aboutsummaryrefslogtreecommitdiff
path: root/lib/Sema/SemaType.cpp
blob: 0959f7d66adf3b4d7976b349d42ee04f2cfd93ef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file implements type-related semantic analysis.
//
//===----------------------------------------------------------------------===//

#include "clang/Sema/SemaInternal.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTMutationListener.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/TypeLoc.h"
#include "clang/AST/TypeLocVisitor.h"
#include "clang/Basic/OpenCL.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Parse/ParseDiagnostic.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/DelayedDiagnostic.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/Template.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/ErrorHandling.h"
using namespace clang;

/// isOmittedBlockReturnType - Return true if this declarator is missing a
/// return type because this is a omitted return type on a block literal.
static bool isOmittedBlockReturnType(const Declarator &D) {
  if (D.getContext() != Declarator::BlockLiteralContext ||
      D.getDeclSpec().hasTypeSpecifier())
    return false;

  if (D.getNumTypeObjects() == 0)
    return true;   // ^{ ... }

  if (D.getNumTypeObjects() == 1 &&
      D.getTypeObject(0).Kind == DeclaratorChunk::Function)
    return true;   // ^(int X, float Y) { ... }

  return false;
}

/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
/// doesn't apply to the given type.
static void diagnoseBadTypeAttribute(Sema &S, const AttributeList &attr,
                                     QualType type) {
  bool useExpansionLoc = false;

  unsigned diagID = 0;
  switch (attr.getKind()) {
  case AttributeList::AT_ObjCGC:
    diagID = diag::warn_pointer_attribute_wrong_type;
    useExpansionLoc = true;
    break;

  case AttributeList::AT_ObjCOwnership:
    diagID = diag::warn_objc_object_attribute_wrong_type;
    useExpansionLoc = true;
    break;

  default:
    // Assume everything else was a function attribute.
    diagID = diag::warn_function_attribute_wrong_type;
    break;
  }

  SourceLocation loc = attr.getLoc();
  StringRef name = attr.getName()->getName();

  // The GC attributes are usually written with macros;  special-case them.
  if (useExpansionLoc && loc.isMacroID() && attr.getParameterName()) {
    if (attr.getParameterName()->isStr("strong")) {
      if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
    } else if (attr.getParameterName()->isStr("weak")) {
      if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
    }
  }

  S.Diag(loc, diagID) << name << type;
}

// objc_gc applies to Objective-C pointers or, otherwise, to the
// smallest available pointer type (i.e. 'void*' in 'void**').
#define OBJC_POINTER_TYPE_ATTRS_CASELIST \
    case AttributeList::AT_ObjCGC: \
    case AttributeList::AT_ObjCOwnership

// Function type attributes.
#define FUNCTION_TYPE_ATTRS_CASELIST \
    case AttributeList::AT_NoReturn: \
    case AttributeList::AT_CDecl: \
    case AttributeList::AT_FastCall: \
    case AttributeList::AT_StdCall: \
    case AttributeList::AT_ThisCall: \
    case AttributeList::AT_Pascal: \
    case AttributeList::AT_Regparm: \
    case AttributeList::AT_Pcs: \
    case AttributeList::AT_PnaclCall: \
    case AttributeList::AT_IntelOclBicc \

namespace {
  /// An object which stores processing state for the entire
  /// GetTypeForDeclarator process.
  class TypeProcessingState {
    Sema &sema;

    /// The declarator being processed.
    Declarator &declarator;

    /// The index of the declarator chunk we're currently processing.
    /// May be the total number of valid chunks, indicating the
    /// DeclSpec.
    unsigned chunkIndex;

    /// Whether there are non-trivial modifications to the decl spec.
    bool trivial;

    /// Whether we saved the attributes in the decl spec.
    bool hasSavedAttrs;

    /// The original set of attributes on the DeclSpec.
    SmallVector<AttributeList*, 2> savedAttrs;

    /// A list of attributes to diagnose the uselessness of when the
    /// processing is complete.
    SmallVector<AttributeList*, 2> ignoredTypeAttrs;

  public:
    TypeProcessingState(Sema &sema, Declarator &declarator)
      : sema(sema), declarator(declarator),
        chunkIndex(declarator.getNumTypeObjects()),
        trivial(true), hasSavedAttrs(false) {}

    Sema &getSema() const {
      return sema;
    }

    Declarator &getDeclarator() const {
      return declarator;
    }

    bool isProcessingDeclSpec() const {
      return chunkIndex == declarator.getNumTypeObjects();
    }

    unsigned getCurrentChunkIndex() const {
      return chunkIndex;
    }

    void setCurrentChunkIndex(unsigned idx) {
      assert(idx <= declarator.getNumTypeObjects());
      chunkIndex = idx;
    }

    AttributeList *&getCurrentAttrListRef() const {
      if (isProcessingDeclSpec())
        return getMutableDeclSpec().getAttributes().getListRef();
      return declarator.getTypeObject(chunkIndex).getAttrListRef();
    }

    /// Save the current set of attributes on the DeclSpec.
    void saveDeclSpecAttrs() {
      // Don't try to save them multiple times.
      if (hasSavedAttrs) return;

      DeclSpec &spec = getMutableDeclSpec();
      for (AttributeList *attr = spec.getAttributes().getList(); attr;
             attr = attr->getNext())
        savedAttrs.push_back(attr);
      trivial &= savedAttrs.empty();
      hasSavedAttrs = true;
    }

    /// Record that we had nowhere to put the given type attribute.
    /// We will diagnose such attributes later.
    void addIgnoredTypeAttr(AttributeList &attr) {
      ignoredTypeAttrs.push_back(&attr);
    }

    /// Diagnose all the ignored type attributes, given that the
    /// declarator worked out to the given type.
    void diagnoseIgnoredTypeAttrs(QualType type) const {
      for (SmallVectorImpl<AttributeList*>::const_iterator
             i = ignoredTypeAttrs.begin(), e = ignoredTypeAttrs.end();
           i != e; ++i)
        diagnoseBadTypeAttribute(getSema(), **i, type);
    }

    ~TypeProcessingState() {
      if (trivial) return;

      restoreDeclSpecAttrs();
    }

  private:
    DeclSpec &getMutableDeclSpec() const {
      return const_cast<DeclSpec&>(declarator.getDeclSpec());
    }

    void restoreDeclSpecAttrs() {
      assert(hasSavedAttrs);

      if (savedAttrs.empty()) {
        getMutableDeclSpec().getAttributes().set(0);
        return;
      }

      getMutableDeclSpec().getAttributes().set(savedAttrs[0]);
      for (unsigned i = 0, e = savedAttrs.size() - 1; i != e; ++i)
        savedAttrs[i]->setNext(savedAttrs[i+1]);
      savedAttrs.back()->setNext(0);
    }
  };

  /// Basically std::pair except that we really want to avoid an
  /// implicit operator= for safety concerns.  It's also a minor
  /// link-time optimization for this to be a private type.
  struct AttrAndList {
    /// The attribute.
    AttributeList &first;

    /// The head of the list the attribute is currently in.
    AttributeList *&second;

    AttrAndList(AttributeList &attr, AttributeList *&head)
      : first(attr), second(head) {}
  };
}

namespace llvm {
  template <> struct isPodLike<AttrAndList> {
    static const bool value = true;
  };
}

static void spliceAttrIntoList(AttributeList &attr, AttributeList *&head) {
  attr.setNext(head);
  head = &attr;
}

static void spliceAttrOutOfList(AttributeList &attr, AttributeList *&head) {
  if (head == &attr) {
    head = attr.getNext();
    return;
  }

  AttributeList *cur = head;
  while (true) {
    assert(cur && cur->getNext() && "ran out of attrs?");
    if (cur->getNext() == &attr) {
      cur->setNext(attr.getNext());
      return;
    }
    cur = cur->getNext();
  }
}

static void moveAttrFromListToList(AttributeList &attr,
                                   AttributeList *&fromList,
                                   AttributeList *&toList) {
  spliceAttrOutOfList(attr, fromList);
  spliceAttrIntoList(attr, toList);
}

/// The location of a type attribute.
enum TypeAttrLocation {
  /// The attribute is in the decl-specifier-seq.
  TAL_DeclSpec,
  /// The attribute is part of a DeclaratorChunk.
  TAL_DeclChunk,
  /// The attribute is immediately after the declaration's name.
  TAL_DeclName
};

static void processTypeAttrs(TypeProcessingState &state,
                             QualType &type, TypeAttrLocation TAL,
                             AttributeList *attrs);

static bool handleFunctionTypeAttr(TypeProcessingState &state,
                                   AttributeList &attr,
                                   QualType &type);

static bool handleObjCGCTypeAttr(TypeProcessingState &state,
                                 AttributeList &attr, QualType &type);

static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
                                       AttributeList &attr, QualType &type);

static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
                                      AttributeList &attr, QualType &type) {
  if (attr.getKind() == AttributeList::AT_ObjCGC)
    return handleObjCGCTypeAttr(state, attr, type);
  assert(attr.getKind() == AttributeList::AT_ObjCOwnership);
  return handleObjCOwnershipTypeAttr(state, attr, type);
}

/// Given the index of a declarator chunk, check whether that chunk
/// directly specifies the return type of a function and, if so, find
/// an appropriate place for it.
///
/// \param i - a notional index which the search will start
///   immediately inside
static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
                                                unsigned i) {
  assert(i <= declarator.getNumTypeObjects());

  DeclaratorChunk *result = 0;

  // First, look inwards past parens for a function declarator.
  for (; i != 0; --i) {
    DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
    switch (fnChunk.Kind) {
    case DeclaratorChunk::Paren:
      continue;

    // If we find anything except a function, bail out.
    case DeclaratorChunk::Pointer:
    case DeclaratorChunk::BlockPointer:
    case DeclaratorChunk::Array:
    case DeclaratorChunk::Reference:
    case DeclaratorChunk::MemberPointer:
      return result;

    // If we do find a function declarator, scan inwards from that,
    // looking for a block-pointer declarator.
    case DeclaratorChunk::Function:
      for (--i; i != 0; --i) {
        DeclaratorChunk &blockChunk = declarator.getTypeObject(i-1);
        switch (blockChunk.Kind) {
        case DeclaratorChunk::Paren:
        case DeclaratorChunk::Pointer:
        case DeclaratorChunk::Array:
        case DeclaratorChunk::Function:
        case DeclaratorChunk::Reference:
        case DeclaratorChunk::MemberPointer:
          continue;
        case DeclaratorChunk::BlockPointer:
          result = &blockChunk;
          goto continue_outer;
        }
        llvm_unreachable("bad declarator chunk kind");
      }

      // If we run out of declarators doing that, we're done.
      return result;
    }
    llvm_unreachable("bad declarator chunk kind");

    // Okay, reconsider from our new point.
  continue_outer: ;
  }

  // Ran out of chunks, bail out.
  return result;
}

/// Given that an objc_gc attribute was written somewhere on a
/// declaration *other* than on the declarator itself (for which, use
/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
/// didn't apply in whatever position it was written in, try to move
/// it to a more appropriate position.
static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
                                          AttributeList &attr,
                                          QualType type) {
  Declarator &declarator = state.getDeclarator();

  // Move it to the outermost normal or block pointer declarator.
  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
    switch (chunk.Kind) {
    case DeclaratorChunk::Pointer:
    case DeclaratorChunk::BlockPointer: {
      // But don't move an ARC ownership attribute to the return type
      // of a block.
      DeclaratorChunk *destChunk = 0;
      if (state.isProcessingDeclSpec() &&
          attr.getKind() == AttributeList::AT_ObjCOwnership)
        destChunk = maybeMovePastReturnType(declarator, i - 1);
      if (!destChunk) destChunk = &chunk;

      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
                             destChunk->getAttrListRef());
      return;
    }

    case DeclaratorChunk::Paren:
    case DeclaratorChunk::Array:
      continue;

    // We may be starting at the return type of a block.
    case DeclaratorChunk::Function:
      if (state.isProcessingDeclSpec() &&
          attr.getKind() == AttributeList::AT_ObjCOwnership) {
        if (DeclaratorChunk *dest = maybeMovePastReturnType(declarator, i)) {
          moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
                                 dest->getAttrListRef());
          return;
        }
      }
      goto error;

    // Don't walk through these.
    case DeclaratorChunk::Reference:
    case DeclaratorChunk::MemberPointer:
      goto error;
    }
  }
 error:

  diagnoseBadTypeAttribute(state.getSema(), attr, type);
}

/// Distribute an objc_gc type attribute that was written on the
/// declarator.
static void
distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState &state,
                                            AttributeList &attr,
                                            QualType &declSpecType) {
  Declarator &declarator = state.getDeclarator();

  // objc_gc goes on the innermost pointer to something that's not a
  // pointer.
  unsigned innermost = -1U;
  bool considerDeclSpec = true;
  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
    DeclaratorChunk &chunk = declarator.getTypeObject(i);
    switch (chunk.Kind) {
    case DeclaratorChunk::Pointer:
    case DeclaratorChunk::BlockPointer:
      innermost = i;
      continue;

    case DeclaratorChunk::Reference:
    case DeclaratorChunk::MemberPointer:
    case DeclaratorChunk::Paren:
    case DeclaratorChunk::Array:
      continue;

    case DeclaratorChunk::Function:
      considerDeclSpec = false;
      goto done;
    }
  }
 done:

