aboutsummaryrefslogtreecommitdiff
path: root/lib/Analysis/DataStructure
diff options
context:
space:
mode:
authorChris Lattner <sabre@nondot.org>2002-07-10 22:36:26 +0000
committerChris Lattner <sabre@nondot.org>2002-07-10 22:36:26 +0000
commit2b0f739d57f7c0a7158c8621b6c58c57777d3576 (patch)
treea4d264e86cd1f307ccc9a79efa9df5885c7ac785 /lib/Analysis/DataStructure
parent9067068c35fcd50427005d5567faf2a77e866383 (diff)
Reimplement data structure analysis
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2868 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Analysis/DataStructure')
-rw-r--r--lib/Analysis/DataStructure/ComputeClosure.cpp258
-rw-r--r--lib/Analysis/DataStructure/EliminateNodes.cpp373
-rw-r--r--lib/Analysis/DataStructure/FunctionRepBuilder.cpp365
-rw-r--r--lib/Analysis/DataStructure/FunctionRepBuilder.h135
-rw-r--r--lib/Analysis/DataStructure/NodeImpl.cpp470
5 files changed, 0 insertions, 1601 deletions
diff --git a/lib/Analysis/DataStructure/ComputeClosure.cpp b/lib/Analysis/DataStructure/ComputeClosure.cpp
deleted file mode 100644
index 0f94b9141c..0000000000
--- a/lib/Analysis/DataStructure/ComputeClosure.cpp
+++ /dev/null
@@ -1,258 +0,0 @@
-//===- ComputeClosure.cpp - Implement interprocedural closing of graphs ---===//
-//
-// Compute the interprocedural closure of a data structure graph
-//
-//===----------------------------------------------------------------------===//
-
-// DEBUG_IP_CLOSURE - Define this to debug the act of linking up graphs
-//#define DEBUG_IP_CLOSURE 1
-
-#include "llvm/Analysis/DataStructure.h"
-#include "llvm/Function.h"
-#include "llvm/iOther.h"
-#include "Support/STLExtras.h"
-#include <algorithm>
-using std::cerr;
-
-// Make all of the pointers that point to Val also point to N.
-//
-static void copyEdgesFromTo(PointerVal Val, DSNode *N) {
- unsigned ValIdx = Val.Index;
- unsigned NLinks = N->getNumLinks();
-
- const std::vector<PointerValSet*> &PVSsToUpdate(Val.Node->getReferrers());
- for (unsigned i = 0, e = PVSsToUpdate.size(); i != e; ++i) {
- // Loop over all of the pointers pointing to Val...
- PointerValSet &PVS = *PVSsToUpdate[i];
- for (unsigned j = 0, je = PVS.size(); j != je; ++j) {
- if (PVS[j].Node == Val.Node && PVS[j].Index >= ValIdx &&
- PVS[j].Index < ValIdx+NLinks)
- PVS.add(PointerVal(N, PVS[j].Index-ValIdx));
- }
- }
-}
-
-static void ResolveNodesTo(const PointerValSet &FromVals,
- const PointerValSet &ToVals) {
- // Only resolve the first pointer, although there many be many pointers here.
- // The problem is that the inlined function might return one of the arguments
- // to the function, and if so, extra values can be added to the arg or call
- // node that point to what the other one got resolved to. Since these will
- // be added to the end of the PVS pointed in, we just ignore them.
- //
- assert(!FromVals.empty() && "From should have at least a shadow node!");
- const PointerVal &FromPtr = FromVals[0];
-
- assert(FromPtr.Index == 0 &&
- "Resolved node return pointer should be index 0!");
- DSNode *N = FromPtr.Node;
-
- // Make everything that pointed to the shadow node also point to the values in
- // ToVals...
- //
- for (unsigned i = 0, e = ToVals.size(); i != e; ++i)
- copyEdgesFromTo(ToVals[i], N);
-
- // Make everything that pointed to the shadow node now also point to the
- // values it is equivalent to...
- const std::vector<PointerValSet*> &PVSToUpdate(N->getReferrers());
- for (unsigned i = 0, e = PVSToUpdate.size(); i != e; ++i)
- PVSToUpdate[i]->add(ToVals);
-}
-
-
-// ResolveNodeTo - The specified node is now known to point to the set of values
-// in ToVals, instead of the old shadow node subgraph that it was pointing to.
-//
-static void ResolveNodeTo(DSNode *Node, const PointerValSet &ToVals) {
- assert(Node->getNumLinks() == 1 && "Resolved node can only be a scalar!!");
-
- const PointerValSet &PVS = Node->getLink(0);
- ResolveNodesTo(PVS, ToVals);
-}
-
-// isResolvableCallNode - Return true if node is a call node and it is a call
-// node that we can inline...
