aboutsummaryrefslogtreecommitdiff
path: root/lib/Analysis/Loads.cpp
diff options
context:
space:
mode:
authorDan Gohman <gohman@apple.com>2010-05-28 16:19:17 +0000
committerDan Gohman <gohman@apple.com>2010-05-28 16:19:17 +0000
commitdd9344f3face8f1978a7f9f393c31b628144d1f6 (patch)
tree2af3aa062792112ee7c2e9793bf8a6db7b25ee42 /lib/Analysis/Loads.cpp
parent700012231d58cd3f1bab21cb0e003d98253045a4 (diff)
Move FindAvailableLoadedValue isSafeToLoadUnconditionally out of
lib/Transforms/Utils and into lib/Analysis so that Analysis passes can use them. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104949 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Analysis/Loads.cpp')
-rw-r--r--lib/Analysis/Loads.cpp235
1 files changed, 235 insertions, 0 deletions
diff --git a/lib/Analysis/Loads.cpp b/lib/Analysis/Loads.cpp
new file mode 100644
index 0000000000..2ba1d86cdb
--- /dev/null
+++ b/lib/Analysis/Loads.cpp
@@ -0,0 +1,235 @@
+//===- Loads.cpp - Local load analysis ------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines simple local analyses for load instructions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/Loads.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/GlobalAlias.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/IntrinsicInst.h"
+using namespace llvm;
+
+/// AreEquivalentAddressValues - Test if A and B will obviously have the same
+/// value. This includes recognizing that %t0 and %t1 will have the same
+/// value in code like this:
+/// %t0 = getelementptr \@a, 0, 3
+/// store i32 0, i32* %t0
+/// %t1 = getelementptr \@a, 0, 3
+/// %t2 = load i32* %t1
+///
+static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
+ // Test if the values are trivially equivalent.
+ if (A == B) return true;
+
+ // Test if the values come from identical arithmetic instructions.
+ // Use isIdenticalToWhenDefined instead of isIdenticalTo because
+ // this function is only used when one address use dominates the
+ // other, which means that they'll always either have the same
+ // value or one of them will have an undefined value.
+ if (isa<BinaryOperator>(A) || isa<CastInst>(A) ||
+ isa<PHINode>(A) || isa<GetElementPtrInst>(A))
+ if (const Instruction *BI = dyn_cast<Instruction>(B))
+ if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
+ return true;
+
+ // Otherwise they may not be equivalent.
+ return false;
+}
+
+/// getUnderlyingObjectWithOffset - Strip off up to MaxLookup GEPs and
+/// bitcasts to get back to the underlying object being addressed, keeping
+/// track of the offset in bytes from the GEPs relative to the result.
+/// This is closely related to Value::getUnderlyingObject but is located
+/// here to avoid making VMCore depend on TargetData.
+static Value *getUnderlyingObjectWithOffset(Value *V, const TargetData *TD,
+ uint64_t &ByteOffset,
+ unsigned MaxLookup = 6) {
+ if (!V->getType()->isPointerTy())
+ return V;
+ for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
+ if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
+ if (!GEP->hasAllConstantIndices())
+ return V;
+ SmallVector<Value*, 8> Indices(GEP->op_begin() + 1, GEP->op_end());
+ ByteOffset += TD->getIndexedOffset(GEP->getPointerOperandType(),
+ &Indices[0], Indices.size());
+ V = GEP->getPointerOperand();
+ } else if (Operator::getOpcode(V) == Instruction::BitCast) {
+ V = cast<Operator>(V)->getOperand(0);
+ } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
+ if (GA->mayBeOverridden())
+ return V;
+ V = GA->getAliasee();
+ } else {
+ return V;
+ }
+ assert(V->getType()->isPointerTy() && "Unexpected operand type!");
+ }
+ return V;
+}
+
+/// isSafeToLoadUnconditionally - Return true if we know that executing a load
+/// from this value cannot trap. If it is not obviously safe to load from the
+/// specified pointer, we do a quick local scan of the basic block containing
+/// ScanFrom, to determine if the address is already accessed.
+bool llvm::isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom,
+ unsigned Align, const TargetData *TD) {
+ uint64_t ByteOffset = 0;
+ Value *Base = V;
+ if (TD)
+ Base = getUnderlyingObjectWithOffset(V, TD, ByteOffset);
+
+ const Type *BaseType = 0;
+ unsigned BaseAlign = 0;
+ if (const AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
+ // An alloca is safe to load from as load as it is suitably aligned.
+ BaseType = AI->getAllocatedType();
+ BaseAlign = AI->getAlignment();
+ } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(Base)) {
+ // Global variables are safe to load from but their size cannot be
+ // guaranteed if they are overridden.
+ if (!isa<GlobalAlias>(GV) && !GV->mayBeOverridden()) {
+ BaseType = GV->getType()->getElementType();
+ BaseAlign = GV->getAlignment();
+ }
+ }
+
+ if (BaseType && BaseType->isSized()) {
+ if (TD && BaseAlign == 0)
+ BaseAlign = TD->getPrefTypeAlignment(BaseType);
+
+ if (Align <= BaseAlign) {
+ if (!TD)
+ return true; // Loading directly from an alloca or global is OK.