  // That might actually be the decl spec if we weren't blocked by
  // anything in the declarator.
  if (considerDeclSpec) {
    if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
      // Splice the attribute into the decl spec.  Prevents the
      // attribute from being applied multiple times and gives
      // the source-location-filler something to work with.
      state.saveDeclSpecAttrs();
      moveAttrFromListToList(attr, declarator.getAttrListRef(),
               declarator.getMutableDeclSpec().getAttributes().getListRef());
      return;
    }
  }

  // Otherwise, if we found an appropriate chunk, splice the attribute
  // into it.
  if (innermost != -1U) {
    moveAttrFromListToList(attr, declarator.getAttrListRef(),
                       declarator.getTypeObject(innermost).getAttrListRef());
    return;
  }

  // Otherwise, diagnose when we're done building the type.
  spliceAttrOutOfList(attr, declarator.getAttrListRef());
  state.addIgnoredTypeAttr(attr);
}

/// A function type attribute was written somewhere in a declaration
/// *other* than on the declarator itself or in the decl spec.  Given
/// that it didn't apply in whatever position it was written in, try
/// to move it to a more appropriate position.
static void distributeFunctionTypeAttr(TypeProcessingState &state,
                                       AttributeList &attr,
                                       QualType type) {
  Declarator &declarator = state.getDeclarator();

  // Try to push the attribute from the return type of a function to
  // the function itself.
  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
    switch (chunk.Kind) {
    case DeclaratorChunk::Function:
      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
                             chunk.getAttrListRef());
      return;

    case DeclaratorChunk::Paren:
    case DeclaratorChunk::Pointer:
    case DeclaratorChunk::BlockPointer:
    case DeclaratorChunk::Array:
    case DeclaratorChunk::Reference:
    case DeclaratorChunk::MemberPointer:
      continue;
    }
  }

  diagnoseBadTypeAttribute(state.getSema(), attr, type);
}

/// Try to distribute a function type attribute to the innermost
/// function chunk or type.  Returns true if the attribute was
/// distributed, false if no location was found.
static bool
distributeFunctionTypeAttrToInnermost(TypeProcessingState &state,
                                      AttributeList &attr,
                                      AttributeList *&attrList,
                                      QualType &declSpecType) {
  Declarator &declarator = state.getDeclarator();

  // Put it on the innermost function chunk, if there is one.
  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
    DeclaratorChunk &chunk = declarator.getTypeObject(i);
    if (chunk.Kind != DeclaratorChunk::Function) continue;

    moveAttrFromListToList(attr, attrList, chunk.getAttrListRef());
    return true;
  }

  if (handleFunctionTypeAttr(state, attr, declSpecType)) {
    spliceAttrOutOfList(attr, attrList);
    return true;
  }

  return false;
}

/// A function type attribute was written in the decl spec.  Try to
/// apply it somewhere.
static void
distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
                                       AttributeList &attr,
                                       QualType &declSpecType) {
  state.saveDeclSpecAttrs();

  // C++11 attributes before the decl specifiers actually appertain to
  // the declarators. Move them straight there. We don't support the
  // 'put them wherever you like' semantics we allow for GNU attributes.
  if (attr.isCXX11Attribute()) {
    moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
                           state.getDeclarator().getAttrListRef());
    return;
  }

  // Try to distribute to the innermost.
  if (distributeFunctionTypeAttrToInnermost(state, attr,
                                            state.getCurrentAttrListRef(),
                                            declSpecType))
    return;

  // If that failed, diagnose the bad attribute when the declarator is
  // fully built.
  state.addIgnoredTypeAttr(attr);
}

/// A function type attribute was written on the declarator.  Try to
/// apply it somewhere.
static void
distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
                                         AttributeList &attr,
                                         QualType &declSpecType) {
  Declarator &declarator = state.getDeclarator();

  // Try to distribute to the innermost.
  if (distributeFunctionTypeAttrToInnermost(state, attr,
                                            declarator.getAttrListRef(),
                                            declSpecType))
    return;

  // If that failed, diagnose the bad attribute when the declarator is
  // fully built.
  spliceAttrOutOfList(attr, declarator.getAttrListRef());
  state.addIgnoredTypeAttr(attr);
}

/// \brief Given that there are attributes written on the declarator
/// itself, try to distribute any type attributes to the appropriate
/// declarator chunk.
///
/// These are attributes like the following:
///   int f ATTR;
///   int (f ATTR)();
/// but not necessarily this:
///   int f() ATTR;
static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
                                              QualType &declSpecType) {
  // Collect all the type attributes from the declarator itself.
  assert(state.getDeclarator().getAttributes() && "declarator has no attrs!");
  AttributeList *attr = state.getDeclarator().getAttributes();
  AttributeList *next;
  do {
    next = attr->getNext();

    // Do not distribute C++11 attributes. They have strict rules for what
    // they appertain to.
    if (attr->isCXX11Attribute())
      continue;

    switch (attr->getKind()) {
    OBJC_POINTER_TYPE_ATTRS_CASELIST:
      distributeObjCPointerTypeAttrFromDeclarator(state, *attr, declSpecType);
      break;

    case AttributeList::AT_NSReturnsRetained:
      if (!state.getSema().getLangOpts().ObjCAutoRefCount)
        break;
      // fallthrough

    FUNCTION_TYPE_ATTRS_CASELIST:
      distributeFunctionTypeAttrFromDeclarator(state, *attr, declSpecType);
      break;

    default:
      break;
    }
  } while ((attr = next));
}

/// Add a synthetic '()' to a block-literal declarator if it is
/// required, given the return type.
static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
                                          QualType declSpecType) {
  Declarator &declarator = state.getDeclarator();

  // First, check whether the declarator would produce a function,
  // i.e. whether the innermost semantic chunk is a function.
  if (declarator.isFunctionDeclarator()) {
    // If so, make that declarator a prototyped declarator.
    declarator.getFunctionTypeInfo().hasPrototype = true;
    return;
  }

  // If there are any type objects, the type as written won't name a
  // function, regardless of the decl spec type.  This is because a
  // block signature declarator is always an abstract-declarator, and
  // abstract-declarators can't just be parentheses chunks.  Therefore
  // we need to build a function chunk unless there are no type
  // objects and the decl spec type is a function.
  if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
    return;

  // Note that there *are* cases with invalid declarators where
  // declarators consist solely of parentheses.  In general, these
  // occur only in failed efforts to make function declarators, so
  // faking up the function chunk is still the right thing to do.

  // Otherwise, we need to fake up a function declarator.
  SourceLocation loc = declarator.getLocStart();

  // ...and *prepend* it to the declarator.
  SourceLocation NoLoc;
  declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
                             /*HasProto=*/true,
                             /*IsAmbiguous=*/false,
                             /*LParenLoc=*/NoLoc,
                             /*ArgInfo=*/0,
                             /*NumArgs=*/0,
                             /*EllipsisLoc=*/NoLoc,
                             /*RParenLoc=*/NoLoc,
                             /*TypeQuals=*/0,
                             /*RefQualifierIsLvalueRef=*/true,
                             /*RefQualifierLoc=*/NoLoc,
                             /*ConstQualifierLoc=*/NoLoc,
                             /*VolatileQualifierLoc=*/NoLoc,
                             /*MutableLoc=*/NoLoc,
                             EST_None,
                             /*ESpecLoc=*/NoLoc,
                             /*Exceptions=*/0,
                             /*ExceptionRanges=*/0,
                             /*NumExceptions=*/0,
                             /*NoexceptExpr=*/0,
                             loc, loc, declarator));

  // For consistency, make sure the state still has us as processing
  // the decl spec.
  assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
  state.setCurrentChunkIndex(declarator.getNumTypeObjects());
}

/// \brief Convert the specified declspec to the appropriate type
/// object.
/// \param state Specifies the declarator containing the declaration specifier
/// to be converted, along with other associated processing state.
/// \returns The type described by the declaration specifiers.  This function
/// never returns null.
static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
  // checking.

  Sema &S = state.getSema();
  Declarator &declarator = state.getDeclarator();
  const DeclSpec &DS = declarator.getDeclSpec();
  SourceLocation DeclLoc = declarator.getIdentifierLoc();
  if (DeclLoc.isInvalid())
    DeclLoc = DS.getLocStart();

  ASTContext &Context = S.Context;

  QualType Result;
  switch (DS.getTypeSpecType()) {
  case DeclSpec::TST_void:
    Result = Context.VoidTy;
    break;
  case DeclSpec::TST_char:
    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
      Result = Context.CharTy;
    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
      Result = Context.SignedCharTy;
    else {
      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
             "Unknown TSS value");
      Result = Context.UnsignedCharTy;
    }
    break;
  case DeclSpec::TST_wchar:
    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
      Result = Context.WCharTy;
    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
        << DS.getSpecifierName(DS.getTypeSpecType());
      Result = Context.getSignedWCharType();
    } else {
      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
        "Unknown TSS value");
      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
        << DS.getSpecifierName(DS.getTypeSpecType());
      Result = Context.getUnsignedWCharType();
    }
    break;
  case DeclSpec::TST_char16:
      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
        "Unknown TSS value");
      Result = Context.Char16Ty;
    break;
  case DeclSpec::TST_char32:
      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
        "Unknown TSS value");
      Result = Context.Char32Ty;
    break;
  case DeclSpec::TST_unspecified:
    // "<proto1,proto2>" is an objc qualified ID with a missing id.
    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
      Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
                                         (ObjCProtocolDecl*const*)PQ,
                                         DS.getNumProtocolQualifiers());
      Result = Context.getObjCObjectPointerType(Result);
      break;
    }

    // If this is a missing declspec in a block literal return context, then it
    // is inferred from the return statements inside the block.
    // The declspec is always missing in a lambda expr context; it is either
    // specified with a trailing return type or inferred.
    if (declarator.getContext() == Declarator::LambdaExprContext ||
        isOmittedBlockReturnType(declarator)) {
      Result = Context.DependentTy;
      break;
    }

    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
    // Note that the one exception to this is function definitions, which are
    // allowed to be completely missing a declspec.  This is handled in the
    // parser already though by it pretending to have seen an 'int' in this
    // case.
    if (S.getLangOpts().ImplicitInt) {
      // In C89 mode, we only warn if there is a completely missing declspec
      // when one is not allowed.
      if (DS.isEmpty()) {
        S.Diag(DeclLoc, diag::ext_missing_declspec)
          << DS.getSourceRange()
        << FixItHint::CreateInsertion(DS.getLocStart(), "int");
      }
    } else if (!DS.hasTypeSpecifier()) {
      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
      // "At least one type specifier shall be given in the declaration
      // specifiers in each declaration, and in the specifier-qualifier list in
      // each struct declaration and type name."
      if (S.getLangOpts().CPlusPlus) {
        S.Diag(DeclLoc, diag::err_missing_type_specifier)
          << DS.getSourceRange();

        // When this occurs in C++ code, often something is very broken with the
        // value being declared, poison it as invalid so we don't get chains of
        // errors.
        declarator.setInvalidType(true);
      } else {
        S.Diag(DeclLoc, diag::ext_missing_type_specifier)
          << DS.getSourceRange();
      }
    }

    // FALL THROUGH.
  case DeclSpec::TST_int: {
    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
      switch (DS.getTypeSpecWidth()) {
      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
      case DeclSpec::TSW_longlong:
        Result = Context.LongLongTy;

        // 'long long' is a C99 or C++11 feature.
        if (!S.getLangOpts().C99) {
          if (S.getLangOpts().CPlusPlus)
            S.Diag(DS.getTypeSpecWidthLoc(),
                   S.getLangOpts().CPlusPlus11 ?
                   diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
          else
            S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
        }
        break;
      }
    } else {
      switch (DS.getTypeSpecWidth()) {
      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
      case DeclSpec::TSW_longlong:
        Result = Context.UnsignedLongLongTy;

        // 'long long' is a C99 or C++11 feature.
        if (!S.getLangOpts().C99) {
          if (S.getLangOpts().CPlusPlus)
            S.Diag(DS.getTypeSpecWidthLoc(),
                   S.getLangOpts().CPlusPlus11 ?
                   diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
          else
            S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
        }
        break;
      }
    }
    break;
  }
  case DeclSpec::TST_int128:
    if (!S.PP.getTargetInfo().hasInt128Type())
      S.Diag(DS.getTypeSpecTypeLoc(), diag::err_int128_unsupported);
    if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
      Result = Context.UnsignedInt128Ty;
    else
      Result = Context.Int128Ty;
    break;
  case DeclSpec::TST_half: Result = Context.HalfTy; break;
  case DeclSpec::TST_float: Result = Context.FloatTy; break;
  case DeclSpec::TST_double:
    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
      Result = Context.LongDoubleTy;
    else
      Result = Context.DoubleTy;

    if (S.getLangOpts().OpenCL && !S.getOpenCLOptions().cl_khr_fp64) {
      S.Diag(DS.getTypeSpecTypeLoc(), diag::err_double_requires_fp64);
      declarator.setInvalidType(true);
    }
    break;
  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
  case DeclSpec::TST_decimal32:    // _Decimal32
  case DeclSpec::TST_decimal64:    // _Decimal64
  case DeclSpec::TST_decimal128:   // _Decimal128
    S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
    Result = Context.IntTy;
    declarator.setInvalidType(true);
    break;
  case DeclSpec::TST_class:
  case DeclSpec::TST_enum:
  case DeclSpec::TST_union:
  case DeclSpec::TST_struct:
  case DeclSpec::TST_interface: {
    TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
    if (!D) {
      // This can happen in C++ with ambiguous lookups.
      Result = Context.IntTy;
      declarator.setInvalidType(true);
      break;
    }