-//
-static bool isResolvableCallNode(CallDSNode *CN) {
- // Only operate on call nodes with direct function calls
- if (CN->getArgValues(0).size() == 1 &&
- isa<GlobalDSNode>(CN->getArgValues(0)[0].Node)) {
- GlobalDSNode *GDN = cast<GlobalDSNode>(CN->getArgValues(0)[0].Node);
- Function *F = cast<Function>(GDN->getGlobal());
-
- // Only work on call nodes with direct calls to methods with bodies.
- return !F->isExternal();
- }
- return false;
-}
-
-#include "Support/CommandLine.h"
-static cl::Int InlineLimit("dsinlinelimit", "Max number of graphs to inline when computing ds closure", cl::Hidden, 100);
-
-// computeClosure - Replace all of the resolvable call nodes with the contents
-// of their corresponding method data structure graph...
-//
-void FunctionDSGraph::computeClosure(const DataStructure &DS) {
- // Note that this cannot be a real vector because the keys will be changing
- // as nodes are eliminated!
- //
- typedef std::pair<std::vector<PointerValSet>, CallInst *> CallDescriptor;
- std::vector<std::pair<CallDescriptor, PointerValSet> > CallMap;
-
- unsigned NumInlines = 0;
-
- // Loop over the resolvable call nodes...
- std::vector<CallDSNode*>::iterator NI;
- NI = std::find_if(CallNodes.begin(), CallNodes.end(), isResolvableCallNode);
- while (NI != CallNodes.end()) {
- CallDSNode *CN = *NI;
- GlobalDSNode *FGDN = cast<GlobalDSNode>(CN->getArgValues(0)[0].Node);
- Function *F = cast<Function>(FGDN->getGlobal());
-
- if ((int)NumInlines++ == InlineLimit) { // CUTE hack huh?
- cerr << "Infinite (?) recursion halted\n";
- cerr << "Not inlining: " << F->getName() << "\n";
- CN->dump();
- return;
- }
-
- CallNodes.erase(NI); // Remove the call node from the graph
-
- unsigned CallNodeOffset = NI-CallNodes.begin();
-
- // Find out if we have already incorporated this node... if so, it will be
- // in the CallMap...
- //
-
-#if 0
- cerr << "\nSearching for: " << (void*)CN->getCall() << ": ";
- for (unsigned X = 0; X != CN->getArgs().size(); ++X) {
- cerr << " " << X << " is\n";
- CN->getArgs().first[X].print(cerr);
- }
-#endif
-
- const std::vector<PointerValSet> &Args = CN->getArgs();
- PointerValSet *CMI = 0;
- for (unsigned i = 0, e = CallMap.size(); i != e; ++i) {
-#if 0
- cerr << "Found: " << (void*)CallMap[i].first.second << ": ";
- for (unsigned X = 0; X != CallMap[i].first.first.size(); ++X) {
- cerr << " " << X << " is\n"; CallMap[i].first.first[X].print(cerr);
- }
-#endif
-
- // Look to see if the function call takes a superset of the values we are
- // providing as input
- //
- CallDescriptor &CD = CallMap[i].first;
- if (CD.second == CN->getCall() && CD.first.size() == Args.size()) {
- bool FoundMismatch = false;
- for (unsigned j = 0, je = Args.size(); j != je; ++j) {
- PointerValSet ArgSet = CD.first[j];
- if (ArgSet.add(Args[j])) {
- FoundMismatch = true; break;
- }
- }
-
- if (!FoundMismatch) { CMI = &CallMap[i].second; break; }
- }
- }
-
- // Hold the set of values that correspond to the incorporated methods
- // return set.
- //
- PointerValSet RetVals;
-
- if (CMI) {
- // We have already inlined an identical function call!
- RetVals = *CMI;
- } else {
- // Get the datastructure graph for the new method. Note that we are not
- // allowed to modify this graph because it will be the cached graph that
- // is returned by other users that want the local datastructure graph for
- // a method.
- //
- const FunctionDSGraph &NewFunction = DS.getDSGraph(F);
-
- // StartNode - The first node of the incorporated graph, last node of the
- // preexisting data structure graph...
- //
- unsigned StartAllocNode = AllocNodes.size();
-
- // Incorporate a copy of the called function graph into the current graph,
- // allowing us to do local transformations to local graph to link
- // arguments to call values, and call node to return value...
- //
- std::vector<PointerValSet> Args;
- RetVals = cloneFunctionIntoSelf(NewFunction, false, Args);
- CallMap.push_back(make_pair(CallDescriptor(CN->getArgs(), CN->getCall()),
- RetVals));
-
- // If the call node has arguments, process them now!
