aboutsummaryrefslogtreecommitdiff
path: root/www/comparison.html
blob: 0fb5043ea1b0dcdbb20746fb58e9ce9a18fa9164 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" 
          "http://www.w3.org/TR/html4/strict.dtd">
<!-- Material used from: HTML 4.01 specs: http://www.w3.org/TR/html401/ -->
<html>
<head>
  <META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1" />
  <title>Comparing clang to other open source compilers</title>
  <link type="text/css" rel="stylesheet" href="menu.css" />
  <link type="text/css" rel="stylesheet" href="content.css" />
</head>
<body>
  <!--#include virtual="menu.html.incl"-->
  <div id="content">
    <h1>Clang vs Other Open Source Compilers</h1>
    
    <p>Building an entirely new compiler front-end is a big task, and it isn't
       always clear to people why we decided to do this.  Here we compare clang
       and its goals to other open source compiler front-ends that are
       available.  We restrict the discussion to very specific objective points
       to avoid controversy where possible.  Also, software is infinitely
       mutable, so we don't talk about little details that can be fixed with 
       a reasonable amount of effort: we'll talk about issues that are 
       difficult to fix for architectural or political reasons.</p>
       
    <p>The goal of this list is to describe how differences in goals lead to
       different strengths and weaknesses, not to make some compiler look bad.
       This will hopefully help you to evaluate whether using clang is a good
       idea for your personal goals.  Because we don't know specifically what
       <em>you</em> want to do, we describe the features of these compilers in
       terms of <em>our</em> goals: if you are only interested in static
       analysis, you may not care that something lacks codegen support, for
       example.</p>
       
    <p>Please email cfe-dev if you think we should add another compiler to this
       list or if you think some characterization is unfair here.</p>
    
    <ul>
    <li><a href="#gcc">Clang vs GCC</a> (GNU Compiler Collection)</li>
    <li><a href="#elsa">Clang vs Elsa</a> (Elkhound-based C++ Parser)</li>
    <li><a href="#pcc">Clang vs PCC</a> (Portable C Compiler)</li>
    </ul>
    
    
    <!--=====================================================================-->
    <h2><a name="gcc">Clang vs GCC (GNU Compiler Collection)</a></h2>
    <!--=====================================================================-->
    
    <p>Pro's of GCC vs clang:</p>
    
    <ul>
    <li>GCC supports languages that clang does not aim to, such as Java, Ada,
        FORTRAN, etc.</li>
    <li>GCC front-ends are very mature and already support C/C++/ObjC and all
        the variants we are interested in.  clang's support for C++ in
        particular is nowhere near what GCC supports.</li>
    <li>GCC's codegen is much more mature than clang's right now.  clang is
        only capable of codegen for small and simple projects and does not yet
        support debug info. GCC also supports more targets than LLVM.</li>
    <li>GCC is popular and widely adopted.</li>
    <li>GCC does not require a C++ compiler to build it.</li>
    </ul>
    
    <p>Pro's of clang vs GCC:</p>
    
    <ul>
    <li>The Clang ASTs and design are intended to be <a 
        href="features.html#simplecode">easily understandable</a> by
        anyone who is familiar with the languages involved and who has a basic
        understanding of how a compiler works.  GCC has a very old codebase
        which presents a steep learning curve to new developers.</li>
    <li>Clang is designed as an API from its inception, allowing it to be reused
        by source analysis tools, refactoring, IDEs (etc) as well as for code
        generation.  GCC is built as a monolithic static compiler, which makes
        it extremely difficult to use as an API and integrate into other tools.
        Further, its historic design and <a 
        href="http://gcc.gnu.org/ml/gcc/2007-11/msg00460.html">current</a>
        <a href="http://gcc.gnu.org/ml/gcc/2004-12/msg00888.html">policy</a> 
        makes it difficult to decouple the front-end from the rest of the
        compiler. </li>
    <li>Various GCC design decisions make it very difficult to reuse: its build
        system is difficult to modify, you can't link multiple targets into one
        binary, you can't link multiple front-ends into one binary, it uses a
        custom garbage collector, uses global variables extensively, is not
        reentrant or multi-threadable, etc.  Clang has none of these problems.
        </li>
    <li>For every token, clang tracks information about where it was written and
        where it was ultimately expanded into if it was involved in a macro.
        GCC does not track information about macro instantiations when parsing
        source code.  This makes it very difficult for source rewriting tools
        (e.g. for refactoring) to work in the presence of (even simple) 
        macros.</li>
    <li>Clang does not implicitly simplify code as it parses it like GCC does.
        Doing so causes many problems for source analysis tools: as one simple
        example, if you write "x-x" in your source code, the GCC AST will
        contain "0", with no mention of 'x'.  This is extremely bad for a
        refactoring tool that wants to rename 'x'.</li>
    <li>Clang can serialize its AST out to disk and read it back into another 
        program, which is useful for whole program analysis.  GCC does not have
        this, but its current PCH mechanism is close.  However, GCC's current 
        PCH support is architecturally only able to read the dump back into 
        the exact same executable as the one that produced it.</li>
    <li>Clang is <a href="features.html#performance">much faster and uses far
        less memory</a> than GCC.</li>
    <li>Clang aims to provide extremely clear and concise diagnostics (error and
        warning messages), and includes support for <a
        href="features.html#expressivediags">expressive diagnostics</a>.  GCC's
        warnings are acceptable, but are often confusing and it does not support
        expressive diagnostics.  Clang also preserves typedefs in diagnostics
        consistently.</li>
    <li>GCC is licensed under the GPL license.  clang uses a BSD license, which
        allows it to be used by projects that do not themselves want to be
        GPL.</li>
    <li>Clang inherits a number of features from its use of LLVM as a backend,
        including support for a bytecode representation for intermediate code,
        pluggable optimizers, link-time optimization support, Just-In-Time
        compilation, etc.</li>
    </ul>

