aboutsummaryrefslogtreecommitdiff
path: root/lib/Analysis/DataStructure
diff options
context:
space:
mode:
authorJohn Criswell <criswell@uiuc.edu>2006-12-13 19:41:57 +0000
committerJohn Criswell <criswell@uiuc.edu>2006-12-13 19:41:57 +0000
commit2957f129a7390a068610e9af5a079c6fa1bead24 (patch)
tree5e33193ba255f6f8872fb0e56f0d2bed37158878 /lib/Analysis/DataStructure
parent64225643331b608ea3558623b6eee6649bca7c6c (diff)
Remove DSA.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@32550 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Analysis/DataStructure')
-rw-r--r--lib/Analysis/DataStructure/BottomUpClosure.cpp753
-rw-r--r--lib/Analysis/DataStructure/CallTargets.cpp128
-rw-r--r--lib/Analysis/DataStructure/CompleteBottomUp.cpp239
-rw-r--r--lib/Analysis/DataStructure/DataStructure.cpp2435
-rw-r--r--lib/Analysis/DataStructure/DataStructureAA.cpp300
-rw-r--r--lib/Analysis/DataStructure/DataStructureOpt.cpp102
-rw-r--r--lib/Analysis/DataStructure/DataStructureStats.cpp150
-rw-r--r--lib/Analysis/DataStructure/EquivClassGraphs.cpp477
-rw-r--r--lib/Analysis/DataStructure/GraphChecker.cpp204
-rw-r--r--lib/Analysis/DataStructure/Local.cpp1333
-rw-r--r--lib/Analysis/DataStructure/Makefile14
-rw-r--r--lib/Analysis/DataStructure/Printer.cpp356
-rw-r--r--lib/Analysis/DataStructure/Steensgaard.cpp278
-rw-r--r--lib/Analysis/DataStructure/TopDownClosure.cpp466
14 files changed, 0 insertions, 7235 deletions
diff --git a/lib/Analysis/DataStructure/BottomUpClosure.cpp b/lib/Analysis/DataStructure/BottomUpClosure.cpp
deleted file mode 100644
index e8592b13b6..0000000000
--- a/lib/Analysis/DataStructure/BottomUpClosure.cpp
+++ /dev/null
@@ -1,753 +0,0 @@
-//===- BottomUpClosure.cpp - Compute bottom-up interprocedural closure ----===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the BUDataStructures class, which represents the
-// Bottom-Up Interprocedural closure of the data structure graph over the
-// program. This is useful for applications like pool allocation, but **not**
-// applications like alias analysis.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "bu_dsa"
-#include "llvm/Analysis/DataStructure/DataStructure.h"
-#include "llvm/Analysis/DataStructure/DSGraph.h"
-#include "llvm/Module.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/Timer.h"
-using namespace llvm;
-
-namespace {
- Statistic MaxSCC("budatastructure", "Maximum SCC Size in Call Graph");
- Statistic NumBUInlines("budatastructures", "Number of graphs inlined");
- Statistic NumCallEdges("budatastructures", "Number of 'actual' call edges");
-
- cl::opt<bool>
- AddGlobals("budatastructures-annotate-calls", cl::Hidden,
- cl::desc("Annotate call sites with functions as they are resolved"));
- cl::opt<bool>
- UpdateGlobals("budatastructures-update-from-globals", cl::Hidden,
- cl::desc("Update local graph from global graph when processing function"));
-
- RegisterPass<BUDataStructures>
- X("budatastructure", "Bottom-up Data Structure Analysis");
-}
-
-static bool GetAllCalleesN(const DSCallSite &CS,
- std::vector<Function*> &Callees);
-
-/// BuildGlobalECs - Look at all of the nodes in the globals graph. If any node
-/// contains multiple globals, DSA will never, ever, be able to tell the globals
-/// apart. Instead of maintaining this information in all of the graphs
-/// throughout the entire program, store only a single global (the "leader") in
-/// the graphs, and build equivalence classes for the rest of the globals.
-static void BuildGlobalECs(DSGraph &GG, std::set<GlobalValue*> &ECGlobals) {
- DSScalarMap &SM = GG.getScalarMap();
- EquivalenceClasses<GlobalValue*> &GlobalECs = SM.getGlobalECs();
- for (DSGraph::node_iterator I = GG.node_begin(), E = GG.node_end();
- I != E; ++I) {
- if (I->getGlobalsList().size() <= 1) continue;
-
- // First, build up the equivalence set for this block of globals.
- const std::vector<GlobalValue*> &GVs = I->getGlobalsList();
- GlobalValue *First = GVs[0];
- for (unsigned i = 1, e = GVs.size(); i != e; ++i)
- GlobalECs.unionSets(First, GVs[i]);
-
- // Next, get the leader element.
- assert(First == GlobalECs.getLeaderValue(First) &&
- "First did not end up being the leader?");
-
- // Next, remove all globals from the scalar map that are not the leader.
- assert(GVs[0] == First && "First had to be at the front!");
- for (unsigned i = 1, e = GVs.size(); i != e; ++i) {
- ECGlobals.insert(GVs[i]);
- SM.erase(SM.find(GVs[i]));
- }
-
- // Finally, change the global node to only contain the leader.
- I->clearGlobals();
- I->addGlobal(First);
- }
-
- DEBUG(GG.AssertGraphOK());
-}
-
-/// EliminateUsesOfECGlobals - Once we have determined that some globals are in
-/// really just equivalent to some other globals, remove the globals from the
-/// specified DSGraph (if present), and merge any nodes with their leader nodes.
-static void EliminateUsesOfECGlobals(DSGraph &G,
- const std::set<GlobalValue*> &ECGlobals) {
- DSScalarMap &SM = G.getScalarMap();
- EquivalenceClasses<GlobalValue*> &GlobalECs = SM.getGlobalECs();
-
- bool MadeChange = false;
- for (DSScalarMap::global_iterator GI = SM.global_begin(), E = SM.global_end();
- GI != E; ) {
- GlobalValue *GV = *GI++;
- if (!ECGlobals.count(GV)) continue;
-
- const DSNodeHandle &GVNH = SM[GV];
- assert(!GVNH.isNull() && "Global has null NH!?");
-
- // Okay, this global is in some equivalence class. Start by finding the
- // leader of the class.
- GlobalValue *Leader = GlobalECs.getLeaderValue(GV);
-
- // If the leader isn't already in the graph, insert it into the node
- // corresponding to GV.
- if (!SM.global_count(Leader)) {
- GVNH.getNode()->addGlobal(Leader);
- SM[Leader] = GVNH;
- } else {
- // Otherwise, the leader is in the graph, make sure the nodes are the
- // merged in the specified graph.
- const DSNodeHandle &LNH = SM[Leader];
- if (LNH.getNode() != GVNH.getNode())
- LNH.mergeWith(GVNH);
- }
-
- // Next step, remove the global from the DSNode.
- GVNH.getNode()->removeGlobal(GV);
-
- // Finally, remove the global from the ScalarMap.
- SM.erase(GV);
- MadeChange = true;
- }
-
- DEBUG(if(MadeChange) G.AssertGraphOK());
-}
-
-static void AddGlobalToNode(BUDataStructures* B, DSCallSite D, Function* F) {
- if(!AddGlobals)
- return;
- if(D.isIndirectCall()) {
- DSGraph* GI = &B->getDSGraph(D.getCaller());
- DSNodeHandle& NHF = GI->getNodeForValue(F);
- DSCallSite DL = GI->getDSCallSiteForCallSite(D.getCallSite());
- if (DL.getCalleeNode() != NHF.getNode() || NHF.isNull()) {
- if (NHF.isNull()) {
- DSNode *N = new DSNode(F->getType()->getElementType(), GI); // Create the node
- N->addGlobal(F);
- NHF.setTo(N,0);
- DOUT << "Adding " << F->getName() << " to a call node in "
- << D.getCaller().getName() << "\n";
- }
- DL.getCalleeNode()->mergeWith(NHF, 0);
- }
- }
-}
-
-// run - Calculate the bottom up data structure graphs for each function in the
-// program.
-//
-bool BUDataStructures::runOnModule(Module &M) {
- LocalDataStructures &LocalDSA = getAnalysis<LocalDataStructures>();
- GlobalECs = LocalDSA.getGlobalECs();
-
- GlobalsGraph = new DSGraph(LocalDSA.getGlobalsGraph(), GlobalECs);
- GlobalsGraph->setPrintAuxCalls();
-
- IndCallGraphMap = new std::map<std::vector<Function*>,
- std::pair<DSGraph*, std::vector<DSNodeHandle> > >();
-
- std::vector<Function*> Stack;
- hash_map<Function*, unsigned> ValMap;
- unsigned NextID = 1;
-
- Function *MainFunc = M.getMainFunction();
- if (MainFunc)
- calculateGraphs(MainFunc, Stack, NextID, ValMap);
-
- // Calculate the graphs for any functions that are unreachable from main...
- for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
- if (!I->isExternal() && !DSInfo.count(I)) {
- if (MainFunc)
- DOUT << "*** BU: Function unreachable from main: "
- << I->getName() << "\n";
- calculateGraphs(I, Stack, NextID, ValMap); // Calculate all graphs.
- }
-
- // If we computed any temporary indcallgraphs, free them now.
- for (std::map<std::vector<Function*>,
- std::pair<DSGraph*, std::vector<DSNodeHandle> > >::iterator I =
- IndCallGraphMap->begin(), E = IndCallGraphMap->end(); I != E; ++I) {
- I->second.second.clear(); // Drop arg refs into the graph.
- delete I->second.first;
- }
- delete IndCallGraphMap;
-
- // At the end of the bottom-up pass, the globals graph becomes complete.
- // FIXME: This is not the right way to do this, but it is sorta better than
- // nothing! In particular, externally visible globals and unresolvable call
- // nodes at the end of the BU phase should make things that they point to
- // incomplete in the globals graph.
- //
- GlobalsGraph->removeTriviallyDeadNodes();
- GlobalsGraph->maskIncompleteMarkers();
-
- // Mark external globals incomplete.
- GlobalsGraph->markIncompleteNodes(DSGraph::IgnoreGlobals);
-
- // Grow the equivalence classes for the globals to include anything that we
- // now know to be aliased.
- std::set<GlobalValue*> ECGlobals;
- BuildGlobalECs(*GlobalsGraph, ECGlobals);
- if (!ECGlobals.empty()) {
- NamedRegionTimer X("Bottom-UP EC Cleanup");
- DOUT << "Eliminating " << ECGlobals.size() << " EC Globals!\n";
- for (hash_map<Function*, DSGraph*>::iterator I = DSInfo.begin(),
- E = DSInfo.end(); I != E; ++I)
- EliminateUsesOfECGlobals(*I->second, ECGlobals);
- }
-
- // Merge the globals variables (not the calls) from the globals graph back
- // into the main function's graph so that the main function contains all of
- // the information about global pools and GV usage in the program.
- if (MainFunc && !MainFunc->isExternal()) {
- DSGraph &MainGraph = getOrCreateGraph(MainFunc);
- const DSGraph &GG = *MainGraph.getGlobalsGraph();
- ReachabilityCloner RC(MainGraph, GG,
- DSGraph::DontCloneCallNodes |
- DSGraph::DontCloneAuxCallNodes);
-
- // Clone the global nodes into this graph.
- for (DSScalarMap::global_iterator I = GG.getScalarMap().global_begin(),
- E = GG.getScalarMap().global_end(); I != E; ++I)
- if (isa<GlobalVariable>(*I))
- RC.getClonedNH(GG.getNodeForValue(*I));
-
- MainGraph.maskIncompleteMarkers();
- MainGraph.markIncompleteNodes(DSGraph::MarkFormalArgs |
- DSGraph::IgnoreGlobals);
-
- //Debug messages if along the way we didn't resolve a call site
- //also update the call graph and callsites we did find.
- for(DSGraph::afc_iterator ii = MainGraph.afc_begin(),
- ee = MainGraph.afc_end(); ii != ee; ++ii) {
- std::vector<Function*> Funcs;
- GetAllCalleesN(*ii, Funcs);
- DOUT << "Lost site\n";
- DEBUG(ii->getCallSite().getInstruction()->dump());
- for (std::vector<Function*>::iterator iif = Funcs.begin(), eef = Funcs.end();
- iif != eef; ++iif) {
- AddGlobalToNode(this, *ii, *iif);
- DOUT << "Adding\n";
- ActualCallees.insert(std::make_pair(ii->getCallSite().getInstruction(), *iif));
- }
- }
-
- }
-
- NumCallEdges += ActualCallees.size();
-
- return false;
-}
-
-DSGraph &BUDataStructures::getOrCreateGraph(Function *F) {
- // Has the graph already been created?
- DSGraph *&Graph = DSInfo[F];
- if (Graph) return *Graph;
-
- DSGraph &LocGraph = getAnalysis<LocalDataStructures>().getDSGraph(*F);
-
- // Steal the local graph.
- Graph = new DSGraph(GlobalECs, LocGraph.getTargetData());
- Graph->spliceFrom(LocGraph);
-
- Graph->setGlobalsGraph(GlobalsGraph);
- Graph->setPrintAuxCalls();
-
- // Start with a copy of the original call sites...
- Graph->getAuxFunctionCalls() = Graph->getFunctionCalls();
- return *Graph;
-}
-
-static bool isVAHackFn(const Function *F) {
- return F->getName() == "printf" || F->getName() == "sscanf" ||
- F->getName() == "fprintf" || F->getName() == "open" ||
- F->getName() == "sprintf" || F->getName() == "fputs" ||
- F->getName() == "fscanf" || F->getName() == "malloc" ||
- F->getName() == "free";
-}
-
-static bool isResolvableFunc(const Function* callee) {
- return !callee->isExternal() || isVAHackFn(callee);
-}
-
-static void GetAllCallees(const DSCallSite &CS,
- std::vector<Function*> &Callees) {
- if (CS.isDirectCall()) {
- if (isResolvableFunc(CS.getCalleeFunc()))
- Callees.push_back(CS.getCalleeFunc());
- } else if (!CS.getCalleeNode()->isIncomplete()) {
- // Get all callees.
- unsigned OldSize = Callees.size();
- CS.getCalleeNode()->addFullFunctionList(Callees);
-
- // If any of the callees are unresolvable, remove the whole batch!
- for (unsigned i = OldSize, e = Callees.size(); i != e; ++i)
- if (!isResolvableFunc(Callees[i])) {
- Callees.erase(Callees.begin()+OldSize, Callees.end());
- return;
- }
- }
-}
-
-//returns true if all callees were resolved
-static bool GetAllCalleesN(const DSCallSite &CS,
- std::vector<Function*> &Callees) {
- if (CS.isDirectCall()) {
- if (isResolvableFunc(CS.getCalleeFunc())) {
- Callees.push_back(CS.getCalleeFunc());
- return true;
- } else
- return false;
- } else {
- // Get all callees.
- bool retval = CS.getCalleeNode()->isComplete();
- unsigned OldSize = Callees.size();
- CS.getCalleeNode()->addFullFunctionList(Callees);
-
- // If any of the callees are unresolvable, remove that one
- for (unsigned i = OldSize; i != Callees.size(); ++i)
- if (!isResolvableFunc(Callees[i])) {
- Callees.erase(Callees.begin()+i);
- --i;
- retval = false;
- }
- return retval;
- //return false;
- }
-}
-
-/// GetAllAuxCallees - Return a list containing all of the resolvable callees in
-/// the aux list for the specified graph in the Callees vector.
-static void GetAllAuxCallees(DSGraph &G, std::vector<Function*> &Callees) {
- Callees.clear();
- for (DSGraph::afc_iterator I = G.afc_begin(), E = G.afc_end(); I != E; ++I)
- GetAllCallees(*I, Callees);
-}
-
-unsigned BUDataStructures::calculateGraphs(Function *F,
- std::vector<Function*> &Stack,
- unsigned &NextID,
- hash_map<Function*, unsigned> &ValMap) {
- assert(!ValMap.count(F) && "Shouldn't revisit functions!");
- unsigned Min = NextID++, MyID = Min;
- ValMap[F] = Min;
- Stack.push_back(F);
-
- // FIXME! This test should be generalized to be any function that we have
- // already processed, in the case when there isn't a main or there are
- // unreachable functions!
- if (F->isExternal()) { // sprintf, fprintf, sscanf, etc...
- // No callees!
- Stack.pop_back();
- ValMap[F] = ~0;
- return Min;
- }
-
- DSGraph &Graph = getOrCreateGraph(F);
- if (UpdateGlobals)
- Graph.updateFromGlobalGraph();
-
- // Find all callee functions.
- std::vector<Function*> CalleeFunctions;
- GetAllAuxCallees(Graph, CalleeFunctions);
-
- // The edges out of the current node are the call site targets...
- for (unsigned i = 0, e = CalleeFunctions.size(); i != e; ++i) {
- Function *Callee = CalleeFunctions[i];
- unsigned M;
- // Have we visited the destination function yet?
- hash_map<Function*, unsigned>::iterator It = ValMap.find(Callee);
- if (It == ValMap.end()) // No, visit it now.
- M = calculateGraphs(Callee, Stack, NextID, ValMap);
- else // Yes, get it's number.
- M = It->second;
- if (M < Min) Min = M;
- }
-
- assert(ValMap[F] == MyID && "SCC construction assumption wrong!");
- if (Min != MyID)
- return Min; // This is part of a larger SCC!
-
- // If this is a new SCC, process it now.
- if (Stack.back() == F) { // Special case the single "SCC" case here.
- DOUT << "Visiting single node SCC #: " << MyID << " fn: "
- << F->getName() << "\n";
- Stack.pop_back();
- DSGraph &G = getDSGraph(*F);
- DOUT << " [BU] Calculating graph for: " << F->getName()<< "\n";
- calculateGraph(G);
- DOUT << " [BU] Done inlining: " << F->getName() << " ["
- << G.getGraphSize() << "+" << G.getAuxFunctionCalls().size()
- << "]\n";
-
- if (MaxSCC < 1) MaxSCC = 1;
-
- // Should we revisit the graph? Only do it if there are now new resolvable
- // callees.
- GetAllAuxCallees(Graph, CalleeFunctions);
- if (!CalleeFunctions.empty()) {
- DOUT << "Recalculating " << F->getName() << " due to new knowledge\n";
- ValMap.erase(F);
- return calculateGraphs(F, Stack, NextID, ValMap);
- } else {
- ValMap[F] = ~0U;
- }
- return MyID;
-
- } else {
- // SCCFunctions - Keep track of the functions in the current SCC
- //
- std::vector<DSGraph*> SCCGraphs;
-
- unsigned SCCSize = 1;
- Function *NF = Stack.back();
- ValMap[NF] = ~0U;
- DSGraph &SCCGraph = getDSGraph(*NF);
-
- // First thing first, collapse all of the DSGraphs into a single graph for
- // the entire SCC. Splice all of the graphs into one and discard all of the
- // old graphs.
- //
- while (NF != F) {
- Stack.pop_back();
- NF = Stack.back();
- ValMap[NF] = ~0U;
-
- DSGraph &NFG = getDSGraph(*NF);
-
- // Update the Function -> DSG map.
- for (DSGraph::retnodes_iterator I = NFG.retnodes_begin(),
- E = NFG.retnodes_end(); I != E; ++I)
- DSInfo[I->first] = &SCCGraph;
-
- SCCGraph.spliceFrom(NFG);
- delete &NFG;
-
- ++SCCSize;
- }
- Stack.pop_back();
-
- DOUT << "Calculating graph for SCC #: " << MyID << " of size: "
- << SCCSize << "\n";
-
- // Compute the Max SCC Size.
- if (MaxSCC < SCCSize)
- MaxSCC = SCCSize;
-
- // Clean up the graph before we start inlining a bunch again...
- SCCGraph.removeDeadNodes(DSGraph::KeepUnreachableGlobals);
-
- // Now that we have one big happy family, resolve all of the call sites in
- // the graph...
- calculateGraph(SCCGraph);
- DOUT << " [BU] Done inlining SCC [" << SCCGraph.getGraphSize()
- << "+" << SCCGraph.getAuxFunctionCalls().size() << "]\n"
- << "DONE with SCC #: " << MyID << "\n";
-
- // We never have to revisit "SCC" processed functions...
- return MyID;
- }
-
- return MyID; // == Min
-}
-
-
-// releaseMemory - If the pass pipeline is done with this pass, we can release
-// our memory... here...
-//
-void BUDataStructures::releaseMyMemory() {
- for (hash_map<Function*, DSGraph*>::iterator I = DSInfo.begin(),
- E = DSInfo.end(); I != E; ++I) {
- I->second->getReturnNodes().erase(I->first);
- if (I->second->getReturnNodes().empty())
- delete I->second;
- }
-
- // Empty map so next time memory is released, data structures are not
- // re-deleted.
- DSInfo.clear();
- delete GlobalsGraph;
- GlobalsGraph = 0;
-}
-
-DSGraph &BUDataStructures::CreateGraphForExternalFunction(const Function &Fn) {
- Function *F = const_cast<Function*>(&Fn);
- DSGraph *DSG = new DSGraph(GlobalECs, GlobalsGraph->getTargetData());
- DSInfo[F] = DSG;
- DSG->setGlobalsGraph(GlobalsGraph);
- DSG->setPrintAuxCalls();
-
- // Add function to the graph.
- DSG->getReturnNodes().insert(std::make_pair(F, DSNodeHandle()));
-
- if (F->getName() == "free") { // Taking the address of free.
-
- // Free should take a single pointer argument, mark it as heap memory.
- DSNode *N = new DSNode(0, DSG);
- N->setHeapNodeMarker();
- DSG->getNodeForValue(F->arg_begin()).mergeWith(N);
-
- } else {
- cerr << "Unrecognized external function: " << F->getName() << "\n";
- abort();
- }
-
- return *DSG;
-}
-
-void BUDataStructures::calculateGraph(DSGraph &Graph) {
- // If this graph contains the main function, clone the globals graph into this
- // graph before we inline callees and other fun stuff.
- bool ContainsMain = false;
- DSGraph::ReturnNodesTy &ReturnNodes = Graph.getReturnNodes();
-
- for (DSGraph::ReturnNodesTy::iterator I = ReturnNodes.begin(),
- E = ReturnNodes.end(); I != E; ++I)
- if (I->first->hasExternalLinkage() && I->first->getName() == "main") {
- ContainsMain = true;
- break;
- }
-
- // If this graph contains main, copy the contents of the globals graph over.
- // Note that this is *required* for correctness. If a callee contains a use
- // of a global, we have to make sure to link up nodes due to global-argument
- // bindings.
- if (ContainsMain) {
- const DSGraph &GG = *Graph.getGlobalsGraph();
- ReachabilityCloner RC(Graph, GG,
- DSGraph::DontCloneCallNodes |
- DSGraph::DontCloneAuxCallNodes);
-
- // Clone the global nodes into this graph.
- for (DSScalarMap::global_iterator I = GG.getScalarMap().global_begin(),
- E = GG.getScalarMap().global_end(); I != E; ++I)
- if (isa<GlobalVariable>(*I))
- RC.getClonedNH(GG.getNodeForValue(*I));
- }
-
-
- // Move our call site list into TempFCs so that inline call sites go into the
- // new call site list and doesn't invalidate our iterators!
- std::list<DSCallSite> TempFCs;
- std::list<DSCallSite> &AuxCallsList = Graph.getAuxFunctionCalls();
- TempFCs.swap(AuxCallsList);
-
- bool Printed = false;
- std::vector<Function*> CalledFuncs;
- while (!TempFCs.empty()) {
- DSCallSite &CS = *TempFCs.begin();
-
- CalledFuncs.clear();
-
- // Fast path for noop calls. Note that we don't care about merging globals
- // in the callee with nodes in the caller here.
- if (CS.getRetVal().isNull() && CS.getNumPtrArgs() == 0) {
- TempFCs.erase(TempFCs.begin());
- continue;
- } else if (CS.isDirectCall() && isVAHackFn(CS.getCalleeFunc())) {
- TempFCs.erase(TempFCs.begin());
- continue;
- }
-
- GetAllCallees(CS, CalledFuncs);
-
- if (CalledFuncs.empty()) {
- // Remember that we could not resolve this yet!
- AuxCallsList.splice(AuxCallsList.end(), TempFCs, TempFCs.begin());
- continue;
- } else {
- DSGraph *GI;
- Instruction *TheCall = CS.getCallSite().getInstruction();
-
- if (CalledFuncs.size() == 1) {
- Function *Callee = CalledFuncs[0];
- ActualCallees.insert(std::make_pair(TheCall, Callee));
-
- // Get the data structure graph for the called function.
- GI = &getDSGraph(*Callee); // Graph to inline
- DOUT << " Inlining graph for " << Callee->getName()
- << "[" << GI->getGraphSize() << "+"
- << GI->getAuxFunctionCalls().size() << "] into '"
- << Graph.getFunctionNames() << "' [" << Graph.getGraphSize() <<"+"
- << Graph.getAuxFunctionCalls().size() << "]\n";
- Graph.mergeInGraph(CS, *Callee, *GI,
- DSGraph::StripAllocaBit|DSGraph::DontCloneCallNodes);
- ++NumBUInlines;
- } else {
- if (!Printed)
- cerr << "In Fns: " << Graph.getFunctionNames() << "\n";
- cerr << " calls " << CalledFuncs.size()
- << " fns from site: " << CS.getCallSite().getInstruction()
- << " " << *CS.getCallSite().getInstruction();
- cerr << " Fns =";
- unsigned NumPrinted = 0;
-
- for (std::vector<Function*>::iterator I = CalledFuncs.begin(),
- E = CalledFuncs.end(); I != E; ++I) {
- if (NumPrinted++ < 8) cerr << " " << (*I)->getName();
-
- // Add the call edges to the call graph.
- ActualCallees.insert(std::make_pair(TheCall, *I));
- }
- cerr << "\n";
-
- // See if we already computed a graph for this set of callees.
- std::sort(CalledFuncs.begin(), CalledFuncs.end());
- std::pair<DSGraph*, std::vector<DSNodeHandle> > &IndCallGraph =
- (*IndCallGraphMap)[CalledFuncs];
-
- if (IndCallGraph.first == 0) {
- std::vector<Function*>::iterator I = CalledFuncs.begin(),
- E = CalledFuncs.end();
-
- // Start with a copy of the first graph.
- GI = IndCallGraph.first = new DSGraph(getDSGraph(**I), GlobalECs);
- GI->setGlobalsGraph(Graph.getGlobalsGraph());
- std::vector<DSNodeHandle> &Args = IndCallGraph.second;
-
- // Get the argument nodes for the first callee. The return value is
- // the 0th index in the vector.
- GI->getFunctionArgumentsForCall(*I, Args);
-
- // Merge all of the other callees into this graph.
- for (++I; I != E; ++I) {
- // If the graph already contains the nodes for the function, don't
- // bother merging it in again.
- if (!GI->containsFunction(*I)) {
- GI->cloneInto(getDSGraph(**I));
- ++NumBUInlines;
- }
-
- std::vector<DSNodeHandle> NextArgs;
- GI->getFunctionArgumentsForCall(*I, NextArgs);
- unsigned i = 0, e = Args.size();
- for (; i != e; ++i) {
- if (i == NextArgs.size()) break;
- Args[i].mergeWith(NextArgs[i]);
- }
- for (e = NextArgs.size(); i != e; ++i)
- Args.push_back(NextArgs[i]);
- }
-
- // Clean up the final graph!
- GI->removeDeadNodes(DSGraph::KeepUnreachableGlobals);
- } else {
- cerr << "***\n*** RECYCLED GRAPH ***\n***\n";
- }
-
- GI = IndCallGraph.first;
-
- // Merge the unified graph into this graph now.
- DOUT << " Inlining multi callee graph "
- << "[" << GI->getGraphSize() << "+"
- << GI->getAuxFunctionCalls().size() << "] into '"
- << Graph.getFunctionNames() << "' [" << Graph.getGraphSize() <<"+"
- << Graph.getAuxFunctionCalls().size() << "]\n";
-
- Graph.mergeInGraph(CS, IndCallGraph.second, *GI,
- DSGraph::StripAllocaBit |
- DSGraph::DontCloneCallNodes);
- ++NumBUInlines;
- }
- }
- TempFCs.erase(TempFCs.begin());
- }
-
- // Recompute the Incomplete markers
- Graph.maskIncompleteMarkers();
- Graph.markIncompleteNodes(DSGraph::MarkFormalArgs);
-
- // Delete dead nodes. Treat globals that are unreachable but that can
- // reach live nodes as live.
- Graph.removeDeadNodes(DSGraph::KeepUnreachableGlobals);
-
- // When this graph is finalized, clone the globals in the graph into the
- // globals graph to make sure it has everything, from all graphs.
- DSScalarMap &MainSM = Graph.getScalarMap();
- ReachabilityCloner RC(*GlobalsGraph, Graph, DSGraph::StripAllocaBit);
-
- // Clone everything reachable from globals in the function graph into the
- // globals graph.
- for (DSScalarMap::global_iterator I = MainSM.global_begin(),
- E = MainSM.global_end(); I != E; ++I)
- RC.getClonedNH(MainSM[*I]);
-
- //Graph.writeGraphToFile(cerr, "bu_" + F.getName());
-}
-
-static const Function *getFnForValue(const Value *V) {
- if (const Instruction *I = dyn_cast<Instruction>(V))
- return I->getParent()->getParent();
- else if (const Argument *A = dyn_cast<Argument>(V))
- return A->getParent();
- else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
- return BB->getParent();
- return 0;
-}
-
-/// deleteValue/copyValue - Interfaces to update the DSGraphs in the program.
-/// These correspond to the interfaces defined in the AliasAnalysis class.
-void BUDataStructures::deleteValue(Value *V) {
- if (const Function *F = getFnForValue(V)) { // Function local value?
- // If this is a function local value, just delete it from the scalar map!
- getDSGraph(*F).getScalarMap().eraseIfExists(V);
- return;
- }
-
- if (Function *F = dyn_cast<Function>(V)) {
- assert(getDSGraph(*F).getReturnNodes().size() == 1 &&
- "cannot handle scc's");
- delete DSInfo[F];
- DSInfo.erase(F);
- return;
- }
-
- assert(!isa<GlobalVariable>(V) && "Do not know how to delete GV's yet!");
-}
-
-void BUDataStructures::copyValue(Value *From, Value *To) {
- if (From == To) return;
- if (const Function *F = getFnForValue(From)) { // Function local value?
- // If this is a function local value, just delete it from the scalar map!
- getDSGraph(*F).getScalarMap().copyScalarIfExists(From, To);
- return;
- }
-
- if (Function *FromF = dyn_cast<Function>(From)) {
- Function *ToF = cast<Function>(To);
- assert(!DSInfo.count(ToF) && "New Function already exists!");
- DSGraph *NG = new DSGraph(getDSGraph(*FromF), GlobalECs);
- DSInfo[ToF] = NG;
- assert(NG->getReturnNodes().size() == 1 && "Cannot copy SCC's yet!");
-
- // Change the Function* is the returnnodes map to the ToF.
- DSNodeHandle Ret = NG->retnodes_begin()->second;
- NG->getReturnNodes().clear();
- NG->getReturnNodes()[ToF] = Ret;
- return;
- }
-
- if (const Function *F = getFnForValue(To)) {
- DSGraph &G = getDSGraph(*F);
- G.getScalarMap().copyScalarIfExists(From, To);
- return;
- }
-
- cerr << *From;
- cerr << *To;
- assert(0 && "Do not know how to copy this yet!");
- abort();
-}
diff --git a/lib/Analysis/DataStructure/CallTargets.cpp b/lib/Analysis/DataStructure/CallTargets.cpp
deleted file mode 100644
index bae866fd34..0000000000
--- a/lib/Analysis/DataStructure/CallTargets.cpp
+++ /dev/null
@@ -1,128 +0,0 @@
-//=- lib/Analysis/IPA/CallTargets.cpp - Resolve Call Targets --*- C++ -*-=====//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This pass uses DSA to map targets of all calls, and reports on if it
-// thinks it knows all targets of a given call.
-//
-// Loop over all callsites, and lookup the DSNode for that site. Pull the
-// Functions from the node as callees.
-// This is essentially a utility pass to simplify later passes that only depend
-// on call sites and callees to operate (such as a devirtualizer).
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Analysis/DataStructure/CallTargets.h"
-#include "llvm/Module.h"
-#include "llvm/Instructions.h"
-#include "llvm/Analysis/DataStructure/DataStructure.h"
-#include "llvm/Analysis/DataStructure/DSGraph.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Support/Streams.h"
-#include "llvm/Constants.h"
-#include <ostream>
-using namespace llvm;
-
-namespace {
- Statistic DirCall("calltarget", "Number of direct calls");
- Statistic IndCall("calltarget", "Number of indirect calls");
- Statistic CompleteInd("calltarget", "Number of complete indirect calls");
- Statistic CompleteEmpty("calltarget", "Number of complete empty calls");
-
- RegisterPass<CallTargetFinder> X("calltarget","Find Call Targets (uses DSA)");
-}
-
-void CallTargetFinder::findIndTargets(Module &M)
-{
- TDDataStructures* T = &getAnalysis<TDDataStructures>();
- for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
- if (!I->isExternal())
- for (Function::iterator F = I->begin(), FE = I->end(); F != FE; ++F)
- for (BasicBlock::iterator B = F->begin(), BE = F->end(); B != BE; ++B)
- if (isa<CallInst>(B) || isa<InvokeInst>(B)) {
- CallSite cs = CallSite::get(B);
- AllSites.push_back(cs);
- if (!cs.getCalledFunction()) {
- IndCall++;
- DSNode* N = T->getDSGraph(*cs.getCaller())
- .getNodeForValue(cs.getCalledValue()).getNode();
- N->addFullFunctionList(IndMap[cs]);
- if (N->isComplete() && IndMap[cs].size()) {
- CompleteSites.insert(cs);
- ++CompleteInd;
- }
- if (N->isComplete() && !IndMap[cs].size()) {
- ++CompleteEmpty;
- cerr << "Call site empty: '"
- << cs.getInstruction()->getName()
- << "' In '"
- << cs.getInstruction()->getParent()->getParent()->getName()
- << "'\n";
- }
- } else {
- ++DirCall;
- IndMap[cs].push_back(cs.getCalledFunction());
- CompleteSites.insert(cs);
- }
- }
-}
-
-void CallTargetFinder::print(std::ostream &O, const Module *M) const
-{
- return;
- O << "[* = incomplete] CS: func list\n";
- for (std::map<CallSite, std::vector<Function*> >::const_iterator ii =
- IndMap.begin(),
- ee = IndMap.end(); ii != ee; ++ii) {
- if (!ii->first.getCalledFunction()) { //only print indirect
- if (!isComplete(ii->first)) {
- O << "* ";
- CallSite cs = ii->first;
- cs.getInstruction()->dump();
- O << cs.getInstruction()->getParent()->getParent()->getName() << " "
- << cs.getInstruction()->getName() << " ";
- }
- O << ii->first.getInstruction() << ":";
- for (std::vector<Function*>::const_iterator i = ii->second.begin(),
- e = ii->second.end(); i != e; ++i) {
- O << " " << (*i)->getName();
- }
- O << "\n";
- }
- }
-}
-
-bool CallTargetFinder::runOnModule(Module &M) {
- findIndTargets(M);
- return false;
-}
-
-void CallTargetFinder::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- AU.addRequired<TDDataStructures>();
-}
-
-std::vector<Function*>::iterator CallTargetFinder::begin(CallSite cs) {
- return IndMap[cs].begin();
-}
-
-std::vector<Function*>::iterator CallTargetFinder::end(CallSite cs) {
- return IndMap[cs].end();
-}
-
-bool CallTargetFinder::isComplete(CallSite cs) const {
- return CompleteSites.find(cs) != CompleteSites.end();
-}
-
-std::list<CallSite>::iterator CallTargetFinder::cs_begin() {
- return AllSites.begin();
-}
-
-std::list<CallSite>::iterator CallTargetFinder::cs_end() {
- return AllSites.end();
-}
diff --git a/lib/Analysis/DataStructure/CompleteBottomUp.cpp b/lib/Analysis/DataStructure/CompleteBottomUp.cpp
deleted file mode 100644
index af33e0d741..0000000000
--- a/lib/Analysis/DataStructure/CompleteBottomUp.cpp
+++ /dev/null
@@ -1,239 +0,0 @@
-//===- CompleteBottomUp.cpp - Complete Bottom-Up Data Structure Graphs ----===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This is the exact same as the bottom-up graphs, but we use take a completed
-// call graph and inline all indirect callees into their callers graphs, making
-// the result more useful for things like pool allocation.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "cbudatastructure"
-#include "llvm/Analysis/DataStructure/DataStructure.h"
-#include "llvm/Module.h"
-#include "llvm/Analysis/DataStructure/DSGraph.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/ADT/SCCIterator.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/STLExtras.h"
-using namespace llvm;
-
-namespace {
- RegisterPass<CompleteBUDataStructures>
- X("cbudatastructure", "'Complete' Bottom-up Data Structure Analysis");
- Statistic NumCBUInlines("cbudatastructures", "Number of graphs inlined");
-}
-
-
-// run - Calculate the bottom up data structure graphs for each function in the
-// program.