- assert(Args.size() == CN->getNumArgs()-1 &&
- "Call node doesn't match function?");
-
- for (unsigned i = 0, e = Args.size(); i != e; ++i) {
- // Now we make all of the nodes inside of the incorporated method
- // point to the real arguments values, not to the shadow nodes for the
- // argument.
- ResolveNodesTo(Args[i], CN->getArgValues(i+1));
- }
-
- // Loop through the nodes, deleting alloca nodes in the inlined function.
- // Since the memory has been released, we cannot access their pointer
- // fields (with defined results at least), so it is not possible to use
- // any pointers to the alloca. Drop them now, and remove the alloca's
- // since they are dead (we just removed all links to them).
- //
- for (unsigned i = StartAllocNode; i != AllocNodes.size(); ++i)
- if (AllocNodes[i]->isAllocaNode()) {
- AllocDSNode *NDS = AllocNodes[i];
- NDS->removeAllIncomingEdges(); // These edges are invalid now
- delete NDS; // Node is dead
- AllocNodes.erase(AllocNodes.begin()+i); // Remove slot in Nodes array
- --i; // Don't skip the next node
- }
- }
-
- // If the function returns a pointer value... Resolve values pointing to
- // the shadow nodes pointed to by CN to now point the values in RetVals...
- //
- if (CN->getNumLinks()) ResolveNodeTo(CN, RetVals);
-
- // Now the call node is completely destructable. Eliminate it now.
- delete CN;
-
- bool Changed = true;
- while (Changed) {
- // Eliminate shadow nodes that are not distinguishable from some other
- // node in the graph...
- //
- Changed = UnlinkUndistinguishableNodes();
-
- // Eliminate shadow nodes that are now extraneous due to linking...
- Changed |= RemoveUnreachableNodes();
- }
-
- //if (F == Func) return; // Only do one self inlining
-
- // Move on to the next call node...
- NI = std::find_if(CallNodes.begin(), CallNodes.end(), isResolvableCallNode);
- }
-
- // Drop references to globals...
- CallMap.clear();
-
- bool Changed = true;
- while (Changed) {
- // Eliminate shadow nodes that are not distinguishable from some other
- // node in the graph...
- //
- Changed = UnlinkUndistinguishableNodes();
-
- // Eliminate shadow nodes that are now extraneous due to linking...
- Changed |= RemoveUnreachableNodes();
- }
-}
diff --git a/lib/Analysis/DataStructure/EliminateNodes.cpp b/lib/Analysis/DataStructure/EliminateNodes.cpp
deleted file mode 100644
index 7d8eb9b251..0000000000
--- a/lib/Analysis/DataStructure/EliminateNodes.cpp
+++ /dev/null
@@ -1,373 +0,0 @@
-//===- EliminateNodes.cpp - Prune unneccesary nodes in the graph ----------===//
-//
-// This file contains two node optimizations:
-// 1. UnlinkUndistinguishableNodes - Often, after unification, shadow
-// nodes are left around that should not exist anymore. An example is when
-// a shadow gets unified with a 'new' node, the following graph gets
-// generated: %X -> Shadow, %X -> New. Since all of the edges to the
-// shadow node also all go to the New node, we can eliminate the shadow.
-//
-// 2. RemoveUnreachableNodes - Remove shadow and allocation nodes that are not
-// reachable from some other node in the graph. Unreachable nodes are left
-// lying around often because a method only refers to some allocations with
-// scalar values or an alloca, then when it is inlined, these references
-// disappear and the nodes become homeless and prunable.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Analysis/DataStructureGraph.h"
-#include "llvm/Value.h"
-#include "Support/STLExtras.h"
-#include <algorithm>
-using std::vector;
-
-//#define DEBUG_NODE_ELIMINATE 1
-
-static void DestroyFirstNodeOfPair(DSNode *N1, DSNode *N2) {
-#ifdef DEBUG_NODE_ELIMINATE
- std::cerr << "Found Indistinguishable Node:\n";
- N1->print(std::cerr);
-#endif
-
- // The nodes can be merged. Make sure that N2 contains all of the
- // outgoing edges (fields) that N1 does...
- //
- assert(N1->getNumLinks() == N2->getNumLinks() &&
- "Same type, diff # fields?");
- for (unsigned i = 0, e = N1->getNumLinks(); i != e; ++i)
- N2->getLink(i).add(N1->getLink(i));
-
- // Now make sure that all of the nodes that point to N1 also point to the node
- // that we are merging it with...
- //
- const vector<PointerValSet*> &Refs = N1->getReferrers();
- for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
- PointerValSet &PVS = *Refs[i];
-
- bool RanOnce = false;
- for (unsigned j = 0, je = PVS.size(); j != je; ++j)
- if (PVS[j].Node == N1) {
- RanOnce = true;
- PVS.add(PointerVal(N2, PVS[j].Index));
- }
-
- assert(RanOnce && "Node on user set but cannot find the use!");
- }
-
- N1->mergeInto(N2);
- N1->removeAllIncomingEdges();
- delete N1;
-}
-
-// isIndistinguishableNode - A node is indistinguishable if some other node
-// has exactly the same incoming links to it and if the node considers itself
-// to be the same as the other node...