    // If the type is deprecated or unavailable, diagnose it.
    S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());

    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
           DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");

    // TypeQuals handled by caller.
    Result = Context.getTypeDeclType(D);

    // In both C and C++, make an ElaboratedType.
    ElaboratedTypeKeyword Keyword
      = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
    Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result);
    break;
  }
  case DeclSpec::TST_typename: {
    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
           DS.getTypeSpecSign() == 0 &&
           "Can't handle qualifiers on typedef names yet!");
    Result = S.GetTypeFromParser(DS.getRepAsType());
    if (Result.isNull())
      declarator.setInvalidType(true);
    else if (DeclSpec::ProtocolQualifierListTy PQ
               = DS.getProtocolQualifiers()) {
      if (const ObjCObjectType *ObjT = Result->getAs<ObjCObjectType>()) {
        // Silently drop any existing protocol qualifiers.
        // TODO: determine whether that's the right thing to do.
        if (ObjT->getNumProtocols())
          Result = ObjT->getBaseType();

        if (DS.getNumProtocolQualifiers())
          Result = Context.getObjCObjectType(Result,
                                             (ObjCProtocolDecl*const*) PQ,
                                             DS.getNumProtocolQualifiers());
      } else if (Result->isObjCIdType()) {
        // id<protocol-list>
        Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
                                           (ObjCProtocolDecl*const*) PQ,
                                           DS.getNumProtocolQualifiers());
        Result = Context.getObjCObjectPointerType(Result);
      } else if (Result->isObjCClassType()) {
        // Class<protocol-list>
        Result = Context.getObjCObjectType(Context.ObjCBuiltinClassTy,
                                           (ObjCProtocolDecl*const*) PQ,
                                           DS.getNumProtocolQualifiers());
        Result = Context.getObjCObjectPointerType(Result);
      } else {
        S.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
          << DS.getSourceRange();
        declarator.setInvalidType(true);
      }
    }

    // TypeQuals handled by caller.
    break;
  }
  case DeclSpec::TST_typeofType:
    // FIXME: Preserve type source info.
    Result = S.GetTypeFromParser(DS.getRepAsType());
    assert(!Result.isNull() && "Didn't get a type for typeof?");
    if (!Result->isDependentType())
      if (const TagType *TT = Result->getAs<TagType>())
        S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
    // TypeQuals handled by caller.
    Result = Context.getTypeOfType(Result);
    break;
  case DeclSpec::TST_typeofExpr: {
    Expr *E = DS.getRepAsExpr();
    assert(E && "Didn't get an expression for typeof?");
    // TypeQuals handled by caller.
    Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
    if (Result.isNull()) {
      Result = Context.IntTy;
      declarator.setInvalidType(true);
    }
    break;
  }
  case DeclSpec::TST_decltype: {
    Expr *E = DS.getRepAsExpr();
    assert(E && "Didn't get an expression for decltype?");
    // TypeQuals handled by caller.
    Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
    if (Result.isNull()) {
      Result = Context.IntTy;
      declarator.setInvalidType(true);
    }
    break;
  }
  case DeclSpec::TST_underlyingType:
    Result = S.GetTypeFromParser(DS.getRepAsType());
    assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
    Result = S.BuildUnaryTransformType(Result,
                                       UnaryTransformType::EnumUnderlyingType,
                                       DS.getTypeSpecTypeLoc());
    if (Result.isNull()) {
      Result = Context.IntTy;
      declarator.setInvalidType(true);
    }
    break;

  case DeclSpec::TST_auto:
    // TypeQuals handled by caller.
    Result = Context.getAutoType(QualType(), /*decltype(auto)*/false);
    break;

  case DeclSpec::TST_decltype_auto:
    Result = Context.getAutoType(QualType(), /*decltype(auto)*/true);
    break;

  case DeclSpec::TST_unknown_anytype:
    Result = Context.UnknownAnyTy;
    break;

  case DeclSpec::TST_atomic:
    Result = S.GetTypeFromParser(DS.getRepAsType());
    assert(!Result.isNull() && "Didn't get a type for _Atomic?");
    Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
    if (Result.isNull()) {
      Result = Context.IntTy;
      declarator.setInvalidType(true);
    }
    break;

  case DeclSpec::TST_image1d_t:
    Result = Context.OCLImage1dTy;
    break;

  case DeclSpec::TST_image1d_array_t:
    Result = Context.OCLImage1dArrayTy;
    break;

  case DeclSpec::TST_image1d_buffer_t:
    Result = Context.OCLImage1dBufferTy;
    break;

  case DeclSpec::TST_image2d_t:
    Result = Context.OCLImage2dTy;
    break;

  case DeclSpec::TST_image2d_array_t:
    Result = Context.OCLImage2dArrayTy;
    break;

  case DeclSpec::TST_image3d_t:
    Result = Context.OCLImage3dTy;
    break;

  case DeclSpec::TST_sampler_t:
    Result = Context.OCLSamplerTy;
    break;

  case DeclSpec::TST_event_t:
    Result = Context.OCLEventTy;
    break;

  case DeclSpec::TST_error:
    Result = Context.IntTy;
    declarator.setInvalidType(true);
    break;
  }

  // Handle complex types.
  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
    if (S.getLangOpts().Freestanding)
      S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
    Result = Context.getComplexType(Result);
  } else if (DS.isTypeAltiVecVector()) {
    unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
    assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
    VectorType::VectorKind VecKind = VectorType::AltiVecVector;
    if (DS.isTypeAltiVecPixel())
      VecKind = VectorType::AltiVecPixel;
    else if (DS.isTypeAltiVecBool())
      VecKind = VectorType::AltiVecBool;
    Result = Context.getVectorType(Result, 128/typeSize, VecKind);
  }

  // FIXME: Imaginary.
  if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
    S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);

  // Before we process any type attributes, synthesize a block literal
  // function declarator if necessary.
  if (declarator.getContext() == Declarator::BlockLiteralContext)
    maybeSynthesizeBlockSignature(state, Result);

  // Apply any type attributes from the decl spec.  This may cause the
  // list of type attributes to be temporarily saved while the type
  // attributes are pushed around.
  if (AttributeList *attrs = DS.getAttributes().getList())
    processTypeAttrs(state, Result, TAL_DeclSpec, attrs);

  // Apply const/volatile/restrict qualifiers to T.
  if (unsigned TypeQuals = DS.getTypeQualifiers()) {

    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
    // of a function type includes any type qualifiers, the behavior is
    // undefined."
    if (Result->isFunctionType() && TypeQuals) {
      if (TypeQuals & DeclSpec::TQ_const)
        S.Diag(DS.getConstSpecLoc(), diag::warn_typecheck_function_qualifiers)
          << Result << DS.getSourceRange();
      else if (TypeQuals & DeclSpec::TQ_volatile)
        S.Diag(DS.getVolatileSpecLoc(), diag::warn_typecheck_function_qualifiers)
          << Result << DS.getSourceRange();
      else {
        assert((TypeQuals & (DeclSpec::TQ_restrict | DeclSpec::TQ_atomic)) &&
               "Has CVRA quals but not C, V, R, or A?");
        // No diagnostic; we'll diagnose 'restrict' or '_Atomic' applied to a
        // function type later, in BuildQualifiedType.
      }
    }

    // C++ [dcl.ref]p1:
    //   Cv-qualified references are ill-formed except when the
    //   cv-qualifiers are introduced through the use of a typedef
    //   (7.1.3) or of a template type argument (14.3), in which
    //   case the cv-qualifiers are ignored.
    // FIXME: Shouldn't we be checking SCS_typedef here?
    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
        TypeQuals && Result->isReferenceType()) {
      TypeQuals &= ~DeclSpec::TQ_const;
      TypeQuals &= ~DeclSpec::TQ_volatile;
      TypeQuals &= ~DeclSpec::TQ_atomic;
    }

    // C90 6.5.3 constraints: "The same type qualifier shall not appear more
    // than once in the same specifier-list or qualifier-list, either directly
    // or via one or more typedefs."
    if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
        && TypeQuals & Result.getCVRQualifiers()) {
      if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
        S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
          << "const";
      }

      if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
        S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
          << "volatile";
      }

      // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
      // produce a warning in this case.
    }

    QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);

    // If adding qualifiers fails, just use the unqualified type.
    if (Qualified.isNull())
      declarator.setInvalidType(true);
    else
      Result = Qualified;
  }

  return Result;
}

static std::string getPrintableNameForEntity(DeclarationName Entity) {
  if (Entity)
    return Entity.getAsString();

  return "type name";
}

QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
                                  Qualifiers Qs, const DeclSpec *DS) {
  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
  // object or incomplete types shall not be restrict-qualified."
  if (Qs.hasRestrict()) {
    unsigned DiagID = 0;
    QualType ProblemTy;

    if (T->isAnyPointerType() || T->isReferenceType() ||
        T->isMemberPointerType()) {
      QualType EltTy;
      if (T->isObjCObjectPointerType())
        EltTy = T;
      else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
        EltTy = PTy->getPointeeType();
      else
        EltTy = T->getPointeeType();

      // If we have a pointer or reference, the pointee must have an object
      // incomplete type.
      if (!EltTy->isIncompleteOrObjectType()) {
        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
        ProblemTy = EltTy;
      }
    } else if (!T->isDependentType()) {
      DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
      ProblemTy = T;
    }

    if (DiagID) {
      Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
      Qs.removeRestrict();
    }
  }

  return Context.getQualifiedType(T, Qs);
}

QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
                                  unsigned CVRA, const DeclSpec *DS) {
  // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic.
  unsigned CVR = CVRA & ~DeclSpec::TQ_atomic;

  // C11 6.7.3/5:
  //   If the same qualifier appears more than once in the same
  //   specifier-qualifier-list, either directly or via one or more typedefs,
  //   the behavior is the same as if it appeared only once.
  //
  // It's not specified what happens when the _Atomic qualifier is applied to
  // a type specified with the _Atomic specifier, but we assume that this
  // should be treated as if the _Atomic qualifier appeared multiple times.
  if (CVRA & DeclSpec::TQ_atomic && !T->isAtomicType()) {
    // C11 6.7.3/5:
    //   If other qualifiers appear along with the _Atomic qualifier in a
    //   specifier-qualifier-list, the resulting type is the so-qualified
    //   atomic type.
    //
    // Don't need to worry about array types here, since _Atomic can't be
    // applied to such types.
    SplitQualType Split = T.getSplitUnqualifiedType();
    T = BuildAtomicType(QualType(Split.Ty, 0),
                        DS ? DS->getAtomicSpecLoc() : Loc);
    if (T.isNull())
      return T;
    Split.Quals.addCVRQualifiers(CVR);
    return BuildQualifiedType(T, Loc, Split.Quals);
  }

  return BuildQualifiedType(T, Loc, Qualifiers::fromCVRMask(CVR), DS);
}

/// \brief Build a paren type including \p T.
QualType Sema::BuildParenType(QualType T) {
  return Context.getParenType(T);
}

/// Given that we're building a pointer or reference to the given
static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
                                           SourceLocation loc,
                                           bool isReference) {
  // Bail out if retention is unrequired or already specified.
  if (!type->isObjCLifetimeType() ||
      type.getObjCLifetime() != Qualifiers::OCL_None)
    return type;

  Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;

  // If the object type is const-qualified, we can safely use
  // __unsafe_unretained.  This is safe (because there are no read
  // barriers), and it'll be safe to coerce anything but __weak* to
  // the resulting type.
  if (type.isConstQualified()) {
    implicitLifetime = Qualifiers::OCL_ExplicitNone;

  // Otherwise, check whether the static type does not require
  // retaining.  This currently only triggers for Class (possibly
  // protocol-qualifed, and arrays thereof).
  } else if (type->isObjCARCImplicitlyUnretainedType()) {
    implicitLifetime = Qualifiers::OCL_ExplicitNone;

  // If we are in an unevaluated context, like sizeof, skip adding a
  // qualification.
  } else if (S.isUnevaluatedContext()) {
    return type;

  // If that failed, give an error and recover using __strong.  __strong
  // is the option most likely to prevent spurious second-order diagnostics,
  // like when binding a reference to a field.
  } else {
    // These types can show up in private ivars in system headers, so
    // we need this to not be an error in those cases.  Instead we
    // want to delay.
    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
      S.DelayedDiagnostics.add(
          sema::DelayedDiagnostic::makeForbiddenType(loc,
              diag::err_arc_indirect_no_ownership, type, isReference));
    } else {
      S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
    }
    implicitLifetime = Qualifiers::OCL_Strong;
  }
  assert(implicitLifetime && "didn't infer any lifetime!");

  Qualifiers qs;
  qs.addObjCLifetime(implicitLifetime);
  return S.Context.getQualifiedType(type, qs);
}