+
+ // Check if the load is within the bounds of the underlying object.
+ const PointerType *AddrTy = cast<PointerType>(V->getType());
+ uint64_t LoadSize = TD->getTypeStoreSize(AddrTy->getElementType());
+ if (ByteOffset + LoadSize <= TD->getTypeAllocSize(BaseType) &&
+ (Align == 0 || (ByteOffset % Align) == 0))
+ return true;
+ }
+ }
+
+ // Otherwise, be a little bit aggressive by scanning the local block where we
+ // want to check to see if the pointer is already being loaded or stored
+ // from/to. If so, the previous load or store would have already trapped,
+ // so there is no harm doing an extra load (also, CSE will later eliminate
+ // the load entirely).
+ BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
+
+ while (BBI != E) {
+ --BBI;
+
+ // If we see a free or a call which may write to memory (i.e. which might do
+ // a free) the pointer could be marked invalid.
+ if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
+ !isa<DbgInfoIntrinsic>(BBI))
+ return false;
+
+ if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
+ if (AreEquivalentAddressValues(LI->getOperand(0), V)) return true;
+ } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
+ if (AreEquivalentAddressValues(SI->getOperand(1), V)) return true;
+ }
+ }
+ return false;
+}
+
+/// FindAvailableLoadedValue - Scan the ScanBB block backwards (starting at the
+/// instruction before ScanFrom) checking to see if we have the value at the
+/// memory address *Ptr locally available within a small number of instructions.
+/// If the value is available, return it.
+///
+/// If not, return the iterator for the last validated instruction that the
+/// value would be live through. If we scanned the entire block and didn't find
+/// something that invalidates *Ptr or provides it, ScanFrom would be left at
+/// begin() and this returns null. ScanFrom could also be left
+///
+/// MaxInstsToScan specifies the maximum instructions to scan in the block. If
+/// it is set to 0, it will scan the whole block. You can also optionally
+/// specify an alias analysis implementation, which makes this more precise.
+Value *llvm::FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB,
+ BasicBlock::iterator &ScanFrom,
+ unsigned MaxInstsToScan,
+ AliasAnalysis *AA) {
+ if (MaxInstsToScan == 0) MaxInstsToScan = ~0U;
+
+ // If we're using alias analysis to disambiguate get the size of *Ptr.
+ unsigned AccessSize = 0;
+ if (AA) {
+ const Type *AccessTy = cast<PointerType>(Ptr->getType())->getElementType();
+ AccessSize = AA->getTypeStoreSize(AccessTy);
+ }
+
+ while (ScanFrom != ScanBB->begin()) {
+ // We must ignore debug info directives when counting (otherwise they
+ // would affect codegen).
+ Instruction *Inst = --ScanFrom;
+ if (isa<DbgInfoIntrinsic>(Inst))
+ continue;
+
+ // Restore ScanFrom to expected value in case next test succeeds
+ ScanFrom++;
+
+ // Don't scan huge blocks.
+ if (MaxInstsToScan-- == 0) return 0;
+
+ --ScanFrom;
+ // If this is a load of Ptr, the loaded value is available.
+ if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
+ if (AreEquivalentAddressValues(LI->getOperand(0), Ptr))
+ return LI;
+
+ if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
+ // If this is a store through Ptr, the value is available!
+ if (AreEquivalentAddressValues(SI->getOperand(1), Ptr))
+ return SI->getOperand(0);
+
+ // If Ptr is an alloca and this is a store to a different alloca, ignore
+ // the store. This is a trivial form of alias analysis that is important
+ // for reg2mem'd code.
+ if ((isa<AllocaInst>(Ptr) || isa<GlobalVariable>(Ptr)) &&
+ (isa<AllocaInst>(SI->getOperand(1)) ||
+ isa<GlobalVariable>(SI->getOperand(1))))
+ continue;
+
+ // If we have alias analysis and it says the store won't modify the loaded
+ // value, ignore the store.
+ if (AA &&
+ (AA->getModRefInfo(SI, Ptr, AccessSize) & AliasAnalysis::Mod) == 0)
+ continue;
+
+ // Otherwise the store that may or may not alias the pointer, bail out.
+ ++ScanFrom;
+ return 0;
+ }
+
+ // If this is some other instruction that may clobber Ptr, bail out.
+ if (Inst->mayWriteToMemory()) {
+ // If alias analysis claims that it really won't modify the load,
+ // ignore it.
+ if (AA &&
+ (AA->getModRefInfo(Inst, Ptr, AccessSize) & AliasAnalysis::Mod) == 0)
+ continue;
+
+ // May modify the pointer, bail out.
+ ++ScanFrom;
+ return 0;
+ }
+ }
+
+ // Got to the start of the block, we didn't find it, but are done for this
+ // block.
+ return 0;
+}