-//
-static bool isIndistinguishableNode(DSNode *DN) {
- if (DN->getReferrers().empty()) { // No referrers...
- if (isa<ShadowDSNode>(DN) || isa<AllocDSNode>(DN)) {
- delete DN;
- return true; // Node is trivially dead
- } else
- return false;
- }
-
- // Pick a random referrer... Ptr is the things that the referrer points to.
- // Since DN is in the Ptr set, look through the set seeing if there are any
- // other nodes that are exactly equilivant to DN (with the exception of node
- // type), but are not DN. If anything exists, then DN is indistinguishable.
- //
-
- DSNode *IndFrom = 0;
- const vector<PointerValSet*> &Refs = DN->getReferrers();
- for (unsigned R = 0, RE = Refs.size(); R != RE; ++R) {
- const PointerValSet &Ptr = *Refs[R];
-
- for (unsigned i = 0, e = Ptr.size(); i != e; ++i) {
- DSNode *N2 = Ptr[i].Node;
- if (Ptr[i].Index == 0 && N2 != cast<DSNode>(DN) &&
- DN->getType() == N2->getType() && DN->isEquivalentTo(N2)) {
-
- IndFrom = N2;
- R = RE-1;
- break;
- }
- }
- }
-
- // If we haven't found an equivalent node to merge with, see if one of the
- // nodes pointed to by this node is equivalent to this one...
- //
- if (IndFrom == 0) {
- unsigned NumOutgoing = DN->getNumOutgoingLinks();
- for (DSNode::iterator I = DN->begin(), E = DN->end(); I != E; ++I) {
- DSNode *Linked = *I;
- if (Linked != DN && Linked->getNumOutgoingLinks() == NumOutgoing &&
- DN->getType() == Linked->getType() && DN->isEquivalentTo(Linked)) {
-#if 0
- // Make sure the leftover node contains links to everything we do...
- for (unsigned i = 0, e = DN->getNumLinks(); i != e; ++i)
- Linked->getLink(i).add(DN->getLink(i));
-#endif
-
- IndFrom = Linked;
- break;
- }
- }
- }
-
-
- // If DN is indistinguishable from some other node, merge them now...
- if (IndFrom == 0)
- return false; // Otherwise, nothing found, perhaps next time....
-
- DestroyFirstNodeOfPair(DN, IndFrom);
- return true;
-}
-
-template<typename NodeTy>
-static bool removeIndistinguishableNodes(vector<NodeTy*> &Nodes) {
- bool Changed = false;
- vector<NodeTy*>::iterator I = Nodes.begin();
- while (I != Nodes.end()) {
- if (isIndistinguishableNode(*I)) {
- I = Nodes.erase(I);
- Changed = true;
- } else {
- ++I;
- }
- }
- return Changed;
-}
-
-template<typename NodeTy>
-static bool removeIndistinguishableNodePairs(vector<NodeTy*> &Nodes) {
- bool Changed = false;
- vector<NodeTy*>::iterator I = Nodes.begin();
- while (I != Nodes.end()) {
- NodeTy *N1 = *I++;
- for (vector<NodeTy*>::iterator I2 = I, I2E = Nodes.end();
- I2 != I2E; ++I2) {
- NodeTy *N2 = *I2;
- if (N1->isEquivalentTo(N2)) {
- DestroyFirstNodeOfPair(N1, N2);
- --I;
- I = Nodes.erase(I);
- Changed = true;
- break;
- }
- }
- }
- return Changed;
-}
-
-
-
-// UnlinkUndistinguishableNodes - Eliminate shadow nodes that are not
-// distinguishable from some other node in the graph...
-//
-bool FunctionDSGraph::UnlinkUndistinguishableNodes() {
- // Loop over all of the shadow nodes, checking to see if they are
- // indistinguishable from some other node. If so, eliminate the node!