-//
-bool CompleteBUDataStructures::runOnModule(Module &M) {
- BUDataStructures &BU = getAnalysis<BUDataStructures>();
- GlobalECs = BU.getGlobalECs();
- GlobalsGraph = new DSGraph(BU.getGlobalsGraph(), GlobalECs);
- GlobalsGraph->setPrintAuxCalls();
-
- // Our call graph is the same as the BU data structures call graph
- ActualCallees = BU.getActualCallees();
-
- std::vector<DSGraph*> Stack;
- hash_map<DSGraph*, unsigned> ValMap;
- unsigned NextID = 1;
-
- Function *MainFunc = M.getMainFunction();
- if (MainFunc) {
- if (!MainFunc->isExternal())
- calculateSCCGraphs(getOrCreateGraph(*MainFunc), Stack, NextID, ValMap);
- } else {
- DOUT << "CBU-DSA: No 'main' function found!\n";
- }
-
- for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
- if (!I->isExternal() && !DSInfo.count(I)) {
- if (MainFunc) {
- DOUT << "*** CBU: Function unreachable from main: "
- << I->getName() << "\n";
- }
- calculateSCCGraphs(getOrCreateGraph(*I), Stack, NextID, ValMap);
- }
-
- GlobalsGraph->removeTriviallyDeadNodes();
-
-
- // Merge the globals variables (not the calls) from the globals graph back
- // into the main function's graph so that the main function contains all of
- // the information about global pools and GV usage in the program.
- if (MainFunc && !MainFunc->isExternal()) {
- DSGraph &MainGraph = getOrCreateGraph(*MainFunc);
- const DSGraph &GG = *MainGraph.getGlobalsGraph();
- ReachabilityCloner RC(MainGraph, GG,
- DSGraph::DontCloneCallNodes |
- DSGraph::DontCloneAuxCallNodes);
-
- // Clone the global nodes into this graph.
- for (DSScalarMap::global_iterator I = GG.getScalarMap().global_begin(),
- E = GG.getScalarMap().global_end(); I != E; ++I)
- if (isa<GlobalVariable>(*I))
- RC.getClonedNH(GG.getNodeForValue(*I));
-
- MainGraph.maskIncompleteMarkers();
- MainGraph.markIncompleteNodes(DSGraph::MarkFormalArgs |
- DSGraph::IgnoreGlobals);
- }
-
- return false;
-}
-
-DSGraph &CompleteBUDataStructures::getOrCreateGraph(Function &F) {
- // Has the graph already been created?
- DSGraph *&Graph = DSInfo[&F];
- if (Graph) return *Graph;
-
- // Copy the BU graph...
- Graph = new DSGraph(getAnalysis<BUDataStructures>().getDSGraph(F), GlobalECs);
- Graph->setGlobalsGraph(GlobalsGraph);
- Graph->setPrintAuxCalls();
-
- // Make sure to update the DSInfo map for all of the functions currently in
- // this graph!
- for (DSGraph::retnodes_iterator I = Graph->retnodes_begin();
- I != Graph->retnodes_end(); ++I)
- DSInfo[I->first] = Graph;
-
- return *Graph;
-}
-
-
-
-unsigned CompleteBUDataStructures::calculateSCCGraphs(DSGraph &FG,
- std::vector<DSGraph*> &Stack,
- unsigned &NextID,
- hash_map<DSGraph*, unsigned> &ValMap) {
- assert(!ValMap.count(&FG) && "Shouldn't revisit functions!");
- unsigned Min = NextID++, MyID = Min;
- ValMap[&FG] = Min;
- Stack.push_back(&FG);
-
- // The edges out of the current node are the call site targets...
- for (DSGraph::fc_iterator CI = FG.fc_begin(), CE = FG.fc_end();
- CI != CE; ++CI) {
- Instruction *Call = CI->getCallSite().getInstruction();
-
- // Loop over all of the actually called functions...
- callee_iterator I = callee_begin(Call), E = callee_end(Call);
- for (; I != E && I->first == Call; ++I) {
- assert(I->first == Call && "Bad callee construction!");
- if (!I->second->isExternal()) {
- DSGraph &Callee = getOrCreateGraph(*I->second);
- unsigned M;
- // Have we visited the destination function yet?
- hash_map<DSGraph*, unsigned>::iterator It = ValMap.find(&Callee);
- if (It == ValMap.end()) // No, visit it now.
- M = calculateSCCGraphs(Callee, Stack, NextID, ValMap);
- else // Yes, get it's number.
- M = It->second;
- if (M < Min) Min = M;
- }
- }
- }
-
- assert(ValMap[&FG] == MyID && "SCC construction assumption wrong!");
- if (Min != MyID)
- return Min; // This is part of a larger SCC!
-
- // If this is a new SCC, process it now.
- bool IsMultiNodeSCC = false;
- while (Stack.back() != &FG) {
- DSGraph *NG = Stack.back();
- ValMap[NG] = ~0U;
-
- FG.cloneInto(*NG);
-
- // Update the DSInfo map and delete the old graph...
- for (DSGraph::retnodes_iterator I = NG->retnodes_begin();
- I != NG->retnodes_end(); ++I)
- DSInfo[I->first] = &FG;
-
- // Remove NG from the ValMap since the pointer may get recycled.
- ValMap.erase(NG);
- delete NG;
-
- Stack.pop_back();
- IsMultiNodeSCC = true;
- }
-
- // Clean up the graph before we start inlining a bunch again...
- if (IsMultiNodeSCC)
- FG.removeTriviallyDeadNodes();
-
- Stack.pop_back();
- processGraph(FG);
- ValMap[&FG] = ~0U;
- return MyID;
-}
-
-
-/// processGraph - Process the BU graphs for the program in bottom-up order on
-/// the SCC of the __ACTUAL__ call graph. This builds "complete" BU graphs.
-void CompleteBUDataStructures::processGraph(DSGraph &G) {
- hash_set<Instruction*> calls;
-
- // The edges out of the current node are the call site targets...
- unsigned i = 0;
- for (DSGraph::fc_iterator CI = G.fc_begin(), CE = G.fc_end(); CI != CE;
- ++CI, ++i) {
- const DSCallSite &CS = *CI;
- Instruction *TheCall = CS.getCallSite().getInstruction();
-
- assert(calls.insert(TheCall).second &&
- "Call instruction occurs multiple times in graph??");
-
- // Fast path for noop calls. Note that we don't care about merging globals
- // in the callee with nodes in the caller here.
- if (CS.getRetVal().isNull() && CS.getNumPtrArgs() == 0)
- continue;
-
- // Loop over all of the potentially called functions...
- // Inline direct calls as well as indirect calls because the direct
- // callee may have indirect callees and so may have changed.
- //
- callee_iterator I = callee_begin(TheCall),E = callee_end(TheCall);
- unsigned TNum = 0, Num = 0;
- DEBUG(Num = std::distance(I, E));
- for (; I != E; ++I, ++TNum) {
- assert(I->first == TheCall && "Bad callee construction!");
- Function *CalleeFunc = I->second;
- if (!CalleeFunc->isExternal()) {
- // Merge the callee's graph into this graph. This works for normal
- // calls or for self recursion within an SCC.
- DSGraph &GI = getOrCreateGraph(*CalleeFunc);
- ++NumCBUInlines;
- G.mergeInGraph(CS, *CalleeFunc, GI,
- DSGraph::StripAllocaBit | DSGraph::DontCloneCallNodes |
- DSGraph::DontCloneAuxCallNodes);
- DOUT << " Inlining graph [" << i << "/"
- << G.getFunctionCalls().size()-1
- << ":" << TNum << "/" << Num-1 << "] for "
- << CalleeFunc->getName() << "["
- << GI.getGraphSize() << "+" << GI.getAuxFunctionCalls().size()
- << "] into '" /*<< G.getFunctionNames()*/ << "' ["
- << G.getGraphSize() << "+" << G.getAuxFunctionCalls().size()
- << "]\n";
- }
- }
- }
-
- // Recompute the Incomplete markers
- G.maskIncompleteMarkers();
- G.markIncompleteNodes(DSGraph::MarkFormalArgs);
-
- // Delete dead nodes. Treat globals that are unreachable but that can
- // reach live nodes as live.
- G.removeDeadNodes(DSGraph::KeepUnreachableGlobals);
-}
diff --git a/lib/Analysis/DataStructure/DataStructure.cpp b/lib/Analysis/DataStructure/DataStructure.cpp
deleted file mode 100644
index 666b615825..0000000000
--- a/lib/Analysis/DataStructure/DataStructure.cpp
+++ /dev/null
@@ -1,2435 +0,0 @@
-//===- DataStructure.cpp - Implement the core data structure analysis -----===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the core data structure functionality.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Analysis/DataStructure/DSGraphTraits.h"
-#include "llvm/Constants.h"
-#include "llvm/Function.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/Instructions.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/Assembly/Writer.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/ADT/DepthFirstIterator.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SCCIterator.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Support/Timer.h"
-#include <algorithm>
-using namespace llvm;
-
-#define COLLAPSE_ARRAYS_AGGRESSIVELY 0
-
-namespace {
- Statistic NumFolds ("dsa", "Number of nodes completely folded");
- Statistic NumCallNodesMerged("dsa", "Number of call nodes merged");
- Statistic NumNodeAllocated ("dsa", "Number of nodes allocated");
- Statistic NumDNE ("dsa", "Number of nodes removed by reachability");
- Statistic NumTrivialDNE ("dsa", "Number of nodes trivially removed");
- Statistic NumTrivialGlobalDNE("dsa", "Number of globals trivially removed");
- static cl::opt<unsigned>
- DSAFieldLimit("dsa-field-limit", cl::Hidden,
- cl::desc("Number of fields to track before collapsing a node"),
- cl::init(256));
-}
-
-#if 0
-#define TIME_REGION(VARNAME, DESC) \
- NamedRegionTimer VARNAME(DESC)
-#else
-#define TIME_REGION(VARNAME, DESC)
-#endif
-
-using namespace DS;
-
-/// isForwarding - Return true if this NodeHandle is forwarding to another
-/// one.
-bool DSNodeHandle::isForwarding() const {
- return N && N->isForwarding();
-}
-
-DSNode *DSNodeHandle::HandleForwarding() const {
- assert(N->isForwarding() && "Can only be invoked if forwarding!");
- DEBUG(
- { //assert not looping
- DSNode* NH = N;
- std::set<DSNode*> seen;
- while(NH && NH->isForwarding()) {
- assert(seen.find(NH) == seen.end() && "Loop detected");
- seen.insert(NH);
- NH = NH->ForwardNH.N;
- }
- }
- );
- // Handle node forwarding here!
- DSNode *Next = N->ForwardNH.getNode(); // Cause recursive shrinkage
- Offset += N->ForwardNH.getOffset();
-
- if (--N->NumReferrers == 0) {
- // Removing the last referrer to the node, sever the forwarding link
- N->stopForwarding();
- }
-
- N = Next;
- N->NumReferrers++;
- if (N->Size <= Offset) {
- assert(N->Size <= 1 && "Forwarded to shrunk but not collapsed node?");
- Offset = 0;
- }
- return N;
-}
-
-//===----------------------------------------------------------------------===//
-// DSScalarMap Implementation
-//===----------------------------------------------------------------------===//
-
-DSNodeHandle &DSScalarMap::AddGlobal(GlobalValue *GV) {
- assert(ValueMap.count(GV) == 0 && "GV already exists!");
-
- // If the node doesn't exist, check to see if it's a global that is
- // equated to another global in the program.
- EquivalenceClasses<GlobalValue*>::iterator ECI = GlobalECs.findValue(GV);
- if (ECI != GlobalECs.end()) {
- GlobalValue *Leader = *GlobalECs.findLeader(ECI);
- if (Leader != GV) {
- GV = Leader;
- iterator I = ValueMap.find(GV);
- if (I != ValueMap.end())
- return I->second;
- }
- }
-
- // Okay, this is either not an equivalenced global or it is the leader, it
- // will be inserted into the scalar map now.
- GlobalSet.insert(GV);
-
- return ValueMap.insert(std::make_pair(GV, DSNodeHandle())).first->second;
-}
-
-
-//===----------------------------------------------------------------------===//
-// DSNode Implementation
-//===----------------------------------------------------------------------===//
-
-DSNode::DSNode(const Type *T, DSGraph *G)
- : NumReferrers(0), Size(0), ParentGraph(G), Ty(Type::VoidTy), NodeType(0) {
- // Add the type entry if it is specified...
- if (T) mergeTypeInfo(T, 0);
- if (G) G->addNode(this);
- ++NumNodeAllocated;
-}
-
-// DSNode copy constructor... do not copy over the referrers list!
-DSNode::DSNode(const DSNode &N, DSGraph *G, bool NullLinks)
- : NumReferrers(0), Size(N.Size), ParentGraph(G),
- Ty(N.Ty), Globals(N.Globals), NodeType(N.NodeType) {
- if (!NullLinks) {
- Links = N.Links;
- } else
- Links.resize(N.Links.size()); // Create the appropriate number of null links
- G->addNode(this);
- ++NumNodeAllocated;
-}
-
-/// getTargetData - Get the target data object used to construct this node.
-///
-const TargetData &DSNode::getTargetData() const {
- return ParentGraph->getTargetData();
-}
-
-void DSNode::assertOK() const {
- assert((Ty != Type::VoidTy ||
- Ty == Type::VoidTy && (Size == 0 ||
- (NodeType & DSNode::Array))) &&
- "Node not OK!");
-
- assert(ParentGraph && "Node has no parent?");
- const DSScalarMap &SM = ParentGraph->getScalarMap();
- for (unsigned i = 0, e = Globals.size(); i != e; ++i) {
- assert(SM.global_count(Globals[i]));
- assert(SM.find(Globals[i])->second.getNode() == this);
- }
-}
-
-/// forwardNode - Mark this node as being obsolete, and all references to it
-/// should be forwarded to the specified node and offset.
-///
-void DSNode::forwardNode(DSNode *To, unsigned Offset) {
- assert(this != To && "Cannot forward a node to itself!");
- assert(ForwardNH.isNull() && "Already forwarding from this node!");
- if (To->Size <= 1) Offset = 0;
- assert((Offset < To->Size || (Offset == To->Size && Offset == 0)) &&
- "Forwarded offset is wrong!");
- ForwardNH.setTo(To, Offset);
- NodeType = DEAD;
- Size = 0;
- Ty = Type::VoidTy;
-
- // Remove this node from the parent graph's Nodes list.
- ParentGraph->unlinkNode(this);
- ParentGraph = 0;
-}
-
-// addGlobal - Add an entry for a global value to the Globals list. This also
-// marks the node with the 'G' flag if it does not already have it.
-//
-void DSNode::addGlobal(GlobalValue *GV) {
- // First, check to make sure this is the leader if the global is in an
- // equivalence class.
- GV = getParentGraph()->getScalarMap().getLeaderForGlobal(GV);
-
- // Keep the list sorted.
- std::vector<GlobalValue*>::iterator I =
- std::lower_bound(Globals.begin(), Globals.end(), GV);
-
- if (I == Globals.end() || *I != GV) {
- Globals.insert(I, GV);
- NodeType |= GlobalNode;
- }
-}
-
-// removeGlobal - Remove the specified global that is explicitly in the globals
-// list.
-void DSNode::removeGlobal(GlobalValue *GV) {
- std::vector<GlobalValue*>::iterator I =
- std::lower_bound(Globals.begin(), Globals.end(), GV);
- assert(I != Globals.end() && *I == GV && "Global not in node!");
- Globals.erase(I);
-}
-
-/// foldNodeCompletely - If we determine that this node has some funny
-/// behavior happening to it that we cannot represent, we fold it down to a
-/// single, completely pessimistic, node. This node is represented as a
-/// single byte with a single TypeEntry of "void".
-///
-void DSNode::foldNodeCompletely() {
- if (isNodeCompletelyFolded()) return; // If this node is already folded...
-
- ++NumFolds;
-
- // If this node has a size that is <= 1, we don't need to create a forwarding
- // node.
- if (getSize() <= 1) {
- NodeType |= DSNode::Array;
- Ty = Type::VoidTy;
- Size = 1;
- assert(Links.size() <= 1 && "Size is 1, but has more links?");
- Links.resize(1);
- } else {
- // Create the node we are going to forward to. This is required because
- // some referrers may have an offset that is > 0. By forcing them to
- // forward, the forwarder has the opportunity to correct the offset.
- DSNode *DestNode = new DSNode(0, ParentGraph);
- DestNode->NodeType = NodeType|DSNode::Array;
- DestNode->Ty = Type::VoidTy;
- DestNode->Size = 1;
- DestNode->Globals.swap(Globals);
-
- // Start forwarding to the destination node...
- forwardNode(DestNode, 0);
-
- if (!Links.empty()) {
- DestNode->Links.reserve(1);
-
- DSNodeHandle NH(DestNode);
- DestNode->Links.push_back(Links[0]);
-
- // If we have links, merge all of our outgoing links together...
- for (unsigned i = Links.size()-1; i != 0; --i)
- NH.getNode()->Links[0].mergeWith(Links[i]);
- Links.clear();
- } else {
- DestNode->Links.resize(1);
- }
- }
-}
-
-/// isNodeCompletelyFolded - Return true if this node has been completely
-/// folded down to something that can never be expanded, effectively losing
-/// all of the field sensitivity that may be present in the node.
-///
-bool DSNode::isNodeCompletelyFolded() const {
- return getSize() == 1 && Ty == Type::VoidTy && isArray();
-}
-
-/// addFullGlobalsList - Compute the full set of global values that are
-/// represented by this node. Unlike getGlobalsList(), this requires fair
-/// amount of work to compute, so don't treat this method call as free.
-void DSNode::addFullGlobalsList(std::vector<GlobalValue*> &List) const {
- if (globals_begin() == globals_end()) return;
-
- EquivalenceClasses<GlobalValue*> &EC = getParentGraph()->getGlobalECs();
-
- for (globals_iterator I = globals_begin(), E = globals_end(); I != E; ++I) {
- EquivalenceClasses<GlobalValue*>::iterator ECI = EC.findValue(*I);
- if (ECI == EC.end())
- List.push_back(*I);
- else
- List.insert(List.end(), EC.member_begin(ECI), EC.member_end());
- }
-}
-
-/// addFullFunctionList - Identical to addFullGlobalsList, but only return the
-/// functions in the full list.
-void DSNode::addFullFunctionList(std::vector<Function*> &List) const {
- if (globals_begin() == globals_end()) return;
-
- EquivalenceClasses<GlobalValue*> &EC = getParentGraph()->getGlobalECs();
-
- for (globals_iterator I = globals_begin(), E = globals_end(); I != E; ++I) {
- EquivalenceClasses<GlobalValue*>::iterator ECI = EC.findValue(*I);
- if (ECI == EC.end()) {
- if (Function *F = dyn_cast<Function>(*I))
- List.push_back(F);
- } else {
- for (EquivalenceClasses<GlobalValue*>::member_iterator MI =
- EC.member_begin(ECI), E = EC.member_end(); MI != E; ++MI)
- if (Function *F = dyn_cast<Function>(*MI))
- List.push_back(F);
- }
- }
-}
-
-namespace {
- /// TypeElementWalker Class - Used for implementation of physical subtyping...
- ///
- class TypeElementWalker {
- struct StackState {
- const Type *Ty;
- unsigned Offset;
- unsigned Idx;
- StackState(const Type *T, unsigned Off = 0)
- : Ty(T), Offset(Off), Idx(0) {}
- };
-
- std::vector<StackState> Stack;
- const TargetData &TD;
- public:
- TypeElementWalker(const Type *T, const TargetData &td) : TD(td) {
- Stack.push_back(T);
- StepToLeaf();
- }
-
- bool isDone() const { return Stack.empty(); }
- const Type *getCurrentType() const { return Stack.back().Ty; }
- unsigned getCurrentOffset() const { return Stack.back().Offset; }
-
- void StepToNextType() {
- PopStackAndAdvance();
- StepToLeaf();
- }
-
- private:
- /// PopStackAndAdvance - Pop the current element off of the stack and
- /// advance the underlying element to the next contained member.
- void PopStackAndAdvance() {
- assert(!Stack.empty() && "Cannot pop an empty stack!");
- Stack.pop_back();
- while (!Stack.empty()) {
- StackState &SS = Stack.back();
- if (const StructType *ST = dyn_cast<StructType>(SS.Ty)) {
- ++SS.Idx;
- if (SS.Idx != ST->getNumElements()) {
- const StructLayout *SL = TD.getStructLayout(ST);
- SS.Offset +=
- unsigned(SL->MemberOffsets[SS.Idx]-SL->MemberOffsets[SS.Idx-1]);
- return;
- }
- Stack.pop_back(); // At the end of the structure
- } else {
- const ArrayType *AT = cast<ArrayType>(SS.Ty);
- ++SS.Idx;
- if (SS.Idx != AT->getNumElements()) {
- SS.Offset += unsigned(TD.getTypeSize(AT->getElementType()));
- return;
- }
- Stack.pop_back(); // At the end of the array
- }
- }
- }
-
- /// StepToLeaf - Used by physical subtyping to move to the first leaf node
- /// on the type stack.
- void StepToLeaf() {
- if (Stack.empty()) return;
- while (!Stack.empty() && !Stack.back().Ty->isFirstClassType()) {
- StackState &SS = Stack.back();
- if (const StructType *ST = dyn_cast<StructType>(SS.Ty)) {
- if (ST->getNumElements() == 0) {
- assert(SS.Idx == 0);
- PopStackAndAdvance();
- } else {
- // Step into the structure...
- assert(SS.Idx < ST->getNumElements());
- const StructLayout *SL = TD.getStructLayout(ST);
- Stack.push_back(StackState(ST->getElementType(SS.Idx),
- SS.Offset+unsigned(SL->MemberOffsets[SS.Idx])));
- }
- } else {
- const ArrayType *AT = cast<ArrayType>(SS.Ty);
- if (AT->getNumElements() == 0) {
- assert(SS.Idx == 0);
- PopStackAndAdvance();
- } else {
- // Step into the array...
- assert(SS.Idx < AT->getNumElements());
- Stack.push_back(StackState(AT->getElementType(),
- SS.Offset+SS.Idx*
- unsigned(TD.getTypeSize(AT->getElementType()))));
- }
- }
- }
- }
- };
-} // end anonymous namespace
-
-/// ElementTypesAreCompatible - Check to see if the specified types are
-/// "physically" compatible. If so, return true, else return false. We only
-/// have to check the fields in T1: T2 may be larger than T1. If AllowLargerT1
-/// is true, then we also allow a larger T1.
-///
-static bool ElementTypesAreCompatible(const Type *T1, const Type *T2,
- bool AllowLargerT1, const TargetData &TD){
- TypeElementWalker T1W(T1, TD), T2W(T2, TD);
-
- while (!T1W.isDone() && !T2W.isDone()) {
- if (T1W.getCurrentOffset() != T2W.getCurrentOffset())
- return false;
-
- const Type *T1 = T1W.getCurrentType();
- const Type *T2 = T2W.getCurrentType();
- if (T1 != T2 && !T1->canLosslesslyBitCastTo(T2))
- return false;
-
- T1W.StepToNextType();
- T2W.StepToNextType();
- }
-
- return AllowLargerT1 || T1W.isDone();
-}
-
-
-/// mergeTypeInfo - This method merges the specified type into the current node
-/// at the specified offset. This may update the current node's type record if
-/// this gives more information to the node, it may do nothing to the node if
-/// this information is already known, or it may merge the node completely (and
-/// return true) if the information is incompatible with what is already known.
-///
-/// This method returns true if the node is completely folded, otherwise false.
-///
-bool DSNode::mergeTypeInfo(const Type *NewTy, unsigned Offset,
- bool FoldIfIncompatible) {
- DOUT << "merging " << *NewTy << " at " << Offset << " with " << *Ty << "\n";
- const TargetData &TD = getTargetData();
- // Check to make sure the Size member is up-to-date. Size can be one of the
- // following:
- // Size = 0, Ty = Void: Nothing is known about this node.
- // Size = 0, Ty = FnTy: FunctionPtr doesn't have a size, so we use zero
- // Size = 1, Ty = Void, Array = 1: The node is collapsed
- // Otherwise, sizeof(Ty) = Size
- //
- assert(((Size == 0 && Ty == Type::VoidTy && !isArray()) ||
- (Size == 0 && !Ty->isSized() && !isArray()) ||
- (Size == 1 && Ty == Type::VoidTy && isArray()) ||
- (Size == 0 && !Ty->isSized() && !isArray()) ||
- (TD.getTypeSize(Ty) == Size)) &&
- "Size member of DSNode doesn't match the type structure!");
- assert(NewTy != Type::VoidTy && "Cannot merge void type into DSNode!");
-
- if (Offset == 0 && NewTy == Ty)
- return false; // This should be a common case, handle it efficiently
-
- // Return true immediately if the node is completely folded.
- if (isNodeCompletelyFolded()) return true;
-
- // If this is an array type, eliminate the outside arrays because they won't
- // be used anyway. This greatly reduces the size of large static arrays used
- // as global variables, for example.
- //
- bool WillBeArray = false;
- while (const ArrayType *AT = dyn_cast<ArrayType>(NewTy)) {
- // FIXME: we might want to keep small arrays, but must be careful about
- // things like: [2 x [10000 x int*]]
- NewTy = AT->getElementType();
- WillBeArray = true;
- }
-
- // Figure out how big the new type we're merging in is...
- unsigned NewTySize = NewTy->isSized() ? (unsigned)TD.getTypeSize(NewTy) : 0;
-
- // Otherwise check to see if we can fold this type into the current node. If
- // we can't, we fold the node completely, if we can, we potentially update our
- // internal state.
- //
- if (Ty == Type::VoidTy) {
- // If this is the first type that this node has seen, just accept it without
- // question....
- assert(Offset == 0 && !isArray() &&
- "Cannot have an offset into a void node!");
-
- // If this node would have to have an unreasonable number of fields, just
- // collapse it. This can occur for fortran common blocks, which have stupid
- // things like { [100000000 x double], [1000000 x double] }.
- unsigned NumFields = (NewTySize+DS::PointerSize-1) >> DS::PointerShift;
- if (NumFields > DSAFieldLimit) {
- foldNodeCompletely();
- return true;
- }
-
- Ty = NewTy;
- NodeType &= ~Array;
- if (WillBeArray) NodeType |= Array;
- Size = NewTySize;
-
- // Calculate the number of outgoing links from this node.
- Links.resize(NumFields);
- return false;
- }
-
- // Handle node expansion case here...
- if (Offset+NewTySize > Size) {
- // It is illegal to grow this node if we have treated it as an array of
- // objects...
- if (isArray()) {
- if (FoldIfIncompatible) foldNodeCompletely();
- return true;
- }
-
- // If this node would have to have an unreasonable number of fields, just
- // collapse it. This can occur for fortran common blocks, which have stupid
- // things like { [100000000 x double], [1000000 x double] }.
- unsigned NumFields = (NewTySize+Offset+DS::PointerSize-1) >> DS::PointerShift;
- if (NumFields > DSAFieldLimit) {
- foldNodeCompletely();
- return true;
- }
-
- if (Offset) {
- //handle some common cases:
- // Ty: struct { t1, t2, t3, t4, ..., tn}
- // NewTy: struct { offset, stuff...}
- // try merge with NewTy: struct {t1, t2, stuff...} if offset lands exactly
- // on a field in Ty
- if (isa<StructType>(NewTy) && isa<StructType>(Ty)) {
- DOUT << "Ty: " << *Ty << "\nNewTy: " << *NewTy << "@" << Offset << "\n";
- const StructType *STy = cast<StructType>(Ty);
- const StructLayout &SL = *TD.getStructLayout(STy);
- unsigned i = SL.getElementContainingOffset(Offset);
- //Either we hit it exactly or give up
- if (SL.MemberOffsets[i] != Offset) {
- if (FoldIfIncompatible) foldNodeCompletely();
- return true;
- }
- std::vector<const Type*> nt;
- for (unsigned x = 0; x < i; ++x)
- nt.push_back(STy->getElementType(x));
- STy = cast<StructType>(NewTy);
- nt.insert(nt.end(), STy->element_begin(), STy->element_end());
- //and merge
- STy = StructType::get(nt);
- DOUT << "Trying with: " << *STy << "\n";
- return mergeTypeInfo(STy, 0);
- }
-
- //Ty: struct { t1, t2, t3 ... tn}
- //NewTy T offset x
- //try merge with NewTy: struct : {t1, t2, T} if offset lands on a field
- //in Ty
- if (isa<StructType>(Ty)) {
- DOUT << "Ty: " << *Ty << "\nNewTy: " << *NewTy << "@" << Offset << "\n";
- const StructType *STy = cast<StructType>(Ty);
- const StructLayout &SL = *TD.getStructLayout(STy);
- unsigned i = SL.getElementContainingOffset(Offset);
- //Either we hit it exactly or give up
- if (SL.MemberOffsets[i] != Offset) {
- if (FoldIfIncompatible) foldNodeCompletely();
- return true;
- }
- std::vector<const Type*> nt;
- for (unsigned x = 0; x < i; ++x)
- nt.push_back(STy->getElementType(x));
- nt.push_back(NewTy);
- //and merge
- STy = StructType::get(nt);
- DOUT << "Trying with: " << *STy << "\n";
- return mergeTypeInfo(STy, 0);
- }
-
- assert(0 &&
- "UNIMP: Trying to merge a growth type into "
- "offset != 0: Collapsing!");
- abort();
- if (FoldIfIncompatible) foldNodeCompletely();
- return true;
-
- }
-
-
- // Okay, the situation is nice and simple, we are trying to merge a type in
- // at offset 0 that is bigger than our current type. Implement this by
- // switching to the new type and then merge in the smaller one, which should
- // hit the other code path here. If the other code path decides it's not
- // ok, it will collapse the node as appropriate.
- //
-
- const Type *OldTy = Ty;
- Ty = NewTy;
- NodeType &= ~Array;
- if (WillBeArray) NodeType |= Array;
- Size = NewTySize;
-
- // Must grow links to be the appropriate size...
- Links.resize(NumFields);
-
- // Merge in the old type now... which is guaranteed to be smaller than the
- // "current" type.
- return mergeTypeInfo(OldTy, 0);
- }
-
- assert(Offset <= Size &&
- "Cannot merge something into a part of our type that doesn't exist!");
-
- // Find the section of Ty that NewTy overlaps with... first we find the
- // type that starts at offset Offset.
- //
- unsigned O = 0;
- const Type *SubType = Ty;
- while (O < Offset) {
- assert(Offset-O < TD.getTypeSize(SubType) && "Offset out of range!");
-
- switch (SubType->getTypeID()) {
- case Type::StructTyID: {
- const StructType *STy = cast<StructType>(SubType);
- const StructLayout &SL = *TD.getStructLayout(STy);
- unsigned i = SL.getElementContainingOffset(Offset-O);
-
- // The offset we are looking for must be in the i'th element...
- SubType = STy->getElementType(i);
- O += (unsigned)SL.MemberOffsets[i];
- break;
- }
- case Type::ArrayTyID: {
- SubType = cast<ArrayType>(SubType)->getElementType();
- unsigned ElSize = (unsigned)TD.getTypeSize(SubType);
- unsigned Remainder = (Offset-O) % ElSize;
- O = Offset-Remainder;
- break;
- }
- default:
- if (FoldIfIncompatible) foldNodeCompletely();
- return true;
- }
- }
-
- assert(O == Offset && "Could not achieve the correct offset!");
-
- // If we found our type exactly, early exit
- if (SubType == NewTy) return false;
-
- // Differing function types don't require us to merge. They are not values
- // anyway.
- if (isa<FunctionType>(SubType) &&
- isa<FunctionType>(NewTy)) return false;
-
- unsigned SubTypeSize = SubType->isSized() ?
- (unsigned)TD.getTypeSize(SubType) : 0;
-
- // Ok, we are getting desperate now. Check for physical subtyping, where we
- // just require each element in the node to be compatible.
- if (NewTySize <= SubTypeSize && NewTySize && NewTySize < 256 &&
- SubTypeSize && SubTypeSize < 256 &&
- ElementTypesAreCompatible(NewTy, SubType, !isArray(), TD))
- return false;
-
- // Okay, so we found the leader type at the offset requested. Search the list
- // of types that starts at this offset. If SubType is currently an array or
- // structure, the type desired may actually be the first element of the
- // composite type...
- //
- unsigned PadSize = SubTypeSize; // Size, including pad memory which is ignored
- while (SubType != NewTy) {
- const Type *NextSubType = 0;
- unsigned NextSubTypeSize = 0;
- unsigned NextPadSize = 0;
- switch (SubType->getTypeID()) {
- case Type::StructTyID: {
- const StructType *STy = cast<StructType>(SubType);
- const StructLayout &SL = *TD.getStructLayout(STy);
- if (SL.MemberOffsets.size() > 1)
- NextPadSize = (unsigned)SL.MemberOffsets[1];
- else
- NextPadSize = SubTypeSize;
- NextSubType = STy->getElementType(0);
- NextSubTypeSize = (unsigned)TD.getTypeSize(NextSubType);
- break;
- }
- case Type::ArrayTyID:
- NextSubType = cast<ArrayType>(SubType)->getElementType();
- NextSubTypeSize = (unsigned)TD.getTypeSize(NextSubType);
- NextPadSize = NextSubTypeSize;
- break;
- default: ;
- // fall out
- }
-
- if (NextSubType == 0)
- break; // In the default case, break out of the loop
-
- if (NextPadSize < NewTySize)
- break; // Don't allow shrinking to a smaller type than NewTySize
- SubType = NextSubType;
- SubTypeSize = NextSubTypeSize;
- PadSize = NextPadSize;
- }
-
- // If we found the type exactly, return it...
- if (SubType == NewTy)
- return false;
-
- // Check to see if we have a compatible, but different type...
- if (NewTySize == SubTypeSize) {
- // Check to see if this type is obviously convertible... int -> uint f.e.
- if (NewTy->canLosslesslyBitCastTo(SubType))
- return false;
-
- // Check to see if we have a pointer & integer mismatch going on here,
- // loading a pointer as a long, for example.
- //
- if (SubType->isInteger() && isa<PointerType>(NewTy) ||
- NewTy->isInteger() && isa<PointerType>(SubType))
- return false;
- } else if (NewTySize > SubTypeSize && NewTySize <= PadSize) {
- // We are accessing the field, plus some structure padding. Ignore the
- // structure padding.