/// \brief Build a pointer type.
///
/// \param T The type to which we'll be building a pointer.
///
/// \param Loc The location of the entity whose type involves this
/// pointer type or, if there is no such entity, the location of the
/// type that will have pointer type.
///
/// \param Entity The name of the entity that involves the pointer
/// type, if known.
///
/// \returns A suitable pointer type, if there are no
/// errors. Otherwise, returns a NULL type.
QualType Sema::BuildPointerType(QualType T,
                                SourceLocation Loc, DeclarationName Entity) {
  if (T->isReferenceType()) {
    // C++ 8.3.2p4: There shall be no ... pointers to references ...
    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
      << getPrintableNameForEntity(Entity) << T;
    return QualType();
  }

  assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");

  // In ARC, it is forbidden to build pointers to unqualified pointers.
  if (getLangOpts().ObjCAutoRefCount)
    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);

  // Build the pointer type.
  return Context.getPointerType(T);
}

/// \brief Build a reference type.
///
/// \param T The type to which we'll be building a reference.
///
/// \param Loc The location of the entity whose type involves this
/// reference type or, if there is no such entity, the location of the
/// type that will have reference type.
///
/// \param Entity The name of the entity that involves the reference
/// type, if known.
///
/// \returns A suitable reference type, if there are no
/// errors. Otherwise, returns a NULL type.
QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
                                  SourceLocation Loc,
                                  DeclarationName Entity) {
  assert(Context.getCanonicalType(T) != Context.OverloadTy &&
         "Unresolved overloaded function type");

  // C++0x [dcl.ref]p6:
  //   If a typedef (7.1.3), a type template-parameter (14.3.1), or a
  //   decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
  //   type T, an attempt to create the type "lvalue reference to cv TR" creates
  //   the type "lvalue reference to T", while an attempt to create the type
  //   "rvalue reference to cv TR" creates the type TR.
  bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();

  // C++ [dcl.ref]p4: There shall be no references to references.
  //
  // According to C++ DR 106, references to references are only
  // diagnosed when they are written directly (e.g., "int & &"),
  // but not when they happen via a typedef:
  //
  //   typedef int& intref;
  //   typedef intref& intref2;
  //
  // Parser::ParseDeclaratorInternal diagnoses the case where
  // references are written directly; here, we handle the
  // collapsing of references-to-references as described in C++0x.
  // DR 106 and 540 introduce reference-collapsing into C++98/03.

  // C++ [dcl.ref]p1:
  //   A declarator that specifies the type "reference to cv void"
  //   is ill-formed.
  if (T->isVoidType()) {
    Diag(Loc, diag::err_reference_to_void);
    return QualType();
  }

  // In ARC, it is forbidden to build references to unqualified pointers.
  if (getLangOpts().ObjCAutoRefCount)
    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);

  // Handle restrict on references.
  if (LValueRef)
    return Context.getLValueReferenceType(T, SpelledAsLValue);
  return Context.getRValueReferenceType(T);
}

/// Check whether the specified array size makes the array type a VLA.  If so,
/// return true, if not, return the size of the array in SizeVal.
static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
  // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
  // (like gnu99, but not c99) accept any evaluatable value as an extension.
  class VLADiagnoser : public Sema::VerifyICEDiagnoser {
  public:
    VLADiagnoser() : Sema::VerifyICEDiagnoser(true) {}

    virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
    }

    virtual void diagnoseFold(Sema &S, SourceLocation Loc, SourceRange SR) {
      S.Diag(Loc, diag::ext_vla_folded_to_constant) << SR;
    }
  } Diagnoser;

  return S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser,
                                           S.LangOpts.GNUMode).isInvalid();
}


/// \brief Build an array type.
///
/// \param T The type of each element in the array.
///
/// \param ASM C99 array size modifier (e.g., '*', 'static').
///
/// \param ArraySize Expression describing the size of the array.
///
/// \param Brackets The range from the opening '[' to the closing ']'.
///
/// \param Entity The name of the entity that involves the array
/// type, if known.
///
/// \returns A suitable array type, if there are no errors. Otherwise,
/// returns a NULL type.
QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
                              Expr *ArraySize, unsigned Quals,
                              SourceRange Brackets, DeclarationName Entity) {

  SourceLocation Loc = Brackets.getBegin();
  if (getLangOpts().CPlusPlus) {
    // C++ [dcl.array]p1:
    //   T is called the array element type; this type shall not be a reference
    //   type, the (possibly cv-qualified) type void, a function type or an
    //   abstract class type.
    //
    // C++ [dcl.array]p3:
    //   When several "array of" specifications are adjacent, [...] only the
    //   first of the constant expressions that specify the bounds of the arrays
    //   may be omitted.
    //
    // Note: function types are handled in the common path with C.
    if (T->isReferenceType()) {
      Diag(Loc, diag::err_illegal_decl_array_of_references)
      << getPrintableNameForEntity(Entity) << T;
      return QualType();
    }

    if (T->isVoidType() || T->isIncompleteArrayType()) {
      Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
      return QualType();
    }

    if (RequireNonAbstractType(Brackets.getBegin(), T,
                               diag::err_array_of_abstract_type))
      return QualType();

  } else {
    // C99 6.7.5.2p1: If the element type is an incomplete or function type,
    // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
    if (RequireCompleteType(Loc, T,
                            diag::err_illegal_decl_array_incomplete_type))
      return QualType();
  }

  if (T->isFunctionType()) {
    Diag(Loc, diag::err_illegal_decl_array_of_functions)
      << getPrintableNameForEntity(Entity) << T;
    return QualType();
  }

  if (const RecordType *EltTy = T->getAs<RecordType>()) {
    // If the element type is a struct or union that contains a variadic
    // array, accept it as a GNU extension: C99 6.7.2.1p2.
    if (EltTy->getDecl()->hasFlexibleArrayMember())
      Diag(Loc, diag::ext_flexible_array_in_array) << T;
  } else if (T->isObjCObjectType()) {
    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
    return QualType();
  }

  // Do placeholder conversions on the array size expression.
  if (ArraySize && ArraySize->hasPlaceholderType()) {
    ExprResult Result = CheckPlaceholderExpr(ArraySize);
    if (Result.isInvalid()) return QualType();
    ArraySize = Result.take();
  }

  // Do lvalue-to-rvalue conversions on the array size expression.
  if (ArraySize && !ArraySize->isRValue()) {
    ExprResult Result = DefaultLvalueConversion(ArraySize);
    if (Result.isInvalid())
      return QualType();

    ArraySize = Result.take();
  }

  // C99 6.7.5.2p1: The size expression shall have integer type.
  // C++11 allows contextual conversions to such types.
  if (!getLangOpts().CPlusPlus11 &&
      ArraySize && !ArraySize->isTypeDependent() &&
      !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
      << ArraySize->getType() << ArraySize->getSourceRange();
    return QualType();
  }

  llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
  if (!ArraySize) {
    if (ASM == ArrayType::Star)
      T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
    else
      T = Context.getIncompleteArrayType(T, ASM, Quals);
  } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
  } else if ((!T->isDependentType() && !T->isIncompleteType() &&
              !T->isConstantSizeType()) ||
             isArraySizeVLA(*this, ArraySize, ConstVal)) {
    // Even in C++11, don't allow contextual conversions in the array bound
    // of a VLA.
    if (getLangOpts().CPlusPlus11 &&
        !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
      Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
        << ArraySize->getType() << ArraySize->getSourceRange();
      return QualType();
    }

    // C99: an array with an element type that has a non-constant-size is a VLA.
    // C99: an array with a non-ICE size is a VLA.  We accept any expression
    // that we can fold to a non-zero positive value as an extension.
    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
  } else {
    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
    // have a value greater than zero.
    if (ConstVal.isSigned() && ConstVal.isNegative()) {
      if (Entity)
        Diag(ArraySize->getLocStart(), diag::err_decl_negative_array_size)
          << getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
      else
        Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size)
          << ArraySize->getSourceRange();
      return QualType();
    }
    if (ConstVal == 0) {
      // GCC accepts zero sized static arrays. We allow them when
      // we're not in a SFINAE context.
      Diag(ArraySize->getLocStart(),
           isSFINAEContext()? diag::err_typecheck_zero_array_size
                            : diag::ext_typecheck_zero_array_size)
        << ArraySize->getSourceRange();

      if (ASM == ArrayType::Static) {
        Diag(ArraySize->getLocStart(),
             diag::warn_typecheck_zero_static_array_size)
          << ArraySize->getSourceRange();
        ASM = ArrayType::Normal;
      }
    } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
               !T->isIncompleteType()) {
      // Is the array too large?
      unsigned ActiveSizeBits
        = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
      if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
        Diag(ArraySize->getLocStart(), diag::err_array_too_large)
          << ConstVal.toString(10)
          << ArraySize->getSourceRange();
    }

    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
  }

  // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
  if (getLangOpts().OpenCL && T->isVariableArrayType()) {
    Diag(Loc, diag::err_opencl_vla);
    return QualType();
  }
  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
  if (!getLangOpts().C99) {
    if (T->isVariableArrayType()) {
      // Prohibit the use of non-POD types in VLAs.
      // FIXME: C++1y allows this.
      QualType BaseT = Context.getBaseElementType(T);
      if (!T->isDependentType() &&
          !BaseT.isPODType(Context) &&
          !BaseT->isObjCLifetimeType()) {
        Diag(Loc, diag::err_vla_non_pod)
          << BaseT;
        return QualType();
      }
      // Prohibit the use of VLAs during template argument deduction.
      else if (isSFINAEContext()) {
        Diag(Loc, diag::err_vla_in_sfinae);
        return QualType();
      }
      // Just extwarn about VLAs.
      else
        Diag(Loc, getLangOpts().CPlusPlus1y
                      ? diag::warn_cxx11_compat_array_of_runtime_bound
                      : diag::ext_vla);
    } else if (ASM != ArrayType::Normal || Quals != 0)
      Diag(Loc,
           getLangOpts().CPlusPlus? diag::err_c99_array_usage_cxx
                                     : diag::ext_c99_array_usage) << ASM;
  }

  if (T->isVariableArrayType()) {
    // Warn about VLAs for -Wvla.
    Diag(Loc, diag::warn_vla_used);
  }

  return T;
}

/// \brief Build an ext-vector type.
///
/// Run the required checks for the extended vector type.
QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
                                  SourceLocation AttrLoc) {
  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
  // in conjunction with complex types (pointers, arrays, functions, etc.).
  if (!T->isDependentType() &&
      !T->isIntegerType() && !T->isRealFloatingType()) {
    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
    return QualType();
  }

  if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
    llvm::APSInt vecSize(32);
    if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
      Diag(AttrLoc, diag::err_attribute_argument_not_int)
        << "ext_vector_type" << ArraySize->getSourceRange();
      return QualType();
    }

    // unlike gcc's vector_size attribute, the size is specified as the
    // number of elements, not the number of bytes.
    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());

    if (vectorSize == 0) {
      Diag(AttrLoc, diag::err_attribute_zero_size)
      << ArraySize->getSourceRange();
      return QualType();
    }

    return Context.getExtVectorType(T, vectorSize);
  }

  return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
}

QualType Sema::BuildFunctionType(QualType T,
                                 llvm::MutableArrayRef<QualType> ParamTypes,
                                 SourceLocation Loc, DeclarationName Entity,
                                 const FunctionProtoType::ExtProtoInfo &EPI) {
  if (T->isArrayType() || T->isFunctionType()) {
    Diag(Loc, diag::err_func_returning_array_function)
      << T->isFunctionType() << T;
    return QualType();
  }

  // Functions cannot return half FP.
  if (T->isHalfType()) {
    Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
      FixItHint::CreateInsertion(Loc, "*");
    return QualType();
  }

  bool Invalid = false;
  for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
    // FIXME: Loc is too inprecise here, should use proper locations for args.
    QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
    if (ParamType->isVoidType()) {
      Diag(Loc, diag::err_param_with_void_type);
      Invalid = true;
    } else if (ParamType->isHalfType()) {
      // Disallow half FP arguments.
      Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
        FixItHint::CreateInsertion(Loc, "*");
      Invalid = true;
    }

    ParamTypes[Idx] = ParamType;
  }

  if (Invalid)
    return QualType();

  return Context.getFunctionType(T, ParamTypes, EPI);
}

/// \brief Build a member pointer type \c T Class::*.
///
/// \param T the type to which the member pointer refers.
/// \param Class the class type into which the member pointer points.
/// \param Loc the location where this type begins
/// \param Entity the name of the entity that will have this member pointer type
///
/// \returns a member pointer type, if successful, or a NULL type if there was
/// an error.
QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
                                      SourceLocation Loc,
                                      DeclarationName Entity) {
  // Verify that we're not building a pointer to pointer to function with
  // exception specification.
  if (CheckDistantExceptionSpec(T)) {
    Diag(Loc, diag::err_distant_exception_spec);

    // FIXME: If we're doing this as part of template instantiation,
    // we should return immediately.