- //
- return
- removeIndistinguishableNodes(AllocNodes) |
- removeIndistinguishableNodes(ShadowNodes) |
- removeIndistinguishableNodePairs(CallNodes) |
- removeIndistinguishableNodePairs(GlobalNodes);
-}
-
-static void MarkReferredNodesReachable(DSNode *N,
- vector<ShadowDSNode*> &ShadowNodes,
- vector<bool> &ReachableShadowNodes,
- vector<AllocDSNode*> &AllocNodes,
- vector<bool> &ReachableAllocNodes);
-
-static inline void MarkReferredNodeSetReachable(const PointerValSet &PVS,
- vector<ShadowDSNode*> &ShadowNodes,
- vector<bool> &ReachableShadowNodes,
- vector<AllocDSNode*> &AllocNodes,
- vector<bool> &ReachableAllocNodes) {
- for (unsigned i = 0, e = PVS.size(); i != e; ++i)
- if (isa<ShadowDSNode>(PVS[i].Node) || isa<AllocDSNode>(PVS[i].Node))
- MarkReferredNodesReachable(PVS[i].Node, ShadowNodes, ReachableShadowNodes,
- AllocNodes, ReachableAllocNodes);
-}
-
-static void MarkReferredNodesReachable(DSNode *N,
- vector<ShadowDSNode*> &ShadowNodes,
- vector<bool> &ReachableShadowNodes,
- vector<AllocDSNode*> &AllocNodes,
- vector<bool> &ReachableAllocNodes) {
- assert(ShadowNodes.size() == ReachableShadowNodes.size());
- assert(AllocNodes.size() == ReachableAllocNodes.size());
-
- if (ShadowDSNode *Shad = dyn_cast<ShadowDSNode>(N)) {
- vector<ShadowDSNode*>::iterator I =
- std::find(ShadowNodes.begin(), ShadowNodes.end(), Shad);
- unsigned i = I-ShadowNodes.begin();
- if (ReachableShadowNodes[i]) return; // Recursion detected, abort...
- ReachableShadowNodes[i] = true;
- } else if (AllocDSNode *Alloc = dyn_cast<AllocDSNode>(N)) {
- vector<AllocDSNode*>::iterator I =
- std::find(AllocNodes.begin(), AllocNodes.end(), Alloc);
- unsigned i = I-AllocNodes.begin();
- if (ReachableAllocNodes[i]) return; // Recursion detected, abort...
- ReachableAllocNodes[i] = true;
- }
-
- for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i)
- MarkReferredNodeSetReachable(N->getLink(i),
- ShadowNodes, ReachableShadowNodes,
- AllocNodes, ReachableAllocNodes);
-
- const vector<PointerValSet> *Links = N->getAuxLinks();
- if (Links)
- for (unsigned i = 0, e = Links->size(); i != e; ++i)
- MarkReferredNodeSetReachable((*Links)[i],
- ShadowNodes, ReachableShadowNodes,
- AllocNodes, ReachableAllocNodes);
-}
-
-void FunctionDSGraph::MarkEscapeableNodesReachable(
- vector<bool> &ReachableShadowNodes,
- vector<bool> &ReachableAllocNodes) {
- // Mark all shadow nodes that have edges from other nodes as reachable.
- // Recursively mark any shadow nodes pointed to by the newly live shadow
- // nodes as also alive.
- //
- for (unsigned i = 0, e = GlobalNodes.size(); i != e; ++i)
- MarkReferredNodesReachable(GlobalNodes[i],
- ShadowNodes, ReachableShadowNodes,
- AllocNodes, ReachableAllocNodes);
-
- for (unsigned i = 0, e = CallNodes.size(); i != e; ++i)
- MarkReferredNodesReachable(CallNodes[i],
- ShadowNodes, ReachableShadowNodes,
- AllocNodes, ReachableAllocNodes);
-
- // Mark all nodes in the return set as being reachable...
- MarkReferredNodeSetReachable(RetNode,
- ShadowNodes, ReachableShadowNodes,
- AllocNodes, ReachableAllocNodes);
-}
-
-bool FunctionDSGraph::RemoveUnreachableNodes() {
- bool Changed = false;
- bool LocalChange = true;
-
- while (LocalChange) {
- LocalChange = false;
- // Reachable*Nodes - Contains true if there is an edge from a reachable
- // node to the numbered node...
- //
- vector<bool> ReachableShadowNodes(ShadowNodes.size());
- vector<bool> ReachableAllocNodes (AllocNodes.size());
-
- MarkEscapeableNodesReachable(ReachableShadowNodes, ReachableAllocNodes);
-
- // Mark all nodes in the value map as being reachable...
- for (std::map<Value*, PointerValSet>::iterator I = ValueMap.begin(),
- E = ValueMap.end(); I != E; ++I)
- MarkReferredNodeSetReachable(I->second,
- ShadowNodes, ReachableShadowNodes,
- AllocNodes, ReachableAllocNodes);
-
- // At this point, all reachable shadow nodes have a true value in the
- // Reachable vector. This means that any shadow nodes without an entry in
- // the reachable vector are not reachable and should be removed. This is
- // a two part process, because we must drop all references before we delete
- // the shadow nodes [in case cycles exist].
- //
- for (unsigned i = 0; i != ShadowNodes.size(); ++i)
- if (!ReachableShadowNodes[i]) {
- // Track all unreachable nodes...