- return false;
- }
-
- Module *M = 0;
- if (getParentGraph()->retnodes_begin() != getParentGraph()->retnodes_end())
- M = getParentGraph()->retnodes_begin()->first->getParent();
-
- DOUT << "MergeTypeInfo Folding OrigTy: ";
- DEBUG(WriteTypeSymbolic(*cerr.stream(), Ty, M) << "\n due to:";
- WriteTypeSymbolic(*cerr.stream(), NewTy, M) << " @ " << Offset << "!\n"
- << "SubType: ";
- WriteTypeSymbolic(*cerr.stream(), SubType, M) << "\n\n");
-
- if (FoldIfIncompatible) foldNodeCompletely();
- return true;
-}
-
-
-
-/// addEdgeTo - Add an edge from the current node to the specified node. This
-/// can cause merging of nodes in the graph.
-///
-void DSNode::addEdgeTo(unsigned Offset, const DSNodeHandle &NH) {
- if (NH.isNull()) return; // Nothing to do
-
- if (isNodeCompletelyFolded())
- Offset = 0;
-
- DSNodeHandle &ExistingEdge = getLink(Offset);
- if (!ExistingEdge.isNull()) {
- // Merge the two nodes...
- ExistingEdge.mergeWith(NH);
- } else { // No merging to perform...
- setLink(Offset, NH); // Just force a link in there...
- }
-}
-
-
-/// MergeSortedVectors - Efficiently merge a vector into another vector where
-/// duplicates are not allowed and both are sorted. This assumes that 'T's are
-/// efficiently copyable and have sane comparison semantics.
-///
-static void MergeSortedVectors(std::vector<GlobalValue*> &Dest,
- const std::vector<GlobalValue*> &Src) {
- // By far, the most common cases will be the simple ones. In these cases,
- // avoid having to allocate a temporary vector...
- //
- if (Src.empty()) { // Nothing to merge in...
- return;
- } else if (Dest.empty()) { // Just copy the result in...
- Dest = Src;
- } else if (Src.size() == 1) { // Insert a single element...
- const GlobalValue *V = Src[0];
- std::vector<GlobalValue*>::iterator I =
- std::lower_bound(Dest.begin(), Dest.end(), V);
- if (I == Dest.end() || *I != Src[0]) // If not already contained...
- Dest.insert(I, Src[0]);
- } else if (Dest.size() == 1) {
- GlobalValue *Tmp = Dest[0]; // Save value in temporary...
- Dest = Src; // Copy over list...
- std::vector<GlobalValue*>::iterator I =
- std::lower_bound(Dest.begin(), Dest.end(), Tmp);
- if (I == Dest.end() || *I != Tmp) // If not already contained...
- Dest.insert(I, Tmp);
-
- } else {
- // Make a copy to the side of Dest...
- std::vector<GlobalValue*> Old(Dest);
-
- // Make space for all of the type entries now...
- Dest.resize(Dest.size()+Src.size());
-
- // Merge the two sorted ranges together... into Dest.
- std::merge(Old.begin(), Old.end(), Src.begin(), Src.end(), Dest.begin());
-
- // Now erase any duplicate entries that may have accumulated into the
- // vectors (because they were in both of the input sets)
- Dest.erase(std::unique(Dest.begin(), Dest.end()), Dest.end());
- }
-}
-
-void DSNode::mergeGlobals(const std::vector<GlobalValue*> &RHS) {
- MergeSortedVectors(Globals, RHS);
-}
-
-// MergeNodes - Helper function for DSNode::mergeWith().
-// This function does the hard work of merging two nodes, CurNodeH
-// and NH after filtering out trivial cases and making sure that
-// CurNodeH.offset >= NH.offset.
-//
-// ***WARNING***
-// Since merging may cause either node to go away, we must always
-// use the node-handles to refer to the nodes. These node handles are
-// automatically updated during merging, so will always provide access
-// to the correct node after a merge.
-//
-void DSNode::MergeNodes(DSNodeHandle& CurNodeH, DSNodeHandle& NH) {
- assert(CurNodeH.getOffset() >= NH.getOffset() &&
- "This should have been enforced in the caller.");
- assert(CurNodeH.getNode()->getParentGraph()==NH.getNode()->getParentGraph() &&
- "Cannot merge two nodes that are not in the same graph!");
-
- // Now we know that Offset >= NH.Offset, so convert it so our "Offset" (with
- // respect to NH.Offset) is now zero. NOffset is the distance from the base
- // of our object that N starts from.
- //
- unsigned NOffset = CurNodeH.getOffset()-NH.getOffset();
- unsigned NSize = NH.getNode()->getSize();
-
- // If the two nodes are of different size, and the smaller node has the array
- // bit set, collapse!
- if (NSize != CurNodeH.getNode()->getSize()) {
-#if COLLAPSE_ARRAYS_AGGRESSIVELY
- if (NSize < CurNodeH.getNode()->getSize()) {
- if (NH.getNode()->isArray())
- NH.getNode()->foldNodeCompletely();
- } else if (CurNodeH.getNode()->isArray()) {
- NH.getNode()->foldNodeCompletely();
- }
-#endif
- }
-
- // Merge the type entries of the two nodes together...
- if (NH.getNode()->Ty != Type::VoidTy)
- CurNodeH.getNode()->mergeTypeInfo(NH.getNode()->Ty, NOffset);
- assert(!CurNodeH.getNode()->isDeadNode());
-
- // If we are merging a node with a completely folded node, then both nodes are
- // now completely folded.
- //
- if (CurNodeH.getNode()->isNodeCompletelyFolded()) {
- if (!NH.getNode()->isNodeCompletelyFolded()) {
- NH.getNode()->foldNodeCompletely();
- assert(NH.getNode() && NH.getOffset() == 0 &&
- "folding did not make offset 0?");
- NOffset = NH.getOffset();
- NSize = NH.getNode()->getSize();
- assert(NOffset == 0 && NSize == 1);
- }
- } else if (NH.getNode()->isNodeCompletelyFolded()) {
- CurNodeH.getNode()->foldNodeCompletely();
- assert(CurNodeH.getNode() && CurNodeH.getOffset() == 0 &&
- "folding did not make offset 0?");
- NSize = NH.getNode()->getSize();
- NOffset = NH.getOffset();
- assert(NOffset == 0 && NSize == 1);
- }
-
- DSNode *N = NH.getNode();
- if (CurNodeH.getNode() == N || N == 0) return;
- assert(!CurNodeH.getNode()->isDeadNode());
-
- // Merge the NodeType information.
- CurNodeH.getNode()->NodeType |= N->NodeType;
-
- // Start forwarding to the new node!
- N->forwardNode(CurNodeH.getNode(), NOffset);
- assert(!CurNodeH.getNode()->isDeadNode());
-
- // Make all of the outgoing links of N now be outgoing links of CurNodeH.
- //
- for (unsigned i = 0; i < N->getNumLinks(); ++i) {
- DSNodeHandle &Link = N->getLink(i << DS::PointerShift);
- if (Link.getNode()) {
- // Compute the offset into the current node at which to
- // merge this link. In the common case, this is a linear
- // relation to the offset in the original node (with
- // wrapping), but if the current node gets collapsed due to
- // recursive merging, we must make sure to merge in all remaining
- // links at offset zero.
- unsigned MergeOffset = 0;
- DSNode *CN = CurNodeH.getNode();
- if (CN->Size != 1)
- MergeOffset = ((i << DS::PointerShift)+NOffset) % CN->getSize();
- CN->addEdgeTo(MergeOffset, Link);
- }
- }
-
- // Now that there are no outgoing edges, all of the Links are dead.
- N->Links.clear();
-
- // Merge the globals list...
- if (!N->Globals.empty()) {
- CurNodeH.getNode()->mergeGlobals(N->Globals);
-
- // Delete the globals from the old node...
- std::vector<GlobalValue*>().swap(N->Globals);
- }
-}
-
-
-/// mergeWith - Merge this node and the specified node, moving all links to and
-/// from the argument node into the current node, deleting the node argument.
-/// Offset indicates what offset the specified node is to be merged into the
-/// current node.
-///
-/// The specified node may be a null pointer (in which case, we update it to
-/// point to this node).
-///
-void DSNode::mergeWith(const DSNodeHandle &NH, unsigned Offset) {
- DSNode *N = NH.getNode();
- if (N == this && NH.getOffset() == Offset)
- return; // Noop
-
- // If the RHS is a null node, make it point to this node!
- if (N == 0) {
- NH.mergeWith(DSNodeHandle(this, Offset));
- return;
- }
-
- assert(!N->isDeadNode() && !isDeadNode());
- assert(!hasNoReferrers() && "Should not try to fold a useless node!");
-
- if (N == this) {
- // We cannot merge two pieces of the same node together, collapse the node
- // completely.
- DOUT << "Attempting to merge two chunks of the same node together!\n";
- foldNodeCompletely();
- return;
- }
-
- // If both nodes are not at offset 0, make sure that we are merging the node
- // at an later offset into the node with the zero offset.
- //
- if (Offset < NH.getOffset()) {
- N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset());
- return;
- } else if (Offset == NH.getOffset() && getSize() < N->getSize()) {
- // If the offsets are the same, merge the smaller node into the bigger node
- N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset());
- return;
- }
-
- // Ok, now we can merge the two nodes. Use a static helper that works with
- // two node handles, since "this" may get merged away at intermediate steps.
- DSNodeHandle CurNodeH(this, Offset);
- DSNodeHandle NHCopy(NH);
- if (CurNodeH.getOffset() >= NHCopy.getOffset())
- DSNode::MergeNodes(CurNodeH, NHCopy);
- else
- DSNode::MergeNodes(NHCopy, CurNodeH);
-}
-
-
-//===----------------------------------------------------------------------===//
-// ReachabilityCloner Implementation
-//===----------------------------------------------------------------------===//
-
-DSNodeHandle ReachabilityCloner::getClonedNH(const DSNodeHandle &SrcNH) {
- if (SrcNH.isNull()) return DSNodeHandle();
- const DSNode *SN = SrcNH.getNode();
-
- DSNodeHandle &NH = NodeMap[SN];
- if (!NH.isNull()) { // Node already mapped?
- DSNode *NHN = NH.getNode();
- return DSNodeHandle(NHN, NH.getOffset()+SrcNH.getOffset());
- }
-
- // If SrcNH has globals and the destination graph has one of the same globals,
- // merge this node with the destination node, which is much more efficient.
- if (SN->globals_begin() != SN->globals_end()) {
- DSScalarMap &DestSM = Dest.getScalarMap();
- for (DSNode::globals_iterator I = SN->globals_begin(),E = SN->globals_end();
- I != E; ++I) {
- GlobalValue *GV = *I;
- DSScalarMap::iterator GI = DestSM.find(GV);
- if (GI != DestSM.end() && !GI->second.isNull()) {
- // We found one, use merge instead!
- merge(GI->second, Src.getNodeForValue(GV));
- assert(!NH.isNull() && "Didn't merge node!");
- DSNode *NHN = NH.getNode();
- return DSNodeHandle(NHN, NH.getOffset()+SrcNH.getOffset());
- }
- }
- }
-
- DSNode *DN = new DSNode(*SN, &Dest, true /* Null out all links */);
- DN->maskNodeTypes(BitsToKeep);
- NH = DN;
-
- // Next, recursively clone all outgoing links as necessary. Note that
- // adding these links can cause the node to collapse itself at any time, and
- // the current node may be merged with arbitrary other nodes. For this
- // reason, we must always go through NH.
- DN = 0;
- for (unsigned i = 0, e = SN->getNumLinks(); i != e; ++i) {
- const DSNodeHandle &SrcEdge = SN->getLink(i << DS::PointerShift);
- if (!SrcEdge.isNull()) {
- const DSNodeHandle &DestEdge = getClonedNH(SrcEdge);
- // Compute the offset into the current node at which to
- // merge this link. In the common case, this is a linear
- // relation to the offset in the original node (with
- // wrapping), but if the current node gets collapsed due to
- // recursive merging, we must make sure to merge in all remaining
- // links at offset zero.
- unsigned MergeOffset = 0;
- DSNode *CN = NH.getNode();
- if (CN->getSize() != 1)
- MergeOffset = ((i << DS::PointerShift)+NH.getOffset()) % CN->getSize();
- CN->addEdgeTo(MergeOffset, DestEdge);
- }
- }
-
- // If this node contains any globals, make sure they end up in the scalar
- // map with the correct offset.
- for (DSNode::globals_iterator I = SN->globals_begin(), E = SN->globals_end();
- I != E; ++I) {
- GlobalValue *GV = *I;
- const DSNodeHandle &SrcGNH = Src.getNodeForValue(GV);
- DSNodeHandle &DestGNH = NodeMap[SrcGNH.getNode()];
- assert(DestGNH.getNode() == NH.getNode() &&"Global mapping inconsistent");
- Dest.getNodeForValue(GV).mergeWith(DSNodeHandle(DestGNH.getNode(),
- DestGNH.getOffset()+SrcGNH.getOffset()));
- }
- NH.getNode()->mergeGlobals(SN->getGlobalsList());
-
- return DSNodeHandle(NH.getNode(), NH.getOffset()+SrcNH.getOffset());
-}
-
-void ReachabilityCloner::merge(const DSNodeHandle &NH,
- const DSNodeHandle &SrcNH) {
- if (SrcNH.isNull()) return; // Noop
- if (NH.isNull()) {
- // If there is no destination node, just clone the source and assign the
- // destination node to be it.
- NH.mergeWith(getClonedNH(SrcNH));
- return;
- }
-
- // Okay, at this point, we know that we have both a destination and a source
- // node that need to be merged. Check to see if the source node has already
- // been cloned.
- const DSNode *SN = SrcNH.getNode();
- DSNodeHandle &SCNH = NodeMap[SN]; // SourceClonedNodeHandle
- if (!SCNH.isNull()) { // Node already cloned?
- DSNode *SCNHN = SCNH.getNode();
- NH.mergeWith(DSNodeHandle(SCNHN,
- SCNH.getOffset()+SrcNH.getOffset()));
- return; // Nothing to do!
- }
-
- // Okay, so the source node has not already been cloned. Instead of creating
- // a new DSNode, only to merge it into the one we already have, try to perform
- // the merge in-place. The only case we cannot handle here is when the offset
- // into the existing node is less than the offset into the virtual node we are
- // merging in. In this case, we have to extend the existing node, which
- // requires an allocation anyway.
- DSNode *DN = NH.getNode(); // Make sure the Offset is up-to-date
- if (NH.getOffset() >= SrcNH.getOffset()) {
- if (!DN->isNodeCompletelyFolded()) {
- // Make sure the destination node is folded if the source node is folded.
- if (SN->isNodeCompletelyFolded()) {
- DN->foldNodeCompletely();
- DN = NH.getNode();
- } else if (SN->getSize() != DN->getSize()) {
- // If the two nodes are of different size, and the smaller node has the
- // array bit set, collapse!
-#if COLLAPSE_ARRAYS_AGGRESSIVELY
- if (SN->getSize() < DN->getSize()) {
- if (SN->isArray()) {
- DN->foldNodeCompletely();
- DN = NH.getNode();
- }
- } else if (DN->isArray()) {
- DN->foldNodeCompletely();
- DN = NH.getNode();
- }
-#endif
- }
-
- // Merge the type entries of the two nodes together...
- if (SN->getType() != Type::VoidTy && !DN->isNodeCompletelyFolded()) {
- DN->mergeTypeInfo(SN->getType(), NH.getOffset()-SrcNH.getOffset());
- DN = NH.getNode();
- }
- }
-
- assert(!DN->isDeadNode());
-
- // Merge the NodeType information.
- DN->mergeNodeFlags(SN->getNodeFlags() & BitsToKeep);
-
- // Before we start merging outgoing links and updating the scalar map, make
- // sure it is known that this is the representative node for the src node.
- SCNH = DSNodeHandle(DN, NH.getOffset()-SrcNH.getOffset());
-
- // If the source node contains any globals, make sure they end up in the
- // scalar map with the correct offset.
- if (SN->globals_begin() != SN->globals_end()) {
- // Update the globals in the destination node itself.
- DN->mergeGlobals(SN->getGlobalsList());
-
- // Update the scalar map for the graph we are merging the source node
- // into.
- for (DSNode::globals_iterator I = SN->globals_begin(),
- E = SN->globals_end(); I != E; ++I) {
- GlobalValue *GV = *I;
- const DSNodeHandle &SrcGNH = Src.getNodeForValue(GV);
- DSNodeHandle &DestGNH = NodeMap[SrcGNH.getNode()];
- assert(DestGNH.getNode()==NH.getNode() &&"Global mapping inconsistent");
- Dest.getNodeForValue(GV).mergeWith(DSNodeHandle(DestGNH.getNode(),
- DestGNH.getOffset()+SrcGNH.getOffset()));
- }
- NH.getNode()->mergeGlobals(SN->getGlobalsList());
- }
- } else {
- // We cannot handle this case without allocating a temporary node. Fall
- // back on being simple.
- DSNode *NewDN = new DSNode(*SN, &Dest, true /* Null out all links */);
- NewDN->maskNodeTypes(BitsToKeep);
-
- unsigned NHOffset = NH.getOffset();
- NH.mergeWith(DSNodeHandle(NewDN, SrcNH.getOffset()));
-
- assert(NH.getNode() &&
- (NH.getOffset() > NHOffset ||
- (NH.getOffset() == 0 && NH.getNode()->isNodeCompletelyFolded())) &&
- "Merging did not adjust the offset!");
-
- // Before we start merging outgoing links and updating the scalar map, make
- // sure it is known that this is the representative node for the src node.
- SCNH = DSNodeHandle(NH.getNode(), NH.getOffset()-SrcNH.getOffset());
-
- // If the source node contained any globals, make sure to create entries
- // in the scalar map for them!
- for (DSNode::globals_iterator I = SN->globals_begin(),
- E = SN->globals_end(); I != E; ++I) {
- GlobalValue *GV = *I;
- const DSNodeHandle &SrcGNH = Src.getNodeForValue(GV);
- DSNodeHandle &DestGNH = NodeMap[SrcGNH.getNode()];
- assert(DestGNH.getNode()==NH.getNode() &&"Global mapping inconsistent");
- assert(SrcGNH.getNode() == SN && "Global mapping inconsistent");
- Dest.getNodeForValue(GV).mergeWith(DSNodeHandle(DestGNH.getNode(),
- DestGNH.getOffset()+SrcGNH.getOffset()));
- }
- }
-
-
- // Next, recursively merge all outgoing links as necessary. Note that
- // adding these links can cause the destination node to collapse itself at
- // any time, and the current node may be merged with arbitrary other nodes.
- // For this reason, we must always go through NH.
- DN = 0;
- for (unsigned i = 0, e = SN->getNumLinks(); i != e; ++i) {
- const DSNodeHandle &SrcEdge = SN->getLink(i << DS::PointerShift);
- if (!SrcEdge.isNull()) {
- // Compute the offset into the current node at which to
- // merge this link. In the common case, this is a linear
- // relation to the offset in the original node (with
- // wrapping), but if the current node gets collapsed due to
- // recursive merging, we must make sure to merge in all remaining
- // links at offset zero.
- DSNode *CN = SCNH.getNode();
- unsigned MergeOffset =
- ((i << DS::PointerShift)+SCNH.getOffset()) % CN->getSize();
-
- DSNodeHandle Tmp = CN->getLink(MergeOffset);
- if (!Tmp.isNull()) {
- // Perform the recursive merging. Make sure to create a temporary NH,
- // because the Link can disappear in the process of recursive merging.
- merge(Tmp, SrcEdge);
- } else {
- Tmp.mergeWith(getClonedNH(SrcEdge));
- // Merging this could cause all kinds of recursive things to happen,
- // culminating in the current node being eliminated. Since this is
- // possible, make sure to reaquire the link from 'CN'.
-
- unsigned MergeOffset = 0;
- CN = SCNH.getNode();
- MergeOffset = ((i << DS::PointerShift)+SCNH.getOffset()) %CN->getSize();
- CN->getLink(MergeOffset).mergeWith(Tmp);
- }
- }
- }
-}
-
-/// mergeCallSite - Merge the nodes reachable from the specified src call
-/// site into the nodes reachable from DestCS.
-void ReachabilityCloner::mergeCallSite(DSCallSite &DestCS,
- const DSCallSite &SrcCS) {
- merge(DestCS.getRetVal(), SrcCS.getRetVal());
- unsigned MinArgs = DestCS.getNumPtrArgs();
- if (SrcCS.getNumPtrArgs() < MinArgs) MinArgs = SrcCS.getNumPtrArgs();
-
- for (unsigned a = 0; a != MinArgs; ++a)
- merge(DestCS.getPtrArg(a), SrcCS.getPtrArg(a));
-
- for (unsigned a = MinArgs, e = SrcCS.getNumPtrArgs(); a != e; ++a)
- DestCS.addPtrArg(getClonedNH(SrcCS.getPtrArg(a)));
-}
-
-
-//===----------------------------------------------------------------------===//
-// DSCallSite Implementation
-//===----------------------------------------------------------------------===//
-
-// Define here to avoid including iOther.h and BasicBlock.h in DSGraph.h
-Function &DSCallSite::getCaller() const {
- return *Site.getInstruction()->getParent()->getParent();
-}
-
-void DSCallSite::InitNH(DSNodeHandle &NH, const DSNodeHandle &Src,
- ReachabilityCloner &RC) {
- NH = RC.getClonedNH(Src);
-}
-
-//===----------------------------------------------------------------------===//
-// DSGraph Implementation
-//===----------------------------------------------------------------------===//
-
-/// getFunctionNames - Return a space separated list of the name of the
-/// functions in this graph (if any)
-std::string DSGraph::getFunctionNames() const {
- switch (getReturnNodes().size()) {
- case 0: return "Globals graph";
- case 1: return retnodes_begin()->first->getName();
- default:
- std::string Return;
- for (DSGraph::retnodes_iterator I = retnodes_begin();
- I != retnodes_end(); ++I)
- Return += I->first->getName() + " ";
- Return.erase(Return.end()-1, Return.end()); // Remove last space character
- return Return;
- }
-}
-
-
-DSGraph::DSGraph(const DSGraph &G, EquivalenceClasses<GlobalValue*> &ECs,
- unsigned CloneFlags)
- : GlobalsGraph(0), ScalarMap(ECs), TD(G.TD) {
- PrintAuxCalls = false;
- cloneInto(G, CloneFlags);
-}
-
-DSGraph::~DSGraph() {
- FunctionCalls.clear();
- AuxFunctionCalls.clear();
- ScalarMap.clear();
- ReturnNodes.clear();
-
- // Drop all intra-node references, so that assertions don't fail...
- for (node_iterator NI = node_begin(), E = node_end(); NI != E; ++NI)
- NI->dropAllReferences();
-
- // Free all of the nodes.
- Nodes.clear();
-}
-
-// dump - Allow inspection of graph in a debugger.
-void DSGraph::dump() const { print(cerr); }
-
-
-/// remapLinks - Change all of the Links in the current node according to the
-/// specified mapping.
-///
-void DSNode::remapLinks(DSGraph::NodeMapTy &OldNodeMap) {
- for (unsigned i = 0, e = Links.size(); i != e; ++i)
- if (DSNode *N = Links[i].getNode()) {
- DSGraph::NodeMapTy::const_iterator ONMI = OldNodeMap.find(N);
- if (ONMI != OldNodeMap.end()) {
- DSNode *ONMIN = ONMI->second.getNode();
- Links[i].setTo(ONMIN, Links[i].getOffset()+ONMI->second.getOffset());
- }
- }
-}
-
-/// addObjectToGraph - This method can be used to add global, stack, and heap
-/// objects to the graph. This can be used when updating DSGraphs due to the
-/// introduction of new temporary objects. The new object is not pointed to
-/// and does not point to any other objects in the graph.
-DSNode *DSGraph::addObjectToGraph(Value *Ptr, bool UseDeclaredType) {
- assert(isa<PointerType>(Ptr->getType()) && "Ptr is not a pointer!");
- const Type *Ty = cast<PointerType>(Ptr->getType())->getElementType();
- DSNode *N = new DSNode(UseDeclaredType ? Ty : 0, this);
- assert(ScalarMap[Ptr].isNull() && "Object already in this graph!");
- ScalarMap[Ptr] = N;
-
- if (GlobalValue *GV = dyn_cast<GlobalValue>(Ptr)) {
- N->addGlobal(GV);
- } else if (isa<MallocInst>(Ptr)) {
- N->setHeapNodeMarker();
- } else if (isa<AllocaInst>(Ptr)) {
- N->setAllocaNodeMarker();
- } else {
- assert(0 && "Illegal memory object input!");
- }
- return N;
-}
-
-
-/// cloneInto - Clone the specified DSGraph into the current graph. The
-/// translated ScalarMap for the old function is filled into the ScalarMap
-/// for the graph, and the translated ReturnNodes map is returned into
-/// ReturnNodes.
-///
-/// The CloneFlags member controls various aspects of the cloning process.
-///
-void DSGraph::cloneInto(const DSGraph &G, unsigned CloneFlags) {
- TIME_REGION(X, "cloneInto");
- assert(&G != this && "Cannot clone graph into itself!");
-
- NodeMapTy OldNodeMap;
-
- // Remove alloca or mod/ref bits as specified...
- unsigned BitsToClear = ((CloneFlags & StripAllocaBit)? DSNode::AllocaNode : 0)
- | ((CloneFlags & StripModRefBits)? (DSNode::Modified | DSNode::Read) : 0)
- | ((CloneFlags & StripIncompleteBit)? DSNode::Incomplete : 0);
- BitsToClear |= DSNode::DEAD; // Clear dead flag...
-
- for (node_const_iterator I = G.node_begin(), E = G.node_end(); I != E; ++I) {
- assert(!I->isForwarding() &&
- "Forward nodes shouldn't be in node list!");
- DSNode *New = new DSNode(*I, this);
- New->maskNodeTypes(~BitsToClear);
- OldNodeMap[I] = New;
- }
-
-#ifndef NDEBUG
- Timer::addPeakMemoryMeasurement();
-#endif
-
- // Rewrite the links in the new nodes to point into the current graph now.
- // Note that we don't loop over the node's list to do this. The problem is
- // that remaping links can cause recursive merging to happen, which means
- // that node_iterator's can get easily invalidated! Because of this, we
- // loop over the OldNodeMap, which contains all of the new nodes as the
- // .second element of the map elements. Also note that if we remap a node
- // more than once, we won't break anything.
- for (NodeMapTy::iterator I = OldNodeMap.begin(), E = OldNodeMap.end();
- I != E; ++I)
- I->second.getNode()->remapLinks(OldNodeMap);
-
- // Copy the scalar map... merging all of the global nodes...
- for (DSScalarMap::const_iterator I = G.ScalarMap.begin(),
- E = G.ScalarMap.end(); I != E; ++I) {
- DSNodeHandle &MappedNode = OldNodeMap[I->second.getNode()];
- DSNodeHandle &H = ScalarMap.getRawEntryRef(I->first);
- DSNode *MappedNodeN = MappedNode.getNode();
- H.mergeWith(DSNodeHandle(MappedNodeN,
- I->second.getOffset()+MappedNode.getOffset()));
- }
-
- if (!(CloneFlags & DontCloneCallNodes)) {
- // Copy the function calls list.
- for (fc_iterator I = G.fc_begin(), E = G.fc_end(); I != E; ++I)
- FunctionCalls.push_back(DSCallSite(*I, OldNodeMap));
- }
-
- if (!(CloneFlags & DontCloneAuxCallNodes)) {
- // Copy the auxiliary function calls list.
- for (afc_iterator I = G.afc_begin(), E = G.afc_end(); I != E; ++I)
- AuxFunctionCalls.push_back(DSCallSite(*I, OldNodeMap));
- }
-
- // Map the return node pointers over...
- for (retnodes_iterator I = G.retnodes_begin(),
- E = G.retnodes_end(); I != E; ++I) {
- const DSNodeHandle &Ret = I->second;
- DSNodeHandle &MappedRet = OldNodeMap[Ret.getNode()];
- DSNode *MappedRetN = MappedRet.getNode();
- ReturnNodes.insert(std::make_pair(I->first,
- DSNodeHandle(MappedRetN,
- MappedRet.getOffset()+Ret.getOffset())));
- }
-}
-
-/// spliceFrom - Logically perform the operation of cloning the RHS graph into
-/// this graph, then clearing the RHS graph. Instead of performing this as
-/// two seperate operations, do it as a single, much faster, one.
-///
-void DSGraph::spliceFrom(DSGraph &RHS) {
- // Change all of the nodes in RHS to think we are their parent.
- for (NodeListTy::iterator I = RHS.Nodes.begin(), E = RHS.Nodes.end();
- I != E; ++I)
- I->setParentGraph(this);
- // Take all of the nodes.
- Nodes.splice(Nodes.end(), RHS.Nodes);
-
- // Take all of the calls.
- FunctionCalls.splice(FunctionCalls.end(), RHS.FunctionCalls);
- AuxFunctionCalls.splice(AuxFunctionCalls.end(), RHS.AuxFunctionCalls);
-
- // Take all of the return nodes.
- if (ReturnNodes.empty()) {
- ReturnNodes.swap(RHS.ReturnNodes);
- } else {
- ReturnNodes.insert(RHS.ReturnNodes.begin(), RHS.ReturnNodes.end());
- RHS.ReturnNodes.clear();
- }
-
- // Merge the scalar map in.
- ScalarMap.spliceFrom(RHS.ScalarMap);
-}
-
-/// spliceFrom - Copy all entries from RHS, then clear RHS.
-///
-void DSScalarMap::spliceFrom(DSScalarMap &RHS) {
- // Special case if this is empty.
- if (ValueMap.empty()) {
- ValueMap.swap(RHS.ValueMap);
- GlobalSet.swap(RHS.GlobalSet);
- } else {
- GlobalSet.insert(RHS.GlobalSet.begin(), RHS.GlobalSet.end());
- for (ValueMapTy::iterator I = RHS.ValueMap.begin(), E = RHS.ValueMap.end();
- I != E; ++I)
- ValueMap[I->first].mergeWith(I->second);
- RHS.ValueMap.clear();
- }
-}
-
-
-/// getFunctionArgumentsForCall - Given a function that is currently in this
-/// graph, return the DSNodeHandles that correspond to the pointer-compatible
-/// function arguments. The vector is filled in with the return value (or
-/// null if it is not pointer compatible), followed by all of the
-/// pointer-compatible arguments.
-void DSGraph::getFunctionArgumentsForCall(Function *F,
- std::vector<DSNodeHandle> &Args) const {
- Args.push_back(getReturnNodeFor(*F));
- for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
- AI != E; ++AI)
- if (isPointerType(AI->getType())) {
- Args.push_back(getNodeForValue(AI));
- assert(!Args.back().isNull() && "Pointer argument w/o scalarmap entry!?");
- }
-}
-
-namespace {
- // HackedGraphSCCFinder - This is used to find nodes that have a path from the
- // node to a node cloned by the ReachabilityCloner object contained. To be
- // extra obnoxious it ignores edges from nodes that are globals, and truncates
- // search at RC marked nodes. This is designed as an object so that
- // intermediate results can be memoized across invocations of
- // PathExistsToClonedNode.
- struct HackedGraphSCCFinder {
- ReachabilityCloner &RC;
- unsigned CurNodeId;
- std::vector<const DSNode*> SCCStack;
- std::map<const DSNode*, std::pair<unsigned, bool> > NodeInfo;
-
- HackedGraphSCCFinder(ReachabilityCloner &rc) : RC(rc), CurNodeId(1) {
- // Remove null pointer as a special case.
- NodeInfo[0] = std::make_pair(0, false);
- }
-
- std::pair<unsigned, bool> &VisitForSCCs(const DSNode *N);
-
- bool PathExistsToClonedNode(const DSNode *N) {
- return VisitForSCCs(N).second;
- }
-
- bool PathExistsToClonedNode(const DSCallSite &CS) {
- if (PathExistsToClonedNode(CS.getRetVal().getNode()))
- return true;
- for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i)
- if (PathExistsToClonedNode(CS.getPtrArg(i).getNode()))
- return true;
- return false;
- }
- };
-}
-
-std::pair<unsigned, bool> &HackedGraphSCCFinder::
-VisitForSCCs(const DSNode *N) {
- std::map<const DSNode*, std::pair<unsigned, bool> >::iterator
- NodeInfoIt = NodeInfo.lower_bound(N);
- if (NodeInfoIt != NodeInfo.end() && NodeInfoIt->first == N)
- return NodeInfoIt->second;
-
- unsigned Min = CurNodeId++;
- unsigned MyId = Min;
- std::pair<unsigned, bool> &ThisNodeInfo =
- NodeInfo.insert(NodeInfoIt,
- std::make_pair(N, std::make_pair(MyId, false)))->second;
-
- // Base case: if we find a global, this doesn't reach the cloned graph
- // portion.
- if (N->isGlobalNode()) {
- ThisNodeInfo.second = false;
- return ThisNodeInfo;
- }
-
- // Base case: if this does reach the cloned graph portion... it does. :)
- if (RC.hasClonedNode(N)) {
- ThisNodeInfo.second = true;
- return ThisNodeInfo;
- }
-
- SCCStack.push_back(N);
-
- // Otherwise, check all successors.
- bool AnyDirectSuccessorsReachClonedNodes = false;
- for (DSNode::const_edge_iterator EI = N->edge_begin(), EE = N->edge_end();
- EI != EE; ++EI)
- if (DSNode *Succ = EI->getNode()) {
- std::pair<unsigned, bool> &SuccInfo = VisitForSCCs(Succ);
- if (SuccInfo.first < Min) Min = SuccInfo.first;
- AnyDirectSuccessorsReachClonedNodes |= SuccInfo.second;
- }
-
- if (Min != MyId)
- return ThisNodeInfo; // Part of a large SCC. Leave self on stack.
-
- if (SCCStack.back() == N) { // Special case single node SCC.
- SCCStack.pop_back();
- ThisNodeInfo.second = AnyDirectSuccessorsReachClonedNodes;
- return ThisNodeInfo;
- }
-
- // Find out if any direct successors of any node reach cloned nodes.
- if (!AnyDirectSuccessorsReachClonedNodes)
- for (unsigned i = SCCStack.size()-1; SCCStack[i] != N; --i)
- for (DSNode::const_edge_iterator EI = N->edge_begin(), EE = N->edge_end();
- EI != EE; ++EI)
- if (DSNode *N = EI->getNode())
- if (NodeInfo[N].second) {
- AnyDirectSuccessorsReachClonedNodes = true;
- goto OutOfLoop;
- }
-OutOfLoop:
- // If any successor reaches a cloned node, mark all nodes in this SCC as
- // reaching the cloned node.
- if (AnyDirectSuccessorsReachClonedNodes)
- while (SCCStack.back() != N) {
- NodeInfo[SCCStack.back()].second = true;
- SCCStack.pop_back();
- }
- SCCStack.pop_back();
- ThisNodeInfo.second = true;
- return ThisNodeInfo;
-}
-
-/// mergeInCallFromOtherGraph - This graph merges in the minimal number of
-/// nodes from G2 into 'this' graph, merging the bindings specified by the
-/// call site (in this graph) with the bindings specified by the vector in G2.
-/// The two DSGraphs must be different.
-///
-void DSGraph::mergeInGraph(const DSCallSite &CS,
- std::vector<DSNodeHandle> &Args,
- const DSGraph &Graph, unsigned CloneFlags) {
- TIME_REGION(X, "mergeInGraph");
-
- assert((CloneFlags & DontCloneCallNodes) &&
- "Doesn't support copying of call nodes!");
-
- // If this is not a recursive call, clone the graph into this graph...
- if (&Graph == this) {
- // Merge the return value with the return value of the context.