    <!--=====================================================================-->
    <h2><a name="elsa">Clang vs Elsa (Elkhound-based C++ Parser)</a></h2>
    <!--=====================================================================-->
    
    <p>Pro's of Elsa vs clang:</p>
    
    <ul>
    <li>Elsa's support for C++ is far beyond what clang provides.  If you need
        C++ support in the next year, Elsa is a great way to get it.  That said,
        Elsa is missing important support for templates and other pieces: for 
        example, it is not capable of compiling the GCC STL headers from any
        version newer than GCC 3.4.</li>
    <li>Elsa's parser and AST is designed to be easily extensible by adding
        grammar rules.  Clang has a very simple and easily hackable parser,
        but requires you to write C++ code to do it.</li>
    </ul>
    
    <p>Pro's of clang vs Elsa:</p>
    
    <ul>
    <li>The Elsa community is extremely small and major development work seems
        to have ceased in 2005, though it continues to be used by other projects
        (e.g. Oink).  Clang has a vibrant community including developers that
        are paid to work on it full time.  In practice this means that you can
        file bugs against Clang and they will often be fixed for you.  If you
        use Elsa, you are (mostly) on your own for bug fixes and feature
        enhancements.</li>
    <li>Elsa is not built as a stack of reusable libraries like clang is.  It is
        very difficult to use part of elsa without the whole front-end.  For
        example, you cannot use Elsa to parse C/ObjC code without building an
        AST.  You can do this in Clang and it is much faster than building an
        AST.</li>
    <li>Elsa does not have an integrated preprocessor, which makes it extremely
        difficult to accurately map from a source location in the AST back to
        its original position before preprocessing.  Like GCC, it does not keep
        track of macro expansions.</li>
    <li>Elsa is slower and uses more memory than GCC, which requires far more
        space and time than clang.</li>
    <li>Elsa only does partial semantic analysis.  It is intended to work on
        code that is already validated by GCC, so it does not do many semantic
        checks required by the languages it implements.</li>
    <li>Elsa does not support Objective-C.</li>
    <li>Elsa does not support native code generation.</li>
    </ul>
    
    <p>Note that there is a fork of Elsa known as "Pork". It addresses some of
       these shortcomings by loosely integrating a preprocessor. This allows it
       to map from a source location in the AST to the original position before
       preprocessing, providing it better support for static analysis and
       refactoring.  For more details, please see the Pork page.</p>

    
    <!--=====================================================================-->
    <h2><a name="pcc">Clang vs PCC (Portable C Compiler)</a></h2>
    <!--=====================================================================-->
    
    <p>Pro's of PCC vs clang:</p>
    
    <ul>
    <li>The PCC source base is very small and builds quickly with just a C
        compiler.</li>
    </ul>
    
    <p>Pro's of clang vs PCC:</p>
    
    <ul>
    <li>PCC dates from the 1970's and has been dormant for most of that time.
        The clang + llvm communities are very active.</li>
    <li>PCC doesn't support C99, Objective-C, and doesn't aim to support
        C++.</li>
    <li>PCC's code generation is very limited compared to LLVM.  It produces very
        inefficient code and does not support many important targets.</li>
    <li>Like Elsa, PCC's does not have an integrated preprocessor, making it
        extremely difficult to use it for source analysis tools.</li>
  </div>
</body>
</html>