-#if DEBUG_NODE_ELIMINATE
- std::cerr << "Unreachable node eliminated:\n";
- ShadowNodes[i]->print(std::cerr);
-#endif
- ShadowNodes[i]->removeAllIncomingEdges();
- delete ShadowNodes[i];
-
- // Remove from reachable...
- ReachableShadowNodes.erase(ReachableShadowNodes.begin()+i);
- ShadowNodes.erase(ShadowNodes.begin()+i); // Remove node entry
- --i; // Don't skip the next node.
- LocalChange = Changed = true;
- }
-
- for (unsigned i = 0; i != AllocNodes.size(); ++i)
- if (!ReachableAllocNodes[i]) {
- // Track all unreachable nodes...
-#if DEBUG_NODE_ELIMINATE
- std::cerr << "Unreachable node eliminated:\n";
- AllocNodes[i]->print(std::cerr);
-#endif
- AllocNodes[i]->removeAllIncomingEdges();
- delete AllocNodes[i];
-
- // Remove from reachable...
- ReachableAllocNodes.erase(ReachableAllocNodes.begin()+i);
- AllocNodes.erase(AllocNodes.begin()+i); // Remove node entry
- --i; // Don't skip the next node.
- LocalChange = Changed = true;
- }
- }
-
- // Loop over the global nodes, removing nodes that have no edges into them or
- // out of them.
- //
- for (vector<GlobalDSNode*>::iterator I = GlobalNodes.begin();
- I != GlobalNodes.end(); )
- if ((*I)->getReferrers().empty()) {
- GlobalDSNode *GDN = *I;
- bool NoLinks = true; // Make sure there are no outgoing links...
- for (unsigned i = 0, e = GDN->getNumLinks(); i != e; ++i)
- if (!GDN->getLink(i).empty()) {
- NoLinks = false;
- break;
- }
- if (NoLinks) {
- delete GDN;
- I = GlobalNodes.erase(I); // Remove the node...
- Changed = true;
- } else {
- ++I;
- }
- } else {
- ++I;
- }
-
- return Changed;
-}
-
-
-
-
-// getEscapingAllocations - Add all allocations that escape the current
-// function to the specified vector.
-//
-void FunctionDSGraph::getEscapingAllocations(vector<AllocDSNode*> &Allocs) {
- vector<bool> ReachableShadowNodes(ShadowNodes.size());
- vector<bool> ReachableAllocNodes (AllocNodes.size());
-
- MarkEscapeableNodesReachable(ReachableShadowNodes, ReachableAllocNodes);
-
- for (unsigned i = 0, e = AllocNodes.size(); i != e; ++i)
- if (ReachableAllocNodes[i])
- Allocs.push_back(AllocNodes[i]);
-}
-
-// getNonEscapingAllocations - Add all allocations that do not escape the
-// current function to the specified vector.
-//
-void FunctionDSGraph::getNonEscapingAllocations(vector<AllocDSNode*> &Allocs) {
- vector<bool> ReachableShadowNodes(ShadowNodes.size());
- vector<bool> ReachableAllocNodes (AllocNodes.size());
-
- MarkEscapeableNodesReachable(ReachableShadowNodes, ReachableAllocNodes);
-
- for (unsigned i = 0, e = AllocNodes.size(); i != e; ++i)
- if (!ReachableAllocNodes[i])
- Allocs.push_back(AllocNodes[i]);
-}
diff --git a/lib/Analysis/DataStructure/FunctionRepBuilder.cpp b/lib/Analysis/DataStructure/FunctionRepBuilder.cpp
deleted file mode 100644
index be49eec177..0000000000
--- a/lib/Analysis/DataStructure/FunctionRepBuilder.cpp
+++ /dev/null
@@ -1,365 +0,0 @@
-//===- FunctionRepBuilder.cpp - Build the local datastructure graph -------===//
-//
-// Build the local datastructure graph for a single method.
-//
-//===----------------------------------------------------------------------===//
-
-#include "FunctionRepBuilder.h"
-#include "llvm/Function.h"
-#include "llvm/BasicBlock.h"
-#include "llvm/iMemory.h"
-#include "llvm/iPHINode.h"
-#include "llvm/iOther.h"
-#include "llvm/iTerminators.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Constants.h"
-#include "Support/STLExtras.h"
-#include <algorithm>
-
-// synthesizeNode - Create a new shadow node that is to be linked into this
-// chain..
-// FIXME: This should not take a FunctionRepBuilder as an argument!
-//
-ShadowDSNode *DSNode::synthesizeNode(const Type *Ty,
- FunctionRepBuilder *Rep) {
- // If we are a derived shadow node, defer to our parent to synthesize the node
- if (ShadowDSNode *Th = dyn_cast<ShadowDSNode>(this))
- if (Th->getShadowParent())
- return Th->getShadowParent()->synthesizeNode(Ty, Rep);
-
- // See if we have already synthesized a node of this type...