- Args[0].mergeWith(CS.getRetVal());
-
- // Resolve all of the function arguments.
- for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i) {
- if (i == Args.size()-1)
- break;
-
- // Add the link from the argument scalar to the provided value.
- Args[i+1].mergeWith(CS.getPtrArg(i));
- }
- return;
- }
-
- // Clone the callee's graph into the current graph, keeping track of where
- // scalars in the old graph _used_ to point, and of the new nodes matching
- // nodes of the old graph.
- ReachabilityCloner RC(*this, Graph, CloneFlags);
-
- // Map the return node pointer over.
- if (!CS.getRetVal().isNull())
- RC.merge(CS.getRetVal(), Args[0]);
-
- // Map over all of the arguments.
- for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i) {
- if (i == Args.size()-1)
- break;
-
- // Add the link from the argument scalar to the provided value.
- RC.merge(CS.getPtrArg(i), Args[i+1]);
- }
-
- // We generally don't want to copy global nodes or aux calls from the callee
- // graph to the caller graph. However, we have to copy them if there is a
- // path from the node to a node we have already copied which does not go
- // through another global. Compute the set of node that can reach globals and
- // aux call nodes to copy over, then do it.
- std::vector<const DSCallSite*> AuxCallToCopy;
- std::vector<GlobalValue*> GlobalsToCopy;
-
- // NodesReachCopiedNodes - Memoize results for efficiency. Contains a
- // true/false value for every visited node that reaches a copied node without
- // going through a global.
- HackedGraphSCCFinder SCCFinder(RC);
-
- if (!(CloneFlags & DontCloneAuxCallNodes))
- for (afc_iterator I = Graph.afc_begin(), E = Graph.afc_end(); I!=E; ++I)
- if (SCCFinder.PathExistsToClonedNode(*I))
- AuxCallToCopy.push_back(&*I);
-// else if (I->isIndirectCall()){
-// //If the call node doesn't have any callees, clone it
-// std::vector< Function *> List;
-// I->getCalleeNode()->addFullFunctionList(List);
-// if (!List.size())
-// AuxCallToCopy.push_back(&*I);
-// }
-
- const DSScalarMap &GSM = Graph.getScalarMap();
- for (DSScalarMap::global_iterator GI = GSM.global_begin(),
- E = GSM.global_end(); GI != E; ++GI) {
- DSNode *GlobalNode = Graph.getNodeForValue(*GI).getNode();
- for (DSNode::edge_iterator EI = GlobalNode->edge_begin(),
- EE = GlobalNode->edge_end(); EI != EE; ++EI)
- if (SCCFinder.PathExistsToClonedNode(EI->getNode())) {
- GlobalsToCopy.push_back(*GI);
- break;
- }
- }
-
- // Copy aux calls that are needed.
- for (unsigned i = 0, e = AuxCallToCopy.size(); i != e; ++i)
- AuxFunctionCalls.push_back(DSCallSite(*AuxCallToCopy[i], RC));
-
- // Copy globals that are needed.
- for (unsigned i = 0, e = GlobalsToCopy.size(); i != e; ++i)
- RC.getClonedNH(Graph.getNodeForValue(GlobalsToCopy[i]));
-}
-
-
-
-/// mergeInGraph - The method is used for merging graphs together. If the
-/// argument graph is not *this, it makes a clone of the specified graph, then
-/// merges the nodes specified in the call site with the formal arguments in the
-/// graph.
-///
-void DSGraph::mergeInGraph(const DSCallSite &CS, Function &F,
- const DSGraph &Graph, unsigned CloneFlags) {
- // Set up argument bindings.
- std::vector<DSNodeHandle> Args;
- Graph.getFunctionArgumentsForCall(&F, Args);
-
- mergeInGraph(CS, Args, Graph, CloneFlags);
-}
-
-/// getCallSiteForArguments - Get the arguments and return value bindings for
-/// the specified function in the current graph.
-///
-DSCallSite DSGraph::getCallSiteForArguments(Function &F) const {
- std::vector<DSNodeHandle> Args;
-
- for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
- if (isPointerType(I->getType()))
- Args.push_back(getNodeForValue(I));
-
- return DSCallSite(CallSite(), getReturnNodeFor(F), &F, Args);
-}
-
-/// getDSCallSiteForCallSite - Given an LLVM CallSite object that is live in
-/// the context of this graph, return the DSCallSite for it.
-DSCallSite DSGraph::getDSCallSiteForCallSite(CallSite CS) const {
- DSNodeHandle RetVal;
- Instruction *I = CS.getInstruction();
- if (isPointerType(I->getType()))
- RetVal = getNodeForValue(I);
-
- std::vector<DSNodeHandle> Args;
- Args.reserve(CS.arg_end()-CS.arg_begin());
-
- // Calculate the arguments vector...
- for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E; ++I)
- if (isPointerType((*I)->getType()))
- if (isa<ConstantPointerNull>(*I))
- Args.push_back(DSNodeHandle());
- else
- Args.push_back(getNodeForValue(*I));
-
- // Add a new function call entry...
- if (Function *F = CS.getCalledFunction())
- return DSCallSite(CS, RetVal, F, Args);
- else
- return DSCallSite(CS, RetVal,
- getNodeForValue(CS.getCalledValue()).getNode(), Args);
-}
-
-
-
-// markIncompleteNodes - Mark the specified node as having contents that are not
-// known with the current analysis we have performed. Because a node makes all
-// of the nodes it can reach incomplete if the node itself is incomplete, we
-// must recursively traverse the data structure graph, marking all reachable
-// nodes as incomplete.
-//
-static void markIncompleteNode(DSNode *N) {
- // Stop recursion if no node, or if node already marked...
- if (N == 0 || N->isIncomplete()) return;
-
- // Actually mark the node
- N->setIncompleteMarker();
-
- // Recursively process children...
- for (DSNode::edge_iterator I = N->edge_begin(),E = N->edge_end(); I != E; ++I)
- if (DSNode *DSN = I->getNode())
- markIncompleteNode(DSN);
-}
-
-static void markIncomplete(DSCallSite &Call) {
- // Then the return value is certainly incomplete!
- markIncompleteNode(Call.getRetVal().getNode());
-
- // All objects pointed to by function arguments are incomplete!
- for (unsigned i = 0, e = Call.getNumPtrArgs(); i != e; ++i)
- markIncompleteNode(Call.getPtrArg(i).getNode());
-}
-
-// markIncompleteNodes - Traverse the graph, identifying nodes that may be
-// modified by other functions that have not been resolved yet. This marks
-// nodes that are reachable through three sources of "unknownness":
-//
-// Global Variables, Function Calls, and Incoming Arguments
-//
-// For any node that may have unknown components (because something outside the
-// scope of current analysis may have modified it), the 'Incomplete' flag is
-// added to the NodeType.
-//
-void DSGraph::markIncompleteNodes(unsigned Flags) {
- // Mark any incoming arguments as incomplete.
- if (Flags & DSGraph::MarkFormalArgs)
- for (ReturnNodesTy::iterator FI = ReturnNodes.begin(), E =ReturnNodes.end();
- FI != E; ++FI) {
- Function &F = *FI->first;
- for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
- I != E; ++I)
- if (isPointerType(I->getType()))
- markIncompleteNode(getNodeForValue(I).getNode());
- markIncompleteNode(FI->second.getNode());
- }
-
- // Mark stuff passed into functions calls as being incomplete.
- if (!shouldPrintAuxCalls())
- for (std::list<DSCallSite>::iterator I = FunctionCalls.begin(),
- E = FunctionCalls.end(); I != E; ++I)
- markIncomplete(*I);
- else
- for (std::list<DSCallSite>::iterator I = AuxFunctionCalls.begin(),
- E = AuxFunctionCalls.end(); I != E; ++I)
- markIncomplete(*I);
-
- // Mark all global nodes as incomplete.
- for (DSScalarMap::global_iterator I = ScalarMap.global_begin(),
- E = ScalarMap.global_end(); I != E; ++I)
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(*I))
- if (!GV->hasInitializer() || // Always mark external globals incomp.
- (!GV->isConstant() && (Flags & DSGraph::IgnoreGlobals) == 0))
- markIncompleteNode(ScalarMap[GV].getNode());
-}
-
-static inline void killIfUselessEdge(DSNodeHandle &Edge) {
- if (DSNode *N = Edge.getNode()) // Is there an edge?
- if (N->getNumReferrers() == 1) // Does it point to a lonely node?
- // No interesting info?
- if ((N->getNodeFlags() & ~DSNode::Incomplete) == 0 &&
- N->getType() == Type::VoidTy && !N->isNodeCompletelyFolded())
- Edge.setTo(0, 0); // Kill the edge!
-}
-
-static inline bool nodeContainsExternalFunction(const DSNode *N) {
- std::vector<Function*> Funcs;
- N->addFullFunctionList(Funcs);
- for (unsigned i = 0, e = Funcs.size(); i != e; ++i)
- if (Funcs[i]->isExternal()) return true;
- return false;
-}
-
-static void removeIdenticalCalls(std::list<DSCallSite> &Calls) {
- // Remove trivially identical function calls
- Calls.sort(); // Sort by callee as primary key!
-
- // Scan the call list cleaning it up as necessary...
- DSNodeHandle LastCalleeNode;
-#if 0
- Function *LastCalleeFunc = 0;
- unsigned NumDuplicateCalls = 0;
-#endif
- bool LastCalleeContainsExternalFunction = false;
-
- unsigned NumDeleted = 0;
- for (std::list<DSCallSite>::iterator I = Calls.begin(), E = Calls.end();
- I != E;) {
- DSCallSite &CS = *I;
- std::list<DSCallSite>::iterator OldIt = I++;
-
- if (!CS.isIndirectCall()) {
- LastCalleeNode = 0;
- } else {
- DSNode *Callee = CS.getCalleeNode();
-
- // If the Callee is a useless edge, this must be an unreachable call site,
- // eliminate it.
- if (Callee->getNumReferrers() == 1 && Callee->isComplete() &&
- Callee->getGlobalsList().empty()) { // No useful info?
- DOUT << "WARNING: Useless call site found.\n";
- Calls.erase(OldIt);
- ++NumDeleted;
- continue;
- }
-
- // If the last call site in the list has the same callee as this one, and
- // if the callee contains an external function, it will never be
- // resolvable, just merge the call sites.
- if (!LastCalleeNode.isNull() && LastCalleeNode.getNode() == Callee) {
- LastCalleeContainsExternalFunction =
- nodeContainsExternalFunction(Callee);
-
- std::list<DSCallSite>::iterator PrevIt = OldIt;
- --PrevIt;
- PrevIt->mergeWith(CS);
-
- // No need to keep this call anymore.
- Calls.erase(OldIt);
- ++NumDeleted;
- continue;
- } else {
- LastCalleeNode = Callee;
- }
- }
-
- // If the return value or any arguments point to a void node with no
- // information at all in it, and the call node is the only node to point
- // to it, remove the edge to the node (killing the node).
- //
- killIfUselessEdge(CS.getRetVal());
- for (unsigned a = 0, e = CS.getNumPtrArgs(); a != e; ++a)
- killIfUselessEdge(CS.getPtrArg(a));
-
-#if 0
- // If this call site calls the same function as the last call site, and if
- // the function pointer contains an external function, this node will
- // never be resolved. Merge the arguments of the call node because no
- // information will be lost.
- //
- if ((CS.isDirectCall() && CS.getCalleeFunc() == LastCalleeFunc) ||
- (CS.isIndirectCall() && CS.getCalleeNode() == LastCalleeNode)) {
- ++NumDuplicateCalls;
- if (NumDuplicateCalls == 1) {
- if (LastCalleeNode)
- LastCalleeContainsExternalFunction =
- nodeContainsExternalFunction(LastCalleeNode);
- else
- LastCalleeContainsExternalFunction = LastCalleeFunc->isExternal();
- }
-
- // It is not clear why, but enabling this code makes DSA really
- // sensitive to node forwarding. Basically, with this enabled, DSA
- // performs different number of inlinings based on which nodes are
- // forwarding or not. This is clearly a problem, so this code is
- // disabled until this can be resolved.
-#if 1
- if (LastCalleeContainsExternalFunction
-#if 0
- ||
- // This should be more than enough context sensitivity!
- // FIXME: Evaluate how many times this is tripped!
- NumDuplicateCalls > 20
-#endif
- ) {
-
- std::list<DSCallSite>::iterator PrevIt = OldIt;
- --PrevIt;
- PrevIt->mergeWith(CS);
-
- // No need to keep this call anymore.
- Calls.erase(OldIt);
- ++NumDeleted;
- continue;
- }
-#endif
- } else {
- if (CS.isDirectCall()) {
- LastCalleeFunc = CS.getCalleeFunc();
- LastCalleeNode = 0;
- } else {
- LastCalleeNode = CS.getCalleeNode();
- LastCalleeFunc = 0;
- }
- NumDuplicateCalls = 0;
- }
-#endif
-
- if (I != Calls.end() && CS == *I) {
- LastCalleeNode = 0;
- Calls.erase(OldIt);
- ++NumDeleted;
- continue;
- }
- }
-
- // Resort now that we simplified things.
- Calls.sort();
-
- // Now that we are in sorted order, eliminate duplicates.
- std::list<DSCallSite>::iterator CI = Calls.begin(), CE = Calls.end();
- if (CI != CE)
- while (1) {
- std::list<DSCallSite>::iterator OldIt = CI++;
- if (CI == CE) break;
-
- // If this call site is now the same as the previous one, we can delete it
- // as a duplicate.
- if (*OldIt == *CI) {
- Calls.erase(CI);
- CI = OldIt;
- ++NumDeleted;
- }
- }
-
- //Calls.erase(std::unique(Calls.begin(), Calls.end()), Calls.end());
-
- // Track the number of call nodes merged away...
- NumCallNodesMerged += NumDeleted;
-
- if (NumDeleted)
- DOUT << "Merged " << NumDeleted << " call nodes.\n";
-}
-
-
-// removeTriviallyDeadNodes - After the graph has been constructed, this method
-// removes all unreachable nodes that are created because they got merged with
-// other nodes in the graph. These nodes will all be trivially unreachable, so
-// we don't have to perform any non-trivial analysis here.
-//
-void DSGraph::removeTriviallyDeadNodes() {
- TIME_REGION(X, "removeTriviallyDeadNodes");
-
-#if 0
- /// NOTE: This code is disabled. This slows down DSA on 177.mesa
- /// substantially!
-
- // Loop over all of the nodes in the graph, calling getNode on each field.
- // This will cause all nodes to update their forwarding edges, causing
- // forwarded nodes to be delete-able.
- { TIME_REGION(X, "removeTriviallyDeadNodes:node_iterate");
- for (node_iterator NI = node_begin(), E = node_end(); NI != E; ++NI) {
- DSNode &N = *NI;
- for (unsigned l = 0, e = N.getNumLinks(); l != e; ++l)
- N.getLink(l*N.getPointerSize()).getNode();
- }
- }
-
- // NOTE: This code is disabled. Though it should, in theory, allow us to
- // remove more nodes down below, the scan of the scalar map is incredibly
- // expensive for certain programs (with large SCCs). In the future, if we can
- // make the scalar map scan more efficient, then we can reenable this.
- { TIME_REGION(X, "removeTriviallyDeadNodes:scalarmap");
-
- // Likewise, forward any edges from the scalar nodes. While we are at it,
- // clean house a bit.
- for (DSScalarMap::iterator I = ScalarMap.begin(),E = ScalarMap.end();I != E;){
- I->second.getNode();
- ++I;
- }
- }
-#endif
- bool isGlobalsGraph = !GlobalsGraph;
-
- for (NodeListTy::iterator NI = Nodes.begin(), E = Nodes.end(); NI != E; ) {
- DSNode &Node = *NI;
-
- // Do not remove *any* global nodes in the globals graph.
- // This is a special case because such nodes may not have I, M, R flags set.
- if (Node.isGlobalNode() && isGlobalsGraph) {
- ++NI;
- continue;
- }
-
- if (Node.isComplete() && !Node.isModified() && !Node.isRead()) {
- // This is a useless node if it has no mod/ref info (checked above),
- // outgoing edges (which it cannot, as it is not modified in this
- // context), and it has no incoming edges. If it is a global node it may
- // have all of these properties and still have incoming edges, due to the
- // scalar map, so we check those now.
- //
- if (Node.getNumReferrers() == Node.getGlobalsList().size()) {
- const std::vector<GlobalValue*> &Globals = Node.getGlobalsList();
-
- // Loop through and make sure all of the globals are referring directly
- // to the node...
- for (unsigned j = 0, e = Globals.size(); j != e; ++j) {
- DSNode *N = getNodeForValue(Globals[j]).getNode();
- assert(N == &Node && "ScalarMap doesn't match globals list!");
- }
-
- // Make sure NumReferrers still agrees, if so, the node is truly dead.
- if (Node.getNumReferrers() == Globals.size()) {
- for (unsigned j = 0, e = Globals.size(); j != e; ++j)
- ScalarMap.erase(Globals[j]);
- Node.makeNodeDead();
- ++NumTrivialGlobalDNE;
- }
- }
- }
-
- if (Node.getNodeFlags() == 0 && Node.hasNoReferrers()) {
- // This node is dead!
- NI = Nodes.erase(NI); // Erase & remove from node list.
- ++NumTrivialDNE;
- } else {
- ++NI;
- }
- }
-
- removeIdenticalCalls(FunctionCalls);
- removeIdenticalCalls(AuxFunctionCalls);
-}
-
-
-/// markReachableNodes - This method recursively traverses the specified
-/// DSNodes, marking any nodes which are reachable. All reachable nodes it adds
-/// to the set, which allows it to only traverse visited nodes once.
-///
-void DSNode::markReachableNodes(hash_set<const DSNode*> &ReachableNodes) const {
- if (this == 0) return;
- assert(getForwardNode() == 0 && "Cannot mark a forwarded node!");
- if (ReachableNodes.insert(this).second) // Is newly reachable?
- for (DSNode::const_edge_iterator I = edge_begin(), E = edge_end();
- I != E; ++I)
- I->getNode()->markReachableNodes(ReachableNodes);
-}
-
-void DSCallSite::markReachableNodes(hash_set<const DSNode*> &Nodes) const {
- getRetVal().getNode()->markReachableNodes(Nodes);
- if (isIndirectCall()) getCalleeNode()->markReachableNodes(Nodes);
-
- for (unsigned i = 0, e = getNumPtrArgs(); i != e; ++i)
- getPtrArg(i).getNode()->markReachableNodes(Nodes);
-}
-
-// CanReachAliveNodes - Simple graph walker that recursively traverses the graph
-// looking for a node that is marked alive. If an alive node is found, return
-// true, otherwise return false. If an alive node is reachable, this node is
-// marked as alive...
-//
-static bool CanReachAliveNodes(DSNode *N, hash_set<const DSNode*> &Alive,
- hash_set<const DSNode*> &Visited,
- bool IgnoreGlobals) {
- if (N == 0) return false;
- assert(N->getForwardNode() == 0 && "Cannot mark a forwarded node!");
-
- // If this is a global node, it will end up in the globals graph anyway, so we
- // don't need to worry about it.
- if (IgnoreGlobals && N->isGlobalNode()) return false;
-
- // If we know that this node is alive, return so!
- if (Alive.count(N)) return true;
-
- // Otherwise, we don't think the node is alive yet, check for infinite
- // recursion.
- if (Visited.count(N)) return false; // Found a cycle
- Visited.insert(N); // No recursion, insert into Visited...
-
- for (DSNode::edge_iterator I = N->edge_begin(),E = N->edge_end(); I != E; ++I)
- if (CanReachAliveNodes(I->getNode(), Alive, Visited, IgnoreGlobals)) {
- N->markReachableNodes(Alive);
- return true;
- }
- return false;
-}
-
-// CallSiteUsesAliveArgs - Return true if the specified call site can reach any
-// alive nodes.
-//
-static bool CallSiteUsesAliveArgs(const DSCallSite &CS,
- hash_set<const DSNode*> &Alive,
- hash_set<const DSNode*> &Visited,
- bool IgnoreGlobals) {
- if (CanReachAliveNodes(CS.getRetVal().getNode(), Alive, Visited,
- IgnoreGlobals))
- return true;
- if (CS.isIndirectCall() &&
- CanReachAliveNodes(CS.getCalleeNode(), Alive, Visited, IgnoreGlobals))
- return true;
- for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i)
- if (CanReachAliveNodes(CS.getPtrArg(i).getNode(), Alive, Visited,
- IgnoreGlobals))
- return true;
- return false;
-}
-
-// removeDeadNodes - Use a more powerful reachability analysis to eliminate
-// subgraphs that are unreachable. This often occurs because the data
-// structure doesn't "escape" into it's caller, and thus should be eliminated
-// from the caller's graph entirely. This is only appropriate to use when
-// inlining graphs.
-//
-void DSGraph::removeDeadNodes(unsigned Flags) {
- DEBUG(AssertGraphOK(); if (GlobalsGraph) GlobalsGraph->AssertGraphOK());
-
- // Reduce the amount of work we have to do... remove dummy nodes left over by
- // merging...
- removeTriviallyDeadNodes();
-
- TIME_REGION(X, "removeDeadNodes");
-
- // FIXME: Merge non-trivially identical call nodes...
-
- // Alive - a set that holds all nodes found to be reachable/alive.
- hash_set<const DSNode*> Alive;
- std::vector<std::pair<Value*, DSNode*> > GlobalNodes;
-
- // Copy and merge all information about globals to the GlobalsGraph if this is
- // not a final pass (where unreachable globals are removed).
- //
- // Strip all alloca bits since the current function is only for the BU pass.
- // Strip all incomplete bits since they are short-lived properties and they
- // will be correctly computed when rematerializing nodes into the functions.
- //
- ReachabilityCloner GGCloner(*GlobalsGraph, *this, DSGraph::StripAllocaBit |
- DSGraph::StripIncompleteBit);
-
- // Mark all nodes reachable by (non-global) scalar nodes as alive...
-{ TIME_REGION(Y, "removeDeadNodes:scalarscan");
- for (DSScalarMap::iterator I = ScalarMap.begin(), E = ScalarMap.end();
- I != E; ++I)
- if (isa<GlobalValue>(I->first)) { // Keep track of global nodes
- assert(!I->second.isNull() && "Null global node?");
- assert(I->second.getNode()->isGlobalNode() && "Should be a global node!");
- GlobalNodes.push_back(std::make_pair(I->first, I->second.getNode()));
-
- // Make sure that all globals are cloned over as roots.
- if (!(Flags & DSGraph::RemoveUnreachableGlobals) && GlobalsGraph) {
- DSGraph::ScalarMapTy::iterator SMI =
- GlobalsGraph->getScalarMap().find(I->first);
- if (SMI != GlobalsGraph->getScalarMap().end())
- GGCloner.merge(SMI->second, I->second);
- else
- GGCloner.getClonedNH(I->second);
- }
- } else {
- I->second.getNode()->markReachableNodes(Alive);
- }
-}
-
- // The return values are alive as well.
- for (ReturnNodesTy::iterator I = ReturnNodes.begin(), E = ReturnNodes.end();
- I != E; ++I)
- I->second.getNode()->markReachableNodes(Alive);
-
- // Mark any nodes reachable by primary calls as alive...
- for (fc_iterator I = fc_begin(), E = fc_end(); I != E; ++I)
- I->markReachableNodes(Alive);
-
-
- // Now find globals and aux call nodes that are already live or reach a live
- // value (which makes them live in turn), and continue till no more are found.
- //
- bool Iterate;
- hash_set<const DSNode*> Visited;
- hash_set<const DSCallSite*> AuxFCallsAlive;
- do {
- Visited.clear();
- // If any global node points to a non-global that is "alive", the global is
- // "alive" as well... Remove it from the GlobalNodes list so we only have
- // unreachable globals in the list.
- //
- Iterate = false;
- if (!(Flags & DSGraph::RemoveUnreachableGlobals))
- for (unsigned i = 0; i != GlobalNodes.size(); ++i)
- if (CanReachAliveNodes(GlobalNodes[i].second, Alive, Visited,
- Flags & DSGraph::RemoveUnreachableGlobals)) {
- std::swap(GlobalNodes[i--], GlobalNodes.back()); // Move to end to...
- GlobalNodes.pop_back(); // erase efficiently
- Iterate = true;
- }
-
- // Mark only unresolvable call nodes for moving to the GlobalsGraph since
- // call nodes that get resolved will be difficult to remove from that graph.
- // The final unresolved call nodes must be handled specially at the end of
- // the BU pass (i.e., in main or other roots of the call graph).
- for (afc_iterator CI = afc_begin(), E = afc_end(); CI != E; ++CI)
- if (!AuxFCallsAlive.count(&*CI) &&
- (CI->isIndirectCall()
- || CallSiteUsesAliveArgs(*CI, Alive, Visited,
- Flags & DSGraph::RemoveUnreachableGlobals))) {
- CI->markReachableNodes(Alive);
- AuxFCallsAlive.insert(&*CI);
- Iterate = true;
- }
- } while (Iterate);
-
- // Move dead aux function calls to the end of the list
- for (std::list<DSCallSite>::iterator CI = AuxFunctionCalls.begin(),
- E = AuxFunctionCalls.end(); CI != E; )
- if (AuxFCallsAlive.count(&*CI))
- ++CI;
- else {
- // Copy and merge global nodes and dead aux call nodes into the
- // GlobalsGraph, and all nodes reachable from those nodes. Update their
- // target pointers using the GGCloner.
- //
- if (!(Flags & DSGraph::RemoveUnreachableGlobals))
- GlobalsGraph->AuxFunctionCalls.push_back(DSCallSite(*CI, GGCloner));
-
- AuxFunctionCalls.erase(CI++);
- }
-
- // We are finally done with the GGCloner so we can destroy it.
- GGCloner.destroy();
-
- // At this point, any nodes which are visited, but not alive, are nodes
- // which can be removed. Loop over all nodes, eliminating completely
- // unreachable nodes.
- //
- std::vector<DSNode*> DeadNodes;
- DeadNodes.reserve(Nodes.size());
- for (NodeListTy::iterator NI = Nodes.begin(), E = Nodes.end(); NI != E;) {
- DSNode *N = NI++;
- assert(!N->isForwarding() && "Forwarded node in nodes list?");
-
- if (!Alive.count(N)) {
- Nodes.remove(N);
- assert(!N->isForwarding() && "Cannot remove a forwarding node!");
- DeadNodes.push_back(N);
- N->dropAllReferences();
- ++NumDNE;
- }
- }
-
- // Remove all unreachable globals from the ScalarMap.
- // If flag RemoveUnreachableGlobals is set, GlobalNodes has only dead nodes.
- // In either case, the dead nodes will not be in the set Alive.
- for (unsigned i = 0, e = GlobalNodes.size(); i != e; ++i)
- if (!Alive.count(GlobalNodes[i].second))
- ScalarMap.erase(GlobalNodes[i].first);
- else
- assert((Flags & DSGraph::RemoveUnreachableGlobals) && "non-dead global");
-
- // Delete all dead nodes now since their referrer counts are zero.
- for (unsigned i = 0, e = DeadNodes.size(); i != e; ++i)
- delete DeadNodes[i];
-
- DEBUG(AssertGraphOK(); GlobalsGraph->AssertGraphOK());
-}
-
-void DSGraph::AssertNodeContainsGlobal(const DSNode *N, GlobalValue *GV) const {
- assert(std::find(N->globals_begin(),N->globals_end(), GV) !=
- N->globals_end() && "Global value not in node!");
-}
-
-void DSGraph::AssertCallSiteInGraph(const DSCallSite &CS) const {
- if (CS.isIndirectCall()) {
- AssertNodeInGraph(CS.getCalleeNode());
-#if 0
- if (CS.getNumPtrArgs() && CS.getCalleeNode() == CS.getPtrArg(0).getNode() &&
- CS.getCalleeNode() && CS.getCalleeNode()->getGlobals().empty())
- DOUT << "WARNING: WEIRD CALL SITE FOUND!\n";
-#endif
- }
- AssertNodeInGraph(CS.getRetVal().getNode());
- for (unsigned j = 0, e = CS.getNumPtrArgs(); j != e; ++j)
- AssertNodeInGraph(CS.getPtrArg(j).getNode());
-}
-
-void DSGraph::AssertCallNodesInGraph() const {
- for (fc_iterator I = fc_begin(), E = fc_end(); I != E; ++I)
- AssertCallSiteInGraph(*I);
-}
-void DSGraph::AssertAuxCallNodesInGraph() const {
- for (afc_iterator I = afc_begin(), E = afc_end(); I != E; ++I)
- AssertCallSiteInGraph(*I);
-}
-
-void DSGraph::AssertGraphOK() const {
- for (node_const_iterator NI = node_begin(), E = node_end(); NI != E; ++NI)
- NI->assertOK();
-
- for (ScalarMapTy::const_iterator I = ScalarMap.begin(),
- E = ScalarMap.end(); I != E; ++I) {
- assert(!I->second.isNull() && "Null node in scalarmap!");
- AssertNodeInGraph(I->second.getNode());
- if (GlobalValue *GV = dyn_cast<GlobalValue>(I->first)) {
- assert(I->second.getNode()->isGlobalNode() &&
- "Global points to node, but node isn't global?");
- AssertNodeContainsGlobal(I->second.getNode(), GV);
- }
- }
- AssertCallNodesInGraph();
- AssertAuxCallNodesInGraph();
-
- // Check that all pointer arguments to any functions in this graph have
- // destinations.
- for (ReturnNodesTy::const_iterator RI = ReturnNodes.begin(),
- E = ReturnNodes.end();
- RI != E; ++RI) {
- Function &F = *RI->first;
- for (Function::arg_iterator AI = F.arg_begin(); AI != F.arg_end(); ++AI)
- if (isPointerType(AI->getType()))
- assert(!getNodeForValue(AI).isNull() &&
- "Pointer argument must be in the scalar map!");
- }
-}
-
-/// computeNodeMapping - Given roots in two different DSGraphs, traverse the
-/// nodes reachable from the two graphs, computing the mapping of nodes from the
-/// first to the second graph. This mapping may be many-to-one (i.e. the first
-/// graph may have multiple nodes representing one node in the second graph),
-/// but it will not work if there is a one-to-many or many-to-many mapping.
-///
-void DSGraph::computeNodeMapping(const DSNodeHandle &NH1,
- const DSNodeHandle &NH2, NodeMapTy &NodeMap,
- bool StrictChecking) {
- DSNode *N1 = NH1.getNode(), *N2 = NH2.getNode();
- if (N1 == 0 || N2 == 0) return;
-
- DSNodeHandle &Entry = NodeMap[N1];
- if (!Entry.isNull()) {
- // Termination of recursion!
- if (StrictChecking) {
- assert(Entry.getNode() == N2 && "Inconsistent mapping detected!");
- assert((Entry.getOffset() == (NH2.getOffset()-NH1.getOffset()) ||
- Entry.getNode()->isNodeCompletelyFolded()) &&
- "Inconsistent mapping detected!");
- }
- return;
- }
-
- Entry.setTo(N2, NH2.getOffset()-NH1.getOffset());
-
- // Loop over all of the fields that N1 and N2 have in common, recursively
- // mapping the edges together now.
- int N2Idx = NH2.getOffset()-NH1.getOffset();
- unsigned N2Size = N2->getSize();
- if (N2Size == 0) return; // No edges to map to.
-
- for (unsigned i = 0, e = N1->getSize(); i < e; i += DS::PointerSize) {
- const DSNodeHandle &N1NH = N1->getLink(i);
- // Don't call N2->getLink if not needed (avoiding crash if N2Idx is not
- // aligned right).
- if (!N1NH.isNull()) {
- if (unsigned(N2Idx)+i < N2Size)
- computeNodeMapping(N1NH, N2->getLink(N2Idx+i), NodeMap);
- else
- computeNodeMapping(N1NH,
- N2->getLink(unsigned(N2Idx+i) % N2Size), NodeMap);
- }
- }
-}
-
-
-/// computeGToGGMapping - Compute the mapping of nodes in the global graph to
-/// nodes in this graph.
-void DSGraph::computeGToGGMapping(NodeMapTy &NodeMap) {
- DSGraph &GG = *getGlobalsGraph();
-
- DSScalarMap &SM = getScalarMap();
- for (DSScalarMap::global_iterator I = SM.global_begin(),
- E = SM.global_end(); I != E; ++I)
- DSGraph::computeNodeMapping(SM[*I], GG.getNodeForValue(*I), NodeMap);
-}
-
-/// computeGGToGMapping - Compute the mapping of nodes in the global graph to
-/// nodes in this graph. Note that any uses of this method are probably bugs,
-/// unless it is known that the globals graph has been merged into this graph!
-void DSGraph::computeGGToGMapping(InvNodeMapTy &InvNodeMap) {
- NodeMapTy NodeMap;
- computeGToGGMapping(NodeMap);
-
- while (!NodeMap.empty()) {
- InvNodeMap.insert(std::make_pair(NodeMap.begin()->second,
- NodeMap.begin()->first));
- NodeMap.erase(NodeMap.begin());
- }
-}
-
-
-/// computeCalleeCallerMapping - Given a call from a function in the current
-/// graph to the 'Callee' function (which lives in 'CalleeGraph'), compute the
-/// mapping of nodes from the callee to nodes in the caller.
-void DSGraph::computeCalleeCallerMapping(DSCallSite CS, const Function &Callee,
- DSGraph &CalleeGraph,
- NodeMapTy &NodeMap) {
-
- DSCallSite CalleeArgs =
- CalleeGraph.getCallSiteForArguments(const_cast<Function&>(Callee));
-
- computeNodeMapping(CalleeArgs.getRetVal(), CS.getRetVal(), NodeMap);
-
- unsigned NumArgs = CS.getNumPtrArgs();
- if (NumArgs > CalleeArgs.getNumPtrArgs())
- NumArgs = CalleeArgs.getNumPtrArgs();
-
- for (unsigned i = 0; i != NumArgs; ++i)
- computeNodeMapping(CalleeArgs.getPtrArg(i), CS.getPtrArg(i), NodeMap);
-
- // Map the nodes that are pointed to by globals.
- DSScalarMap &CalleeSM = CalleeGraph.getScalarMap();
- DSScalarMap &CallerSM = getScalarMap();
-
- if (CalleeSM.global_size() >= CallerSM.global_size()) {
- for (DSScalarMap::global_iterator GI = CallerSM.global_begin(),
- E = CallerSM.global_end(); GI != E; ++GI)
- if (CalleeSM.global_count(*GI))
- computeNodeMapping(CalleeSM[*GI], CallerSM[*GI], NodeMap);
- } else {
- for (DSScalarMap::global_iterator GI = CalleeSM.global_begin(),
- E = CalleeSM.global_end(); GI != E; ++GI)
- if (CallerSM.global_count(*GI))
- computeNodeMapping(CalleeSM[*GI], CallerSM[*GI], NodeMap);
- }
-}
-
-/// updateFromGlobalGraph - This function rematerializes global nodes and
-/// nodes reachable from them from the globals graph into the current graph.
-///
-void DSGraph::updateFromGlobalGraph() {
- TIME_REGION(X, "updateFromGlobalGraph");
- ReachabilityCloner RC(*this, *GlobalsGraph, 0);
-
- // Clone the non-up-to-date global nodes into this graph.
