diff options
author | Jakub Staszak <kubastaszak@gmail.com> | 2013-03-20 21:47:51 +0000 |
---|---|---|
committer | Jakub Staszak <kubastaszak@gmail.com> | 2013-03-20 21:47:51 +0000 |
commit | 6178e5f50c0c8be26913cd93238a5035a39cdf37 (patch) | |
tree | fca36e313b4035e1669f3482694e64e9d7341978 /lib/Analysis/MemoryDependenceAnalysis.cpp | |
parent | 8640c6a5227b75666e02424e2181289692138348 (diff) |
Remove trailing spaces.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177584 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Analysis/MemoryDependenceAnalysis.cpp')
-rw-r--r-- | lib/Analysis/MemoryDependenceAnalysis.cpp | 266 |
1 files changed, 133 insertions, 133 deletions
diff --git a/lib/Analysis/MemoryDependenceAnalysis.cpp b/lib/Analysis/MemoryDependenceAnalysis.cpp index 1faa04623e..9f9399fb23 100644 --- a/lib/Analysis/MemoryDependenceAnalysis.cpp +++ b/lib/Analysis/MemoryDependenceAnalysis.cpp @@ -8,7 +8,7 @@ //===----------------------------------------------------------------------===// // // This file implements an analysis that determines, for a given memory -// operation, what preceding memory operations it depends on. It builds on +// operation, what preceding memory operations it depends on. It builds on // alias analysis information, and tries to provide a lazy, caching interface to // a common kind of alias information query. // @@ -52,7 +52,7 @@ STATISTIC(NumCacheCompleteNonLocalPtr, static const int BlockScanLimit = 500; char MemoryDependenceAnalysis::ID = 0; - + // Register this pass... INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep", "Memory Dependence Analysis", false, true) @@ -99,7 +99,7 @@ bool MemoryDependenceAnalysis::runOnFunction(Function &) { /// RemoveFromReverseMap - This is a helper function that removes Val from /// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry. template <typename KeyTy> -static void RemoveFromReverseMap(DenseMap<Instruction*, +static void RemoveFromReverseMap(DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> > &ReverseMap, Instruction *Inst, KeyTy Val) { typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator @@ -196,13 +196,13 @@ getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall, // Walk backwards through the block, looking for dependencies while (ScanIt != BB->begin()) { // Limit the amount of scanning we do so we don't end up with quadratic - // running time on extreme testcases. + // running time on extreme testcases. --Limit; if (!Limit) return MemDepResult::getUnknown(); Instruction *Inst = --ScanIt; - + // If this inst is a memory op, get the pointer it accessed AliasAnalysis::Location Loc; AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA); @@ -251,7 +251,7 @@ getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall, /// /// MemLocBase, MemLocOffset are lazily computed here the first time the /// base/offs of memloc is needed. -static bool +static bool isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location &MemLoc, const Value *&MemLocBase, int64_t &MemLocOffs, @@ -289,25 +289,25 @@ getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs, if (LI->getParent()->getParent()->getAttributes(). hasAttribute(AttributeSet::FunctionIndex, Attribute::SanitizeThread)) return 0; - + // Get the base of this load. int64_t LIOffs = 0; - const Value *LIBase = + const Value *LIBase = GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, &TD); - + // If the two pointers are not based on the same pointer, we can't tell that // they are related. if (LIBase != MemLocBase) return 0; - + // Okay, the two values are based on the same pointer, but returned as // no-alias. This happens when we have things like two byte loads at "P+1" // and "P+3". Check to see if increasing the size of the "LI" load up to its // alignment (or the largest native integer type) will allow us to load all // the bits required by MemLoc. - + // If MemLoc is before LI, then no widening of LI will help us out. if (MemLocOffs < LIOffs) return 0; - + // Get the alignment of the load in bytes. We assume that it is safe to load // any legal integer up to this size without a problem. For example, if we're // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can @@ -316,15 +316,15 @@ getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs, unsigned LoadAlign = LI->getAlignment(); int64_t MemLocEnd = MemLocOffs+MemLocSize; - + // If no amount of rounding up will let MemLoc fit into LI, then bail out. if (LIOffs+LoadAlign < MemLocEnd) return 0; - + // This is the size of the load to try. Start with the next larger power of // two. unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U; NewLoadByteSize = NextPowerOf2(NewLoadByteSize); - + while (1) { // If this load size is bigger than our known alignment or would not fit // into a native integer register, then we fail. @@ -343,7 +343,7 @@ getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs, // If a load of this width would include all of MemLoc, then we succeed. if (LIOffs+NewLoadByteSize >= MemLocEnd) return NewLoadByteSize; - + NewLoadByteSize <<= 1; } } @@ -355,7 +355,7 @@ getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs, /// instruction as well; this function may take advantage of the metadata /// annotated to the query instruction to refine the result. MemDepResult MemoryDependenceAnalysis:: -getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad, +getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, BasicBlock *BB, Instruction *QueryInst) { @@ -382,7 +382,7 @@ getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad, if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { // Debug intrinsics don't (and can't) cause dependences. if (isa<DbgInfoIntrinsic>(II)) continue; - + // If we reach a lifetime begin or end marker, then the query ends here // because the value is undefined. if (II->getIntrinsicID() == Intrinsic::lifetime_start) { @@ -406,10 +406,10 @@ getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad, return MemDepResult::getClobber(LI); AliasAnalysis::Location LoadLoc = AA->getLocation(LI); - + // If we found a pointer, check if it could be the same as our pointer. AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc); - + if (isLoad) { if (R == AliasAnalysis::NoAlias) { // If this is an over-aligned integer load (for example, @@ -423,10 +423,10 @@ getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad, isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase, MemLocOffset, LI, TD)) return MemDepResult::getClobber(Inst); - + continue; } - + // Must aliased loads are defs of each other. if (R == AliasAnalysis::MustAlias) return MemDepResult::getDef(Inst); @@ -441,7 +441,7 @@ getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad, if (R == AliasAnalysis::PartialAlias) return MemDepResult::getClobber(Inst); #endif - + // Random may-alias loads don't depend on each other without a // dependence. continue; @@ -458,7 +458,7 @@ getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad, // Stores depend on may/must aliased loads. return MemDepResult::getDef(Inst); } - + if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { // Atomic stores have complications involved. // FIXME: This is overly conservative. @@ -474,10 +474,10 @@ getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad, // Ok, this store might clobber the query pointer. Check to see if it is // a must alias: in this case, we want to return this as a def. AliasAnalysis::Location StoreLoc = AA->getLocation(SI); - + // If we found a pointer, check if it could be the same as our pointer. AliasAnalysis::AliasResult R = AA->alias(StoreLoc, MemLoc); - + if (R == AliasAnalysis::NoAlias) continue; if (R == AliasAnalysis::MustAlias) @@ -498,7 +498,7 @@ getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad, const TargetLibraryInfo *TLI = AA->getTargetLibraryInfo(); if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, TLI)) { const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, TD); - + if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr)) return MemDepResult::getDef(Inst); // Be conservative if the accessed pointer may alias the allocation. @@ -532,7 +532,7 @@ getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad, return MemDepResult::getClobber(Inst); } } - + // No dependence found. If this is the entry block of the function, it is // unknown, otherwise it is non-local. if (BB != &BB->getParent()->getEntryBlock()) @@ -544,25 +544,25 @@ getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad, /// depends. MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) { Instruction *ScanPos = QueryInst; - + // Check for a cached result MemDepResult &LocalCache = LocalDeps[QueryInst]; - + // If the cached entry is non-dirty, just return it. Note that this depends // on MemDepResult's default constructing to 'dirty'. if (!LocalCache.isDirty()) return LocalCache; - + // Otherwise, if we have a dirty entry, we know we can start the scan at that // instruction, which may save us some work. if (Instruction *Inst = LocalCache.getInst()) { ScanPos = Inst; - + RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); } - + BasicBlock *QueryParent = QueryInst->getParent(); - + // Do the scan. if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { // No dependence found. If this is the entry block of the function, it is @@ -591,11 +591,11 @@ MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) { // Non-memory instruction. LocalCache = MemDepResult::getUnknown(); } - + // Remember the result! if (Instruction *I = LocalCache.getInst()) ReverseLocalDeps[I].insert(QueryInst); - + return LocalCache; } @@ -636,7 +636,7 @@ MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) { /// the uncached case, this starts out as the set of predecessors we care /// about. SmallVector<BasicBlock*, 32> DirtyBlocks; - + if (!Cache.empty()) { // Okay, we have a cache entry. If we know it is not dirty, just return it // with no computation. @@ -644,17 +644,17 @@ MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) { ++NumCacheNonLocal; return Cache; } - + // If we already have a partially computed set of results, scan them to // determine what is dirty, seeding our initial DirtyBlocks