    // Build the type anyway, but use the canonical type so that the
    // exception specifiers are stripped off.
    T = Context.getCanonicalType(T);
  }

  // C++ 8.3.3p3: A pointer to member shall not point to ... a member
  //   with reference type, or "cv void."
  if (T->isReferenceType()) {
    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
      << (Entity? Entity.getAsString() : "type name") << T;
    return QualType();
  }

  if (T->isVoidType()) {
    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
      << (Entity? Entity.getAsString() : "type name");
    return QualType();
  }

  if (!Class->isDependentType() && !Class->isRecordType()) {
    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
    return QualType();
  }

  // C++ allows the class type in a member pointer to be an incomplete type.
  // In the Microsoft ABI, the size of the member pointer can vary
  // according to the class type, which means that we really need a
  // complete type if possible, which means we need to instantiate templates.
  //
  // If template instantiation fails or the type is just incomplete, we have to
  // add an extra slot to the member pointer.  Yes, this does cause problems
  // when passing pointers between TUs that disagree about the size.
  if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
    CXXRecordDecl *RD = Class->getAsCXXRecordDecl();
    if (RD && !RD->hasAttr<MSInheritanceAttr>()) {
      // Lock in the inheritance model on the first use of a member pointer.
      // Otherwise we may disagree about the size at different points in the TU.
      // FIXME: MSVC picks a model on the first use that needs to know the size,
      // rather than on the first mention of the type, e.g. typedefs.
      if (RequireCompleteType(Loc, Class, 0) && !RD->isBeingDefined()) {
        // We know it doesn't have an attribute and it's incomplete, so use the
        // unspecified inheritance model.  If we're in the record body, we can
        // figure out the inheritance model.
        for (CXXRecordDecl::redecl_iterator I = RD->redecls_begin(),
             E = RD->redecls_end(); I != E; ++I) {
          I->addAttr(::new (Context) UnspecifiedInheritanceAttr(
              RD->getSourceRange(), Context));
        }
      }
    }
  }

  return Context.getMemberPointerType(T, Class.getTypePtr());
}

/// \brief Build a block pointer type.
///
/// \param T The type to which we'll be building a block pointer.
///
/// \param Loc The source location, used for diagnostics.
///
/// \param Entity The name of the entity that involves the block pointer
/// type, if known.
///
/// \returns A suitable block pointer type, if there are no
/// errors. Otherwise, returns a NULL type.
QualType Sema::BuildBlockPointerType(QualType T,
                                     SourceLocation Loc,
                                     DeclarationName Entity) {
  if (!T->isFunctionType()) {
    Diag(Loc, diag::err_nonfunction_block_type);
    return QualType();
  }

  return Context.getBlockPointerType(T);
}

QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
  QualType QT = Ty.get();
  if (QT.isNull()) {
    if (TInfo) *TInfo = 0;
    return QualType();
  }

  TypeSourceInfo *DI = 0;
  if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
    QT = LIT->getType();
    DI = LIT->getTypeSourceInfo();
  }

  if (TInfo) *TInfo = DI;
  return QT;
}

static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
                                            Qualifiers::ObjCLifetime ownership,
                                            unsigned chunkIndex);

/// Given that this is the declaration of a parameter under ARC,
/// attempt to infer attributes and such for pointer-to-whatever
/// types.
static void inferARCWriteback(TypeProcessingState &state,
                              QualType &declSpecType) {
  Sema &S = state.getSema();
  Declarator &declarator = state.getDeclarator();

  // TODO: should we care about decl qualifiers?

  // Check whether the declarator has the expected form.  We walk
  // from the inside out in order to make the block logic work.
  unsigned outermostPointerIndex = 0;
  bool isBlockPointer = false;
  unsigned numPointers = 0;
  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
    unsigned chunkIndex = i;
    DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
    switch (chunk.Kind) {
    case DeclaratorChunk::Paren:
      // Ignore parens.
      break;

    case DeclaratorChunk::Reference:
    case DeclaratorChunk::Pointer:
      // Count the number of pointers.  Treat references
      // interchangeably as pointers; if they're mis-ordered, normal
      // type building will discover that.
      outermostPointerIndex = chunkIndex;
      numPointers++;
      break;

    case DeclaratorChunk::BlockPointer:
      // If we have a pointer to block pointer, that's an acceptable
      // indirect reference; anything else is not an application of
      // the rules.
      if (numPointers != 1) return;
      numPointers++;
      outermostPointerIndex = chunkIndex;
      isBlockPointer = true;

      // We don't care about pointer structure in return values here.
      goto done;

    case DeclaratorChunk::Array: // suppress if written (id[])?
    case DeclaratorChunk::Function:
    case DeclaratorChunk::MemberPointer:
      return;
    }
  }
 done:

  // If we have *one* pointer, then we want to throw the qualifier on
  // the declaration-specifiers, which means that it needs to be a
  // retainable object type.
  if (numPointers == 1) {
    // If it's not a retainable object type, the rule doesn't apply.
    if (!declSpecType->isObjCRetainableType()) return;

    // If it already has lifetime, don't do anything.
    if (declSpecType.getObjCLifetime()) return;

    // Otherwise, modify the type in-place.
    Qualifiers qs;

    if (declSpecType->isObjCARCImplicitlyUnretainedType())
      qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
    else
      qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
    declSpecType = S.Context.getQualifiedType(declSpecType, qs);

  // If we have *two* pointers, then we want to throw the qualifier on
  // the outermost pointer.
  } else if (numPointers == 2) {
    // If we don't have a block pointer, we need to check whether the
    // declaration-specifiers gave us something that will turn into a
    // retainable object pointer after we slap the first pointer on it.
    if (!isBlockPointer && !declSpecType->isObjCObjectType())
      return;

    // Look for an explicit lifetime attribute there.
    DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
    if (chunk.Kind != DeclaratorChunk::Pointer &&
        chunk.Kind != DeclaratorChunk::BlockPointer)
      return;
    for (const AttributeList *attr = chunk.getAttrs(); attr;
           attr = attr->getNext())
      if (attr->getKind() == AttributeList::AT_ObjCOwnership)
        return;

    transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
                                          outermostPointerIndex);

  // Any other number of pointers/references does not trigger the rule.
  } else return;

  // TODO: mark whether we did this inference?
}

static void diagnoseIgnoredQualifiers(
    Sema &S, unsigned Quals,
    SourceLocation FallbackLoc,
    SourceLocation ConstQualLoc = SourceLocation(),
    SourceLocation VolatileQualLoc = SourceLocation(),
    SourceLocation RestrictQualLoc = SourceLocation(),
    SourceLocation AtomicQualLoc = SourceLocation()) {
  if (!Quals)
    return;

  const SourceManager &SM = S.getSourceManager();

  struct Qual {
    unsigned Mask;
    const char *Name;
    SourceLocation Loc;
  } const QualKinds[4] = {
    { DeclSpec::TQ_const, "const", ConstQualLoc },
    { DeclSpec::TQ_volatile, "volatile", VolatileQualLoc },
    { DeclSpec::TQ_restrict, "restrict", RestrictQualLoc },
    { DeclSpec::TQ_atomic, "_Atomic", AtomicQualLoc }
  };

  llvm::SmallString<32> QualStr;
  unsigned NumQuals = 0;
  SourceLocation Loc;
  FixItHint FixIts[4];

  // Build a string naming the redundant qualifiers.
  for (unsigned I = 0; I != 4; ++I) {
    if (Quals & QualKinds[I].Mask) {
      if (!QualStr.empty()) QualStr += ' ';
      QualStr += QualKinds[I].Name;

      // If we have a location for the qualifier, offer a fixit.
      SourceLocation QualLoc = QualKinds[I].Loc;
      if (!QualLoc.isInvalid()) {
        FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
        if (Loc.isInvalid() || SM.isBeforeInTranslationUnit(QualLoc, Loc))
          Loc = QualLoc;
      }

      ++NumQuals;
    }
  }

  S.Diag(Loc.isInvalid() ? FallbackLoc : Loc, diag::warn_qual_return_type)
    << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
}

// Diagnose pointless type qualifiers on the return type of a function.
static void diagnoseIgnoredFunctionQualifiers(Sema &S, QualType RetTy,
                                              Declarator &D,
                                              unsigned FunctionChunkIndex) {
  if (D.getTypeObject(FunctionChunkIndex).Fun.hasTrailingReturnType()) {
    // FIXME: TypeSourceInfo doesn't preserve location information for
    // qualifiers.
    diagnoseIgnoredQualifiers(S, RetTy.getLocalCVRQualifiers(),
                              D.getIdentifierLoc());
    return;
  }

  for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
                End = D.getNumTypeObjects();
       OuterChunkIndex != End; ++OuterChunkIndex) {
    DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
    switch (OuterChunk.Kind) {
    case DeclaratorChunk::Paren:
      continue;

    case DeclaratorChunk::Pointer: {
      DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
      diagnoseIgnoredQualifiers(
          S, PTI.TypeQuals,
          SourceLocation(),
          SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
          SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
          SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
          SourceLocation::getFromRawEncoding(PTI.AtomicQualLoc));
      return;
    }

    case DeclaratorChunk::Function:
    case DeclaratorChunk::BlockPointer:
    case DeclaratorChunk::Reference:
    case DeclaratorChunk::Array:
    case DeclaratorChunk::MemberPointer:
      // FIXME: We can't currently provide an accurate source location and a
      // fix-it hint for these.
      unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
      diagnoseIgnoredQualifiers(S, RetTy.getCVRQualifiers() | AtomicQual,
                                D.getIdentifierLoc());
      return;
    }

    llvm_unreachable("unknown declarator chunk kind");
  }

  // If the qualifiers come from a conversion function type, don't diagnose
  // them -- they're not necessarily redundant, since such a conversion
  // operator can be explicitly called as "x.operator const int()".
  if (D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId)
    return;

  // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
  // which are present there.
  diagnoseIgnoredQualifiers(S, D.getDeclSpec().getTypeQualifiers(),
                            D.getIdentifierLoc(),
                            D.getDeclSpec().getConstSpecLoc(),
                            D.getDeclSpec().getVolatileSpecLoc(),
                            D.getDeclSpec().getRestrictSpecLoc(),
                            D.getDeclSpec().getAtomicSpecLoc());
}

static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
                                             TypeSourceInfo *&ReturnTypeInfo) {
  Sema &SemaRef = state.getSema();
  Declarator &D = state.getDeclarator();
  QualType T;
  ReturnTypeInfo = 0;

  // The TagDecl owned by the DeclSpec.
  TagDecl *OwnedTagDecl = 0;

  bool ContainsPlaceholderType = false;

  switch (D.getName().getKind()) {
  case UnqualifiedId::IK_ImplicitSelfParam:
  case UnqualifiedId::IK_OperatorFunctionId:
  case UnqualifiedId::IK_Identifier:
  case UnqualifiedId::IK_LiteralOperatorId:
  case UnqualifiedId::IK_TemplateId:
    T = ConvertDeclSpecToType(state);
    ContainsPlaceholderType = D.getDeclSpec().containsPlaceholderType();

    if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
      OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
      // Owned declaration is embedded in declarator.
      OwnedTagDecl->setEmbeddedInDeclarator(true);
    }
    break;

  case UnqualifiedId::IK_ConstructorName:
  case UnqualifiedId::IK_ConstructorTemplateId:
  case UnqualifiedId::IK_DestructorName:
    // Constructors and destructors don't have return types. Use
    // "void" instead.
    T = SemaRef.Context.VoidTy;
    if (AttributeList *attrs = D.getDeclSpec().getAttributes().getList())
      processTypeAttrs(state, T, TAL_DeclSpec, attrs);
    break;

  case UnqualifiedId::IK_ConversionFunctionId:
    // The result type of a conversion function is the type that it
    // converts to.
    T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
                                  &ReturnTypeInfo);
    ContainsPlaceholderType = T->getContainedAutoType();
    break;
  }

  if (D.getAttributes())
    distributeTypeAttrsFromDeclarator(state, T);

  // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
  // In C++11, a function declarator using 'auto' must have a trailing return
  // type (this is checked later) and we can skip this. In other languages
  // using auto, we need to check regardless.
  if (ContainsPlaceholderType &&
      (!SemaRef.getLangOpts().CPlusPlus11 || !D.isFunctionDeclarator())) {
    int Error = -1;

    switch (D.getContext()) {
    case Declarator::KNRTypeListContext:
      llvm_unreachable("K&R type lists aren't allowed in C++");
    case Declarator::LambdaExprContext:
      llvm_unreachable("Can't specify a type specifier in lambda grammar");
    case Declarator::ObjCParameterContext:
    case Declarator::ObjCResultContext:
    case Declarator::PrototypeContext:
      Error = 0; // Function prototype
      break;
    case Declarator::MemberContext:
      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)
        break;
      switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
      case TTK_Enum: llvm_unreachable("unhandled tag kind");
      case TTK_Struct: Error = 1; /* Struct member */ break;
      case TTK_Union:  Error = 2; /* Union member */ break;
      case TTK_Class:  Error = 3; /* Class member */ break;
      case TTK_Interface: Error = 4; /* Interface member */ break;
      }
      break;
    case Declarator::CXXCatchContext:
    case Declarator::ObjCCatchContext:
      Error = 5; // Exception declaration
      break;
    case Declarator::TemplateParamContext:
      Error = 6; // Template parameter
      break;
    case Declarator::BlockLiteralContext:
      Error = 7; // Block literal
      break;
    case Declarator::TemplateTypeArgContext:
      Error = 8; // Template type argument
      break;
    case Declarator::AliasDeclContext:
    case Declarator::AliasTemplateContext:
      Error = 10; // Type alias
      break;
    case Declarator::TrailingReturnContext:
      if (!SemaRef.getLangOpts().CPlusPlus1y)
        Error = 11; // Function return type
      break;
    case Declarator::ConversionIdContext:
      if (!SemaRef.getLangOpts().CPlusPlus1y)
        Error = 12; // conversion-type-id
      break;
    case Declarator::TypeNameContext:
      Error = 13; // Generic
      break;
    case Declarator::FileContext:
    case Declarator::BlockContext:
    case Declarator::ForContext:
    case Declarator::ConditionContext:
    case Declarator::CXXNewContext:
      break;
    }