- for (unsigned i = 0, e = SynthNodes.size(); i != e; ++i)
- if (SynthNodes[i].first == Ty) return SynthNodes[i].second;
-
- // No we haven't. Do so now and add it to our list of saved nodes...
-
- ShadowDSNode *SN = Rep->makeSynthesizedShadow(Ty, this);
- SynthNodes.push_back(std::make_pair(Ty, SN));
-
- return SN;
-}
-
-ShadowDSNode *FunctionRepBuilder::makeSynthesizedShadow(const Type *Ty,
- DSNode *Parent) {
- ShadowDSNode *Result = new ShadowDSNode(Ty, F->getFunction()->getParent(),
- Parent);
- ShadowNodes.push_back(Result);
- return Result;
-}
-
-
-
-// visitOperand - If the specified instruction operand is a global value, add
-// a node for it...
-//
-void InitVisitor::visitOperand(Value *V) {
- if (!Rep->ValueMap.count(V)) // Only process it once...
- if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
- GlobalDSNode *N = new GlobalDSNode(GV);
- Rep->GlobalNodes.push_back(N);
- Rep->ValueMap[V].add(N);
- Rep->addAllUsesToWorkList(GV);
-
- // FIXME: If the global variable has fields, we should add critical
- // shadow nodes to represent them!
- }
-}
-
-
-// visitCallInst - Create a call node for the callinst, and create as shadow
-// node if the call returns a pointer value. Check to see if the call node
-// uses any global variables...
-//
-void InitVisitor::visitCallInst(CallInst &CI) {
- CallDSNode *C = new CallDSNode(&CI);
- Rep->CallNodes.push_back(C);
- Rep->CallMap[&CI] = C;
-
- if (const PointerType *PT = dyn_cast<PointerType>(CI.getType())) {
- // Create a critical shadow node to represent the memory object that the
- // return value points to...
- ShadowDSNode *Shad = new ShadowDSNode(PT->getElementType(),
- Func->getParent());
- Rep->ShadowNodes.push_back(Shad);
-
- // The return value of the function is a pointer to the shadow value
- // just created...
- //
- C->getLink(0).add(Shad);
-
- // The call instruction returns a pointer to the shadow block...
- Rep->ValueMap[&CI].add(Shad, &CI);
-
- // If the call returns a value with pointer type, add all of the users
- // of the call instruction to the work list...
- Rep->addAllUsesToWorkList(&CI);
- }
-
- // Loop over all of the operands of the call instruction (except the first
- // one), to look for global variable references...
- //
- for_each(CI.op_begin(), CI.op_end(),
- bind_obj(this, &InitVisitor::visitOperand));
-}
-
-
-// visitAllocationInst - Create an allocation node for the allocation. Since
-// allocation instructions do not take pointer arguments, they cannot refer to
-// global vars...
-//
-void InitVisitor::visitAllocationInst(AllocationInst &AI) {
- AllocDSNode *N = new AllocDSNode(&AI);
- Rep->AllocNodes.push_back(N);
-
- Rep->ValueMap[&AI].add(N, &AI);
-
- // Add all of the users of the malloc instruction to the work list...
- Rep->addAllUsesToWorkList(&AI);
-}
-
-
-// Visit all other instruction types. Here we just scan, looking for uses of
-// global variables...
-//
-void InitVisitor::visitInstruction(Instruction &I) {
- for_each(I.op_begin(), I.op_end(),
- bind_obj(this, &InitVisitor::visitOperand));
-}
-
-
-// addAllUsesToWorkList - Add all of the instructions users of the specified
-// value to the work list for further processing...
-//
-void FunctionRepBuilder::addAllUsesToWorkList(Value *V) {
- //cerr << "Adding all uses of " << V << "\n";
- for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I) {
- Instruction *Inst = cast<Instruction>(*I);
- // When processing global values, it's possible that the instructions on
- // the use list are not all in this method. Only add the instructions
- // that _are_ in this method.
- //
- if (Inst->getParent()->getParent() == F->getFunction())
- // Only let an instruction occur on the work list once...
- if (std::find(WorkList.begin(), WorkList.end(), Inst) == WorkList.end())
- WorkList.push_back(Inst);
- }
-}
-
-
-
-
-void FunctionRepBuilder::initializeWorkList(Function *Func) {
- // Add all of the arguments to the method to the graph and add all users to
- // the worklists...
- //
- for (Function::aiterator I = Func->abegin(), E = Func->aend(); I != E; ++I) {
- // Only process arguments that are of pointer type...
- if (const PointerType *PT = dyn_cast<PointerType>(I->getType())) {
- // Add a shadow value for it to represent what it is pointing to and add
- // this to the value map...