worklist. for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end(); I != E; ++I) if (I->getResult().isDirty()) DirtyBlocks.push_back(I->getBB()); - + // Sort the cache so that we can do fast binary search lookups below. std::sort(Cache.begin(), Cache.end()); - + ++NumCacheDirtyNonLocal; //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: " // << Cache.size() << " cached: " << *QueryInst; @@ -665,45 +665,45 @@ MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) { DirtyBlocks.push_back(*PI); ++NumUncacheNonLocal; } - + // isReadonlyCall - If this is a read-only call, we can be more aggressive. bool isReadonlyCall = AA->onlyReadsMemory(QueryCS); SmallPtrSet<BasicBlock*, 64> Visited; - + unsigned NumSortedEntries = Cache.size(); DEBUG(AssertSorted(Cache)); - + // Iterate while we still have blocks to update. while (!DirtyBlocks.empty()) { BasicBlock *DirtyBB = DirtyBlocks.back(); DirtyBlocks.pop_back(); - + // Already processed this block? if (!Visited.insert(DirtyBB)) continue; - + // Do a binary search to see if we already have an entry for this block in // the cache set. If so, find it. DEBUG(AssertSorted(Cache, NumSortedEntries)); - NonLocalDepInfo::iterator Entry = + NonLocalDepInfo::iterator Entry = std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries, NonLocalDepEntry(DirtyBB)); if (Entry != Cache.begin() && prior(Entry)->getBB() == DirtyBB) --Entry; - + NonLocalDepEntry *ExistingResult = 0; - if (Entry != Cache.begin()+NumSortedEntries && + if (Entry != Cache.begin()+NumSortedEntries && Entry->getBB() == DirtyBB) { // If we already have an entry, and if it isn't already dirty, the block // is done. if (!Entry->getResult().isDirty()) continue; - + // Otherwise, remember this slot so we can update the value. ExistingResult = &*Entry; } - + // If the dirty entry has a pointer, start scanning from it so we don't have // to rescan the entire block. BasicBlock::iterator ScanPos = DirtyBB->end(); @@ -715,10 +715,10 @@ MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) { QueryCS.getInstruction()); } } - + // Find out if this block has a local dependency for QueryInst. MemDepResult Dep; - + if (ScanPos != DirtyBB->begin()) { Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB); } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { @@ -728,14 +728,14 @@ MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) { } else { Dep = MemDepResult::getNonFuncLocal(); } - + // If we had a dirty entry for the block, update it. Otherwise, just add // a new entry. if (ExistingResult) ExistingResult->setResult(Dep); else Cache.push_back(NonLocalDepEntry(DirtyBB, Dep)); - + // If the block has a dependency (i.e. it isn't completely transparent to // the value), remember the association! if (!Dep.isNonLocal()) { @@ -744,14 +744,14 @@ MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) { if (Instruction *Inst = Dep.getInst()) ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction()); } else { - + // If the block *is* completely transparent to the load, we need to check // the predecessors of this block. Add them to our worklist. for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI) DirtyBlocks.push_back(*PI); } } - + return Cache; } @@ -769,9 +769,9 @@ getNonLocalPointerDependency(const AliasAnalysis::Location &Loc, bool isLoad, assert(Loc.Ptr->getType()->isPointerTy() && "Can't get pointer deps of a non-pointer!"); Result.clear(); - + PHITransAddr Address(const_cast<Value *>(Loc.Ptr), TD); - + // This is the set of blocks we've inspected, and the pointer we consider in // each block. Because of critical edges, we currently bail out if querying // a block with multiple different pointers. This can happen during PHI @@ -794,7 +794,7 @@ MemDepResult MemoryDependenceAnalysis:: GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc, bool isLoad, BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) { - + // Do a binary search to see if we already have an entry for this block in // the cache set. If so, find it. NonLocalDepInfo::iterator Entry = @@ -802,18 +802,18 @@ GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc, NonLocalDepEntry(BB)); if (Entry != Cache->begin() && (Entry-1)->getBB() == BB) --Entry; - + NonLocalDepEntry *ExistingResult = 0; if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB) ExistingResult = &*Entry; - + // If we have a cached entry, and it is non-dirty, use it as the value for // this dependency. if (ExistingResult && !ExistingResult->getResult().isDirty()) { ++NumCacheNonLocalPtr; return ExistingResult->getResult(); - } - + } + // Otherwise, we have to scan for the value. If we have a dirty cache // entry, start scanning from its position, otherwise we scan from the end // of the block. @@ -823,30 +823,30 @@ GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc, "Instruction invalidated?"); ++NumCacheDirtyNonLocalPtr; ScanPos = ExistingResult->getResult().getInst(); - + // Eliminating the dirty entry from 'Cache', so update the reverse info. ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey); } else { ++NumUncacheNonLocalPtr; } - + // Scan the block for the dependency. MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB); - + // If we had a dirty entry for the block, update it. Otherwise, just add // a new entry. if (ExistingResult) ExistingResult->setResult(Dep); else Cache->push_back(NonLocalDepEntry(BB, Dep)); - + // If the block has a dependency (i.e. it isn't completely transparent to // the value), remember the reverse association because we just added it // to Cache! if (!Dep.isDef() && !Dep.isClobber()) return Dep; - + // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently // update MemDep when we remove instructions. Instruction *Inst = Dep.getInst(); @@ -859,7 +859,7 @@ GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc, /// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain /// number of elements in the array that are already properly ordered. This is /// optimized for the case when only a few entries are added. -static void +static void SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, unsigned NumSortedEntries) { switch (Cache.size() - NumSortedEntries) { @@ -911,7 +911,7 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, SmallVectorImpl<NonLocalDepResult> &Result, DenseMap<BasicBlock*, Value*> &Visited, bool SkipFirstBlock) { - + // Look up the cached info for Pointer. ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); @@ -925,7 +925,7 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, // Get the NLPI for CacheKey, inserting one into the map if it doesn't // already have one. - std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = + std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI)); NonLocalPointerInfo *CacheInfo = &Pair.first->second; @@ -987,14 +987,14 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB()); if (VI == Visited.end() || VI->second == Pointer.getAddr()) continue; - + // We have a pointer mismatch in a block. Just return clobber, saying // that something was clobbered in this result. We could also do a // non-fully cached query, but there is little point in doing this. return true; } } - + Value *Addr = Pointer.getAddr(); for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); I != E; ++I) { @@ -1005,7 +1005,7 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, ++NumCacheCompleteNonLocalPtr; return false; } - + // Otherwise, either this is a new block, a block with an invalid cache // pointer or one that we're about to invalidate by putting more info into it // than its valid cache info. If empty, the result will be valid cache info, @@ -1014,10 +1014,10 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); else CacheInfo->Pair = BBSkipFirstBlockPair(); - + SmallVector<BasicBlock*, 32> Worklist; Worklist.push_back(StartBB); - + // PredList used inside loop. SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList; @@ -1028,10 +1028,10 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, // revisit blocks after we insert info for them. unsigned NumSortedEntries = Cache->size(); DEBUG(AssertSorted(*Cache)); - + while (!Worklist.empty()) { BasicBlock *BB = Worklist.pop_back_val(); - + // Skip the first block if we have it. if (!SkipFirstBlock) { // Analyze the dependency of *Pointer in FromBB. See if we already have @@ -1043,14 +1043,14 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, DEBUG(AssertSorted(*Cache, NumSortedEntries)); MemDepResult Dep = GetNonLocalInfoForBlock(Loc, isLoad, BB, Cache, NumSortedEntries); - + // If we got a Def or Clobber, add this to the list of results. if (!Dep.isNonLocal() && DT->isReachableFromEntry(BB)) { Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr())); continue; } } - + // If 'Pointer' is an instruction defined in this block, then we need to do // phi translation to change it into a value live in the predecessor block. // If not, we just add the predecessors to the worklist and scan them with @@ -1067,7 +1067,7 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, NewBlocks.push_back(*PI); continue; } - + // If we have seen this block before, but it was with a different // pointer then we have a phi translation failure and we have to treat // this as a clobber. @@ -1082,12 +1082,12 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, Worklist.append(NewBlocks.begin(), NewBlocks.end()); continue; } - + // We do need to do phi translation, if we know ahead of time we can't phi // translate this value, don't even try. if (!Pointer.IsPotentiallyPHITranslatable()) goto PredTranslationFailure; - + // We may have added values to the cache list before this PHI translation. // If so, we haven't done anything to ensure that the cache remains sorted. // Sort it now (if needed) so that recursive invocations of @@ -1110,7 +1110,7 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, PredPointer.PHITranslateValue(BB, Pred, 0); Value *PredPtrVal = PredPointer.getAddr(); - + // Check to see if we have already visited this pred block with another // pointer. If so, we can't do this lookup. This failure can occur // with PHI translation when a critical edge exists and the PHI node in @@ -1127,7 +1127,7 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, // the analysis and can ignore it. if (InsertRes.first->second == PredPtrVal) continue; - + // Otherwise, the block was previously analyzed with a different // pointer. We can't represent the result of this case, so we just // treat this as a phi translation failure. @@ -1143,7 +1143,7 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, // Actually process results here; this need to be a separate loop to avoid // calling getNonLocalPointerDepFromBB for blocks we don't want to return - // any results for. (getNonLocalPointerDepFromBB will modify our + // any results for. (getNonLocalPointerDepFromBB will modify our // datastructures in ways the code after the PredTranslationFailure label // doesn't expect.) for (unsigned i = 0; i < PredList.size(); i++) { @@ -1186,12 +1186,12 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, continue; } } - + // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. CacheInfo = &NonLocalPointerDeps[CacheKey]; Cache = &CacheInfo->NonLocalDeps; NumSortedEntries = Cache->size(); - + // Since we did phi translation, the "Cache" set won't contain all of the // results for the query. This is ok (we can still use it to accelerate // specific block queries) but we can't do the fastpath "return all @@ -1204,20 +1204,20 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, // The following code is "failure"; we can't produce a sane translation // for the given block. It assumes that we haven't modified any of // our datastructures while processing the current block. - + if (Cache == 0) { // Refresh the CacheInfo/Cache pointer if it got invalidated. CacheInfo = &NonLocalPointerDeps[CacheKey]; Cache = &CacheInfo->NonLocalDeps; NumSortedEntries = Cache->size(); } - + // Since we failed phi translation, the "Cache" set won't contain all of the // results for the query. This is ok (we can still use it to accelerate // specific block queries) but we can't do the fastpath "return all // results from the set". Clear out the indicator for this. CacheInfo->Pair = BBSkipFirstBlockPair(); - + // If *nothing* works, mark the pointer as unknown. // // If this is the magic first block, return this as a clobber of the whole @@ -1225,12 +1225,12 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, // we have to bail out. if (SkipFirstBlock) return true; - + for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) { assert(I != Cache->rend() && "Didn't find current block??"); if (I->getBB() != BB) continue; - + assert(I->getResult().isNonLocal() && "Should only be here with transparent block"); I->setResult(MemDepResult::getUnknown()); @@ -1250,23 +1250,23 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, /// CachedNonLocalPointerInfo, remove it. void MemoryDependenceAnalysis:: RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) { - CachedNonLocalPointerInfo::iterator It = + CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P); if (It == NonLocalPointerDeps.end()) return; - + // Remove all of the entries in the BB->val map. This involves removing // instructions from the reverse map. NonLocalDepInfo &PInfo = It->second.NonLocalDeps; - + for (unsigned i = 0, e = PInfo.size(); i != e; ++i) { Instruction *Target = PInfo[i].getResult().getInst(); if (Target == 0) continue; // Ignore non-local dep results. assert(Target->getParent() == PInfo[i].getBB()); - + // Eliminating the dirty entry from 'Cache', so update the reverse info. RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); } - + // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). NonLocalPointerDeps.erase(It); } @@ -1321,20 +1321,20 @@ void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) { // Remove this local dependency info. LocalDeps.erase(LocalDepEntry); } - + // If we have any cached pointer dependencies on this instruction, remove // them. If the instruction has non-pointer type, then it can't be a pointer // base. - + // Remove it from both the load info and the store info. The instruction // can't be in either of these maps if it is non-pointer. if (RemInst->getType()->isPointerTy()) { RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); } - + // Loop over all of the things that depend on the instruction we're removing. - // + // SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd; // If we find RemInst as a clobber or Def in any of the maps for other values, @@ -1346,29 +1346,29 @@ void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) { MemDepResult NewDirtyVal; if (!RemInst->isTerminator()) NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst)); - + ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); if (ReverseDepIt != ReverseLocalDeps.end()) { SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second; // RemInst can't be the terminator if it has local stuff depending on it. assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) && "Nothing can locally depend on a terminator"); - + for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(), E = ReverseDeps.end(); I != E; ++I) { Instruction *InstDependingOnRemInst = *I; assert(InstDependingOnRemInst != RemInst && "Already removed our local dep