    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
      Error = 9;

    // In Objective-C it is an error to use 'auto' on a function declarator.
    if (D.isFunctionDeclarator())
      Error = 11;

    // C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
    // contains a trailing return type. That is only legal at the outermost
    // level. Check all declarator chunks (outermost first) anyway, to give
    // better diagnostics.
    if (SemaRef.getLangOpts().CPlusPlus11 && Error != -1) {
      for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
        unsigned chunkIndex = e - i - 1;
        state.setCurrentChunkIndex(chunkIndex);
        DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
        if (DeclType.Kind == DeclaratorChunk::Function) {
          const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
          if (FTI.hasTrailingReturnType()) {
            Error = -1;
            break;
          }
        }
      }
    }

    SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
    if (D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId)
      AutoRange = D.getName().getSourceRange();

    if (Error != -1) {
      SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
        << Error << AutoRange;
      T = SemaRef.Context.IntTy;
      D.setInvalidType(true);
    } else
      SemaRef.Diag(AutoRange.getBegin(),
                   diag::warn_cxx98_compat_auto_type_specifier)
        << AutoRange;
  }

  if (SemaRef.getLangOpts().CPlusPlus &&
      OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
    // Check the contexts where C++ forbids the declaration of a new class
    // or enumeration in a type-specifier-seq.
    switch (D.getContext()) {
    case Declarator::TrailingReturnContext:
      // Class and enumeration definitions are syntactically not allowed in
      // trailing return types.
      llvm_unreachable("parser should not have allowed this");
      break;
    case Declarator::FileContext:
    case Declarator::MemberContext:
    case Declarator::BlockContext:
    case Declarator::ForContext:
    case Declarator::BlockLiteralContext:
    case Declarator::LambdaExprContext:
      // C++11 [dcl.type]p3:
      //   A type-specifier-seq shall not define a class or enumeration unless
      //   it appears in the type-id of an alias-declaration (7.1.3) that is not
      //   the declaration of a template-declaration.
    case Declarator::AliasDeclContext:
      break;
    case Declarator::AliasTemplateContext:
      SemaRef.Diag(OwnedTagDecl->getLocation(),
             diag::err_type_defined_in_alias_template)
        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
      D.setInvalidType(true);
      break;
    case Declarator::TypeNameContext:
    case Declarator::ConversionIdContext:
    case Declarator::TemplateParamContext:
    case Declarator::CXXNewContext:
    case Declarator::CXXCatchContext:
    case Declarator::ObjCCatchContext:
    case Declarator::TemplateTypeArgContext:
      SemaRef.Diag(OwnedTagDecl->getLocation(),
             diag::err_type_defined_in_type_specifier)
        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
      D.setInvalidType(true);
      break;
    case Declarator::PrototypeContext:
    case Declarator::ObjCParameterContext:
    case Declarator::ObjCResultContext:
    case Declarator::KNRTypeListContext:
      // C++ [dcl.fct]p6:
      //   Types shall not be defined in return or parameter types.
      SemaRef.Diag(OwnedTagDecl->getLocation(),
                   diag::err_type_defined_in_param_type)
        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
      D.setInvalidType(true);
      break;
    case Declarator::ConditionContext:
      // C++ 6.4p2:
      // The type-specifier-seq shall not contain typedef and shall not declare
      // a new class or enumeration.
      SemaRef.Diag(OwnedTagDecl->getLocation(),
                   diag::err_type_defined_in_condition);
      D.setInvalidType(true);
      break;
    }
  }

  return T;
}

static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
  std::string Quals =
    Qualifiers::fromCVRMask(FnTy->getTypeQuals()).getAsString();

  switch (FnTy->getRefQualifier()) {
  case RQ_None:
    break;

  case RQ_LValue:
    if (!Quals.empty())
      Quals += ' ';
    Quals += '&';
    break;

  case RQ_RValue:
    if (!Quals.empty())
      Quals += ' ';
    Quals += "&&";
    break;
  }

  return Quals;
}

/// Check that the function type T, which has a cv-qualifier or a ref-qualifier,
/// can be contained within the declarator chunk DeclType, and produce an
/// appropriate diagnostic if not.
static void checkQualifiedFunction(Sema &S, QualType T,
                                   DeclaratorChunk &DeclType) {
  // C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6: a function type with a
  // cv-qualifier or a ref-qualifier can only appear at the topmost level
  // of a type.
  int DiagKind = -1;
  switch (DeclType.Kind) {
  case DeclaratorChunk::Paren:
  case DeclaratorChunk::MemberPointer:
    // These cases are permitted.
    return;
  case DeclaratorChunk::Array:
  case DeclaratorChunk::Function:
    // These cases don't allow function types at all; no need to diagnose the
    // qualifiers separately.
    return;
  case DeclaratorChunk::BlockPointer:
    DiagKind = 0;
    break;
  case DeclaratorChunk::Pointer:
    DiagKind = 1;
    break;
  case DeclaratorChunk::Reference:
    DiagKind = 2;
    break;
  }

  assert(DiagKind != -1);
  S.Diag(DeclType.Loc, diag::err_compound_qualified_function_type)
    << DiagKind << isa<FunctionType>(T.IgnoreParens()) << T
    << getFunctionQualifiersAsString(T->castAs<FunctionProtoType>());
}

/// Produce an approprioate diagnostic for an ambiguity between a function
/// declarator and a C++ direct-initializer.
static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
                                       DeclaratorChunk &DeclType, QualType RT) {
  const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
  assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");

  // If the return type is void there is no ambiguity.
  if (RT->isVoidType())
    return;

  // An initializer for a non-class type can have at most one argument.
  if (!RT->isRecordType() && FTI.NumArgs > 1)
    return;

  // An initializer for a reference must have exactly one argument.
  if (RT->isReferenceType() && FTI.NumArgs != 1)
    return;

  // Only warn if this declarator is declaring a function at block scope, and
  // doesn't have a storage class (such as 'extern') specified.
  if (!D.isFunctionDeclarator() ||
      D.getFunctionDefinitionKind() != FDK_Declaration ||
      !S.CurContext->isFunctionOrMethod() ||
      D.getDeclSpec().getStorageClassSpec()
        != DeclSpec::SCS_unspecified)
    return;

  // Inside a condition, a direct initializer is not permitted. We allow one to
  // be parsed in order to give better diagnostics in condition parsing.
  if (D.getContext() == Declarator::ConditionContext)
    return;

  SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);

  S.Diag(DeclType.Loc,
         FTI.NumArgs ? diag::warn_parens_disambiguated_as_function_declaration
                     : diag::warn_empty_parens_are_function_decl)
    << ParenRange;

  // If the declaration looks like:
  //   T var1,
  //   f();
  // and name lookup finds a function named 'f', then the ',' was
  // probably intended to be a ';'.
  if (!D.isFirstDeclarator() && D.getIdentifier()) {
    FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
    FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
    if (Comma.getFileID() != Name.getFileID() ||
        Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
      LookupResult Result(S, D.getIdentifier(), SourceLocation(),
                          Sema::LookupOrdinaryName);
      if (S.LookupName(Result, S.getCurScope()))
        S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
          << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
          << D.getIdentifier();
    }
  }

  if (FTI.NumArgs > 0) {
    // For a declaration with parameters, eg. "T var(T());", suggest adding parens
    // around the first parameter to turn the declaration into a variable
    // declaration.
    SourceRange Range = FTI.ArgInfo[0].Param->getSourceRange();
    SourceLocation B = Range.getBegin();
    SourceLocation E = S.PP.getLocForEndOfToken(Range.getEnd());
    // FIXME: Maybe we should suggest adding braces instead of parens
    // in C++11 for classes that don't have an initializer_list constructor.
    S.Diag(B, diag::note_additional_parens_for_variable_declaration)
      << FixItHint::CreateInsertion(B, "(")
      << FixItHint::CreateInsertion(E, ")");
  } else {
    // For a declaration without parameters, eg. "T var();", suggest replacing the
    // parens with an initializer to turn the declaration into a variable
    // declaration.
    const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();

    // Empty parens mean value-initialization, and no parens mean
    // default initialization. These are equivalent if the default
    // constructor is user-provided or if zero-initialization is a
    // no-op.
    if (RD && RD->hasDefinition() &&
        (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
      S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
        << FixItHint::CreateRemoval(ParenRange);
    else {
      std::string Init = S.getFixItZeroInitializerForType(RT);
      if (Init.empty() && S.LangOpts.CPlusPlus11)
        Init = "{}";
      if (!Init.empty())
        S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
          << FixItHint::CreateReplacement(ParenRange, Init);
    }
  }
}

static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
                                                QualType declSpecType,
                                                TypeSourceInfo *TInfo) {

  QualType T = declSpecType;
  Declarator &D = state.getDeclarator();
  Sema &S = state.getSema();
  ASTContext &Context = S.Context;
  const LangOptions &LangOpts = S.getLangOpts();

  // The name we're declaring, if any.
  DeclarationName Name;
  if (D.getIdentifier())
    Name = D.getIdentifier();

  // Does this declaration declare a typedef-name?
  bool IsTypedefName =
    D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
    D.getContext() == Declarator::AliasDeclContext ||
    D.getContext() == Declarator::AliasTemplateContext;

  // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
  bool IsQualifiedFunction = T->isFunctionProtoType() &&
      (T->castAs<FunctionProtoType>()->getTypeQuals() != 0 ||
       T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);

  // If T is 'decltype(auto)', the only declarators we can have are parens
  // and at most one function declarator if this is a function declaration.
  if (const AutoType *AT = T->getAs<AutoType>()) {
    if (AT->isDecltypeAuto()) {
      for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
        unsigned Index = E - I - 1;
        DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
        unsigned DiagId = diag::err_decltype_auto_compound_type;
        unsigned DiagKind = 0;
        switch (DeclChunk.Kind) {
        case DeclaratorChunk::Paren:
          continue;
        case DeclaratorChunk::Function: {
          unsigned FnIndex;
          if (D.isFunctionDeclarationContext() &&
              D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
            continue;
          DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
          break;
        }
        case DeclaratorChunk::Pointer:
        case DeclaratorChunk::BlockPointer:
        case DeclaratorChunk::MemberPointer:
          DiagKind = 0;
          break;
        case DeclaratorChunk::Reference:
          DiagKind = 1;
          break;
        case DeclaratorChunk::Array:
          DiagKind = 2;
          break;
        }

        S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
        D.setInvalidType(true);
        break;
      }
    }
  }

  // Walk the DeclTypeInfo, building the recursive type as we go.
  // DeclTypeInfos are ordered from the identifier out, which is
  // opposite of what we want :).
  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
    unsigned chunkIndex = e - i - 1;
    state.setCurrentChunkIndex(chunkIndex);
    DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
    if (IsQualifiedFunction) {
      checkQualifiedFunction(S, T, DeclType);
      IsQualifiedFunction = DeclType.Kind == DeclaratorChunk::Paren;
    }
    switch (DeclType.Kind) {
    case DeclaratorChunk::Paren:
      T = S.BuildParenType(T);
      break;
    case DeclaratorChunk::BlockPointer:
      // If blocks are disabled, emit an error.
      if (!LangOpts.Blocks)
        S.Diag(DeclType.Loc, diag::err_blocks_disable);

      T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
      if (DeclType.Cls.TypeQuals)
        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
      break;
    case DeclaratorChunk::Pointer:
      // Verify that we're not building a pointer to pointer to function with
      // exception specification.
      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
        D.setInvalidType(true);
        // Build the type anyway.
      }
      if (LangOpts.ObjC1 && T->getAs<ObjCObjectType>()) {
        T = Context.getObjCObjectPointerType(T);
        if (DeclType.Ptr.TypeQuals)
          T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
        break;
      }
      T = S.BuildPointerType(T, DeclType.Loc, Name);
      if (DeclType.Ptr.TypeQuals)
        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);

      break;
    case DeclaratorChunk::Reference: {
      // Verify that we're not building a reference to pointer to function with
      // exception specification.
      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
        D.setInvalidType(true);
        // Build the type anyway.
      }
      T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);

      Qualifiers Quals;
      if (DeclType.Ref.HasRestrict)
        T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
      break;
    }
    case DeclaratorChunk::Array: {
      // Verify that we're not building an array of pointers to function with
      // exception specification.
      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
        D.setInvalidType(true);
        // Build the type anyway.
      }
      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
      ArrayType::ArraySizeModifier ASM;
      if (ATI.isStar)
        ASM = ArrayType::Star;
      else if (ATI.hasStatic)
        ASM = ArrayType::Static;
      else
        ASM = ArrayType::Normal;
      if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
        // FIXME: This check isn't quite right: it allows star in prototypes
        // for function definitions, and disallows some edge cases detailed
        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
        S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
        ASM = ArrayType::Normal;
        D.setInvalidType(true);
      }

      // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
      // shall appear only in a declaration of a function parameter with an
      // array type, ...
      if (ASM == ArrayType::Static || ATI.TypeQuals) {
        if (!(D.isPrototypeContext() ||
              D.getContext() == Declarator::KNRTypeListContext)) {
          S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
              (ASM == ArrayType::Static ? "'static'" : "type qualifier");
          // Remove the 'static' and the type qualifiers.
          if (ASM == ArrayType::Static)
            ASM = ArrayType::Normal;
          ATI.TypeQuals = 0;
          D.setInvalidType(true);
        }