- for (DSScalarMap::global_iterator I = getScalarMap().global_begin(),
- E = getScalarMap().global_end(); I != E; ++I) {
- DSScalarMap::iterator It = GlobalsGraph->ScalarMap.find(*I);
- if (It != GlobalsGraph->ScalarMap.end())
- RC.merge(getNodeForValue(*I), It->second);
- }
-}
diff --git a/lib/Analysis/DataStructure/DataStructureAA.cpp b/lib/Analysis/DataStructure/DataStructureAA.cpp
deleted file mode 100644
index 6e9f07bdd2..0000000000
--- a/lib/Analysis/DataStructure/DataStructureAA.cpp
+++ /dev/null
@@ -1,300 +0,0 @@
-//===- DataStructureAA.cpp - Data Structure Based Alias Analysis ----------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This pass uses the top-down data structure graphs to implement a simple
-// context sensitive alias analysis.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Module.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/Passes.h"
-#include "llvm/Analysis/DataStructure/DataStructure.h"
-#include "llvm/Analysis/DataStructure/DSGraph.h"
-using namespace llvm;
-
-namespace {
- class DSAA : public ModulePass, public AliasAnalysis {
- TDDataStructures *TD;
- BUDataStructures *BU;
-
- // These members are used to cache mod/ref information to make us return
- // results faster, particularly for aa-eval. On the first request of
- // mod/ref information for a particular call site, we compute and store the
- // calculated nodemap for the call site. Any time DSA info is updated we
- // free this information, and when we move onto a new call site, this
- // information is also freed.
- CallSite MapCS;
- std::multimap<DSNode*, const DSNode*> CallerCalleeMap;
- public:
- DSAA() : TD(0) {}
- ~DSAA() {
- InvalidateCache();
- }
-
- void InvalidateCache() {
- MapCS = CallSite();
- CallerCalleeMap.clear();
- }
-
- //------------------------------------------------
- // Implement the Pass API
- //
-
- // run - Build up the result graph, representing the pointer graph for the
- // program.
- //
- bool runOnModule(Module &M) {
- InitializeAliasAnalysis(this);
- TD = &getAnalysis<TDDataStructures>();
- BU = &getAnalysis<BUDataStructures>();
- return false;
- }
-
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AliasAnalysis::getAnalysisUsage(AU);
- AU.setPreservesAll(); // Does not transform code
- AU.addRequiredTransitive<TDDataStructures>(); // Uses TD Datastructures
- AU.addRequiredTransitive<BUDataStructures>(); // Uses BU Datastructures
- }
-
- //------------------------------------------------
- // Implement the AliasAnalysis API
- //
-
- AliasResult alias(const Value *V1, unsigned V1Size,
- const Value *V2, unsigned V2Size);
-
- ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
- ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
- return AliasAnalysis::getModRefInfo(CS1,CS2);
- }
-
- virtual void deleteValue(Value *V) {
- InvalidateCache();
- BU->deleteValue(V);
- TD->deleteValue(V);
- }
-
- virtual void copyValue(Value *From, Value *To) {
- if (From == To) return;
- InvalidateCache();
- BU->copyValue(From, To);
- TD->copyValue(From, To);
- }
-
- private:
- DSGraph *getGraphForValue(const Value *V);
- };
-
- // Register the pass...
- RegisterPass<DSAA> X("ds-aa", "Data Structure Graph Based Alias Analysis");
-
- // Register as an implementation of AliasAnalysis
- RegisterAnalysisGroup<AliasAnalysis> Y(X);
-}
-
-ModulePass *llvm::createDSAAPass() { return new DSAA(); }
-
-// getGraphForValue - Return the DSGraph to use for queries about the specified
-// value...
-//
-DSGraph *DSAA::getGraphForValue(const Value *V) {
- if (const Instruction *I = dyn_cast<Instruction>(V))
- return &TD->getDSGraph(*I->getParent()->getParent());
- else if (const Argument *A = dyn_cast<Argument>(V))
- return &TD->getDSGraph(*A->getParent());
- else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
- return &TD->getDSGraph(*BB->getParent());
- return 0;
-}
-
-AliasAnalysis::AliasResult DSAA::alias(const Value *V1, unsigned V1Size,
- const Value *V2, unsigned V2Size) {
- if (V1 == V2) return MustAlias;
-
- DSGraph *G1 = getGraphForValue(V1);
- DSGraph *G2 = getGraphForValue(V2);
- assert((!G1 || !G2 || G1 == G2) && "Alias query for 2 different functions?");
-
- // Get the graph to use...
- DSGraph &G = *(G1 ? G1 : (G2 ? G2 : &TD->getGlobalsGraph()));
-
- const DSGraph::ScalarMapTy &GSM = G.getScalarMap();
- DSGraph::ScalarMapTy::const_iterator I = GSM.find((Value*)V1);
- if (I == GSM.end()) return NoAlias;
-
- DSGraph::ScalarMapTy::const_iterator J = GSM.find((Value*)V2);
- if (J == GSM.end()) return NoAlias;
-
- DSNode *N1 = I->second.getNode(), *N2 = J->second.getNode();
- unsigned O1 = I->second.getOffset(), O2 = J->second.getOffset();
- if (N1 == 0 || N2 == 0)
- // Can't tell whether anything aliases null.
- return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
-
- // We can only make a judgment if one of the nodes is complete.
- if (N1->isComplete() || N2->isComplete()) {
- if (N1 != N2)
- return NoAlias; // Completely different nodes.
-
- // See if they point to different offsets... if so, we may be able to
- // determine that they do not alias...
- if (O1 != O2) {
- if (O2 < O1) { // Ensure that O1 <= O2
- std::swap(V1, V2);
- std::swap(O1, O2);
- std::swap(V1Size, V2Size);
- }
-
- if (O1+V1Size <= O2)
- return NoAlias;
- }
- }
-
- // FIXME: we could improve on this by checking the globals graph for aliased
- // global queries...
- return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
-}
-
-/// getModRefInfo - does a callsite modify or reference a value?
-///
-AliasAnalysis::ModRefResult
-DSAA::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
- DSNode *N = 0;
- // First step, check our cache.
- if (CS.getInstruction() == MapCS.getInstruction()) {
- {
- const Function *Caller = CS.getInstruction()->getParent()->getParent();
- DSGraph &CallerTDGraph = TD->getDSGraph(*Caller);
-
- // Figure out which node in the TD graph this pointer corresponds to.
- DSScalarMap &CallerSM = CallerTDGraph.getScalarMap();
- DSScalarMap::iterator NI = CallerSM.find(P);
- if (NI == CallerSM.end()) {
- InvalidateCache();
- return DSAA::getModRefInfo(CS, P, Size);
- }
- N = NI->second.getNode();
- }
-
- HaveMappingInfo:
- assert(N && "Null pointer in scalar map??");
-
- typedef std::multimap<DSNode*, const DSNode*>::iterator NodeMapIt;
- std::pair<NodeMapIt, NodeMapIt> Range = CallerCalleeMap.equal_range(N);
-
- // Loop over all of the nodes in the callee that correspond to "N", keeping
- // track of aggregate mod/ref info.
- bool NeverReads = true, NeverWrites = true;
- for (; Range.first != Range.second; ++Range.first) {
- if (Range.first->second->isModified())
- NeverWrites = false;
- if (Range.first->second->isRead())
- NeverReads = false;
- if (NeverReads == false && NeverWrites == false)
- return AliasAnalysis::getModRefInfo(CS, P, Size);
- }
-
- ModRefResult Result = ModRef;
- if (NeverWrites) // We proved it was not modified.
- Result = ModRefResult(Result & ~Mod);
- if (NeverReads) // We proved it was not read.
- Result = ModRefResult(Result & ~Ref);
-
- return ModRefResult(Result & AliasAnalysis::getModRefInfo(CS, P, Size));
- }
-
- // Any cached info we have is for the wrong function.
- InvalidateCache();
-
- Function *F = CS.getCalledFunction();
-
- if (!F) return AliasAnalysis::getModRefInfo(CS, P, Size);
-
- if (F->isExternal()) {
- // If we are calling an external function, and if this global doesn't escape
- // the portion of the program we have analyzed, we can draw conclusions
- // based on whether the global escapes the program.
- Function *Caller = CS.getInstruction()->getParent()->getParent();
- DSGraph *G = &TD->getDSGraph(*Caller);
- DSScalarMap::iterator NI = G->getScalarMap().find(P);
- if (NI == G->getScalarMap().end()) {
- // If it wasn't in the local function graph, check the global graph. This
- // can occur for globals who are locally reference but hoisted out to the
- // globals graph despite that.
- G = G->getGlobalsGraph();
- NI = G->getScalarMap().find(P);
- if (NI == G->getScalarMap().end())
- return AliasAnalysis::getModRefInfo(CS, P, Size);
- }
-
- // If we found a node and it's complete, it cannot be passed out to the
- // called function.
- if (NI->second.getNode()->isComplete())
- return NoModRef;
- return AliasAnalysis::getModRefInfo(CS, P, Size);
- }
-
- // Get the graphs for the callee and caller. Note that we want the BU graph
- // for the callee because we don't want all caller's effects incorporated!
- const Function *Caller = CS.getInstruction()->getParent()->getParent();
- DSGraph &CallerTDGraph = TD->getDSGraph(*Caller);
- DSGraph &CalleeBUGraph = BU->getDSGraph(*F);
-
- // Figure out which node in the TD graph this pointer corresponds to.
- DSScalarMap &CallerSM = CallerTDGraph.getScalarMap();
- DSScalarMap::iterator NI = CallerSM.find(P);
- if (NI == CallerSM.end()) {
- ModRefResult Result = ModRef;
- if (isa<ConstantPointerNull>(P) || isa<UndefValue>(P))
- return NoModRef; // null is never modified :)
- else {
- assert(isa<GlobalVariable>(P) &&
- cast<GlobalVariable>(P)->getType()->getElementType()->isFirstClassType() &&
- "This isn't a global that DSA inconsiderately dropped "
- "from the graph?");
-
- DSGraph &GG = *CallerTDGraph.getGlobalsGraph();
- DSScalarMap::iterator NI = GG.getScalarMap().find(P);
- if (NI != GG.getScalarMap().end() && !NI->second.isNull()) {
- // Otherwise, if the node is only M or R, return this. This can be
- // useful for globals that should be marked const but are not.
- DSNode *N = NI->second.getNode();
- if (!N->isModified())
- Result = (ModRefResult)(Result & ~Mod);
- if (!N->isRead())
- Result = (ModRefResult)(Result & ~Ref);
- }
- }
-
- if (Result == NoModRef) return Result;
- return ModRefResult(Result & AliasAnalysis::getModRefInfo(CS, P, Size));
- }
-
- // Compute the mapping from nodes in the callee graph to the nodes in the
- // caller graph for this call site.
- DSGraph::NodeMapTy CalleeCallerMap;
- DSCallSite DSCS = CallerTDGraph.getDSCallSiteForCallSite(CS);
- CallerTDGraph.computeCalleeCallerMapping(DSCS, *F, CalleeBUGraph,
- CalleeCallerMap);
-
- // Remember the mapping and the call site for future queries.
- MapCS = CS;
-
- // Invert the mapping into CalleeCallerInvMap.
- for (DSGraph::NodeMapTy::iterator I = CalleeCallerMap.begin(),
- E = CalleeCallerMap.end(); I != E; ++I)
- CallerCalleeMap.insert(std::make_pair(I->second.getNode(), I->first));
-
- N = NI->second.getNode();
- goto HaveMappingInfo;
-}
diff --git a/lib/Analysis/DataStructure/DataStructureOpt.cpp b/lib/Analysis/DataStructure/DataStructureOpt.cpp
deleted file mode 100644
index 85da1763ac..0000000000
--- a/lib/Analysis/DataStructure/DataStructureOpt.cpp
+++ /dev/null
@@ -1,102 +0,0 @@
-//===- DataStructureOpt.cpp - Data Structure Analysis Based Optimizations -===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This pass uses DSA to a series of simple optimizations, like marking
-// unwritten global variables 'constant'.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Analysis/DataStructure/DataStructure.h"
-#include "llvm/Analysis/DataStructure/DSGraph.h"
-#include "llvm/Analysis/Passes.h"
-#include "llvm/Module.h"
-#include "llvm/Constant.h"
-#include "llvm/Type.h"
-#include "llvm/ADT/Statistic.h"
-using namespace llvm;
-
-namespace {
- Statistic
- NumGlobalsConstanted("ds-opt", "Number of globals marked constant");
- Statistic
- NumGlobalsIsolated("ds-opt", "Number of globals with references dropped");
-
- class DSOpt : public ModulePass {
- TDDataStructures *TD;
- public:
- bool runOnModule(Module &M) {
- TD = &getAnalysis<TDDataStructures>();
- bool Changed = OptimizeGlobals(M);
- return Changed;
- }
-
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<TDDataStructures>(); // Uses TD Datastructures
- AU.addPreserved<LocalDataStructures>(); // Preserves local...
- AU.addPreserved<TDDataStructures>(); // Preserves bu...
- AU.addPreserved<BUDataStructures>(); // Preserves td...
- }
-
- private:
- bool OptimizeGlobals(Module &M);
- };
-
- RegisterPass<DSOpt> X("ds-opt", "DSA-based simple optimizations");
-}
-
-ModulePass *llvm::createDSOptPass() { return new DSOpt(); }
-
-/// OptimizeGlobals - This method uses information taken from DSA to optimize
-/// global variables.
-///
-bool DSOpt::OptimizeGlobals(Module &M) {
- DSGraph &GG = TD->getGlobalsGraph();
- const DSGraph::ScalarMapTy &SM = GG.getScalarMap();
- bool Changed = false;
-
- for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I)
- if (!I->isExternal()) { // Loop over all of the non-external globals...
- // Look up the node corresponding to this global, if it exists.
- DSNode *GNode = 0;
- DSGraph::ScalarMapTy::const_iterator SMI = SM.find(I);
- if (SMI != SM.end()) GNode = SMI->second.getNode();
-
- if (GNode == 0 && I->hasInternalLinkage()) {
- // If there is no entry in the scalar map for this global, it was never
- // referenced in the program. If it has internal linkage, that means we
- // can delete it. We don't ACTUALLY want to delete the global, just
- // remove anything that references the global: later passes will take
- // care of nuking it.
- if (!I->use_empty()) {
- I->replaceAllUsesWith(Constant::getNullValue((Type*)I->getType()));
- ++NumGlobalsIsolated;
- }
- } else if (GNode && GNode->isComplete()) {
-
- // If the node has not been read or written, and it is not externally
- // visible, kill any references to it so it can be DCE'd.
- if (!GNode->isModified() && !GNode->isRead() &&I->hasInternalLinkage()){
- if (!I->use_empty()) {
- I->replaceAllUsesWith(Constant::getNullValue((Type*)I->getType()));
- ++NumGlobalsIsolated;
- }
- }
-
- // We expect that there will almost always be a node for this global.
- // If there is, and the node doesn't have the M bit set, we can set the
- // 'constant' bit on the global.
- if (!GNode->isModified() && !I->isConstant()) {
- I->setConstant(true);
- ++NumGlobalsConstanted;
- Changed = true;
- }
- }
- }
- return Changed;
-}
diff --git a/lib/Analysis/DataStructure/DataStructureStats.cpp b/lib/Analysis/DataStructure/DataStructureStats.cpp
deleted file mode 100644
index 1357a334eb..0000000000
--- a/lib/Analysis/DataStructure/DataStructureStats.cpp
+++ /dev/null
@@ -1,150 +0,0 @@
-//===- DataStructureStats.cpp - Various statistics for DS Graphs ----------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines a little pass that prints out statistics for DS Graphs.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Analysis/DataStructure/DataStructure.h"
-#include "llvm/Analysis/DataStructure/DSGraph.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/InstVisitor.h"
-#include "llvm/Support/Streams.h"
-#include "llvm/ADT/Statistic.h"
-#include <ostream>
-using namespace llvm;
-
-namespace {
- Statistic TotalNumCallees("totalcallees",
- "Total number of callee functions at all indirect call sites");
- Statistic NumIndirectCalls("numindirect",
- "Total number of indirect call sites in the program");
- Statistic NumPoolNodes("numpools",
- "Number of allocation nodes that could be pool allocated");
-
- // Typed/Untyped memory accesses: If DSA can infer that the types the loads
- // and stores are accessing are correct (ie, the node has not been collapsed),
- // increment the appropriate counter.
- Statistic NumTypedMemAccesses("numtypedmemaccesses",
- "Number of loads/stores which are fully typed");
- Statistic NumUntypedMemAccesses("numuntypedmemaccesses",
- "Number of loads/stores which are untyped");
-
- class DSGraphStats : public FunctionPass, public InstVisitor<DSGraphStats> {
- void countCallees(const Function &F);
- const DSGraph *TDGraph;
-
- DSNode *getNodeForValue(Value *V);
- bool isNodeForValueCollapsed(Value *V);
- public:
- /// Driver functions to compute the Load/Store Dep. Graph per function.
- bool runOnFunction(Function& F);
-
- /// getAnalysisUsage - This modify nothing, and uses the Top-Down Graph.
- void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- AU.addRequired<TDDataStructures>();
- }
-
- void visitLoad(LoadInst &LI);
- void visitStore(StoreInst &SI);
-
- /// Debugging support methods
- void print(std::ostream &O, const Module* = 0) const { }
- };
-
- static RegisterPass<DSGraphStats> Z("dsstats", "DS Graph Statistics");
-}
-
-FunctionPass *llvm::createDataStructureStatsPass() {
- return new DSGraphStats();
-}
-
-
-static bool isIndirectCallee(Value *V) {
- if (isa<Function>(V)) return false;
-
- if (CastInst *CI = dyn_cast<CastInst>(V))
- return isIndirectCallee(CI->getOperand(0));
- return true;
-}
-
-
-void DSGraphStats::countCallees(const Function& F) {
- unsigned numIndirectCalls = 0, totalNumCallees = 0;
-
- for (DSGraph::fc_iterator I = TDGraph->fc_begin(), E = TDGraph->fc_end();
- I != E; ++I)
- if (isIndirectCallee(I->getCallSite().getCalledValue())) {
- // This is an indirect function call
- std::vector<Function*> Callees;
- I->getCalleeNode()->addFullFunctionList(Callees);
-
- if (Callees.size() > 0) {
- totalNumCallees += Callees.size();
- ++numIndirectCalls;
- } else
- cerr << "WARNING: No callee in Function '" << F.getName()
- << "' at call: \n"
- << *I->getCallSite().getInstruction();
- }
-
- TotalNumCallees += totalNumCallees;
- NumIndirectCalls += numIndirectCalls;
-
- if (numIndirectCalls)
- cout << " In function " << F.getName() << ": "
- << (totalNumCallees / (double) numIndirectCalls)
- << " average callees per indirect call\n";
-}
-
-DSNode *DSGraphStats::getNodeForValue(Value *V) {
- const DSGraph *G = TDGraph;
- if (isa<Constant>(V))
- G = TDGraph->getGlobalsGraph();
-
- const DSGraph::ScalarMapTy &ScalarMap = G->getScalarMap();
- DSGraph::ScalarMapTy::const_iterator I = ScalarMap.find(V);
- if (I != ScalarMap.end())
- return I->second.getNode();
- return 0;
-}
-
-bool DSGraphStats::isNodeForValueCollapsed(Value *V) {
- if (DSNode *N = getNodeForValue(V))
- return N->isNodeCompletelyFolded() || N->isIncomplete();
- return false;
-}
-
-void DSGraphStats::visitLoad(LoadInst &LI) {
- if (isNodeForValueCollapsed(LI.getOperand(0))) {
- NumUntypedMemAccesses++;
- } else {
- NumTypedMemAccesses++;
- }
-}
-
-void DSGraphStats::visitStore(StoreInst &SI) {
- if (isNodeForValueCollapsed(SI.getOperand(1))) {
- NumUntypedMemAccesses++;
- } else {
- NumTypedMemAccesses++;
- }
-}
-
-
-
-bool DSGraphStats::runOnFunction(Function& F) {
- TDGraph = &getAnalysis<TDDataStructures>().getDSGraph(F);
- countCallees(F);
- visit(F);
- return true;
-}
diff --git a/lib/Analysis/DataStructure/EquivClassGraphs.cpp b/lib/Analysis/DataStructure/EquivClassGraphs.cpp
deleted file mode 100644
index 2813b943ad..0000000000
--- a/lib/Analysis/DataStructure/EquivClassGraphs.cpp
+++ /dev/null
@@ -1,477 +0,0 @@
-//===- EquivClassGraphs.cpp - Merge equiv-class graphs & inline bottom-up -===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This pass is the same as the complete bottom-up graphs, but
-// with functions partitioned into equivalence classes and a single merged
-// DS graph for all functions in an equivalence class. After this merging,
-// graphs are inlined bottom-up on the SCCs of the final (CBU) call graph.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "ECGraphs"
-#include "llvm/Analysis/DataStructure/DataStructure.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Module.h"
-#include "llvm/Pass.h"
-#include "llvm/Analysis/DataStructure/DSGraph.h"
-#include "llvm/Support/CallSite.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/ADT/SCCIterator.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/EquivalenceClasses.h"
-#include "llvm/ADT/STLExtras.h"
-using namespace llvm;
-
-namespace {
- RegisterPass<EquivClassGraphs> X("eqdatastructure",
- "Equivalence-class Bottom-up Data Structure Analysis");
- Statistic NumEquivBUInlines("equivdatastructures",
- "Number of graphs inlined");
- Statistic NumFoldGraphInlines("Inline equiv-class graphs bottom up",
- "Number of graphs inlined");
-}
-
-#ifndef NDEBUG
-template<typename GT>
-static void CheckAllGraphs(Module *M, GT &ECGraphs) {
- for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
- if (!I->isExternal()) {
- DSGraph &G = ECGraphs.getDSGraph(*I);
- if (G.retnodes_begin()->first != I)
- continue; // Only check a graph once.
-
- DSGraph::NodeMapTy GlobalsGraphNodeMapping;
- G.computeGToGGMapping(GlobalsGraphNodeMapping);
- }
-}
-#endif
-
-// getSomeCalleeForCallSite - Return any one callee function at a call site.
-//
-Function *EquivClassGraphs::getSomeCalleeForCallSite(const CallSite &CS) const{
- Function *thisFunc = CS.getCaller();
- assert(thisFunc && "getSomeCalleeForCallSite(): Not a valid call site?");
- DSGraph &DSG = getDSGraph(*thisFunc);
- DSNode *calleeNode = DSG.getNodeForValue(CS.getCalledValue()).getNode();
- std::map<DSNode*, Function *>::const_iterator I =
- OneCalledFunction.find(calleeNode);
- return (I == OneCalledFunction.end())? NULL : I->second;
-}
-
-// runOnModule - Calculate the bottom up data structure graphs for each function
-// in the program.
-//
-bool EquivClassGraphs::runOnModule(Module &M) {
- CBU = &getAnalysis<CompleteBUDataStructures>();
- GlobalECs = CBU->getGlobalECs();
- DEBUG(CheckAllGraphs(&M, *CBU));
-
- GlobalsGraph = new DSGraph(CBU->getGlobalsGraph(), GlobalECs);
- GlobalsGraph->setPrintAuxCalls();
-
- ActualCallees = CBU->getActualCallees();
-
- // Find equivalence classes of functions called from common call sites.
- // Fold the CBU graphs for all functions in an equivalence class.
- buildIndirectFunctionSets(M);
-
- // Stack of functions used for Tarjan's SCC-finding algorithm.
- std::vector<DSGraph*> Stack;
- std::map<DSGraph*, unsigned> ValMap;
- unsigned NextID = 1;
-
- Function *MainFunc = M.getMainFunction();
- if (MainFunc && !MainFunc->isExternal()) {
- processSCC(getOrCreateGraph(*MainFunc), Stack, NextID, ValMap);
- } else {
- cerr << "Fold Graphs: No 'main' function found!\n";
- }
-
- for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
- if (!I->isExternal())
- processSCC(getOrCreateGraph(*I), Stack, NextID, ValMap);
-
- DEBUG(CheckAllGraphs(&M, *this));
-
- getGlobalsGraph().removeTriviallyDeadNodes();
- getGlobalsGraph().markIncompleteNodes(DSGraph::IgnoreGlobals);
-
- // Merge the globals variables (not the calls) from the globals graph back
- // into the main function's graph so that the main function contains all of
- // the information about global pools and GV usage in the program.
- if (MainFunc && !MainFunc->isExternal()) {
- DSGraph &MainGraph = getOrCreateGraph(*MainFunc);
- const DSGraph &GG = *MainGraph.getGlobalsGraph();
- ReachabilityCloner RC(MainGraph, GG,
- DSGraph::DontCloneCallNodes |
- DSGraph::DontCloneAuxCallNodes);
-
- // Clone the global nodes into this graph.
- for (DSScalarMap::global_iterator I = GG.getScalarMap().global_begin(),
- E = GG.getScalarMap().global_end(); I != E; ++I)
- if (isa<GlobalVariable>(*I))
- RC.getClonedNH(GG.getNodeForValue(*I));
-
- MainGraph.maskIncompleteMarkers();
- MainGraph.markIncompleteNodes(DSGraph::MarkFormalArgs |
- DSGraph::IgnoreGlobals);
- }
-
- // Final processing. Note that dead node elimination may actually remove
- // globals from a function graph that are immediately used. If there are no
- // scalars pointing to the node (e.g. because the only use is a direct store
- // to a scalar global) we have to make sure to rematerialize the globals back
- // into the graphs here, or clients will break!
- for (Module::global_iterator GI = M.global_begin(), E = M.global_end();
- GI != E; ++GI)
- // This only happens to first class typed globals.
- if (GI->getType()->getElementType()->isFirstClassType())
- for (Value::use_iterator UI = GI->use_begin(), E = GI->use_end();
- UI != E; ++UI)
- // This only happens to direct uses by instructions.
- if (Instruction *User = dyn_cast<Instruction>(*UI)) {
- DSGraph &DSG = getOrCreateGraph(*User->getParent()->getParent());
- if (!DSG.getScalarMap().count(GI)) {
- // If this global does not exist in the graph, but it is immediately
- // used by an instruction in the graph, clone it over from the
- // globals graph.
- ReachabilityCloner RC(DSG, *GlobalsGraph, 0);
- RC.getClonedNH(GlobalsGraph->getNodeForValue(GI));
- }
- }
-
- return false;
-}
-
-
-// buildIndirectFunctionSets - Iterate over the module looking for indirect
-// calls to functions. If a call site can invoke any functions [F1, F2... FN],
-// unify the N functions together in the FuncECs set.
-//
-void EquivClassGraphs::buildIndirectFunctionSets(Module &M) {
- const ActualCalleesTy& AC = CBU->getActualCallees();
-
- // Loop over all of the indirect calls in the program. If a call site can
- // call multiple different functions, we need to unify all of the callees into
- // the same equivalence class.
- Instruction *LastInst = 0;
- Function *FirstFunc = 0;
- for (ActualCalleesTy::const_iterator I=AC.begin(), E=AC.end(); I != E; ++I) {
- if (I->second->isExternal())
- continue; // Ignore functions we cannot modify
-
- CallSite CS = CallSite::get(I->first);
-
- if (CS.getCalledFunction()) { // Direct call:
- FuncECs.insert(I->second); // -- Make sure function has equiv class
- FirstFunc = I->second; // -- First callee at this site
- } else { // Else indirect call
- // DOUT << "CALLEE: " << I->second->getName()
- // << " from : " << I->first;
- if (I->first != LastInst) {
- // This is the first callee from this call site.
- LastInst = I->first;
- FirstFunc = I->second;
- // Instead of storing the lastInst For Indirection call Sites we store
- // the DSNode for the function ptr arguemnt
- Function *thisFunc = LastInst->getParent()->getParent();
- DSGraph &TFG = CBU->getDSGraph(*thisFunc);
- DSNode *calleeNode = TFG.getNodeForValue(CS.getCalledValue()).getNode();
- OneCalledFunction[calleeNode] = FirstFunc;
- FuncECs.insert(I->second);
- } else {
- // This is not the first possible callee from a particular call site.
- // Union the callee in with the other functions.
- FuncECs.unionSets(FirstFunc, I->second);
-#ifndef NDEBUG
- Function *thisFunc = LastInst->getParent()->getParent();
- DSGraph &TFG = CBU->getDSGraph(*thisFunc);
- DSNode *calleeNode = TFG.getNodeForValue(CS.getCalledValue()).getNode();
- assert(OneCalledFunction.count(calleeNode) > 0 && "Missed a call?");
-#endif
- }
- }
-
- // Now include all functions that share a graph with any function in the
- // equivalence class. More precisely, if F is in the class, and G(F) is
- // its graph, then we include all other functions that are also in G(F).
- // Currently, that is just the functions in the same call-graph-SCC as F.
- //
- DSGraph& funcDSGraph = CBU->getDSGraph(*I->second);
- for (DSGraph::retnodes_iterator RI = funcDSGraph.retnodes_begin(),
- RE = funcDSGraph.retnodes_end(); RI != RE; ++RI)
- FuncECs.unionSets(FirstFunc, RI->first);
- }
-
- // Now that all of the equivalences have been built, merge the graphs for
- // each equivalence class.
- //
- DOUT << "\nIndirect Function Equivalence Sets:\n";
- for (EquivalenceClasses<Function*>::iterator EQSI = FuncECs.begin(), E =
- FuncECs.end(); EQSI != E; ++EQSI) {
- if (!EQSI->isLeader()) continue;
-
- EquivalenceClasses<Function*>::member_iterator SI =
- FuncECs.member_begin(EQSI);
- assert(SI != FuncECs.member_end() && "Empty equiv set??");
- EquivalenceClasses<Function*>::member_iterator SN = SI;
- ++SN;
- if (SN == FuncECs.member_end())
- continue; // Single function equivalence set, no merging to do.
-
- Function* LF = *SI;
-
-#ifndef NDEBUG
- DOUT <<" Equivalence set for leader " << LF->getName() <<" = ";
- for (SN = SI; SN != FuncECs.member_end(); ++SN)
- DOUT << " " << (*SN)->getName() << "," ;
- DOUT << "\n";
-#endif
-
- // This equiv class has multiple functions: merge their graphs. First,
- // clone the CBU graph for the leader and make it the common graph for the
- // equivalence graph.
- DSGraph &MergedG = getOrCreateGraph(*LF);
-
- // Record the argument nodes for use in merging later below.
- std::vector<DSNodeHandle> ArgNodes;
-
- for (Function::arg_iterator AI = LF->arg_begin(), E = LF->arg_end();
- AI != E; ++AI)
- if (DS::isPointerType(AI->getType()))
- ArgNodes.push_back(MergedG.getNodeForValue(AI));
-
- // Merge in the graphs of all other functions in this equiv. class. Note
- // that two or more functions may have the same graph, and it only needs
- // to be merged in once.
- std::set<DSGraph*> GraphsMerged;
- GraphsMerged.insert(&CBU->getDSGraph(*LF));
-
- for (++SI; SI != FuncECs.member_end(); ++SI) {
- Function *F = *SI;
- DSGraph &CBUGraph = CBU->getDSGraph(*F);
- if (GraphsMerged.insert(&CBUGraph).second) {
- // Record the "folded" graph for the function.
- for (DSGraph::retnodes_iterator I = CBUGraph.retnodes_begin(),
- E = CBUGraph.retnodes_end(); I != E; ++I) {
- assert(DSInfo[I->first] == 0 && "Graph already exists for Fn!");
- DSInfo[I->first] = &MergedG;
- }
-
- // Clone this member of the equivalence class into MergedG.
- MergedG.cloneInto(CBUGraph);
- }
-
- // Merge the return nodes of all functions together.
- MergedG.getReturnNodes()[LF].mergeWith(MergedG.getReturnNodes()[F]);
-
- // Merge the function arguments with all argument nodes found so far.
- // If there are extra function args, add them to the vector of argNodes
- Function::arg_iterator AI2 = F->arg_begin(), AI2end = F->arg_end();
- for (unsigned arg = 0, numArgs = ArgNodes.size();
- arg != numArgs && AI2 != AI2end; ++AI2, ++arg)
- if (DS::isPointerType(AI2->getType()))
- ArgNodes[arg].mergeWith(MergedG.getNodeForValue(AI2));
-
- for ( ; AI2 != AI2end; ++AI2)
- if (DS::isPointerType(AI2->getType()))
- ArgNodes.push_back(MergedG.getNodeForValue(AI2));
- DEBUG(MergedG.AssertGraphOK());
- }
- }
- DOUT << "\n";
-}
-
-
-DSGraph &EquivClassGraphs::getOrCreateGraph(Function &F) {
- // Has the graph already been created?
- DSGraph *&Graph = DSInfo[&F];
- if (Graph) return *Graph;
-
- DSGraph &CBUGraph = CBU->getDSGraph(F);
-
- // Copy the CBU graph...
- Graph = new DSGraph(CBUGraph, GlobalECs); // updates the map via reference
- Graph->setGlobalsGraph(&getGlobalsGraph());
- Graph->setPrintAuxCalls();
-
- // Make sure to update the DSInfo map for all functions in the graph!
- for (DSGraph::retnodes_iterator I = Graph->retnodes_begin();
- I != Graph->retnodes_end(); ++I)
- if (I->first != &F) {
- DSGraph *&FG = DSInfo[I->first];
- assert(FG == 0 && "Merging function in SCC twice?");
- FG = Graph;
- }
-
- return *Graph;
-}
-
-
-unsigned EquivClassGraphs::
-processSCC(DSGraph &FG, std::vector<DSGraph*> &Stack, unsigned &NextID,
- std::map<DSGraph*, unsigned> &ValMap) {
- std::map<DSGraph*, unsigned>::iterator It = ValMap.lower_bound(&FG);
- if (It != ValMap.end() && It->first == &FG)
- return It->second;
-
- DOUT << " ProcessSCC for function " << FG.getFunctionNames() << "\n";
-
- unsigned Min = NextID++, MyID = Min;
- ValMap[&FG] = Min;
- Stack.push_back(&FG);
-
- // The edges out of the current node are the call site targets...
- for (DSGraph::fc_iterator CI = FG.fc_begin(), CE = FG.fc_end();
- CI != CE; ++CI) {
- Instruction *Call = CI->getCallSite().getInstruction();
-
- // Loop over all of the actually called functions...
- for (callee_iterator I = callee_begin(Call), E = callee_end(Call);
- I != E; ++I)
- if (!I->second->isExternal()) {
- // Process the callee as necessary.
- unsigned M = processSCC(getOrCreateGraph(*I->second),
- Stack, NextID, ValMap);
- if (M < Min) Min = M;
- }
- }
-
- assert(ValMap[&FG] == MyID && "SCC construction assumption wrong!");
- if (Min != MyID)
- return Min; // This is part of a larger SCC!
-
- // If this is a new SCC, process it now.
- bool MergedGraphs = false;
- while (Stack.back() != &FG) {
- DSGraph *NG = Stack.back();
- ValMap[NG] = ~0U;
-
- // If the SCC found is not the same as those found in CBU, make sure to
- // merge the graphs as appropriate.
- FG.cloneInto(*NG);
-
- // Update the DSInfo map and delete the old graph...
- for (DSGraph::retnodes_iterator I = NG->retnodes_begin();
- I != NG->retnodes_end(); ++I)
- DSInfo[I->first] = &FG;
-
- // Remove NG from the ValMap since the pointer may get recycled.
- ValMap.erase(NG);
- delete NG;
- MergedGraphs = true;
- Stack.pop_back();
- }
-
- // Clean up the graph before we start inlining a bunch again.
- if (MergedGraphs)
- FG.removeTriviallyDeadNodes();
-
- Stack.pop_back();
-
- processGraph(FG);
- ValMap[&FG] = ~0U;
- return MyID;
-}
-
-
-/// processGraph - Process the CBU graphs for the program in bottom-up order on
-/// the SCC of the __ACTUAL__ call graph. This builds final folded CBU graphs.
-void EquivClassGraphs::processGraph(DSGraph &G) {
- DOUT << " ProcessGraph for function " << G.getFunctionNames() << "\n";
-
- hash_set<Instruction*> calls;
-
- // Else we need to inline some callee graph. Visit all call sites.
- // The edges out of the current node are the call site targets...