- ShadowDSNode *Shad = new ShadowDSNode(PT->getElementType(),
- Func->getParent());
- ShadowNodes.push_back(Shad);
- ValueMap[I].add(PointerVal(Shad), I);
-
- // Make sure that all users of the argument are processed...
- addAllUsesToWorkList(I);
- }
- }
-
- // Iterate over the instructions in the method. Create nodes for malloc and
- // call instructions. Add all uses of these to the worklist of instructions
- // to process.
- //
- InitVisitor IV(this, Func);
- IV.visit(Func);
-}
-
-
-
-
-PointerVal FunctionRepBuilder::getIndexedPointerDest(const PointerVal &InP,
- const MemAccessInst &MAI) {
- unsigned Index = InP.Index;
- const Type *SrcTy = MAI.getPointerOperand()->getType();
-
- for (MemAccessInst::const_op_iterator I = MAI.idx_begin(),
- E = MAI.idx_end(); I != E; ++I)
- if ((*I)->getType() == Type::UByteTy) { // Look for struct indices...
- const StructType *STy = cast<StructType>(SrcTy);
- unsigned StructIdx = cast<ConstantUInt>(I->get())->getValue();
- for (unsigned i = 0; i != StructIdx; ++i)
- Index += countPointerFields(STy->getContainedType(i));
-
- // Advance SrcTy to be the new element type...
- SrcTy = STy->getContainedType(StructIdx);
- } else {
- // Otherwise, stepping into array or initial pointer, just increment type
- SrcTy = cast<SequentialType>(SrcTy)->getElementType();
- }
-
- return PointerVal(InP.Node, Index);
-}
-
-static PointerValSet &getField(const PointerVal &DestPtr) {
- assert(DestPtr.Node != 0);
- return DestPtr.Node->getLink(DestPtr.Index);
-}
-
-
-// Reprocessing a GEP instruction is the result of the pointer operand
-// changing. This means that the set of possible values for the GEP
-// needs to be expanded.
-//
-void FunctionRepBuilder::visitGetElementPtrInst(GetElementPtrInst &GEP) {
- PointerValSet &GEPPVS = ValueMap[&GEP]; // PointerValSet to expand
-
- // Get the input pointer val set...
- const PointerValSet &SrcPVS = ValueMap[GEP.getOperand(0)];
-
- bool Changed = false; // Process each input value... propogating it.
- for (unsigned i = 0, e = SrcPVS.size(); i != e; ++i) {
- // Calculate where the resulting pointer would point based on an
- // input of 'Val' as the pointer type... and add it to our outgoing
- // value set. Keep track of whether or not we actually changed
- // anything.
- //
- Changed |= GEPPVS.add(getIndexedPointerDest(SrcPVS[i], GEP));
- }
-
- // If our current value set changed, notify all of the users of our
- // value.
- //
- if (Changed) addAllUsesToWorkList(&GEP);
-}
-
-void FunctionRepBuilder::visitReturnInst(ReturnInst &RI) {
- RetNode.add(ValueMap[RI.getOperand(0)]);
-}
-
-void FunctionRepBuilder::visitLoadInst(LoadInst &LI) {
- // Only loads that return pointers are interesting...
- const PointerType *DestTy = dyn_cast<PointerType>(LI.getType());
- if (DestTy == 0) return;
-
- const PointerValSet &SrcPVS = ValueMap[LI.getOperand(0)];
- PointerValSet &LIPVS = ValueMap[&LI];
-
- bool Changed = false;
- for (unsigned si = 0, se = SrcPVS.size(); si != se; ++si) {
- PointerVal Ptr = getIndexedPointerDest(SrcPVS[si], LI);
- PointerValSet &Field = getField(Ptr);
-
- if (Field.size()) { // Field loaded wasn't null?
- Changed |= LIPVS.add(Field);
- } else {
- // If we are loading a null field out of a shadow node, we need to
- // synthesize a new shadow node and link it in...
- //
- ShadowDSNode *SynthNode =
- Ptr.Node->synthesizeNode(DestTy->getElementType(), this);
- Field.add(SynthNode);
-
- Changed |= LIPVS.add(Field);
- }
- }
-
- if (Changed) addAllUsesToWorkList(&LI);
-}
-
-void FunctionRepBuilder::visitStoreInst(StoreInst &SI) {
- // The only stores that are interesting are stores the store pointers
- // into data structures...
- //
- if (!isa<PointerType>(SI.getOperand(0)->getType())) return;
- if (!ValueMap.count(SI.getOperand(0))) return; // Src scalar has no values!
-
- const PointerValSet &SrcPVS = ValueMap[SI.getOperand(0)];
- const PointerValSet &PtrPVS = ValueMap[SI.getOperand(1)];
-
<