        // C99 6.7.5.2p1: ... and then only in the outermost array type
        // derivation.
        unsigned x = chunkIndex;
        while (x != 0) {
          // Walk outwards along the declarator chunks.
          x--;
          const DeclaratorChunk &DC = D.getTypeObject(x);
          switch (DC.Kind) {
          case DeclaratorChunk::Paren:
            continue;
          case DeclaratorChunk::Array:
          case DeclaratorChunk::Pointer:
          case DeclaratorChunk::Reference:
          case DeclaratorChunk::MemberPointer:
            S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
              (ASM == ArrayType::Static ? "'static'" : "type qualifier");
            if (ASM == ArrayType::Static)
              ASM = ArrayType::Normal;
            ATI.TypeQuals = 0;
            D.setInvalidType(true);
            break;
          case DeclaratorChunk::Function:
          case DeclaratorChunk::BlockPointer:
            // These are invalid anyway, so just ignore.
            break;
          }
        }
      }

      if (const AutoType *AT = T->getContainedAutoType()) {
        // We've already diagnosed this for decltype(auto).
        if (!AT->isDecltypeAuto())
          S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto)
            << getPrintableNameForEntity(Name) << T;
        T = QualType();
        break;
      }

      T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
                           SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
      break;
    }
    case DeclaratorChunk::Function: {
      // If the function declarator has a prototype (i.e. it is not () and
      // does not have a K&R-style identifier list), then the arguments are part
      // of the type, otherwise the argument list is ().
      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
      IsQualifiedFunction = FTI.TypeQuals || FTI.hasRefQualifier();

      // Check for auto functions and trailing return type and adjust the
      // return type accordingly.
      if (!D.isInvalidType()) {
        // trailing-return-type is only required if we're declaring a function,
        // and not, for instance, a pointer to a function.
        if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
            !FTI.hasTrailingReturnType() && chunkIndex == 0 &&
            !S.getLangOpts().CPlusPlus1y) {
          S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
               diag::err_auto_missing_trailing_return);
          T = Context.IntTy;
          D.setInvalidType(true);
        } else if (FTI.hasTrailingReturnType()) {
          // T must be exactly 'auto' at this point. See CWG issue 681.
          if (isa<ParenType>(T)) {
            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
                 diag::err_trailing_return_in_parens)
              << T << D.getDeclSpec().getSourceRange();
            D.setInvalidType(true);
          } else if (D.getContext() != Declarator::LambdaExprContext &&
                     (T.hasQualifiers() || !isa<AutoType>(T) ||
                      cast<AutoType>(T)->isDecltypeAuto())) {
            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
                 diag::err_trailing_return_without_auto)
              << T << D.getDeclSpec().getSourceRange();
            D.setInvalidType(true);
          }
          T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
          if (T.isNull()) {
            // An error occurred parsing the trailing return type.
            T = Context.IntTy;
            D.setInvalidType(true);
          }
        }
      }

      // C99 6.7.5.3p1: The return type may not be a function or array type.
      // For conversion functions, we'll diagnose this particular error later.
      if ((T->isArrayType() || T->isFunctionType()) &&
          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
        unsigned diagID = diag::err_func_returning_array_function;
        // Last processing chunk in block context means this function chunk
        // represents the block.
        if (chunkIndex == 0 &&
            D.getContext() == Declarator::BlockLiteralContext)
          diagID = diag::err_block_returning_array_function;
        S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
        T = Context.IntTy;
        D.setInvalidType(true);
      }

      // Do not allow returning half FP value.
      // FIXME: This really should be in BuildFunctionType.
      if (T->isHalfType()) {
        if (S.getLangOpts().OpenCL) {
          if (!S.getOpenCLOptions().cl_khr_fp16) {
            S.Diag(D.getIdentifierLoc(), diag::err_opencl_half_return) << T;
            D.setInvalidType(true);
          } 
        } else {
          S.Diag(D.getIdentifierLoc(),
            diag::err_parameters_retval_cannot_have_fp16_type) << 1;
          D.setInvalidType(true);
        }
      }

      // cv-qualifiers on return types are pointless except when the type is a
      // class type in C++.
      if ((T.getCVRQualifiers() || T->isAtomicType()) &&
          !(S.getLangOpts().CPlusPlus &&
            (T->isDependentType() || T->isRecordType())))
        diagnoseIgnoredFunctionQualifiers(S, T, D, chunkIndex);

      // Objective-C ARC ownership qualifiers are ignored on the function
      // return type (by type canonicalization). Complain if this attribute
      // was written here.
      if (T.getQualifiers().hasObjCLifetime()) {
        SourceLocation AttrLoc;
        if (chunkIndex + 1 < D.getNumTypeObjects()) {
          DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
          for (const AttributeList *Attr = ReturnTypeChunk.getAttrs();
               Attr; Attr = Attr->getNext()) {
            if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
              AttrLoc = Attr->getLoc();
              break;
            }
          }
        }
        if (AttrLoc.isInvalid()) {
          for (const AttributeList *Attr
                 = D.getDeclSpec().getAttributes().getList();
               Attr; Attr = Attr->getNext()) {
            if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
              AttrLoc = Attr->getLoc();
              break;
            }
          }
        }

        if (AttrLoc.isValid()) {
          // The ownership attributes are almost always written via
          // the predefined
          // __strong/__weak/__autoreleasing/__unsafe_unretained.
          if (AttrLoc.isMacroID())
            AttrLoc = S.SourceMgr.getImmediateExpansionRange(AttrLoc).first;

          S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
            << T.getQualifiers().getObjCLifetime();
        }
      }

      if (LangOpts.CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
        // C++ [dcl.fct]p6:
        //   Types shall not be defined in return or parameter types.
        TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
        if (Tag->isCompleteDefinition())
          S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
            << Context.getTypeDeclType(Tag);
      }

      // Exception specs are not allowed in typedefs. Complain, but add it
      // anyway.
      if (IsTypedefName && FTI.getExceptionSpecType())
        S.Diag(FTI.getExceptionSpecLoc(), diag::err_exception_spec_in_typedef)
          << (D.getContext() == Declarator::AliasDeclContext ||
              D.getContext() == Declarator::AliasTemplateContext);

      // If we see "T var();" or "T var(T());" at block scope, it is probably
      // an attempt to initialize a variable, not a function declaration.
      if (FTI.isAmbiguous)
        warnAboutAmbiguousFunction(S, D, DeclType, T);

      if (!FTI.NumArgs && !FTI.isVariadic && !LangOpts.CPlusPlus) {
        // Simple void foo(), where the incoming T is the result type.
        T = Context.getFunctionNoProtoType(T);
      } else {
        // We allow a zero-parameter variadic function in C if the
        // function is marked with the "overloadable" attribute. Scan
        // for this attribute now.
        if (!FTI.NumArgs && FTI.isVariadic && !LangOpts.CPlusPlus) {
          bool Overloadable = false;
          for (const AttributeList *Attrs = D.getAttributes();
               Attrs; Attrs = Attrs->getNext()) {
            if (Attrs->getKind() == AttributeList::AT_Overloadable) {
              Overloadable = true;
              break;
            }
          }

          if (!Overloadable)
            S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
        }

        if (FTI.NumArgs && FTI.ArgInfo[0].Param == 0) {
          // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
          // definition.
          S.Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
          D.setInvalidType(true);
          // Recover by creating a K&R-style function type.
          T = Context.getFunctionNoProtoType(T);
          break;
        }

        FunctionProtoType::ExtProtoInfo EPI;
        EPI.Variadic = FTI.isVariadic;
        EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
        EPI.TypeQuals = FTI.TypeQuals;
        EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
                    : FTI.RefQualifierIsLValueRef? RQ_LValue
                    : RQ_RValue;

        // Otherwise, we have a function with an argument list that is
        // potentially variadic.
        SmallVector<QualType, 16> ArgTys;
        ArgTys.reserve(FTI.NumArgs);

        SmallVector<bool, 16> ConsumedArguments;
        ConsumedArguments.reserve(FTI.NumArgs);
        bool HasAnyConsumedArguments = false;

        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
          ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
          QualType ArgTy = Param->getType();
          assert(!ArgTy.isNull() && "Couldn't parse type?");

          // Adjust the parameter type.
          assert((ArgTy == Context.getAdjustedParameterType(ArgTy)) &&
                 "Unadjusted type?");

          // Look for 'void'.  void is allowed only as a single argument to a
          // function with no other parameters (C99 6.7.5.3p10).  We record
          // int(void) as a FunctionProtoType with an empty argument list.
          if (ArgTy->isVoidType()) {
            // If this is something like 'float(int, void)', reject it.  'void'
            // is an incomplete type (C99 6.2.5p19) and function decls cannot
            // have arguments of incomplete type.
            if (FTI.NumArgs != 1 || FTI.isVariadic) {
              S.Diag(DeclType.Loc, diag::err_void_only_param);
              ArgTy = Context.IntTy;
              Param->setType(ArgTy);
            } else if (FTI.ArgInfo[i].Ident) {
              // Reject, but continue to parse 'int(void abc)'.
              S.Diag(FTI.ArgInfo[i].IdentLoc,
                   diag::err_param_with_void_type);
              ArgTy = Context.IntTy;
              Param->setType(ArgTy);
            } else {
              // Reject, but continue to parse 'float(const void)'.
              if (ArgTy.hasQualifiers())
                S.Diag(DeclType.Loc, diag::err_void_param_qualified);

              // Do not add 'void' to the ArgTys list.
              break;
            }
          } else if (ArgTy->isHalfType()) {
            // Disallow half FP arguments.
            // FIXME: This really should be in BuildFunctionType.
            if (S.getLangOpts().OpenCL) {
              if (!S.getOpenCLOptions().cl_khr_fp16) {
                S.Diag(Param->getLocation(),
                  diag::err_opencl_half_argument) << ArgTy;
                D.setInvalidType();
                Param->setInvalidDecl();
              }
            } else {
              S.Diag(Param->getLocation(),
                diag::err_parameters_retval_cannot_have_fp16_type) << 0;
              D.setInvalidType();
            }
          } else if (!FTI.hasPrototype) {
            if (ArgTy->isPromotableIntegerType()) {
              ArgTy = Context.getPromotedIntegerType(ArgTy);
              Param->setKNRPromoted(true);
            } else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
              if (BTy->getKind() == BuiltinType::Float) {
                ArgTy = Context.DoubleTy;
                Param->setKNRPromoted(true);
              }
            }
          }

          if (LangOpts.ObjCAutoRefCount) {
            bool Consumed = Param->hasAttr<NSConsumedAttr>();
            ConsumedArguments.push_back(Consumed);
            HasAnyConsumedArguments |= Consumed;
          }

          ArgTys.push_back(ArgTy);
        }

        if (HasAnyConsumedArguments)
          EPI.ConsumedArguments = ConsumedArguments.data();

        SmallVector<QualType, 4> Exceptions;
        SmallVector<ParsedType, 2> DynamicExceptions;
        SmallVector<SourceRange, 2> DynamicExceptionRanges;
        Expr *NoexceptExpr = 0;

        if (FTI.getExceptionSpecType() == EST_Dynamic) {
          // FIXME: It's rather inefficient to have to split into two vectors
          // here.
          unsigned N = FTI.NumExceptions;
          DynamicExceptions.reserve(N);
          DynamicExceptionRanges.reserve(N);
          for (unsigned I = 0; I != N; ++I) {
            DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
            DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
          }
        } else if (FTI.getExceptionSpecType() == EST_ComputedNoexcept) {
          NoexceptExpr = FTI.NoexceptExpr;
        }

        S.checkExceptionSpecification(FTI.getExceptionSpecType(),
                                      DynamicExceptions,
                                      DynamicExceptionRanges,
                                      NoexceptExpr,
                                      Exceptions,
                                      EPI);

        T = Context.getFunctionType(T, ArgTys, EPI);
      }

      break;
    }
    case DeclaratorChunk::MemberPointer:
      // The scope spec must refer to a class, or be dependent.
      CXXScopeSpec &SS = DeclType.Mem.Scope();
      QualType ClsType;
      if (SS.isInvalid()) {
        // Avoid emitting extra errors if we already errored on the scope.
        D.setInvalidType(true);
      } else if (S.isDependentScopeSpecifier(SS) ||
                 dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
        NestedNameSpecifier *NNS
          = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
        NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
        switch (NNS->getKind()) {
        case NestedNameSpecifier::Identifier:
          ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
                                                 NNS->getAsIdentifier());
          break;

        case NestedNameSpecifier::Namespace:
        case NestedNameSpecifier::NamespaceAlias:
        case NestedNameSpecifier::Global:
          llvm_unreachable("Nested-name-specifier must name a type");

        case NestedNameSpecifier::TypeSpec:
        case NestedNameSpecifier::TypeSpecWithTemplate:
          ClsType = QualType(NNS->getAsType(), 0);
          // Note: if the NNS has a prefix and ClsType is a nondependent
          // TemplateSpecializationType, then the NNS prefix is NOT included
          // in ClsType; hence we wrap ClsType into an ElaboratedType.
          // NOTE: in particular, no wrap occurs if ClsType already is an
          // Elaborated, DependentName, or DependentTemplateSpecialization.
          if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
            ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
          break;
        }
      } else {
        S.Diag(DeclType.Mem.Scope().getBeginLoc(),
             diag::err_illegal_decl_mempointer_in_nonclass)
          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
          << DeclType.Mem.Scope().getRange();
        D.setInvalidType(true);
      }

      if (!ClsType.isNull())
        T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc, D.getIdentifier());
      if (T.isNull()) {
        T = Context.IntTy;
        D.setInvalidType(true);
      } else if (DeclType.Mem.TypeQuals) {
        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
      }
      break;
    }

    if (T.isNull()) {
      D.setInvalidType(true);
      T = Context.IntTy;
    }

    // See if there are any attributes on this declarator chunk.
    if (AttributeList *attrs = const_cast<AttributeList*>(DeclType.getAttrs()))
      processTypeAttrs(state, T, TAL_DeclChunk, attrs);
  }

  if (LangOpts.CPlusPlus && T->isFunctionType()) {
    const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
    assert(FnTy && "Why oh why is there not a FunctionProtoType here?");