- unsigned i = 0;
- for (DSGraph::fc_iterator CI = G.fc_begin(), CE = G.fc_end(); CI != CE;
- ++CI, ++i) {
- const DSCallSite &CS = *CI;
- Instruction *TheCall = CS.getCallSite().getInstruction();
-
- assert(calls.insert(TheCall).second &&
- "Call instruction occurs multiple times in graph??");
-
- if (CS.getRetVal().isNull() && CS.getNumPtrArgs() == 0)
- continue;
-
- // Inline the common callee graph into the current graph, if the callee
- // graph has not changed. Note that all callees should have the same
- // graph so we only need to do this once.
- //
- DSGraph* CalleeGraph = NULL;
- callee_iterator I = callee_begin(TheCall), E = callee_end(TheCall);
- unsigned TNum, Num;
-
- // Loop over all potential callees to find the first non-external callee.
- for (TNum = 0, Num = std::distance(I, E); I != E; ++I, ++TNum)
- if (!I->second->isExternal())
- break;
-
- // Now check if the graph has changed and if so, clone and inline it.
- if (I != E) {
- Function *CalleeFunc = I->second;
-
- // Merge the callee's graph into this graph, if not already the same.
- // Callees in the same equivalence class (which subsumes those
- // in the same SCCs) have the same graph. Note that all recursion
- // including self-recursion have been folded in the equiv classes.
- //
- CalleeGraph = &getOrCreateGraph(*CalleeFunc);
- if (CalleeGraph != &G) {
- ++NumFoldGraphInlines;
- G.mergeInGraph(CS, *CalleeFunc, *CalleeGraph,
- DSGraph::StripAllocaBit |
- DSGraph::DontCloneCallNodes |
- DSGraph::DontCloneAuxCallNodes);
- DOUT << " Inlining graph [" << i << "/"
- << G.getFunctionCalls().size()-1
- << ":" << TNum << "/" << Num-1 << "] for "
- << CalleeFunc->getName() << "["
- << CalleeGraph->getGraphSize() << "+"
- << CalleeGraph->getAuxFunctionCalls().size()
- << "] into '" /*<< G.getFunctionNames()*/ << "' ["
- << G.getGraphSize() << "+" << G.getAuxFunctionCalls().size()
- << "]\n";
- }
- }
-
-#ifndef NDEBUG
- // Now loop over the rest of the callees and make sure they have the
- // same graph as the one inlined above.
- if (CalleeGraph)
- for (++I, ++TNum; I != E; ++I, ++TNum)
- if (!I->second->isExternal())
- assert(CalleeGraph == &getOrCreateGraph(*I->second) &&
- "Callees at a call site have different graphs?");
-#endif
- }
-
- // Recompute the Incomplete markers.
- G.maskIncompleteMarkers();
- G.markIncompleteNodes(DSGraph::MarkFormalArgs);
-
- // Delete dead nodes. Treat globals that are unreachable but that can
- // reach live nodes as live.
- G.removeDeadNodes(DSGraph::KeepUnreachableGlobals);
-
- // When this graph is finalized, clone the globals in the graph into the
- // globals graph to make sure it has everything, from all graphs.
- ReachabilityCloner RC(*G.getGlobalsGraph(), G, DSGraph::StripAllocaBit);
-
- // Clone everything reachable from globals in the function graph into the
- // globals graph.
- DSScalarMap &MainSM = G.getScalarMap();
- for (DSScalarMap::global_iterator I = MainSM.global_begin(),
- E = MainSM.global_end(); I != E; ++I)
- RC.getClonedNH(MainSM[*I]);
-
- DOUT << " -- DONE ProcessGraph for function " << G.getFunctionNames() <<"\n";
-}
diff --git a/lib/Analysis/DataStructure/GraphChecker.cpp b/lib/Analysis/DataStructure/GraphChecker.cpp
deleted file mode 100644
index 8e4d3fce87..0000000000
--- a/lib/Analysis/DataStructure/GraphChecker.cpp
+++ /dev/null
@@ -1,204 +0,0 @@
-//===- GraphChecker.cpp - Assert that various graph properties hold -------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This pass is used to test DSA with regression tests. It can be used to check
-// that certain graph properties hold, such as two nodes being disjoint, whether
-// or not a node is collapsed, etc. These are the command line arguments that
-// it supports:
-//
-// --dsgc-dspass={local,bu,td} - Specify what flavor of graph to check
-// --dsgc-abort-if-any-collapsed - Abort if any collapsed nodes are found
-// --dsgc-abort-if-collapsed=<list> - Abort if a node pointed to by an SSA
-// value with name in <list> is collapsed
-// --dsgc-check-flags=<list> - Abort if the specified nodes have flags
-// that are not specified.
-// --dsgc-abort-if-merged=<list> - Abort if any of the named SSA values
-// point to the same node.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Analysis/DataStructure/DataStructure.h"
-#include "llvm/Analysis/DataStructure/DSGraph.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Streams.h"
-#include "llvm/Value.h"
-#include <set>
-using namespace llvm;
-
-namespace {
- enum DSPass { local, bu, td };
- cl::opt<DSPass>
- DSPass("dsgc-dspass", cl::Hidden,
- cl::desc("Specify which DSA pass the -datastructure-gc pass should use"),
- cl::values(clEnumVal(local, "Local pass"),
- clEnumVal(bu, "Bottom-up pass"),
- clEnumVal(td, "Top-down pass"),
- clEnumValEnd), cl::init(local));
-
- cl::opt<bool>
- AbortIfAnyCollapsed("dsgc-abort-if-any-collapsed", cl::Hidden,
- cl::desc("Abort if any collapsed nodes are found"));
- cl::list<std::string>
- AbortIfCollapsed("dsgc-abort-if-collapsed", cl::Hidden, cl::CommaSeparated,
- cl::desc("Abort if any of the named symbols is collapsed"));
- cl::list<std::string>
- CheckFlags("dsgc-check-flags", cl::Hidden, cl::CommaSeparated,
- cl::desc("Check that flags are specified for nodes"));
- cl::list<std::string>
- AbortIfMerged("dsgc-abort-if-merged", cl::Hidden, cl::CommaSeparated,
- cl::desc("Abort if any of the named symbols are merged together"));
-
- struct DSGC : public FunctionPass {
- DSGC();
- bool doFinalization(Module &M);
- bool runOnFunction(Function &F);
-
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- switch (DSPass) {
- case local: AU.addRequired<LocalDataStructures>(); break;
- case bu: AU.addRequired<BUDataStructures>(); break;
- case td: AU.addRequired<TDDataStructures>(); break;
- }
- AU.setPreservesAll();
- }
- void print(std::ostream &O, const Module *M) const {}
-
- private:
- void verify(const DSGraph &G);
- };
-
- RegisterPass<DSGC> X("datastructure-gc", "DSA Graph Checking Pass");
-}
-
-FunctionPass *llvm::createDataStructureGraphCheckerPass() {
- return new DSGC();
-}
-
-
-DSGC::DSGC() {
- if (!AbortIfAnyCollapsed && AbortIfCollapsed.empty() &&
- CheckFlags.empty() && AbortIfMerged.empty()) {
- cerr << "The -datastructure-gc is useless if you don't specify any"
- << " -dsgc-* options. See the -help-hidden output for a list.\n";
- abort();
- }
-}
-
-
-/// doFinalization - Verify that the globals graph is in good shape...
-///
-bool DSGC::doFinalization(Module &M) {
- switch (DSPass) {
- case local:verify(getAnalysis<LocalDataStructures>().getGlobalsGraph());break;
- case bu: verify(getAnalysis<BUDataStructures>().getGlobalsGraph()); break;
- case td: verify(getAnalysis<TDDataStructures>().getGlobalsGraph()); break;
- }
- return false;
-}
-
-/// runOnFunction - Get the DSGraph for this function and verify that it is ok.
-///
-bool DSGC::runOnFunction(Function &F) {
- switch (DSPass) {
- case local: verify(getAnalysis<LocalDataStructures>().getDSGraph(F)); break;
- case bu: verify(getAnalysis<BUDataStructures>().getDSGraph(F)); break;
- case td: verify(getAnalysis<TDDataStructures>().getDSGraph(F)); break;
- }
-
- return false;
-}
-
-/// verify - This is the function which checks to make sure that all of the
-/// invariants established on the command line are true.
-///
-void DSGC::verify(const DSGraph &G) {
- // Loop over all of the nodes, checking to see if any are collapsed...
- if (AbortIfAnyCollapsed) {
- for (DSGraph::node_const_iterator I = G.node_begin(), E = G.node_end();
- I != E; ++I)
- if (I->isNodeCompletelyFolded()) {
- cerr << "Node is collapsed: ";
- I->print(cerr, &G);
- abort();
- }
- }
-
- if (!AbortIfCollapsed.empty() || !CheckFlags.empty() ||
- !AbortIfMerged.empty()) {
- // Convert from a list to a set, because we don't have cl::set's yet. FIXME
- std::set<std::string> AbortIfCollapsedS(AbortIfCollapsed.begin(),
- AbortIfCollapsed.end());
- std::set<std::string> AbortIfMergedS(AbortIfMerged.begin(),
- AbortIfMerged.end());
- std::map<std::string, unsigned> CheckFlagsM;
-
- for (cl::list<std::string>::iterator I = CheckFlags.begin(),
- E = CheckFlags.end(); I != E; ++I) {
- std::string::size_type ColonPos = I->rfind(':');
- if (ColonPos == std::string::npos) {
- cerr << "Error: '" << *I
- << "' is an invalid value for the --dsgc-check-flags option!\n";
- abort();
- }
-
- unsigned Flags = 0;
- for (unsigned C = ColonPos+1; C != I->size(); ++C)
- switch ((*I)[C]) {
- case 'S': Flags |= DSNode::AllocaNode; break;
- case 'H': Flags |= DSNode::HeapNode; break;
- case 'G': Flags |= DSNode::GlobalNode; break;
- case 'U': Flags |= DSNode::UnknownNode; break;
- case 'I': Flags |= DSNode::Incomplete; break;
- case 'M': Flags |= DSNode::Modified; break;
- case 'R': Flags |= DSNode::Read; break;
- case 'A': Flags |= DSNode::Array; break;
- default: cerr << "Invalid DSNode flag!\n"; abort();
- }
- CheckFlagsM[std::string(I->begin(), I->begin()+ColonPos)] = Flags;
- }
-
- // Now we loop over all of the scalars, checking to see if any are collapsed
- // that are not supposed to be, or if any are merged together.
- const DSGraph::ScalarMapTy &SM = G.getScalarMap();
- std::map<DSNode*, std::string> AbortIfMergedNodes;
-
- for (DSGraph::ScalarMapTy::const_iterator I = SM.begin(), E = SM.end();
- I != E; ++I)
- if (I->first->hasName() && I->second.getNode()) {
- const std::string &Name = I->first->getName();
- DSNode *N = I->second.getNode();
-
- // Verify it is not collapsed if it is not supposed to be...
- if (N->isNodeCompletelyFolded() && AbortIfCollapsedS.count(Name)) {
- cerr << "Node for value '%" << Name << "' is collapsed: ";
- N->print(cerr, &G);
- abort();
- }
-
- if (CheckFlagsM.count(Name) && CheckFlagsM[Name] != N->getNodeFlags()) {
- cerr << "Node flags are not as expected for node: " << Name
- << " (" << CheckFlagsM[Name] << ":" <<N->getNodeFlags()
- << ")\n";
- N->print(cerr, &G);
- abort();
- }
-
- // Verify that it is not merged if it is not supposed to be...
- if (AbortIfMergedS.count(Name)) {
- if (AbortIfMergedNodes.count(N)) {
- cerr << "Nodes for values '%" << Name << "' and '%"
- << AbortIfMergedNodes[N] << "' is merged: ";
- N->print(cerr, &G);
- abort();
- }
- AbortIfMergedNodes[N] = Name;
- }
- }
- }
-}
diff --git a/lib/Analysis/DataStructure/Local.cpp b/lib/Analysis/DataStructure/Local.cpp
deleted file mode 100644
index 66ca33d876..0000000000
--- a/lib/Analysis/DataStructure/Local.cpp
+++ /dev/null
@@ -1,1333 +0,0 @@
-//===- Local.cpp - Compute a local data structure graph for a function ----===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// Compute the local version of the data structure graph for a function. The
-// external interface to this file is the DSGraph constructor.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Analysis/DataStructure/DataStructure.h"
-#include "llvm/Analysis/DataStructure/DSGraph.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/Support/GetElementPtrTypeIterator.h"
-#include "llvm/Support/InstVisitor.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/Timer.h"
-
-// FIXME: This should eventually be a FunctionPass that is automatically
-// aggregated into a Pass.
-//
-#include "llvm/Module.h"
-
-using namespace llvm;
-
-static RegisterPass<LocalDataStructures>
-X("datastructure", "Local Data Structure Analysis");
-
-static cl::opt<bool>
-TrackIntegersAsPointers("dsa-track-integers", cl::Hidden,
- cl::desc("If this is set, track integers as potential pointers"));
-
-static cl::opt<bool>
-IgnoreSetCC("dsa-ignore-setcc", cl::Hidden,
- cl::desc("If this is set, do nothing at pointer comparisons"));
-
-static cl::list<std::string>
-AllocList("dsa-alloc-list",
- cl::value_desc("list"),
- cl::desc("List of functions that allocate memory from the heap"),
- cl::CommaSeparated, cl::Hidden);
-
-static cl::list<std::string>
-FreeList("dsa-free-list",
- cl::value_desc("list"),
- cl::desc("List of functions that free memory from the heap"),
- cl::CommaSeparated, cl::Hidden);
-
-namespace llvm {
-namespace DS {
- // isPointerType - Return true if this type is big enough to hold a pointer.
- bool isPointerType(const Type *Ty) {
- if (isa<PointerType>(Ty))
- return true;
- else if (TrackIntegersAsPointers && Ty->isPrimitiveType() &&Ty->isInteger())
- return Ty->getPrimitiveSize() >= PointerSize;
- return false;
- }
-}}
-
-using namespace DS;
-
-namespace {
- cl::opt<bool>
- DisableDirectCallOpt("disable-direct-call-dsopt", cl::Hidden,
- cl::desc("Disable direct call optimization in "
- "DSGraph construction"));
- cl::opt<bool>
- DisableFieldSensitivity("disable-ds-field-sensitivity", cl::Hidden,
- cl::desc("Disable field sensitivity in DSGraphs"));
-
- //===--------------------------------------------------------------------===//
- // GraphBuilder Class
- //===--------------------------------------------------------------------===//
- //
- /// This class is the builder class that constructs the local data structure
- /// graph by performing a single pass over the function in question.
- ///
- class GraphBuilder : InstVisitor<GraphBuilder> {
- DSGraph &G;
- DSNodeHandle *RetNode; // Node that gets returned...
- DSScalarMap &ScalarMap;
- std::list<DSCallSite> *FunctionCalls;
-
- public:
- GraphBuilder(Function &f, DSGraph &g, DSNodeHandle &retNode,
- std::list<DSCallSite> &fc)
- : G(g), RetNode(&retNode), ScalarMap(G.getScalarMap()),
- FunctionCalls(&fc) {
-
- // Create scalar nodes for all pointer arguments...
- for (Function::arg_iterator I = f.arg_begin(), E = f.arg_end();
- I != E; ++I)
- if (isPointerType(I->getType()))
- getValueDest(*I);
-
- visit(f); // Single pass over the function
- }
-
- // GraphBuilder ctor for working on the globals graph
- GraphBuilder(DSGraph &g)
- : G(g), RetNode(0), ScalarMap(G.getScalarMap()), FunctionCalls(0) {
- }
-
- void mergeInGlobalInitializer(GlobalVariable *GV);
-
- private:
- // Visitor functions, used to handle each instruction type we encounter...
- friend class InstVisitor<GraphBuilder>;
- void visitMallocInst(MallocInst &MI) { handleAlloc(MI, true); }
- void visitAllocaInst(AllocaInst &AI) { handleAlloc(AI, false); }
- void handleAlloc(AllocationInst &AI, bool isHeap);
-
- void visitPHINode(PHINode &PN);
- void visitSelectInst(SelectInst &SI);
-
- void visitGetElementPtrInst(User &GEP);
- void visitReturnInst(ReturnInst &RI);
- void visitLoadInst(LoadInst &LI);
- void visitStoreInst(StoreInst &SI);
- void visitCallInst(CallInst &CI);
- void visitInvokeInst(InvokeInst &II);
- void visitSetCondInst(SetCondInst &SCI);
- void visitFreeInst(FreeInst &FI);
- void visitCastInst(CastInst &CI);
- void visitInstruction(Instruction &I);
-
- bool visitIntrinsic(CallSite CS, Function* F);
- bool visitExternal(CallSite CS, Function* F);
- void visitCallSite(CallSite CS);
- void visitVAArgInst(VAArgInst &I);
-
- void MergeConstantInitIntoNode(DSNodeHandle &NH, Constant *C);
- private:
- // Helper functions used to implement the visitation functions...
-
- /// createNode - Create a new DSNode, ensuring that it is properly added to
- /// the graph.
- ///
- DSNode *createNode(const Type *Ty = 0) {
- DSNode *N = new DSNode(Ty, &G); // Create the node
- if (DisableFieldSensitivity) {
- // Create node handle referring to the old node so that it is
- // immediately removed from the graph when the node handle is destroyed.
- DSNodeHandle OldNNH = N;
- N->foldNodeCompletely();
- if (DSNode *FN = N->getForwardNode())
- N = FN;
- }
- return N;
- }
-
- /// setDestTo - Set the ScalarMap entry for the specified value to point to
- /// the specified destination. If the Value already points to a node, make
- /// sure to merge the two destinations together.
- ///
- void setDestTo(Value &V, const DSNodeHandle &NH);
-
- /// getValueDest - Return the DSNode that the actual value points to.
- ///
- DSNodeHandle getValueDest(Value &V);
-
- /// getLink - This method is used to return the specified link in the
- /// specified node if one exists. If a link does not already exist (it's
- /// null), then we create a new node, link it, then return it.
- ///
- DSNodeHandle &getLink(const DSNodeHandle &Node, unsigned Link = 0);
- };
-}
-
-using namespace DS;
-
-//===----------------------------------------------------------------------===//
-// DSGraph constructor - Simply use the GraphBuilder to construct the local
-// graph.
-DSGraph::DSGraph(EquivalenceClasses<GlobalValue*> &ECs, const TargetData &td,
- Function &F, DSGraph *GG)
- : GlobalsGraph(GG), ScalarMap(ECs), TD(td) {
- PrintAuxCalls = false;
-
- DOUT << " [Loc] Calculating graph for: " << F.getName() << "\n";
-
- // Use the graph builder to construct the local version of the graph
- GraphBuilder B(F, *this, ReturnNodes[&F], FunctionCalls);
-#ifndef NDEBUG
- Timer::addPeakMemoryMeasurement();
-#endif
-
- // If there are any constant globals referenced in this function, merge their
- // initializers into the local graph from the globals graph.
- if (ScalarMap.global_begin() != ScalarMap.global_end()) {
- ReachabilityCloner RC(*this, *GG, 0);
-
- for (DSScalarMap::global_iterator I = ScalarMap.global_begin();
- I != ScalarMap.global_end(); ++I)
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(*I))
- if (!GV->isExternal() && GV->isConstant())
- RC.merge(ScalarMap[GV], GG->ScalarMap[GV]);
- }
-
- markIncompleteNodes(DSGraph::MarkFormalArgs);
-
- // Remove any nodes made dead due to merging...
- removeDeadNodes(DSGraph::KeepUnreachableGlobals);
-}
-
-
-//===----------------------------------------------------------------------===//
-// Helper method implementations...
-//
-
-/// getValueDest - Return the DSNode that the actual value points to.
-///
-DSNodeHandle GraphBuilder::getValueDest(Value &Val) {
- Value *V = &Val;
- if (isa<Constant>(V) && cast<Constant>(V)->isNullValue())
- return 0; // Null doesn't point to anything, don't add to ScalarMap!
-
- DSNodeHandle &NH = ScalarMap[V];
- if (!NH.isNull())
- return NH; // Already have a node? Just return it...
-
- // Otherwise we need to create a new node to point to.
- // Check first for constant expressions that must be traversed to
- // extract the actual value.
- DSNode* N;
- if (GlobalValue* GV = dyn_cast<GlobalValue>(V)) {
- // Create a new global node for this global variable.
- N = createNode(GV->getType()->getElementType());
- N->addGlobal(GV);
- } else if (Constant *C = dyn_cast<Constant>(V)) {
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
- if (CE->isCast()) {
- if (isa<PointerType>(CE->getOperand(0)->getType()))
- NH = getValueDest(*CE->getOperand(0));
- else
- NH = createNode()->setUnknownNodeMarker();
- } else if (CE->getOpcode() == Instruction::GetElementPtr) {
- visitGetElementPtrInst(*CE);
- DSScalarMap::iterator I = ScalarMap.find(CE);
- assert(I != ScalarMap.end() && "GEP didn't get processed right?");
- NH = I->second;
- } else {
- // This returns a conservative unknown node for any unhandled ConstExpr
- return NH = createNode()->setUnknownNodeMarker();
- }
- if (NH.isNull()) { // (getelementptr null, X) returns null
- ScalarMap.erase(V);
- return 0;
- }
- return NH;
- } else if (isa<UndefValue>(C)) {
- ScalarMap.erase(V);
- return 0;
- } else {
- assert(0 && "Unknown constant type!");
- }
- N = createNode(); // just create a shadow node
- } else {
- // Otherwise just create a shadow node
- N = createNode();
- }
-
- NH.setTo(N, 0); // Remember that we are pointing to it...
- return NH;
-}
-
-
-/// getLink - This method is used to return the specified link in the
-/// specified node if one exists. If a link does not already exist (it's
-/// null), then we create a new node, link it, then return it. We must
-/// specify the type of the Node field we are accessing so that we know what
-/// type should be linked to if we need to create a new node.
-///
-DSNodeHandle &GraphBuilder::getLink(const DSNodeHandle &node, unsigned LinkNo) {
- DSNodeHandle &Node = const_cast<DSNodeHandle&>(node);
- DSNodeHandle &Link = Node.getLink(LinkNo);
- if (Link.isNull()) {
- // If the link hasn't been created yet, make and return a new shadow node
- Link = createNode();
- }
- return Link;
-}
-
-
-/// setDestTo - Set the ScalarMap entry for the specified value to point to the
-/// specified destination. If the Value already points to a node, make sure to
-/// merge the two destinations together.
-///
-void GraphBuilder::setDestTo(Value &V, const DSNodeHandle &NH) {
- ScalarMap[&V].mergeWith(NH);
-}
-
-
-//===----------------------------------------------------------------------===//
-// Specific instruction type handler implementations...
-//
-
-/// Alloca & Malloc instruction implementation - Simply create a new memory
-/// object, pointing the scalar to it.
-///
-void GraphBuilder::handleAlloc(AllocationInst &AI, bool isHeap) {
- DSNode *N = createNode();
- if (isHeap)
- N->setHeapNodeMarker();
- else
- N->setAllocaNodeMarker();
- setDestTo(AI, N);
-}
-
-// PHINode - Make the scalar for the PHI node point to all of the things the
-// incoming values point to... which effectively causes them to be merged.
-//
-void GraphBuilder::visitPHINode(PHINode &PN) {
- if (!isPointerType(PN.getType())) return; // Only pointer PHIs
-
- DSNodeHandle &PNDest = ScalarMap[&PN];
- for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
- PNDest.mergeWith(getValueDest(*PN.getIncomingValue(i)));
-}
-
-void GraphBuilder::visitSelectInst(SelectInst &SI) {
- if (!isPointerType(SI.getType())) return; // Only pointer Selects
-
- DSNodeHandle &Dest = ScalarMap[&SI];
- Dest.mergeWith(getValueDest(*SI.getOperand(1)));
- Dest.mergeWith(getValueDest(*SI.getOperand(2)));
-}
-
-void GraphBuilder::visitSetCondInst(SetCondInst &SCI) {
- if (!isPointerType(SCI.getOperand(0)->getType()) ||
- isa<ConstantPointerNull>(SCI.getOperand(1))) return; // Only pointers
- if(!IgnoreSetCC)
- ScalarMap[SCI.getOperand(0)].mergeWith(getValueDest(*SCI.getOperand(1)));
-}
-
-
-void GraphBuilder::visitGetElementPtrInst(User &GEP) {
- DSNodeHandle Value = getValueDest(*GEP.getOperand(0));
- if (Value.isNull())
- Value = createNode();
-
- // As a special case, if all of the index operands of GEP are constant zeros,
- // handle this just like we handle casts (ie, don't do much).
- bool AllZeros = true;
- for (unsigned i = 1, e = GEP.getNumOperands(); i != e; ++i)
- if (GEP.getOperand(i) !=
- Constant::getNullValue(GEP.getOperand(i)->getType())) {
- AllZeros = false;
- break;
- }
-
- // If all of the indices are zero, the result points to the operand without
- // applying the type.
- if (AllZeros || (!Value.isNull() &&
- Value.getNode()->isNodeCompletelyFolded())) {
- setDestTo(GEP, Value);
- return;
- }
-
-
- const PointerType *PTy = cast<PointerType>(GEP.getOperand(0)->getType());
- const Type *CurTy = PTy->getElementType();
-
- if (Value.getNode()->mergeTypeInfo(CurTy, Value.getOffset())) {
- // If the node had to be folded... exit quickly
- setDestTo(GEP, Value); // GEP result points to folded node
- return;
- }
-
- const TargetData &TD = Value.getNode()->getTargetData();
-
-#if 0
- // Handle the pointer index specially...
- if (GEP.getNumOperands() > 1 &&
- (!isa<Constant>(GEP.getOperand(1)) ||
- !cast<Constant>(GEP.getOperand(1))->isNullValue())) {
-
- // If we already know this is an array being accessed, don't do anything...
- if (!TopTypeRec.isArray) {
- TopTypeRec.isArray = true;
-
- // If we are treating some inner field pointer as an array, fold the node
- // up because we cannot handle it right. This can come because of
- // something like this: &((&Pt->X)[1]) == &Pt->Y
- //
- if (Value.getOffset()) {
- // Value is now the pointer we want to GEP to be...
- Value.getNode()->foldNodeCompletely();
- setDestTo(GEP, Value); // GEP result points to folded node
- return;
- } else {
- // This is a pointer to the first byte of the node. Make sure that we
- // are pointing to the outter most type in the node.
- // FIXME: We need to check one more case here...
- }
- }
- }
-#endif
-
- // All of these subscripts are indexing INTO the elements we have...
- unsigned Offset = 0;
- for (gep_type_iterator I = gep_type_begin(GEP), E = gep_type_end(GEP);
- I != E; ++I)
- if (const StructType *STy = dyn_cast<StructType>(*I)) {
- const ConstantInt* CUI = cast<ConstantInt>(I.getOperand());
- unsigned FieldNo =
- CUI->getType()->isSigned() ? CUI->getSExtValue() : CUI->getZExtValue();
- Offset += (unsigned)TD.getStructLayout(STy)->MemberOffsets[FieldNo];
- } else if (isa<PointerType>(*I)) {
- if (!isa<Constant>(I.getOperand()) ||
- !cast<Constant>(I.getOperand())->isNullValue())
- Value.getNode()->setArrayMarker();
- }
-
-
-#if 0
- if (const SequentialType *STy = cast<SequentialType>(*I)) {
- CurTy = STy->getElementType();
- if (ConstantInt *CS = dyn_cast<ConstantInt>(GEP.getOperand(i))) {
- Offset +=
- (CS->getType()->isSigned() ? CS->getSExtValue() : CS->getZExtValue())
- * TD.getTypeSize(CurTy);
- } else {
- // Variable index into a node. We must merge all of the elements of the
- // sequential type here.
- if (isa<PointerType>(STy))
- cerr << "Pointer indexing not handled yet!\n";
- else {
- const ArrayType *ATy = cast<ArrayType>(STy);
- unsigned ElSize = TD.getTypeSize(CurTy);
- DSNode *N = Value.getNode();
- assert(N && "Value must have a node!");
- unsigned RawOffset = Offset+Value.getOffset();
-
- // Loop over all of the elements of the array, merging them into the
- // zeroth element.
- for (unsigned i = 1, e = ATy->getNumElements(); i != e; ++i)
- // Merge all of the byte components of this array element
- for (unsigned j = 0; j != ElSize; ++j)
- N->mergeIndexes(RawOffset+j, RawOffset+i*ElSize+j);
- }
- }
- }
-#endif
-
- // Add in the offset calculated...
- Value.setOffset(Value.getOffset()+Offset);
-
- // Check the offset
- DSNode *N = Value.getNode();
- if (N &&
- !N->isNodeCompletelyFolded() &&
- (N->getSize() != 0 || Offset != 0) &&
- !N->isForwarding()) {
- if ((Offset >= N->getSize()) || int(Offset) < 0) {
- // Accessing offsets out of node size range
- // This is seen in the "magic" struct in named (from bind), where the
- // fourth field is an array of length 0, presumably used to create struct
- // instances of different sizes
-
- // Collapse the node since its size is now variable
- N->foldNodeCompletely();
- }
- }
-
- // Value is now the pointer we want to GEP to be...
- setDestTo(GEP, Value);
-}
-
-void GraphBuilder::visitLoadInst(LoadInst &LI) {
- DSNodeHandle Ptr = getValueDest(*LI.getOperand(0));
- if (Ptr.isNull())
- Ptr = createNode();
-
- // Make that the node is read from...
- Ptr.getNode()->setReadMarker();
-
- // Ensure a typerecord exists...
- Ptr.getNode()->mergeTypeInfo(LI.getType(), Ptr.getOffset(), false);
-
- if (isPointerType(LI.getType()))
- setDestTo(LI, getLink(Ptr));
-}
-
-void GraphBuilder::visitStoreInst(StoreInst &SI) {
- const Type *StoredTy = SI.getOperand(0)->getType();
- DSNodeHandle Dest = getValueDest(*SI.getOperand(1));
- if (Dest.isNull()) return;
-
- // Mark that the node is written to...
- Dest.getNode()->setModifiedMarker();
-
- // Ensure a type-record exists...
- Dest.getNode()->mergeTypeInfo(StoredTy, Dest.getOffset());
-
- // Avoid adding edges from null, or processing non-"pointer" stores
- if (isPointerType(StoredTy))
- Dest.addEdgeTo(getValueDest(*SI.getOperand(0)));
-}
-
-void GraphBuilder::visitReturnInst(ReturnInst &RI) {
- if (RI.getNumOperands() && isPointerType(RI.getOperand(0)->getType()))
- RetNode->mergeWith(getValueDest(*RI.getOperand(0)));
-}
-
-void GraphBuilder::visitVAArgInst(VAArgInst &I) {
- //FIXME: also updates the argument
- DSNodeHandle Ptr = getValueDest(*I.getOperand(0));
- if (Ptr.isNull()) return;
-
- // Make that the node is read from.
- Ptr.getNode()->setReadMarker();
-
- // Ensure a type record exists.
- DSNode *PtrN = Ptr.getNode();
- PtrN->mergeTypeInfo(I.getType(), Ptr.getOffset(), false);
-
- if (isPointerType(I.getType()))
- setDestTo(I, getLink(Ptr));
-}
-
-
-void GraphBuilder::visitCallInst(CallInst &CI) {
- visitCallSite(&CI);
-}
-
-void GraphBuilder::visitInvokeInst(InvokeInst &II) {
- visitCallSite(&II);
-}
-
-/// returns true if the intrinsic is handled
-bool GraphBuilder::visitIntrinsic(CallSite CS, Function *F) {
- switch (F->getIntrinsicID()) {
- case Intrinsic::vastart:
- getValueDest(*CS.getInstruction()).getNode()->setAllocaNodeMarker();
- return true;
- case Intrinsic::vacopy:
- getValueDest(*CS.getInstruction()).
- mergeWith(getValueDest(**(CS.arg_begin())));
- return true;
- case Intrinsic::vaend:
- case Intrinsic::dbg_func_start:
- case Intrinsic::dbg_region_end:
- case Intrinsic::dbg_stoppoint:
- return true; // noop
- case Intrinsic::memcpy_i32:
- case Intrinsic::memcpy_i64:
- case Intrinsic::memmove_i32:
- case Intrinsic::memmove_i64: {
- // Merge the first & second arguments, and mark the memory read and
- // modified.
- DSNodeHandle RetNH = getValueDest(**CS.arg_begin());
- RetNH.mergeWith(getValueDest(**(CS.arg_begin()+1)));
- if (DSNode *N = RetNH.getNode())
- N->setModifiedMarker()->setReadMarker();
- return true;
- }
- case Intrinsic::memset_i32:
- case Intrinsic::memset_i64:
- // Mark the memory modified.
- if (DSNode *N = getValueDest(**CS.arg_begin()).getNode())
- N->setModifiedMarker();
- return true;
- default:
- DOUT << "[dsa:local] Unhandled intrinsic: " << F->getName() << "\n";
- return false;
- }
-}
-
-/// returns true if the external is a recognized libc function with a
-/// known (and generated) graph
-bool GraphBuilder::visitExternal(CallSite CS, Function *F) {
- if (F->getName() == "calloc"
- || F->getName() == "posix_memalign"
- || F->getName() == "memalign" || F->getName() == "valloc") {
- setDestTo(*CS.getInstruction(),
- createNode()->setHeapNodeMarker()->setModifiedMarker());
- return true;
- } else if (F->getName() == "realloc") {
- DSNodeHandle RetNH = getValueDest(*CS.getInstruction());
- if (CS.arg_begin() != CS.arg_end())
- RetNH.mergeWith(getValueDest(**CS.arg_begin()));
- if (DSNode *N = RetNH.getNode())
- N->setHeapNodeMarker()->setModifiedMarker()->setReadMarker();
- return true;
- } else if (F->getName() == "memmove") {
- // Merge the first & second arguments, and mark the memory read and
- // modified.
- DSNodeHandle RetNH = getValueDest(**CS.arg_begin());
- RetNH.mergeWith(getValueDest(**(CS.arg_begin()+1)));
- if (DSNode *N = RetNH.getNode())
- N->setModifiedMarker()->setReadMarker();
- return true;
- } else if (F->getName() == "free") {
- // Mark that the node is written to...
- if (DSNode *N = getValueDest(**CS.arg_begin()).getNode())
- N->setModifiedMarker()->setHeapNodeMarker();
- } else if (F->getName() == "atoi" || F->getName() == "atof" ||
- F->getName() == "atol" || F->getName() == "atoll" ||
- F->getName() == "remove" || F->getName() == "unlink" ||
- F->getName() == "rename" || F->getName() == "memcmp" ||
- F->getName() == "strcmp" || F->getName() == "strncmp" ||
- F->getName() == "execl" || F->getName() == "execlp" ||
- F->getName() == "execle" || F->getName() == "execv" ||
- F->getName() == "execvp" || F->getName() == "chmod" ||
- F->getName() == "puts" || F->getName() == "write" ||
- F->getName() == "open" || F->getName() == "create" ||
- F->getName() == "truncate" || F->getName() == "chdir" ||
- F->getName() == "mkdir" || F->getName() == "rmdir" ||
- F->getName() == "strlen") {
- // These functions read all of their pointer operands.
- for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
- AI != E; ++AI) {
- if (isPointerType((*AI)->getType()))
- if (DSNode *N = getValueDest(**AI).getNode())
- N->setReadMarker();
- }
- return true;
- } else if (F->getName() == "memchr") {
- DSNodeHandle RetNH = getValueDest(**CS.arg_begin());
- DSNodeHandle Result = getValueDest(*CS.getInstruction());
- RetNH.mergeWith(Result);
- if (DSNode *N = RetNH.getNode())
- N->setReadMarker();
- return true;
- } else if (F->getName() == "read" || F->getName() == "pipe" ||
- F->getName() == "wait" || F->getName() == "time" ||
- F->getName() == "getrusage") {
- // These functions write all of their pointer operands.