info"); - + LocalDeps[InstDependingOnRemInst] = NewDirtyVal; - + // Make sure to remember that new things depend on NewDepInst. assert(NewDirtyVal.getInst() && "There is no way something else can have " "a local dep on this if it is a terminator!"); - ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(), + ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst)); } - + ReverseLocalDeps.erase(ReverseDepIt); // Add new reverse deps after scanning the set, to avoid invalidating the @@ -1379,25 +1379,25 @@ void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) { ReverseDepsToAdd.pop_back(); } } - + ReverseDepIt = ReverseNonLocalDeps.find(RemInst); if (ReverseDepIt != ReverseNonLocalDeps.end()) { SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second; for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end(); I != E; ++I) { assert(*I != RemInst && "Already removed NonLocalDep info for RemInst"); - + PerInstNLInfo &INLD = NonLocalDeps[*I]; // The information is now dirty! INLD.second = true; - - for (NonLocalDepInfo::iterator DI = INLD.first.begin(), + + for (NonLocalDepInfo::iterator DI = INLD.first.begin(), DE = INLD.first.end(); DI != DE; ++DI) { if (DI->getResult().getInst() != RemInst) continue; - + // Convert to a dirty entry for the subsequent instruction. DI->setResult(NewDirtyVal); - + if (Instruction *NextI = NewDirtyVal.getInst()) ReverseDepsToAdd.push_back(std::make_pair(NextI, *I)); } @@ -1412,7 +1412,7 @@ void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) { ReverseDepsToAdd.pop_back(); } } - + // If the instruction is in ReverseNonLocalPtrDeps then it appears as a // value in the NonLocalPointerDeps info. ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = @@ -1420,45 +1420,45 @@ void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) { if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second; SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd; - + for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(), E = Set.end(); I != E; ++I) { ValueIsLoadPair P = *I; assert(P.getPointer() != RemInst && "Already removed NonLocalPointerDeps info for RemInst"); - + NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps; - + // The cache is not valid for any specific block anymore. NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair(); - + // Update any entries for RemInst to use the instruction after it. for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end(); DI != DE; ++DI) { if (DI->getResult().getInst() != RemInst) continue; - + // Convert to a dirty entry for the subsequent instruction. DI->setResult(NewDirtyVal); - + if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); } - + // Re-sort the NonLocalDepInfo. Changing the dirty entry to its // subsequent value may invalidate the sortedness. std::sort(NLPDI.begin(), NLPDI.end()); } - + ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); - + while (!ReversePtrDepsToAdd.empty()) { ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first] .insert(ReversePtrDepsToAdd.back().second); ReversePtrDepsToAdd.pop_back(); } } - - + + assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?"); AA->deleteValue(RemInst); DEBUG(verifyRemoved(RemInst)); @@ -1472,7 +1472,7 @@ void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const { assert(I->second.getInst() != D && "Inst occurs in data structures"); } - + for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(), E = NonLocalPointerDeps.end(); I != E; ++I) { assert(I->first.getPointer() != D && "Inst occurs in NLPD map key"); @@ -1481,7 +1481,7 @@ void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const { II != E; ++II) assert(II->getResult().getInst() != D && "Inst occurs as NLPD value"); } - + for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(), E = NonLocalDeps.end(); I != E; ++I) { assert(I->first != D && "Inst occurs in data structures"); @@ -1490,7 +1490,7 @@ void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const { EE = INLD.first.end(); II != EE; ++II) assert(II->getResult().getInst() != D && "Inst occurs in data structures"); } - + for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(), E = ReverseLocalDeps.end(); I != E; ++I) { assert(I->first != D && "Inst occurs in data structures"); @@ -1498,7 +1498,7 @@ void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const { EE = I->second.end(); II != EE; ++II) assert(*II != D && "Inst occurs in data structures"); } - + for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(), E = ReverseNonLocalDeps.end(); I != E; ++I) { @@ -1507,17 +1507,17 @@ void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const { EE = I->second.end(); II != EE; ++II) assert(*II != D && "Inst occurs in data structures"); } - + for (ReverseNonLocalPtrDepTy::const_iterator I = ReverseNonLocalPtrDeps.begin(), E = ReverseNonLocalPtrDeps.end(); I != E; ++I) { assert(I->first != D && "Inst occurs in rev NLPD map"); - + for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(), E = I->second.end(); II != E; ++II) assert(*II != ValueIsLoadPair(D, false) && *II != ValueIsLoadPair(D, true) && "Inst occurs in ReverseNonLocalPtrDeps map"); } - + } |