && "Expanded type not byte sized!"); + + if (!N->isTruncatingStore()) { + unsigned IncrementSize = 0; + GetExpandedInteger(N->getValue(), Lo, Hi); + IncrementSize = Hi.getValueType().getSizeInBits()/8; + + if (TLI.isBigEndian()) + std::swap(Lo, Hi); + + Lo = DAG.getStore(Ch, Lo, Ptr, N->getSrcValue(), + SVOffset, isVolatile, Alignment); + + Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, + DAG.getIntPtrConstant(IncrementSize)); + assert(isTypeLegal(Ptr.getValueType()) && "Pointers must be legal!"); + Hi = DAG.getStore(Ch, Hi, Ptr, N->getSrcValue(), SVOffset+IncrementSize, + isVolatile, MinAlign(Alignment, IncrementSize)); + return DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); + } else if (N->getMemoryVT().bitsLE(NVT)) { + GetExpandedInteger(N->getValue(), Lo, Hi); + return DAG.getTruncStore(Ch, Lo, Ptr, N->getSrcValue(), SVOffset, + N->getMemoryVT(), isVolatile, Alignment); + } else if (TLI.isLittleEndian()) { + // Little-endian - low bits are at low addresses. + GetExpandedInteger(N->getValue(), Lo, Hi); + + Lo = DAG.getStore(Ch, Lo, Ptr, N->getSrcValue(), SVOffset, + isVolatile, Alignment); + + unsigned ExcessBits = + N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits(); + MVT NEVT = MVT::getIntegerVT(ExcessBits); + + // Increment the pointer to the other half. + unsigned IncrementSize = NVT.getSizeInBits()/8; + Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, + DAG.getIntPtrConstant(IncrementSize)); + Hi = DAG.getTruncStore(Ch, Hi, Ptr, N->getSrcValue(), + SVOffset+IncrementSize, NEVT, + isVolatile, MinAlign(Alignment, IncrementSize)); + return DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); + } else { + // Big-endian - high bits are at low addresses. Favor aligned stores at + // the cost of some bit-fiddling. + GetExpandedInteger(N->getValue(), Lo, Hi); + + MVT EVT = N->getMemoryVT(); + unsigned EBytes = EVT.getStoreSizeInBits()/8; + unsigned IncrementSize = NVT.getSizeInBits()/8; + unsigned ExcessBits = (EBytes - IncrementSize)*8; + MVT HiVT = MVT::getIntegerVT(EVT.getSizeInBits() - ExcessBits); + + if (ExcessBits < NVT.getSizeInBits()) { + // Transfer high bits from the top of Lo to the bottom of Hi. + Hi = DAG.getNode(ISD::SHL, NVT, Hi, + DAG.getConstant(NVT.getSizeInBits() - ExcessBits, + TLI.getShiftAmountTy())); + Hi = DAG.getNode(ISD::OR, NVT, Hi, + DAG.getNode(ISD::SRL, NVT, Lo, + DAG.getConstant(ExcessBits, + TLI.getShiftAmountTy()))); + } + + // Store both the high bits and maybe some of the low bits. + Hi = DAG.getTruncStore(Ch, Hi, Ptr, N->getSrcValue(), + SVOffset, HiVT, isVolatile, Alignment); + + // Increment the pointer to the other half. + Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, + DAG.getIntPtrConstant(IncrementSize)); + // Store the lowest ExcessBits bits in the second half. + Lo = DAG.getTruncStore(Ch, Lo, Ptr, N->getSrcValue(), + SVOffset+IncrementSize, + MVT::getIntegerVT(ExcessBits), + isVolatile, MinAlign(Alignment, IncrementSize)); + return DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); + } +} + +SDOperand DAGTypeLegalizer::ExpandIntOp_BUILD_VECTOR(SDNode *N) { + // The vector type is legal but the element type needs expansion. + MVT VecVT = N->getValueType(0); + unsigned NumElts = VecVT.getVectorNumElements(); + MVT OldVT = N->getOperand(0).getValueType(); + MVT NewVT = TLI.getTypeToTransformTo(OldVT); + + assert(OldVT.getSizeInBits() == 2 * NewVT.getSizeInBits() && + "Do not know how to expand this operand!"); + + // Build a vector of twice the length out of the expanded elements. + // For example <2 x i64> -> <4 x i32>. + std::vector<SDOperand> NewElts; + NewElts.reserve(NumElts*2); + + for (unsigned i = 0; i < NumElts; ++i) { + SDOperand Lo, Hi; + GetExpandedInteger(N->getOperand(i), Lo, Hi); + if (TLI.isBigEndian()) + std::swap(Lo, Hi); + NewElts.push_back(Lo); + NewElts.push_back(Hi); + } + + SDOperand NewVec = DAG.getNode(ISD::BUILD_VECTOR, + MVT::getVectorVT(NewVT, NewElts.size()), + &NewElts[0], NewElts.size()); + + // Convert the new vector to the old vector type. + return DAG.getNode(ISD::BIT_CONVERT, VecVT, NewVec); +} |