- for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
- AI != E; ++AI) {
- if (isPointerType((*AI)->getType()))
- if (DSNode *N = getValueDest(**AI).getNode())
- N->setModifiedMarker();
- }
- return true;
- } else if (F->getName() == "stat" || F->getName() == "fstat" ||
- F->getName() == "lstat") {
- // These functions read their first operand if its a pointer.
- CallSite::arg_iterator AI = CS.arg_begin();
- if (isPointerType((*AI)->getType())) {
- DSNodeHandle Path = getValueDest(**AI);
- if (DSNode *N = Path.getNode()) N->setReadMarker();
- }
-
- // Then they write into the stat buffer.
- DSNodeHandle StatBuf = getValueDest(**++AI);
- if (DSNode *N = StatBuf.getNode()) {
- N->setModifiedMarker();
- const Type *StatTy = F->getFunctionType()->getParamType(1);
- if (const PointerType *PTy = dyn_cast<PointerType>(StatTy))
- N->mergeTypeInfo(PTy->getElementType(), StatBuf.getOffset());
- }
- return true;
- } else if (F->getName() == "strtod" || F->getName() == "strtof" ||
- F->getName() == "strtold") {
- // These functions read the first pointer
- if (DSNode *Str = getValueDest(**CS.arg_begin()).getNode()) {
- Str->setReadMarker();
- // If the second parameter is passed, it will point to the first
- // argument node.
- const DSNodeHandle &EndPtrNH = getValueDest(**(CS.arg_begin()+1));
- if (DSNode *End = EndPtrNH.getNode()) {
- End->mergeTypeInfo(PointerType::get(Type::SByteTy),
- EndPtrNH.getOffset(), false);
- End->setModifiedMarker();
- DSNodeHandle &Link = getLink(EndPtrNH);
- Link.mergeWith(getValueDest(**CS.arg_begin()));
- }
- }
- return true;
- } else if (F->getName() == "fopen" || F->getName() == "fdopen" ||
- F->getName() == "freopen") {
- // These functions read all of their pointer operands.
- for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
- AI != E; ++AI)
- if (isPointerType((*AI)->getType()))
- if (DSNode *N = getValueDest(**AI).getNode())
- N->setReadMarker();
-
- // fopen allocates in an unknown way and writes to the file
- // descriptor. Also, merge the allocated type into the node.
- DSNodeHandle Result = getValueDest(*CS.getInstruction());
- if (DSNode *N = Result.getNode()) {
- N->setModifiedMarker()->setUnknownNodeMarker();
- const Type *RetTy = F->getFunctionType()->getReturnType();
- if (const PointerType *PTy = dyn_cast<PointerType>(RetTy))
- N->mergeTypeInfo(PTy->getElementType(), Result.getOffset());
- }
-
- // If this is freopen, merge the file descriptor passed in with the
- // result.
- if (F->getName() == "freopen") {
- // ICC doesn't handle getting the iterator, decrementing and
- // dereferencing it in one operation without error. Do it in 2 steps
- CallSite::arg_iterator compit = CS.arg_end();
- Result.mergeWith(getValueDest(**--compit));
- }
- return true;
- } else if (F->getName() == "fclose" && CS.arg_end()-CS.arg_begin() ==1){
- // fclose reads and deallocates the memory in an unknown way for the
- // file descriptor. It merges the FILE type into the descriptor.
- DSNodeHandle H = getValueDest(**CS.arg_begin());
- if (DSNode *N = H.getNode()) {
- N->setReadMarker()->setUnknownNodeMarker();
- const Type *ArgTy = F->getFunctionType()->getParamType(0);
- if (const PointerType *PTy = dyn_cast<PointerType>(ArgTy))
- N->mergeTypeInfo(PTy->getElementType(), H.getOffset());
- }
- return true;
- } else if (CS.arg_end()-CS.arg_begin() == 1 &&
- (F->getName() == "fflush" || F->getName() == "feof" ||
- F->getName() == "fileno" || F->getName() == "clearerr" ||
- F->getName() == "rewind" || F->getName() == "ftell" ||
- F->getName() == "ferror" || F->getName() == "fgetc" ||
- F->getName() == "fgetc" || F->getName() == "_IO_getc")) {
- // fflush reads and writes the memory for the file descriptor. It
- // merges the FILE type into the descriptor.
- DSNodeHandle H = getValueDest(**CS.arg_begin());
- if (DSNode *N = H.getNode()) {
- N->setReadMarker()->setModifiedMarker();
-
- const Type *ArgTy = F->getFunctionType()->getParamType(0);
- if (const PointerType *PTy = dyn_cast<PointerType>(ArgTy))
- N->mergeTypeInfo(PTy->getElementType(), H.getOffset());
- }
- return true;
- } else if (CS.arg_end()-CS.arg_begin() == 4 &&
- (F->getName() == "fwrite" || F->getName() == "fread")) {
- // fread writes the first operand, fwrite reads it. They both
- // read/write the FILE descriptor, and merges the FILE type.
- CallSite::arg_iterator compit = CS.arg_end();
- DSNodeHandle H = getValueDest(**--compit);
- if (DSNode *N = H.getNode()) {
- N->setReadMarker()->setModifiedMarker();
- const Type *ArgTy = F->getFunctionType()->getParamType(3);
- if (const PointerType *PTy = dyn_cast<PointerType>(ArgTy))
- N->mergeTypeInfo(PTy->getElementType(), H.getOffset());
- }
-
- H = getValueDest(**CS.arg_begin());
- if (DSNode *N = H.getNode())
- if (F->getName() == "fwrite")
- N->setReadMarker();
- else
- N->setModifiedMarker();
- return true;
- } else if (F->getName() == "fgets" && CS.arg_end()-CS.arg_begin() == 3){
- // fgets reads and writes the memory for the file descriptor. It
- // merges the FILE type into the descriptor, and writes to the
- // argument. It returns the argument as well.
- CallSite::arg_iterator AI = CS.arg_begin();
- DSNodeHandle H = getValueDest(**AI);
- if (DSNode *N = H.getNode())
- N->setModifiedMarker(); // Writes buffer
- H.mergeWith(getValueDest(*CS.getInstruction())); // Returns buffer
- ++AI; ++AI;
-
- // Reads and writes file descriptor, merge in FILE type.
- H = getValueDest(**AI);
- if (DSNode *N = H.getNode()) {
- N->setReadMarker()->setModifiedMarker();
- const Type *ArgTy = F->getFunctionType()->getParamType(2);
- if (const PointerType *PTy = dyn_cast<PointerType>(ArgTy))
- N->mergeTypeInfo(PTy->getElementType(), H.getOffset());
- }
- return true;
- } else if (F->getName() == "ungetc" || F->getName() == "fputc" ||
- F->getName() == "fputs" || F->getName() == "putc" ||
- F->getName() == "ftell" || F->getName() == "rewind" ||
- F->getName() == "_IO_putc") {
- // These functions read and write the memory for the file descriptor,
- // which is passes as the last argument.
- CallSite::arg_iterator compit = CS.arg_end();
- DSNodeHandle H = getValueDest(**--compit);
- if (DSNode *N = H.getNode()) {
- N->setReadMarker()->setModifiedMarker();
- FunctionType::param_iterator compit2 = F->getFunctionType()->param_end();
- const Type *ArgTy = *--compit2;
- if (const PointerType *PTy = dyn_cast<PointerType>(ArgTy))
- N->mergeTypeInfo(PTy->getElementType(), H.getOffset());
- }
-
- // Any pointer arguments are read.
- for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
- AI != E; ++AI)
- if (isPointerType((*AI)->getType()))
- if (DSNode *N = getValueDest(**AI).getNode())
- N->setReadMarker();
- return true;
- } else if (F->getName() == "fseek" || F->getName() == "fgetpos" ||
- F->getName() == "fsetpos") {
- // These functions read and write the memory for the file descriptor,
- // and read/write all other arguments.
- DSNodeHandle H = getValueDest(**CS.arg_begin());
- if (DSNode *N = H.getNode()) {
- FunctionType::param_iterator compit2 = F->getFunctionType()->param_end();
- const Type *ArgTy = *--compit2;
- if (const PointerType *PTy = dyn_cast<PointerType>(ArgTy))
- N->mergeTypeInfo(PTy->getElementType(), H.getOffset());
- }
-
- // Any pointer arguments are read.
- for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
- AI != E; ++AI)
- if (isPointerType((*AI)->getType()))
- if (DSNode *N = getValueDest(**AI).getNode())
- N->setReadMarker()->setModifiedMarker();
- return true;
- } else if (F->getName() == "printf" || F->getName() == "fprintf" ||
- F->getName() == "sprintf") {
- CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
-
- if (F->getName() == "fprintf") {
- // fprintf reads and writes the FILE argument, and applies the type
- // to it.
- DSNodeHandle H = getValueDest(**AI);
- if (DSNode *N = H.getNode()) {
- N->setModifiedMarker();
- const Type *ArgTy = (*AI)->getType();
- if (const PointerType *PTy = dyn_cast<PointerType>(ArgTy))
- N->mergeTypeInfo(PTy->getElementType(), H.getOffset());
- }
- } else if (F->getName() == "sprintf") {
- // sprintf writes the first string argument.
- DSNodeHandle H = getValueDest(**AI++);
- if (DSNode *N = H.getNode()) {
- N->setModifiedMarker();
- const Type *ArgTy = (*AI)->getType();
- if (const PointerType *PTy = dyn_cast<PointerType>(ArgTy))
- N->mergeTypeInfo(PTy->getElementType(), H.getOffset());
- }
- }
-
- for (; AI != E; ++AI) {
- // printf reads all pointer arguments.
- if (isPointerType((*AI)->getType()))
- if (DSNode *N = getValueDest(**AI).getNode())
- N->setReadMarker();
- }
- return true;
- } else if (F->getName() == "vprintf" || F->getName() == "vfprintf" ||
- F->getName() == "vsprintf") {
- CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
-
- if (F->getName() == "vfprintf") {
- // ffprintf reads and writes the FILE argument, and applies the type
- // to it.
- DSNodeHandle H = getValueDest(**AI);
- if (DSNode *N = H.getNode()) {
- N->setModifiedMarker()->setReadMarker();
- const Type *ArgTy = (*AI)->getType();
- if (const PointerType *PTy = dyn_cast<PointerType>(ArgTy))
- N->mergeTypeInfo(PTy->getElementType(), H.getOffset());
- }
- ++AI;
- } else if (F->getName() == "vsprintf") {
- // vsprintf writes the first string argument.
- DSNodeHandle H = getValueDest(**AI++);
- if (DSNode *N = H.getNode()) {
- N->setModifiedMarker();
- const Type *ArgTy = (*AI)->getType();
- if (const PointerType *PTy = dyn_cast<PointerType>(ArgTy))
- N->mergeTypeInfo(PTy->getElementType(), H.getOffset());
- }
- }
-
- // Read the format
- if (AI != E) {
- if (isPointerType((*AI)->getType()))
- if (DSNode *N = getValueDest(**AI).getNode())
- N->setReadMarker();
- ++AI;
- }
-
- // Read the valist, and the pointed-to objects.
- if (AI != E && isPointerType((*AI)->getType())) {
- const DSNodeHandle &VAList = getValueDest(**AI);
- if (DSNode *N = VAList.getNode()) {
- N->setReadMarker();
- N->mergeTypeInfo(PointerType::get(Type::SByteTy),
- VAList.getOffset(), false);
-
- DSNodeHandle &VAListObjs = getLink(VAList);
- VAListObjs.getNode()->setReadMarker();
- }
- }
-
- return true;
- } else if (F->getName() == "scanf" || F->getName() == "fscanf" ||
- F->getName() == "sscanf") {
- CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
-
- if (F->getName() == "fscanf") {
- // fscanf reads and writes the FILE argument, and applies the type
- // to it.
- DSNodeHandle H = getValueDest(**AI);
- if (DSNode *N = H.getNode()) {
- N->setReadMarker();
- const Type *ArgTy = (*AI)->getType();
- if (const PointerType *PTy = dyn_cast<PointerType>(ArgTy))
- N->mergeTypeInfo(PTy->getElementType(), H.getOffset());
- }
- } else if (F->getName() == "sscanf") {
- // sscanf reads the first string argument.
- DSNodeHandle H = getValueDest(**AI++);
- if (DSNode *N = H.getNode()) {
- N->setReadMarker();
- const Type *ArgTy = (*AI)->getType();
- if (const PointerType *PTy = dyn_cast<PointerType>(ArgTy))
- N->mergeTypeInfo(PTy->getElementType(), H.getOffset());
- }
- }
-
- for (; AI != E; ++AI) {
- // scanf writes all pointer arguments.
- if (isPointerType((*AI)->getType()))
- if (DSNode *N = getValueDest(**AI).getNode())
- N->setModifiedMarker();
- }
- return true;
- } else if (F->getName() == "strtok") {
- // strtok reads and writes the first argument, returning it. It reads
- // its second arg. FIXME: strtok also modifies some hidden static
- // data. Someday this might matter.
- CallSite::arg_iterator AI = CS.arg_begin();
- DSNodeHandle H = getValueDest(**AI++);
- if (DSNode *N = H.getNode()) {
- N->setReadMarker()->setModifiedMarker(); // Reads/Writes buffer
- const Type *ArgTy = F->getFunctionType()->getParamType(0);
- if (const PointerType *PTy = dyn_cast<PointerType>(ArgTy))
- N->mergeTypeInfo(PTy->getElementType(), H.getOffset());
- }
- H.mergeWith(getValueDest(*CS.getInstruction())); // Returns buffer
-
- H = getValueDest(**AI); // Reads delimiter
- if (DSNode *N = H.getNode()) {
- N->setReadMarker();
- const Type *ArgTy = F->getFunctionType()->getParamType(1);
- if (const PointerType *PTy = dyn_cast<PointerType>(ArgTy))
- N->mergeTypeInfo(PTy->getElementType(), H.getOffset());
- }
- return true;
- } else if (F->getName() == "strchr" || F->getName() == "strrchr" ||
- F->getName() == "strstr") {
- // These read their arguments, and return the first one
- DSNodeHandle H = getValueDest(**CS.arg_begin());
- H.mergeWith(getValueDest(*CS.getInstruction())); // Returns buffer
-
- for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
- AI != E; ++AI)
- if (isPointerType((*AI)->getType()))
- if (DSNode *N = getValueDest(**AI).getNode())
- N->setReadMarker();
-
- if (DSNode *N = H.getNode())
- N->setReadMarker();
- return true;
- } else if (F->getName() == "__assert_fail") {
- for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
- AI != E; ++AI)
- if (isPointerType((*AI)->getType()))
- if (DSNode *N = getValueDest(**AI).getNode())
- N->setReadMarker();
- return true;
- } else if (F->getName() == "modf" && CS.arg_end()-CS.arg_begin() == 2) {
- // This writes its second argument, and forces it to double.
- CallSite::arg_iterator compit = CS.arg_end();
- DSNodeHandle H = getValueDest(**--compit);
- if (DSNode *N = H.getNode()) {
- N->setModifiedMarker();
- N->mergeTypeInfo(Type::DoubleTy, H.getOffset());
- }
- return true;
- } else if (F->getName() == "strcat" || F->getName() == "strncat") {
- //This might be making unsafe assumptions about usage
- //Merge return and first arg
- DSNodeHandle RetNH = getValueDest(*CS.getInstruction());
- RetNH.mergeWith(getValueDest(**CS.arg_begin()));
- if (DSNode *N = RetNH.getNode())
- N->setHeapNodeMarker()->setModifiedMarker()->setReadMarker();
- //and read second pointer
- if (DSNode *N = getValueDest(**(CS.arg_begin() + 1)).getNode())
- N->setReadMarker();
- return true;
- } else if (F->getName() == "strcpy" || F->getName() == "strncpy") {
- //This might be making unsafe assumptions about usage
- //Merge return and first arg
- DSNodeHandle RetNH = getValueDest(*CS.getInstruction());
- RetNH.mergeWith(getValueDest(**CS.arg_begin()));
- if (DSNode *N = RetNH.getNode())
- N->setHeapNodeMarker()->setModifiedMarker();
- //and read second pointer
- if (DSNode *N = getValueDest(**(CS.arg_begin() + 1)).getNode())
- N->setReadMarker();
- return true;
- }
- return false;
-}
-
-void GraphBuilder::visitCallSite(CallSite CS) {
- Value *Callee = CS.getCalledValue();
-
- // Special case handling of certain libc allocation functions here.
- if (Function *F = dyn_cast<Function>(Callee))
- if (F->isExternal())
- if (F->isIntrinsic() && visitIntrinsic(CS, F))
- return;
- else {
- // Determine if the called function is one of the specified heap
- // allocation functions
- if (AllocList.end() != std::find(AllocList.begin(), AllocList.end(), F->getName())) {
- setDestTo(*CS.getInstruction(),
- createNode()->setHeapNodeMarker()->setModifiedMarker());
- return;
- }
-
- // Determine if the called function is one of the specified heap
- // free functions
- if (FreeList.end() != std::find(FreeList.begin(), FreeList.end(), F->getName())) {
- // Mark that the node is written to...
- if (DSNode *N = getValueDest(*(CS.getArgument(0))).getNode())
- N->setModifiedMarker()->setHeapNodeMarker();
- return;
- }
- if (visitExternal(CS,F))
- return;
- // Unknown function, warn if it returns a pointer type or takes a
- // pointer argument.
- bool Warn = isPointerType(CS.getInstruction()->getType());
- if (!Warn)
- for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
- I != E; ++I)
- if (isPointerType((*I)->getType())) {
- Warn = true;
- break;
- }
- if (Warn) {
- DOUT << "WARNING: Call to unknown external function '"
- << F->getName() << "' will cause pessimistic results!\n";
- }
- }
-
- // Set up the return value...
- DSNodeHandle RetVal;
- Instruction *I = CS.getInstruction();
- if (isPointerType(I->getType()))
- RetVal = getValueDest(*I);
-
- DSNode *CalleeNode = 0;
- if (DisableDirectCallOpt || !isa<Function>(Callee)) {
- CalleeNode = getValueDest(*Callee).getNode();
- if (CalleeNode == 0) {
- cerr << "WARNING: Program is calling through a null pointer?\n"<< *I;
- return; // Calling a null pointer?
- }
- }
-
- std::vector<DSNodeHandle> Args;
- Args.reserve(CS.arg_end()-CS.arg_begin());
-
- // Calculate the arguments vector...
- for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E; ++I)
- if (isPointerType((*I)->getType()))
- Args.push_back(getValueDest(**I));
-
- // Add a new function call entry...
- if (CalleeNode)
- FunctionCalls->push_back(DSCallSite(CS, RetVal, CalleeNode, Args));
- else
- FunctionCalls->push_back(DSCallSite(CS, RetVal, cast<Function>(Callee),
- Args));
-}
-
-void GraphBuilder::visitFreeInst(FreeInst &FI) {
- // Mark that the node is written to...
- if (DSNode *N = getValueDest(*FI.getOperand(0)).getNode())
- N->setModifiedMarker()->setHeapNodeMarker();
-}
-
-/// Handle casts...
-void GraphBuilder::visitCastInst(CastInst &CI) {
- // Pointers can only be cast with BitCast so check that the instruction
- // is a BitConvert. If not, its guaranteed not to involve any pointers so
- // we don't do anything.
- switch (CI.getOpcode()) {
- default: break;
- case Instruction::BitCast:
- case Instruction::IntToPtr:
- if (isPointerType(CI.getType()))
- if (isPointerType(CI.getOperand(0)->getType())) {
- DSNodeHandle Ptr = getValueDest(*CI.getOperand(0));
- if (Ptr.getNode() == 0) return;
- // Cast one pointer to the other, just act like a copy instruction
- setDestTo(CI, Ptr);
- } else {
- // Cast something (floating point, small integer) to a pointer. We
- // need to track the fact that the node points to SOMETHING, just
- // something we don't know about. Make an "Unknown" node.
- setDestTo(CI, createNode()->setUnknownNodeMarker());
- }
- break;
- }
-}
-
-
-// visitInstruction - For all other instruction types, if we have any arguments
-// that are of pointer type, make them have unknown composition bits, and merge
-// the nodes together.
-void GraphBuilder::visitInstruction(Instruction &Inst) {
- DSNodeHandle CurNode;
- if (isPointerType(Inst.getType()))
- CurNode = getValueDest(Inst);
- for (User::op_iterator I = Inst.op_begin(), E = Inst.op_end(); I != E; ++I)
- if (isPointerType((*I)->getType()))
- CurNode.mergeWith(getValueDest(**I));
-
- if (DSNode *N = CurNode.getNode())
- N->setUnknownNodeMarker();
-}
-
-
-
-//===----------------------------------------------------------------------===//
-// LocalDataStructures Implementation
-//===----------------------------------------------------------------------===//
-
-// MergeConstantInitIntoNode - Merge the specified constant into the node
-// pointed to by NH.
-void GraphBuilder::MergeConstantInitIntoNode(DSNodeHandle &NH, Constant *C) {
- // Ensure a type-record exists...
- DSNode *NHN = NH.getNode();
- NHN->mergeTypeInfo(C->getType(), NH.getOffset());
-
- if (C->getType()->isFirstClassType()) {
- if (isPointerType(C->getType()))
- // Avoid adding edges from null, or processing non-"pointer" stores
- NH.addEdgeTo(getValueDest(*C));
- return;
- }
-
- const TargetData &TD = NH.getNode()->getTargetData();
-
- if (ConstantArray *CA = dyn_cast<ConstantArray>(C)) {
- for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
- // We don't currently do any indexing for arrays...
- MergeConstantInitIntoNode(NH, cast<Constant>(CA->getOperand(i)));
- } else if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
- const StructLayout *SL = TD.getStructLayout(CS->getType());
- for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
- DSNode *NHN = NH.getNode();
- //Some programmers think ending a structure with a [0 x sbyte] is cute
- if (SL->MemberOffsets[i] < SL->StructSize) {
- DSNodeHandle NewNH(NHN, NH.getOffset()+(unsigned)SL->MemberOffsets[i]);
- MergeConstantInitIntoNode(NewNH, cast<Constant>(CS->getOperand(i)));
- } else if (SL->MemberOffsets[i] == SL->StructSize) {
- DOUT << "Zero size element at end of struct\n";
- NHN->foldNodeCompletely();
- } else {
- assert(0 && "type was smaller than offsets of of struct layout indicate");
- }
- }
- } else if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) {
- // Noop
- } else {
- assert(0 && "Unknown constant type!");
- }
-}
-
-void GraphBuilder::mergeInGlobalInitializer(GlobalVariable *GV) {
- assert(!GV->isExternal() && "Cannot merge in external global!");
- // Get a node handle to the global node and merge the initializer into it.
- DSNodeHandle NH = getValueDest(*GV);
- MergeConstantInitIntoNode(NH, GV->getInitializer());
-}
-
-
-/// BuildGlobalECs - Look at all of the nodes in the globals graph. If any node
-/// contains multiple globals, DSA will never, ever, be able to tell the globals
-/// apart. Instead of maintaining this information in all of the graphs
-/// throughout the entire program, store only a single global (the "leader") in
-/// the graphs, and build equivalence classes for the rest of the globals.
-static void BuildGlobalECs(DSGraph &GG, std::set<GlobalValue*> &ECGlobals) {
- DSScalarMap &SM = GG.getScalarMap();
- EquivalenceClasses<GlobalValue*> &GlobalECs = SM.getGlobalECs();
- for (DSGraph::node_iterator I = GG.node_begin(), E = GG.node_end();
- I != E; ++I) {
- if (I->getGlobalsList().size() <= 1) continue;
-
- // First, build up the equivalence set for this block of globals.
- const std::vector<GlobalValue*> &GVs = I->getGlobalsList();
- GlobalValue *First = GVs[0];
- for (unsigned i = 1, e = GVs.size(); i != e; ++i)
- GlobalECs.unionSets(First, GVs[i]);
-
- // Next, get the leader element.
- assert(First == GlobalECs.getLeaderValue(First) &&
- "First did not end up being the leader?");
-
- // Next, remove all globals from the scalar map that are not the leader.
- assert(GVs[0] == First && "First had to be at the front!");
- for (unsigned i = 1, e = GVs.size(); i != e; ++i) {
- ECGlobals.insert(GVs[i]);
- SM.erase(SM.find(GVs[i]));
- }
-
- // Finally, change the global node to only contain the leader.
- I->clearGlobals();
- I->addGlobal(First);
- }
-
- DEBUG(GG.AssertGraphOK());
-}
-
-/// EliminateUsesOfECGlobals - Once we have determined that some globals are in
-/// really just equivalent to some other globals, remove the globals from the
-/// specified DSGraph (if present), and merge any nodes with their leader nodes.
-static void EliminateUsesOfECGlobals(DSGraph &G,
- const std::set<GlobalValue*> &ECGlobals) {
- DSScalarMap &SM = G.getScalarMap();
- EquivalenceClasses<GlobalValue*> &GlobalECs = SM.getGlobalECs();
-
- bool MadeChange = false;
- for (DSScalarMap::global_iterator GI = SM.global_begin(), E = SM.global_end();
- GI != E; ) {
- GlobalValue *GV = *GI++;
- if (!ECGlobals.count(GV)) continue;
-
- const DSNodeHandle &GVNH = SM[GV];
- assert(!GVNH.isNull() && "Global has null NH!?");
-
- // Okay, this global is in some equivalence class. Start by finding the
- // leader of the class.
- GlobalValue *Leader = GlobalECs.getLeaderValue(GV);
-
- // If the leader isn't already in the graph, insert it into the node
- // corresponding to GV.
- if (!SM.global_count(Leader)) {
- GVNH.getNode()->addGlobal(Leader);
- SM[Leader] = GVNH;
- } else {
- // Otherwise, the leader is in the graph, make sure the nodes are the
- // merged in the specified graph.
- const DSNodeHandle &LNH = SM[Leader];
- if (LNH.getNode() != GVNH.getNode())
- LNH.mergeWith(GVNH);
- }
-
- // Next step, remove the global from the DSNode.
- GVNH.getNode()->removeGlobal(GV);
-
- // Finally, remove the global from the ScalarMap.
- SM.erase(GV);
- MadeChange = true;
- }
-
- DEBUG(if(MadeChange) G.AssertGraphOK());
-}
-
-bool LocalDataStructures::runOnModule(Module &M) {
- const TargetData &TD = getAnalysis<TargetData>();
-
- // First step, build the globals graph.
- GlobalsGraph = new DSGraph(GlobalECs, TD);
- {
- GraphBuilder GGB(*GlobalsGraph);
-
- // Add initializers for all of the globals to the globals graph.
- for (Module::global_iterator I = M.global_begin(), E = M.global_end();
- I != E; ++I)
- if (!I->isExternal())
- GGB.mergeInGlobalInitializer(I);
- }
-
- // Next step, iterate through the nodes in the globals graph, unioning
- // together the globals into equivalence classes.
- std::set<GlobalValue*> ECGlobals;
- BuildGlobalECs(*GlobalsGraph, ECGlobals);
- DOUT << "Eliminating " << ECGlobals.size() << " EC Globals!\n";
- ECGlobals.clear();
-
- // Calculate all of the graphs...
- for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
- if (!I->isExternal())
- DSInfo.insert(std::make_pair(I, new DSGraph(GlobalECs, TD, *I,
- GlobalsGraph)));
-
- GlobalsGraph->removeTriviallyDeadNodes();
- GlobalsGraph->markIncompleteNodes(DSGraph::MarkFormalArgs);
-
- // Now that we've computed all of the graphs, and merged all of the info into
- // the globals graph, see if we have further constrained the globals in the
- // program if so, update GlobalECs and remove the extraneous globals from the
- // program.
- BuildGlobalECs(*GlobalsGraph, ECGlobals);
- if (!ECGlobals.empty()) {
- DOUT << "Eliminating " << ECGlobals.size() << " EC Globals!\n";
- for (hash_map<Function*, DSGraph*>::iterator I = DSInfo.begin(),
- E = DSInfo.end(); I != E; ++I)
- EliminateUsesOfECGlobals(*I->second, ECGlobals);
- }
-
- return false;
-}
-
-// releaseMemory - If the pass pipeline is done with this pass, we can release
-// our memory... here...
-//
-void LocalDataStructures::releaseMemory() {
- for (hash_map<Function*, DSGraph*>::iterator I = DSInfo.begin(),
- E = DSInfo.end(); I != E; ++I) {
- I->second->getReturnNodes().erase(I->first);
- if (I->second->getReturnNodes().empty())
- delete I->second;
- }
-
- // Empty map so next time memory is released, data structures are not
- // re-deleted.
- DSInfo.clear();
- delete GlobalsGraph;
- GlobalsGraph = 0;
-}
-
diff --git a/lib/Analysis/DataStructure/Makefile b/lib/Analysis/DataStructure/Makefile
deleted file mode 100644
index 0f1986fe74..0000000000
--- a/lib/Analysis/DataStructure/Makefile
+++ /dev/null
@@ -1,14 +0,0 @@
-##===- lib/Analysis/DataStructure/Makefile -----------------*- Makefile -*-===##
-#
-# The LLVM Compiler Infrastructure
-#
-# This file was developed by the LLVM research group and is distributed under
-# the University of Illinois Open Source License. See LICENSE.TXT for details.
-#
-##===----------------------------------------------------------------------===##
-
-LEVEL = ../../..
-LIBRARYNAME = LLVMDataStructure
-
-include $(LEVEL)/Makefile.common
-
diff --git a/lib/Analysis/DataStructure/Printer.cpp b/lib/Analysis/DataStructure/Printer.cpp
deleted file mode 100644
index 21d75c08bc..0000000000
--- a/lib/Analysis/DataStructure/Printer.cpp
+++ /dev/null
@@ -1,356 +0,0 @@
-//===- Printer.cpp - Code for printing data structure graphs nicely -------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the 'dot' graph printer.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Analysis/DataStructure/DataStructure.h"
-#include "llvm/Analysis/DataStructure/DSGraph.h"
-#include "llvm/Analysis/DataStructure/DSGraphTraits.h"
-#include "llvm/Module.h"
-#include "llvm/Constants.h"
-#include "llvm/Assembly/Writer.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/GraphWriter.h"
-#include "llvm/Support/Streams.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Config/config.h"
-#include <ostream>
-#include <fstream>
-#include <sstream>
-using namespace llvm;
-
-// OnlyPrintMain - The DataStructure printer exposes this option to allow
-// printing of only the graph for "main".
-//
-namespace {
- cl::opt<bool> OnlyPrintMain("only-print-main-ds", cl::ReallyHidden);
- cl::opt<bool> DontPrintAnything("dont-print-ds", cl::ReallyHidden);
- Statistic MaxGraphSize ("dsa", "Maximum graph size");
- Statistic NumFoldedNodes ("dsa", "Number of folded nodes (in final graph)");
-}
-
-void DSNode::dump() const { print(cerr, 0); }
-
-static std::string getCaption(const DSNode *N, const DSGraph *G) {
- std::stringstream OS;
- Module *M = 0;
-
- if (!G) G = N->getParentGraph();
-
- // Get the module from ONE of the functions in the graph it is available.
- if (G && G->retnodes_begin() != G->retnodes_end())
- M = G->retnodes_begin()->first->getParent();
- if (M == 0 && G) {
- // If there is a global in the graph, we can use it to find the module.
- const DSScalarMap &SM = G->getScalarMap();
- if (SM.global_begin() != SM.global_end())
- M = (*SM.global_begin())->getParent();
- }
-
- if (N->isNodeCompletelyFolded())
- OS << "COLLAPSED";
- else {
- WriteTypeSymbolic(OS, N->getType(), M);
- if (N->isArray())
- OS << " array";
- }
- if (unsigned NodeType = N->getNodeFlags()) {
- OS << ": ";
- if (NodeType & DSNode::AllocaNode ) OS << "S";
- if (NodeType & DSNode::HeapNode ) OS << "H";
- if (NodeType & DSNode::GlobalNode ) OS << "G";
- if (NodeType & DSNode::UnknownNode) OS << "U";
- if (NodeType & DSNode::Incomplete ) OS << "I";
- if (NodeType & DSNode::Modified ) OS << "M";
- if (NodeType & DSNode::Read ) OS << "R";
-#ifndef NDEBUG
- if (NodeType & DSNode::DEAD ) OS << "<dead>";
-#endif
- OS << "\n";
- }
-
- EquivalenceClasses<GlobalValue*> *GlobalECs = 0;
- if (G) GlobalECs = &G->getGlobalECs();
-
- for (unsigned i = 0, e = N->getGlobalsList().size(); i != e; ++i) {
- WriteAsOperand(OS, N->getGlobalsList()[i], false, M);
-
- // Figure out how many globals are equivalent to this one.
- if (GlobalECs) {
- EquivalenceClasses<GlobalValue*>::iterator I =
- GlobalECs->findValue(N->getGlobalsList()[i]);
- if (I != GlobalECs->end()) {
- unsigned NumMembers =
- std::distance(GlobalECs->member_begin(I), GlobalECs->member_end());
- if (NumMembers != 1) OS << " + " << (NumMembers-1) << " EC";
- }
- }
- OS << "\n";
- }
-
- return OS.str();
-}
-
-namespace llvm {
-template<>
-struct DOTGraphTraits<const DSGraph*> : public DefaultDOTGraphTraits {
- static std::string getGraphName(const DSGraph *G) {
- switch (G->getReturnNodes().size()) {
- case 0: return G->getFunctionNames();
- case 1: return "Function " + G->getFunctionNames();
- default: return "Functions: " + G->getFunctionNames();
- }
- }
-
- static std::string getNodeLabel(const DSNode *Node, const DSGraph *Graph) {
- return getCaption(Node, Graph);
- }
-
- static std::string getNodeAttributes(const DSNode *N, const DSGraph *Graph) {
- return "shape=Mrecord";
- }
-
- static bool edgeTargetsEdgeSource(const void *Node,
- DSNode::const_iterator I) {
- unsigned O = I.getNode()->getLink(I.getOffset()).getOffset();
- return (O >> DS::PointerShift) != 0;
- }
-
- static DSNode::const_iterator getEdgeTarget(const DSNode *Node,
- DSNode::const_iterator I) {
- unsigned O = I.getNode()->getLink(I.getOffset()).getOffset();
- unsigned LinkNo = O >> DS::PointerShift;
- const DSNode *N = *I;
- DSNode::const_iterator R = N->begin();
- for (; LinkNo; --LinkNo)
- ++R;
- return R;
- }
-
-
- /// addCustomGraphFeatures - Use this graph writing hook to emit call nodes
- /// and the return node.
- ///
- static void addCustomGraphFeatures(const DSGraph *G,
- GraphWriter<const DSGraph*> &GW) {
- Module *CurMod = 0;
- if (G->retnodes_begin() != G->retnodes_end())
- CurMod = G->retnodes_begin()->first->getParent();
- else {
- // If there is a global in the graph, we can use it to find the module.
- const DSScalarMap &SM = G->getScalarMap();
- if (SM.global_begin() != SM.global_end())
- CurMod = (*SM.global_begin())->getParent();
- }
-
-
- // Add scalar nodes to the graph...
- const DSGraph::ScalarMapTy &VM = G->getScalarMap();
- for (DSGraph::ScalarMapTy::const_iterator I = VM.begin(); I != VM.end();++I)
- if (!isa<GlobalValue>(I->first)) {
- std::stringstream OS;
- WriteAsOperand(OS, I->first, false, CurMod);
- GW.emitSimpleNode(I->first, "", OS.str());
-
- // Add edge from return node to real destination
- DSNode *DestNode = I->second.getNode();
- int EdgeDest = I->second.getOffset() >> DS::PointerShift;
- if (EdgeDest == 0) EdgeDest = -1;
- GW.emitEdge(I->first, -1, DestNode,
- EdgeDest, "arrowtail=tee,color=gray63");
- }
-
-
- // Output the returned value pointer...
- for (DSGraph::retnodes_iterator I = G->retnodes_begin(),
- E = G->retnodes_end(); I != E; ++I)
- if (I->second.getNode()) {
- std::string Label;
- if (G->getReturnNodes().size() == 1)
- Label = "returning";
- else
- Label = I->first->getName() + " ret node";
- // Output the return node...
- GW.emitSimpleNode((void*)I->first, "plaintext=circle", Label);
-
- // Add edge from return node to real destination
- DSNode *RetNode = I->second.getNode();
- int RetEdgeDest = I->second.getOffset() >> DS::PointerShift;;
- if (RetEdgeDest == 0) RetEdgeDest = -1;
- GW.emitEdge((void*)I->first, -1, RetNode,
- RetEdgeDest, "arrowtail=tee,color=gray63");
- }
-
- // Output all of the call nodes...
- const std::list<DSCallSite> &FCs =
- G->shouldPrintAuxCalls() ? G->getAuxFunctionCalls()
- : G->getFunctionCalls();
- for (std::list<DSCallSite>::const_iterator I = FCs.begin(), E = FCs.end();
- I != E; ++I) {
- const DSCallSite &Call = *I;
- std::vector<std::string> EdgeSourceCaptions(Call.getNumPtrArgs()+2);
- EdgeSourceCaptions[0] = "r";
- if (Call.isDirectCall())
- EdgeSourceCaptions[1] = Call.getCalleeFunc()->getName();
- else
- EdgeSourceCaptions[1] = "f";
-
- GW.emitSimpleNode(&Call, "shape=record", "call", Call.getNumPtrArgs()+2,
- &EdgeSourceCaptions);
-
- if (DSNode *N = Call.getRetVal().getNode()) {
- int EdgeDest = Call.getRetVal().getOffset() >> DS::PointerShift;
- if (EdgeDest == 0) EdgeDest = -1;
- GW.emitEdge(&Call, 0, N, EdgeDest, "color=gray63,tailclip=false");
- }
-
- // Print out the callee...
- if (Call.isIndirectCall()) {
- DSNode *N = Call.getCalleeNode();
- assert(N && "Null call site callee node!");
- GW.emitEdge(&Call, 1, N, -1, "color=gray63,tailclip=false");
- }
-
- for (unsigned j = 0, e = Call.getNumPtrArgs(); j != e; ++j)
- if (DSNode *N = Call.getPtrArg(j).getNode()) {
- int EdgeDest = Call.getPtrArg(j).getOffset() >> DS::PointerShift;
- if (EdgeDest == 0) EdgeDest = -1;
- GW.emitEdge(&Call, j+2, N, EdgeDest, "color=gray63,tailclip=false");
- }
- }
- }
-};
-} // end namespace llvm
-
-void DSNode::print(std::ostream &O, const DSGraph *G) const {
- GraphWriter<const DSGraph *> W(O, G);
- W.writeNode(this);
-}
-
-void DSGraph::print(std::ostream &O) const {
- WriteGraph(O, this, "DataStructures");
-}
-
-void DSGraph::writeGraphToFile(std::ostream &O,
- const std::string &GraphName) const {
- std::string Filename = GraphName + ".dot";
- O << "Writing '" << Filename << "'...";
- std::ofstream F(Filename.c_str());
-
- if (F.good()) {
- print(F);
- unsigned NumCalls = shouldPrintAuxCalls() ?
- getAuxFunctionCalls().size() : getFunctionCalls().size();
- O << " [" << getGraphSize() << "+" << NumCalls << "]\n";
- } else {
- O << " error opening file for writing!\n";
- }
-}
-
-/// viewGraph - Emit a dot graph, run 'dot', run gv on the postscript file,
-/// then cleanup. For use from the debugger.
-///
-void DSGraph::viewGraph() const {
- ViewGraph(this, "ds.tempgraph", "DataStructures");
-}
-
-
-template <typename Collection>
-static void printCollection(const Collection &C, std::ostream &O,
- const Module *M, const std::string &Prefix) {
- if (M == 0) {
- O << "Null Module pointer, cannot continue!\n";
- return;
- }
-
- unsigned TotalNumNodes = 0, TotalCallNodes = 0;
- for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
- if (C.hasGraph(*I)) {
- DSGraph &Gr = C.getDSGraph((Function&)*I);
- unsigned NumCalls = Gr.shouldPrintAuxCalls() ?
- Gr.getAuxFunctionCalls().size() : Gr.getFunctionCalls().size();
- bool IsDuplicateGraph = false;
-
- if (I->getName() == "main" || !OnlyPrintMain) {
- Function *SCCFn = Gr.retnodes_begin()->first;
- if (&*I == SCCFn) {
- Gr.writeGraphToFile(O, Prefix+I->getName());
- } else {
- IsDuplicateGraph = true; // Don't double count node/call nodes.
- O << "Didn't write '" << Prefix+I->getName()
- << ".dot' - Graph already emitted to '" << Prefix+SCCFn->getName()
- << "\n";
- }
- } else {
- Function *SCCFn = Gr.retnodes_begin()->first;
- if (&*I == SCCFn) {
- O << "Skipped Writing '" << Prefix+I->getName() << ".dot'... ["
- << Gr.getGraphSize() << "+" << NumCalls << "]\n";
- } else {
- IsDuplicateGraph = true; // Don't double count node/call nodes.
- }
- }
-
- if (!IsDuplicateGraph) {
- unsigned GraphSize = Gr.getGraphSize();
- if (MaxGraphSize < GraphSize) MaxGraphSize = GraphSize;
-
- TotalNumNodes += Gr.getGraphSize();
- TotalCallNodes += NumCalls;
- for (DSGraph::node_iterator NI = Gr.node_begin(), E = Gr.node_end();
- NI != E; ++NI)
- if (NI->isNodeCompletelyFolded())
- ++NumFoldedNodes;
- }
- }
-
- DSGraph &GG = C.getGlobalsGraph();
- TotalNumNodes += GG.getGraphSize();
- TotalCallNodes += GG.getFunctionCalls().size();
- if (!OnlyPrintMain) {
- GG.writeGraphToFile(O, Prefix+"GlobalsGraph");
- } else {
- O << "Skipped Writing '" << Prefix << "GlobalsGraph.dot'... ["
- << GG.getGraphSize() << "+" << GG.getFunctionCalls().size() << "]\n";
- }
-
- O << "\nGraphs contain [" << TotalNumNodes << "+" << TotalCallNodes
- << "] nodes total" << std::endl;
-}
-
-
-// print - Print out the analysis results...
-void LocalDataStructures::print(std::ostream &O, const Module *M) const {
- if (DontPrintAnything) return;
- printCollection(*this, O, M, "ds.");
-}
-
-void BUDataStructures::print(std::ostream &O, const Module *M) const {
- if (DontPrintAnything) return;
- printCollection(*this, O, M, "bu.");
-}
-
-void TDDataStructures::print(std::ostream &O, const Module *M) const {
- if (DontPrintAnything) return;
- printCollection(*this, O, M, "td.");
-}
-
-void CompleteBUDataStructures::print(std::ostream &O, const Module *M) const {
- if (DontPrintAnything) return;
- printCollection(*this, O, M, "cbu.");
-}
-
-
-void EquivClassGraphs::print(std::ostream &O, const Module *M) const {
- if (DontPrintAnything) return;
- printCollection(*this, O, M, "eq.");
-}
-
diff --git a/lib/Analysis/DataStructure/Steensgaard.cpp b/lib/Analysis/DataStructure/Steensgaard.cpp
deleted file mode 100644
index 5ff3c3f852..0000000000
--- a/lib/Analysis/DataStructure/Steensgaard.cpp
+++ /dev/null
@@ -1,278 +0,0 @@
-//===- Steensgaard.cpp - Context Insensitive Alias Analysis ---------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This pass uses the data structure graphs to implement a simple context
-// insensitive alias analysis. It does this by computing the local analysis
-// graphs for all of the functions, then merging them together into a single big
-// graph without cloning.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Analysis/DataStructure/DataStructure.h"
-#include "llvm/Analysis/DataStructure/DSGraph.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/Passes.h"
-#include "llvm/Module.h"
-#include "llvm/Support/Debug.h"
-#include <ostream>
-using namespace llvm;
-
-namespace {
- class Steens : public ModulePass, public AliasAnalysis {
- DSGraph *ResultGraph;
-
- EquivalenceClasses<GlobalValue*> GlobalECs; // Always empty
- public:
- Steens() : ResultGraph(0) {}
- ~Steens() {
- releaseMyMemory();
- assert(ResultGraph == 0 && "releaseMemory not called?");
- }
-
- //------------------------------------------------
- // Implement the Pass API
- //
-
- // run - Build up the result graph, representing the pointer graph for the
- // program.
- //
- bool runOnModule(Module &M);
-
- virtual void releaseMyMemory() { delete ResultGraph; ResultGraph = 0; }
-
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AliasAnalysis::getAnalysisUsage(AU);
- AU.setPreservesAll(); // Does not transform code...
- AU.addRequired<LocalDataStructures>(); // Uses local dsgraph
- }
-
- // print - Implement the Pass::print method...
- void print(OStream O, const Module *M) const {
- if (O.stream()) print(*O.stream(), M);
- }
- void print(std::ostream &O, const Module *M) const {
- assert(ResultGraph && "Result graph has not yet been computed!");
- ResultGraph->writeGraphToFile(O, "steensgaards");
- }
-
- //------------------------------------------------
- // Implement the AliasAnalysis API
- //
-
- AliasResult alias(const Value *V1, unsigned V1Size,
- const Value *V2, unsigned V2Size);
-
- virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
- virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
-
- private:
- void ResolveFunctionCall(Function *F, const DSCallSite &Call,
- DSNodeHandle &RetVal);
- };
-
- // Register the pass...
- RegisterPass<Steens> X("steens-aa",
- "Steensgaard's alias analysis (DSGraph based)");
-
- // Register as an implementation of AliasAnalysis
- RegisterAnalysisGroup<AliasAnalysis> Y(X);
-}
-
-ModulePass *llvm::createSteensgaardPass() { return new Steens(); }
-
-/// ResolveFunctionCall - Resolve the actual arguments of a call to function F
-/// with the specified call site descriptor. This function links the arguments
-/// and the return value for the call site context-insensitively.
-///
-void Steens::ResolveFunctionCall(Function *F, const DSCallSite &Call,
- DSNodeHandle &RetVal) {
- assert(ResultGraph != 0 && "Result graph not allocated!");
- DSGraph::ScalarMapTy &ValMap = ResultGraph->getScalarMap();
-
- // Handle the return value of the function...
- if (Call.getRetVal().getNode() && RetVal.getNode())
- RetVal.mergeWith(Call.getRetVal());
-
- // Loop over all pointer arguments, resolving them to their provided pointers
- unsigned PtrArgIdx = 0;
- for (Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
- AI != AE && PtrArgIdx < Call.getNumPtrArgs(); ++AI) {
- DSGraph::ScalarMapTy::iterator I = ValMap.find(AI);
- if (I != ValMap.end()) // If its a pointer argument...
- I->second.mergeWith(Call.getPtrArg(PtrArgIdx++));
- }
-}
-
-
-/// run - Build up the result graph, representing the pointer graph for the
-/// program.
-///
-bool Steens::runOnModule(Module &M) {
- InitializeAliasAnalysis(this);
- assert(ResultGraph == 0 && "Result graph already allocated!");
- LocalDataStructures &LDS = getAnalysis<LocalDataStructures>();
-
- // Create a new, empty, graph...
- ResultGraph = new DSGraph(GlobalECs, getTargetData());
- ResultGraph->spliceFrom(LDS.getGlobalsGraph());
-
- // Loop over the rest of the module, merging graphs for non-external functions
- // into this graph.
- //
- for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
- if (!I->isExternal())
- ResultGraph->spliceFrom(LDS.getDSGraph(*I));
-
- ResultGraph->removeTriviallyDeadNodes();
-
- // FIXME: Must recalculate and use the Incomplete markers!!
-
- // Now that we have all of the graphs inlined, we can go about eliminating
- // call nodes...
- //
- std::list<DSCallSite> &Calls = ResultGraph->getAuxFunctionCalls();
- assert(Calls.empty() && "Aux call list is already in use??");
-
- // Start with a copy of the original call sites.
- Calls = ResultGraph->getFunctionCalls();
-
- for (std::list<DSCallSite>::iterator CI = Calls.begin(), E = Calls.end();
- CI != E;) {
- DSCallSite &CurCall = *CI++;
-
- // Loop over the called functions, eliminating as many as possible...
- std::vector<Function*> CallTargets;
- if (CurCall.isDirectCall())
- CallTargets.push_back(CurCall.getCalleeFunc());
- else
- CurCall.getCalleeNode()->addFullFunctionList(CallTargets);
-
- for (unsigned c = 0; c != CallTargets.size(); ) {
- // If we can eliminate this function call, do so!
- Function *F = CallTargets[c];
- if (!F->isExternal()) {
- ResolveFunctionCall(F, CurCall, ResultGraph->getReturnNodes()[F]);
- CallTargets[c] = CallTargets.back();
- CallTargets.pop_back();
- } else
- ++c; // Cannot eliminate this call, skip over it...
- }
-
- if (CallTargets.empty()) { // Eliminated all calls?
- std::list<DSCallSite>::iterator I = CI;
- Calls.erase(--I); // Remove entry
- }
- }
-
- // Remove our knowledge of what the return values of the functions are, except
- // for functions that are externally visible from this module (e.g. main). We
- // keep these functions so that their arguments are marked incomplete.
- for (DSGraph::ReturnNodesTy::iterator I =
- ResultGraph->getReturnNodes().begin(),
- E = ResultGraph->getReturnNodes().end(); I != E; )
- if (I->first->hasInternalLinkage())
- ResultGraph->getReturnNodes().erase(I++);
- else
- ++I;
-
- // Update the "incomplete" markers on the nodes, ignoring unknownness due to
- // incoming arguments...
- ResultGraph->maskIncompleteMarkers();
- ResultGraph->markIncompleteNodes(DSGraph::IgnoreGlobals |
- DSGraph::MarkFormalArgs);
-
- // Remove any nodes that are dead after all of the merging we have done...
- // FIXME: We should be able to disable the globals graph for steens!
- //ResultGraph->removeDeadNodes(DSGraph::KeepUnreachableGlobals);
-
- print(DOUT, &M);
- return false;
-}
-
-AliasAnalysis::AliasResult Steens::alias(const Value *V1, unsigned V1Size,
- const Value *V2, unsigned V2Size) {
- assert(ResultGraph && "Result graph has not been computed yet!");
-
- DSGraph::ScalarMapTy &GSM = ResultGraph->getScalarMap();
-
- DSGraph::ScalarMapTy::iterator I = GSM.find(const_cast<Value*>(V1));
- DSGraph::ScalarMapTy::iterator J = GSM.find(const_cast<Value*>(V2));
- if (I != GSM.end() && !I->second.isNull() &&
- J != GSM.end() && !J->second.isNull()) {
- DSNodeHandle &V1H = I->second;
- DSNodeHandle &V2H = J->second;
-
- // If at least one of the nodes is complete, we can say something about
- // this. If one is complete and the other isn't, then they are obviously
- // different nodes. If they are both complete, we can't say anything
- // useful.
- if (I->second.getNode()->isComplete() ||
- J->second.getNode()->isComplete()) {
- // If the two pointers point to different data structure graph nodes, they
- // cannot alias!
- if (V1H.getNode() != V2H.getNode())
- return NoAlias;
-
- // See if they point to different offsets... if so, we may be able to
- // determine that they do not alias...
- unsigned O1 = I->second.getOffset(), O2 = J->second.getOffset();
- if (O1 != O2) {
- if (O2 < O1) { // Ensure that O1 <= O2
- std::swap(V1, V2);
- std::swap(O1, O2);
- std::swap(V1Size, V2Size);
- }
-
- if (O1+V1Size <= O2)
- return NoAlias;
- }
- }
- }
-
- // If we cannot determine alias properties based on our graph, fall back on
- // some other AA implementation.
- //
- return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
-}
-
-AliasAnalysis::ModRefResult
-Steens::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
- AliasAnalysis::ModRefResult Result = ModRef;
-
- // Find the node in question.
- DSGraph::ScalarMapTy &GSM = ResultGraph->getScalarMap();
- DSGraph::ScalarMapTy::iterator I = GSM.find(P);
-
- if (I != GSM.end() && !I->second.isNull()) {
- DSNode *N = I->second.getNode();
- if (N->isComplete()) {
- // If this is a direct call to an external function, and if the pointer
- // points to a complete node, the external function cannot modify or read
- // the value (we know it's not passed out of the program!).
- if (Function *F = CS.getCalledFunction())
- if (F->isExternal())
- return NoModRef;
-
- // Otherwise, if the node is complete, but it is only M or R, return this.
- // This can be useful for globals that should be marked const but are not.
- if (!N->isModified())
- Result = (ModRefResult)(Result & ~Mod);
- if (!N->isRead())
- Result = (ModRefResult)(Result & ~Ref);
- }
- }
-
- return (ModRefResult)(Result & AliasAnalysis::getModRefInfo(CS, P, Size));
-}
-
-AliasAnalysis::ModRefResult
-Steens::getModRefInfo(CallSite CS1, CallSite CS2)
-{
- return AliasAnalysis::getModRefInfo(CS1,CS2);
-}
diff --git a/lib/Analysis/DataStructure/TopDownClosure.cpp b/lib/Analysis/DataStructure/TopDownClosure.cpp
deleted file mode 100644
index 71bf271a6e..0000000000
--- a/lib/Analysis/DataStructure/TopDownClosure.cpp
+++ /dev/null
@@ -1,466 +0,0 @@
-//===- TopDownClosure.cpp - Compute the top-down interprocedure closure ---===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the TDDataStructures class, which represents the
-// Top-down Interprocedural closure of the data structure graph over the
-// program. This is useful (but not strictly necessary?) for applications
-// like pointer analysis.
-//
-//===----------------------------------------------------------------------===//
-#define DEBUG_TYPE "td_dsa"
-#include "llvm/Analysis/DataStructure/DataStructure.h"
-#include "llvm/Module.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Analysis/DataStructure/DSGraph.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/Timer.h"
-#include "llvm/ADT/Statistic.h"
-using namespace llvm;
-
-#if 0
-#define TIME_REGION(VARNAME, DESC) \
- NamedRegionTimer VARNAME(DESC)
-#else
-#define TIME_REGION(VARNAME, DESC)
-#endif
-
-namespace {
- RegisterPass<TDDataStructures> // Register the pass
- Y("tddatastructure", "Top-down Data Structure Analysis");
-
- Statistic NumTDInlines("tddatastructures", "Number of graphs inlined");
-}
-
-void TDDataStructures::markReachableFunctionsExternallyAccessible(DSNode *N,
- hash_set<DSNode*> &Visited) {
- if (!N || Visited.count(N)) return;
- Visited.insert(N);
-
- for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i) {
- DSNodeHandle &NH = N->getLink(i*N->getPointerSize());
- if (DSNode *NN = NH.getNode()) {
- std::vector<Function*> Functions;
- NN->addFullFunctionList(Functions);
- ArgsRemainIncomplete.insert(Functions.begin(), Functions.end());
- markReachableFunctionsExternallyAccessible(NN, Visited);
- }
- }
-}
-
-
-// run - Calculate the top down data structure graphs for each function in the
-// program.
-//
-bool TDDataStructures::runOnModule(Module &M) {
- BUInfo = &getAnalysis<BUDataStructures>();
- GlobalECs = BUInfo->getGlobalECs();
- GlobalsGraph = new DSGraph(BUInfo->getGlobalsGraph(), GlobalECs);
- GlobalsGraph->setPrintAuxCalls();
-
- // Figure out which functions must not mark their arguments complete because
- // they are accessible outside this compilation unit. Currently, these
- // arguments are functions which are reachable by global variables in the
- // globals graph.
- const DSScalarMap &GGSM = GlobalsGraph->getScalarMap();
- hash_set<DSNode*> Visited;
- for (DSScalarMap::global_iterator I=GGSM.global_begin(), E=GGSM.global_end();
- I != E; ++I) {
- DSNode *N = GGSM.find(*I)->second.getNode();
- if (N->isIncomplete())
- markReachableFunctionsExternallyAccessible(N, Visited);
- }
-
- // Loop over unresolved call nodes. Any functions passed into (but not
- // returned!) from unresolvable call nodes may be invoked outside of the
- // current module.
- for (DSGraph::afc_iterator I = GlobalsGraph->afc_begin(),
- E = GlobalsGraph->afc_end(); I != E; ++I)
- for (unsigned arg = 0, e = I->getNumPtrArgs(); arg != e; ++arg)
- markReachableFunctionsExternallyAccessible(I->getPtrArg(arg).getNode(),
- Visited);
- Visited.clear();
-
- // Functions without internal linkage also have unknown incoming arguments!
- for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
- if (!I->isExternal() && !I->hasInternalLinkage())
- ArgsRemainIncomplete.insert(I);
-
- // We want to traverse the call graph in reverse post-order. To do this, we
- // calculate a post-order traversal, then reverse it.
- hash_set<DSGraph*> VisitedGraph;
- std::vector<DSGraph*> PostOrder;
-
-#if 0
-{TIME_REGION(XXX, "td:Copy graphs");
-
- // Visit each of the graphs in reverse post-order now!
- for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
- if (!I->isExternal())
- getOrCreateDSGraph(*I);
- return false;
-}
-#endif
-
-
-{TIME_REGION(XXX, "td:Compute postorder");
-
- // Calculate top-down from main...
- if (Function *F = M.getMainFunction())
- ComputePostOrder(*F, VisitedGraph, PostOrder);
-
- // Next calculate the graphs for each unreachable function...
- for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
- ComputePostOrder(*I, VisitedGraph, PostOrder);
-
- VisitedGraph.clear(); // Release memory!
-}
-
-{TIME_REGION(XXX, "td:Inline stuff");
-
- // Visit each of the graphs in reverse post-order now!
- while (!PostOrder.empty()) {
- InlineCallersIntoGraph(*PostOrder.back());
- PostOrder.pop_back();
- }
-}
-
- // Free the IndCallMap.
- while (!IndCallMap.empty()) {
- delete IndCallMap.begin()->second;
- IndCallMap.erase(IndCallMap.begin());
- }
-
-
- ArgsRemainIncomplete.clear();
- GlobalsGraph->removeTriviallyDeadNodes();
-
- return false;
-}
-
-
-DSGraph &TDDataStructures::getOrCreateDSGraph(Function &F) {
- DSGraph *&G = DSInfo[&F];
- if (G == 0) { // Not created yet? Clone BU graph...
- G = new DSGraph(getAnalysis<BUDataStructures>().getDSGraph(F), GlobalECs,
- DSGraph::DontCloneAuxCallNodes);
- assert(G->getAuxFunctionCalls().empty() && "Cloned aux calls?");
- G->setPrintAuxCalls();
- G->setGlobalsGraph(GlobalsGraph);
-
- // Note that this graph is the graph for ALL of the function in the SCC, not
- // just F.
- for (DSGraph::retnodes_iterator RI = G->retnodes_begin(),
- E = G->retnodes_end(); RI != E; ++RI)
- if (RI->first != &F)
- DSInfo[RI->first] = G;
- }
- return *G;
-}
-
-
-void TDDataStructures::ComputePostOrder(Function &F,hash_set<DSGraph*> &Visited,
- std::vector<DSGraph*> &PostOrder) {
- if (F.isExternal()) return;
- DSGraph &G = getOrCreateDSGraph(F);
- if (Visited.count(&G)) return;
- Visited.insert(&G);
-
- // Recursively traverse all of the callee graphs.
- for (DSGraph::fc_iterator CI = G.fc_begin(), CE = G.fc_end(); CI != CE; ++CI){
- Instruction *CallI = CI->getCallSite().getInstruction();
- for (BUDataStructures::callee_iterator I = BUInfo->callee_begin(CallI),
- E = BUInfo->callee_end(CallI); I != E; ++I)
- ComputePostOrder(*I->second, Visited, PostOrder);
- }
-
- PostOrder.push_back(&G);
-}
-
-
-
-
-
-// releaseMemory - If the pass pipeline is done with this pass, we can release
-// our memory... here...
-//
-// FIXME: This should be releaseMemory and will work fine, except that LoadVN
-// has no way to extend the lifetime of the pass, which screws up ds-aa.
-//
-void TDDataStructures::releaseMyMemory() {
- for (hash_map<Function*, DSGraph*>::iterator I = DSInfo.begin(),
- E = DSInfo.end(); I != E; ++I) {
- I->second->getReturnNodes().erase(I->first);
- if (I->second->getReturnNodes().empty())
- delete I->second;
- }
-
- // Empty map so next time memory is released, data structures are not
- // re-deleted.
- DSInfo.clear();
- delete GlobalsGraph;
- GlobalsGraph = 0;
-}
-
-/// InlineCallersIntoGraph - Inline all of the callers of the specified DS graph
-/// into it, then recompute completeness of nodes in the resultant graph.
-void TDDataStructures::InlineCallersIntoGraph(DSGraph &DSG) {
- // Inline caller graphs into this graph. First step, get the list of call
- // sites that call into this graph.
- std::vector<CallerCallEdge> EdgesFromCaller;
- std::map<DSGraph*, std::vector<CallerCallEdge> >::iterator
- CEI = CallerEdges.find(&DSG);
- if (CEI != CallerEdges.end()) {
- std::swap(CEI->second, EdgesFromCaller);
- CallerEdges.erase(CEI);
- }
-
- // Sort the caller sites to provide a by-caller-graph ordering.
- std::sort(EdgesFromCaller.begin(), EdgesFromCaller.end());
-
-
- // Merge information from the globals graph into this graph. FIXME: This is
- // stupid. Instead of us cloning information from the GG into this graph,
- // then having RemoveDeadNodes clone it back, we should do all of this as a
- // post-pass over all of the graphs. We need to take cloning out of
- // removeDeadNodes and gut removeDeadNodes at the same time first though. :(
- {
- DSGraph &GG = *DSG.getGlobalsGraph();
- ReachabilityCloner RC(DSG, GG,
- DSGraph::DontCloneCallNodes |
- DSGraph::DontCloneAuxCallNodes);
- for (DSScalarMap::global_iterator
- GI = DSG.getScalarMap().global_begin(),
- E = DSG.getScalarMap().global_end(); GI != E; ++GI)
- RC.getClonedNH(GG.getNodeForValue(*GI));
- }
-
- DOUT << "[TD] Inlining callers into '" << DSG.getFunctionNames() << "'\n";
-
- // Iteratively inline caller graphs into this graph.
- while (!EdgesFromCaller.empty()) {
- DSGraph &CallerGraph = *EdgesFromCaller.back().CallerGraph;
-
- // Iterate through all of the call sites of this graph, cloning and merging
- // any nodes required by the call.
- ReachabilityCloner RC(DSG, CallerGraph,
- DSGraph::DontCloneCallNodes |
- DSGraph::DontCloneAuxCallNodes);
-
- // Inline all call sites from this caller graph.
- do {
- const DSCallSite &CS = *EdgesFromCaller.back().CS;
- Function &CF = *EdgesFromCaller.back().CalledFunction;
- DOUT << " [TD] Inlining graph into Fn '" << CF.getName() << "' from ";
- if (CallerGraph.getReturnNodes().empty())
- DOUT << "SYNTHESIZED INDIRECT GRAPH";
- else
- DOUT << "Fn '" << CS.getCallSite().getInstruction()->
- getParent()->getParent()->getName() << "'";
- DOUT << ": " << CF.getFunctionType()->getNumParams() << " args\n";
-
- // Get the formal argument and return nodes for the called function and
- // merge them with the cloned subgraph.
- DSCallSite T1 = DSG.getCallSiteForArguments(CF);
- RC.mergeCallSite(T1, CS);
- ++NumTDInlines;
-
- EdgesFromCaller.pop_back();
- } while (!EdgesFromCaller.empty() &&
- EdgesFromCaller.back().CallerGraph == &CallerGraph);
- }
-
-
- // Next, now that this graph is finalized, we need to recompute the
- // incompleteness markers for this graph and remove unreachable nodes.
- DSG.maskIncompleteMarkers();
-
- // If any of the functions has incomplete incoming arguments, don't mark any
- // of them as complete.
- bool HasIncompleteArgs = false;
- for (DSGraph::retnodes_iterator I = DSG.retnodes_begin(),
- E = DSG.retnodes_end(); I != E; ++I)
- if (ArgsRemainIncomplete.count(I->first)) {
- HasIncompleteArgs = true;
- break;
- }
-
- // Recompute the Incomplete markers. Depends on whether args are complete
- unsigned Flags
- = HasIncompleteArgs ? DSGraph::MarkFormalArgs : DSGraph::IgnoreFormalArgs;
- DSG.markIncompleteNodes(Flags | DSGraph::IgnoreGlobals);
-
- // Delete dead nodes. Treat globals that are unreachable as dead also.
- DSG.removeDeadNodes(DSGraph::RemoveUnreachableGlobals);
-
- // We are done with computing the current TD Graph! Finally, before we can
- // finish processing this function, we figure out which functions it calls and
- // records these call graph edges, so that we have them when we process the
- // callee graphs.
- if (DSG.fc_begin() == DSG.fc_end()) return;
-
- // Loop over all the call sites and all the callees at each call site, and add
- // edges to the CallerEdges structure for each callee.
- for (DSGraph::fc_iterator CI = DSG.fc_begin(), E = DSG.fc_end();
- CI != E; ++CI) {
-
- // Handle direct calls efficiently.
- if (CI->isDirectCall()) {
- if (!CI->getCalleeFunc()->isExternal() &&
- !DSG.getReturnNodes().count(CI->getCalleeFunc()))
- CallerEdges[&getDSGraph(*CI->getCalleeFunc())]
- .push_back(CallerCallEdge(&DSG, &*CI, CI->getCalleeFunc()));
- continue;
- }
-
- Instruction *CallI = CI->getCallSite().getInstruction();
- // For each function in the invoked function list at this call site...
- BUDataStructures::callee_iterator IPI =
- BUInfo->callee_begin(CallI), IPE = BUInfo->callee_end(CallI);
-
- // Skip over all calls to this graph (SCC calls).
- while (IPI != IPE && &getDSGraph(*IPI->second) == &DSG)
- ++IPI;
-
- // All SCC calls?
- if (IPI == IPE) continue;
-
- Function *FirstCallee = IPI->second;
- ++IPI;
-
- // Skip over more SCC calls.
- while (IPI != IPE && &getDSGraph(*IPI->second) == &DSG)
- ++IPI;
-
- // If there is exactly one callee from this call site, remember the edge in
- // CallerEdges.
- if (IPI == IPE) {
- if (!FirstCallee->isExternal())
- CallerEdges[&getDSGraph(*FirstCallee)]
- .push_back(CallerCallEdge(&DSG, &*CI, FirstCallee));
- continue;
- }
-
- // Otherwise, there are multiple callees from this call site, so it must be
- // an indirect call. Chances are that there will be other call sites with
- // this set of targets. If so, we don't want to do M*N inlining operations,
- // so we build up a new, private, graph that represents the calls of all
- // calls to this set of functions.
- std::vector<Function*> Callees;
- for (BUDataStructures::ActualCalleesTy::const_iterator I =
- BUInfo->callee_begin(CallI), E = BUInfo->callee_end(CallI);
- I != E; ++I)
- if (!I->second->isExternal())
- Callees.push_back(I->second);
- std::sort(Callees.begin(), Callees.end());
-
- std::map<std::vector<Function*>, DSGraph*>::iterator IndCallRecI =
- IndCallMap.lower_bound(Callees);
-
- DSGraph *IndCallGraph;
-
- // If we already have this graph, recycle it.
- if (IndCallRecI != IndCallMap.end() && IndCallRecI->first == Callees) {
- DOUT << " [TD] *** Reuse of indcall graph for " << Callees.size()
- << " callees!\n";
- IndCallGraph = IndCallRecI->second;
- } else {
- // Otherwise, create a new DSGraph to represent this.
- IndCallGraph = new DSGraph(DSG.getGlobalECs(), DSG.getTargetData());
-
- // Make a nullary dummy call site, which will eventually get some content
- // merged into it. The actual callee function doesn't matter here, so we
- // just pass it something to keep the ctor happy.
- std::vector<DSNodeHandle> ArgDummyVec;
- DSCallSite DummyCS(CI->getCallSite(), DSNodeHandle(), Callees[0]/*dummy*/,
- ArgDummyVec);
- IndCallGraph->getFunctionCalls().push_back(DummyCS);
-
- IndCallRecI = IndCallMap.insert(IndCallRecI,
- std::make_pair(Callees, IndCallGraph));
-
- // Additionally, make sure that each of the callees inlines this graph
- // exactly once.
- DSCallSite *NCS = &IndCallGraph->getFunctionCalls().front();
- for (unsigned i = 0, e = Callees.size(); i != e; ++i) {
- DSGraph& CalleeGraph = getDSGraph(*Callees[i]);
- if (&CalleeGraph != &DSG)
- CallerEdges[&CalleeGraph].push_back(CallerCallEdge(IndCallGraph, NCS,
- Callees[i]));
- }
- }
-
- // Now that we know which graph to use for this, merge the caller
- // information into the graph, based on information from the call site.
- ReachabilityCloner RC(*IndCallGraph, DSG, 0);
- RC.mergeCallSite(IndCallGraph->getFunctionCalls().front(), *CI);
- }
-}
-
-
-static const Function *getFnForValue(const Value *V) {
- if (const Instruction *I = dyn_cast<Instruction>(V))
- return I->getParent()->getParent();
- else if (const Argument *A = dyn_cast<Argument>(V))
- return A->getParent();
- else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
- return BB->getParent();
- return 0;
-}
-
-void TDDataStructures::deleteValue(Value *V) {
- if (const Function *F = getFnForValue(V)) { // Function local value?
- // If this is a function local value, just delete it from the scalar map!
- getDSGraph(*F).getScalarMap().eraseIfExists(V);
- return;
- }
-
- if (Function *F = dyn_cast<Function>(V)) {
- assert(getDSGraph(*F).getReturnNodes().size() == 1 &&
- "cannot handle scc's");
- delete DSInfo[F];
- DSInfo.erase(F);
- return;
- }
-
- assert(!isa<GlobalVariable>(V) && "Do not know how to delete GV's yet!");
-}
-
-void TDDataStructures::copyValue(Value *From, Value *To) {
- if (From == To) return;
- if (const Function *F = getFnForValue(From)) { // Function local value?
- // If this is a function local value, just delete it from the scalar map!
- getDSGraph(*F).getScalarMap().copyScalarIfExists(From, To);
- return;
- }
-
- if (Function *FromF = dyn_cast<Function>(From)) {
- Function *ToF = cast<Function>(To);
- assert(!DSInfo.count(ToF) && "New Function already exists!");
- DSGraph *NG = new DSGraph(getDSGraph(*FromF), GlobalECs);
- DSInfo[ToF] = NG;
- assert(NG->getReturnNodes().size() == 1 && "Cannot copy SCC's yet!");
-
- // Change the Function* is the returnnodes map to the ToF.
- DSNodeHandle Ret = NG->retnodes_begin()->second;
- NG->getReturnNodes().clear();
- NG->getReturnNodes()[ToF] = Ret;
- return;
- }
-
- if (const Function *F = getFnForValue(To)) {
- DSGraph &G = getDSGraph(*F);
- G.getScalarMap().copyScalarIfExists(From, To);
- return;
- }
-
- DOUT << *From;
- DOUT << *To;
- assert(0 && "Do not know how to copy this yet!");
- abort();
-}