    // C++ 8.3.5p4:
    //   A cv-qualifier-seq shall only be part of the function type
    //   for a nonstatic member function, the function type to which a pointer
    //   to member refers, or the top-level function type of a function typedef
    //   declaration.
    //
    // Core issue 547 also allows cv-qualifiers on function types that are
    // top-level template type arguments.
    bool FreeFunction;
    if (!D.getCXXScopeSpec().isSet()) {
      FreeFunction = ((D.getContext() != Declarator::MemberContext &&
                       D.getContext() != Declarator::LambdaExprContext) ||
                      D.getDeclSpec().isFriendSpecified());
    } else {
      DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
      FreeFunction = (DC && !DC->isRecord());
    }

    // C++11 [dcl.fct]p6 (w/DR1417):
    // An attempt to specify a function type with a cv-qualifier-seq or a
    // ref-qualifier (including by typedef-name) is ill-formed unless it is:
    //  - the function type for a non-static member function,
    //  - the function type to which a pointer to member refers,
    //  - the top-level function type of a function typedef declaration or
    //    alias-declaration,
    //  - the type-id in the default argument of a type-parameter, or
    //  - the type-id of a template-argument for a type-parameter
    if (IsQualifiedFunction &&
        !(!FreeFunction &&
          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
        !IsTypedefName &&
        D.getContext() != Declarator::TemplateTypeArgContext) {
      SourceLocation Loc = D.getLocStart();
      SourceRange RemovalRange;
      unsigned I;
      if (D.isFunctionDeclarator(I)) {
        SmallVector<SourceLocation, 4> RemovalLocs;
        const DeclaratorChunk &Chunk = D.getTypeObject(I);
        assert(Chunk.Kind == DeclaratorChunk::Function);
        if (Chunk.Fun.hasRefQualifier())
          RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
        if (Chunk.Fun.TypeQuals & Qualifiers::Const)
          RemovalLocs.push_back(Chunk.Fun.getConstQualifierLoc());
        if (Chunk.Fun.TypeQuals & Qualifiers::Volatile)
          RemovalLocs.push_back(Chunk.Fun.getVolatileQualifierLoc());
        // FIXME: We do not track the location of the __restrict qualifier.
        //if (Chunk.Fun.TypeQuals & Qualifiers::Restrict)
        //  RemovalLocs.push_back(Chunk.Fun.getRestrictQualifierLoc());
        if (!RemovalLocs.empty()) {
          std::sort(RemovalLocs.begin(), RemovalLocs.end(),
                    BeforeThanCompare<SourceLocation>(S.getSourceManager()));
          RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
          Loc = RemovalLocs.front();
        }
      }

      S.Diag(Loc, diag::err_invalid_qualified_function_type)
        << FreeFunction << D.isFunctionDeclarator() << T
        << getFunctionQualifiersAsString(FnTy)
        << FixItHint::CreateRemoval(RemovalRange);

      // Strip the cv-qualifiers and ref-qualifiers from the type.
      FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
      EPI.TypeQuals = 0;
      EPI.RefQualifier = RQ_None;

      T = Context.getFunctionType(FnTy->getResultType(),
                                  ArrayRef<QualType>(FnTy->arg_type_begin(),
                                                     FnTy->getNumArgs()),
                                  EPI);
      // Rebuild any parens around the identifier in the function type.
      for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
        if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
          break;
        T = S.BuildParenType(T);
      }
    }
  }

  // Apply any undistributed attributes from the declarator.
  if (!T.isNull())
    if (AttributeList *attrs = D.getAttributes())
      processTypeAttrs(state, T, TAL_DeclName, attrs);

  // Diagnose any ignored type attributes.
  if (!T.isNull()) state.diagnoseIgnoredTypeAttrs(T);

  // C++0x [dcl.constexpr]p9:
  //  A constexpr specifier used in an object declaration declares the object
  //  as const.
  if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
    T.addConst();
  }

  // If there was an ellipsis in the declarator, the declaration declares a
  // parameter pack whose type may be a pack expansion type.
  if (D.hasEllipsis() && !T.isNull()) {
    // C++0x [dcl.fct]p13:
    //   A declarator-id or abstract-declarator containing an ellipsis shall
    //   only be used in a parameter-declaration. Such a parameter-declaration
    //   is a parameter pack (14.5.3). [...]
    switch (D.getContext()) {
    case Declarator::PrototypeContext:
      // C++0x [dcl.fct]p13:
      //   [...] When it is part of a parameter-declaration-clause, the
      //   parameter pack is a function parameter pack (14.5.3). The type T
      //   of the declarator-id of the function parameter pack shall contain
      //   a template parameter pack; each template parameter pack in T is
      //   expanded by the function parameter pack.
      //
      // We represent function parameter packs as function parameters whose
      // type is a pack expansion.
      if (!T->containsUnexpandedParameterPack()) {
        S.Diag(D.getEllipsisLoc(),
             diag::err_function_parameter_pack_without_parameter_packs)
          << T <<  D.getSourceRange();
        D.setEllipsisLoc(SourceLocation());
      } else {
        T = Context.getPackExpansionType(T, None);
      }
      break;

    case Declarator::TemplateParamContext:
      // C++0x [temp.param]p15:
      //   If a template-parameter is a [...] is a parameter-declaration that
      //   declares a parameter pack (8.3.5), then the template-parameter is a
      //   template parameter pack (14.5.3).
      //
      // Note: core issue 778 clarifies that, if there are any unexpanded
      // parameter packs in the type of the non-type template parameter, then
      // it expands those parameter packs.
      if (T->containsUnexpandedParameterPack())
        T = Context.getPackExpansionType(T, None);
      else
        S.Diag(D.getEllipsisLoc(),
               LangOpts.CPlusPlus11
                 ? diag::warn_cxx98_compat_variadic_templates
                 : diag::ext_variadic_templates);
      break;

    case Declarator::FileContext:
    case Declarator::KNRTypeListContext:
    case Declarator::ObjCParameterContext:  // FIXME: special diagnostic here?
    case Declarator::ObjCResultContext:     // FIXME: special diagnostic here?
    case Declarator::TypeNameContext:
    case Declarator::CXXNewContext:
    case Declarator::AliasDeclContext:
    case Declarator::AliasTemplateContext:
    case Declarator::MemberContext:
    case Declarator::BlockContext:
    case Declarator::ForContext:
    case Declarator::ConditionContext:
    case Declarator::CXXCatchContext:
    case Declarator::ObjCCatchContext:
    case Declarator::BlockLiteralContext:
    case Declarator::LambdaExprContext:
    case Declarator::ConversionIdContext:
    case Declarator::TrailingReturnContext:
    case Declarator::TemplateTypeArgContext:
      // FIXME: We may want to allow parameter packs in block-literal contexts
      // in the future.
      S.Diag(D.getEllipsisLoc(), diag::err_ellipsis_in_declarator_not_parameter);
      D.setEllipsisLoc(SourceLocation());
      break;
    }
  }

  if (T.isNull())
    return Context.getNullTypeSourceInfo();
  else if (D.isInvalidType())
    return Context.getTrivialTypeSourceInfo(T);

  return S.GetTypeSourceInfoForDeclarator(D, T, TInfo);
}

/// GetTypeForDeclarator - Convert the type for the specified
/// declarator to Type instances.
///
/// The result of this call will never be null, but the associated
/// type may be a null type if there's an unrecoverable error.
TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
  // Determine the type of the declarator. Not all forms of declarator
  // have a type.

  TypeProcessingState state(*this, D);

  TypeSourceInfo *ReturnTypeInfo = 0;
  QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
  if (T.isNull())
    return Context.getNullTypeSourceInfo();

  if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
    inferARCWriteback(state, T);

  return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
}

static void transferARCOwnershipToDeclSpec(Sema &S,
                                           QualType &declSpecTy,
                                           Qualifiers::ObjCLifetime ownership) {
  if (declSpecTy->isObjCRetainableType() &&
      declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
    Qualifiers qs;
    qs.addObjCLifetime(ownership);
    declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
  }
}

static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
                                            Qualifiers::ObjCLifetime ownership,
                                            unsigned chunkIndex) {
  Sema &S = state.getSema();
  Declarator &D = state.getDeclarator();

  // Look for an explicit lifetime attribute.
  DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
  for (const AttributeList *attr = chunk.getAttrs(); attr;
         attr = attr->getNext())
    if (attr->getKind() == AttributeList::AT_ObjCOwnership)
      return;

  const char *attrStr = 0;
  switch (ownership) {
  case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
  case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
  case Qualifiers::OCL_Strong: attrStr = "strong"; break;
  case Qualifiers::OCL_Weak: attrStr = "weak"; break;
  case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
  }

  // If there wasn't one, add one (with an invalid source location
  // so that we don't make an AttributedType for it).
  AttributeList *attr = D.getAttributePool()
    .create(&S.Context.Idents.get("objc_ownership"), SourceLocation(),
            /*scope*/ 0, SourceLocation(),
            &S.Context.Idents.get(attrStr), SourceLocation(),
            /*args*/ 0, 0, AttributeList::AS_GNU);
  spliceAttrIntoList(*attr, chunk.getAttrListRef());

  // TODO: mark whether we did this inference?
}

/// \brief Used for transferring ownership in casts resulting in l-values.
static void transferARCOwnership(TypeProcessingState &state,
                                 QualType &declSpecTy,
                                 Qualifiers::ObjCLifetime ownership) {
  Sema &S = state.getSema();
  Declarator &D = state.getDeclarator();

  int inner = -1;
  bool hasIndirection = false;
  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
    DeclaratorChunk &chunk = D.getTypeObject(i);
    switch (chunk.Kind) {
    case DeclaratorChunk::Paren:
      // Ignore parens.
      break;

    case DeclaratorChunk::Array:
    case DeclaratorChunk::Reference:
    case DeclaratorChunk::Pointer:
      if (inner != -1)
        hasIndirection = true;
      inner = i;
      break;

    case DeclaratorChunk::BlockPointer:
      if (inner != -1)
        transferARCOwnershipToDeclaratorChunk(state, ownership, i);
      return;

    case DeclaratorChunk::Function:
    case DeclaratorChunk::MemberPointer:
      return;
    }
  }

  if (inner == -1)
    return;

  DeclaratorChunk &chunk = D.getTypeObject(inner);
  if (chunk.Kind == DeclaratorChunk::Pointer) {
    if (declSpecTy->isObjCRetainableType())
      return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
    if (declSpecTy->isObjCObjectType() && hasIndirection)
      return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
  } else {
    assert(chunk.Kind == DeclaratorChunk::Array ||
           chunk.Kind == DeclaratorChunk::Reference);
    return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
  }
}

TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
  TypeProcessingState state(*this, D);

  TypeSourceInfo *ReturnTypeInfo = 0;
  QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
  if (declSpecTy.isNull())
    return Context.getNullTypeSourceInfo();

  if (getLangOpts().ObjCAutoRefCount) {
    Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
    if (ownership != Qualifiers::OCL_None)
      transferARCOwnership(state, declSpecTy, ownership);
  }

  return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
}

/// Map an AttributedType::Kind to an AttributeList::Kind.
static AttributeList::Kind getAttrListKind(AttributedType::Kind kind) {
  switch (kind) {
  case AttributedType::attr_address_space:
    return AttributeList::AT_AddressSpace;
  case AttributedType::attr_regparm:
    return AttributeList::AT_Regparm;
  case AttributedType::attr_vector_size:
    return AttributeList::AT_VectorSize;
  case AttributedType::attr_neon_vector_type:
    return AttributeList::AT_NeonVectorType;
  case AttributedType::attr_neon_polyvector_type:
    return AttributeList::AT_NeonPolyVectorType;
  case AttributedType::attr_objc_gc:
    return AttributeList::AT_ObjCGC;
  case AttributedType::attr_objc_ownership:
    return AttributeList::AT_ObjCOwnership;
  case AttributedType::attr_noreturn:
    return AttributeList::AT_NoReturn;
  case AttributedType::attr_cdecl:
    return AttributeList::AT_CDecl;
  case AttributedType::attr_fastcall:
    return AttributeList::AT_FastCall;
  case AttributedType::attr_stdcall:
    return AttributeList::AT_StdCall;
  case AttributedType::attr_thiscall:
    return AttributeList::AT_ThisCall;
  case AttributedType::attr_pascal:
    return AttributeList::AT_Pascal;
  case AttributedType::attr_pcs:
    return AttributeList::AT_Pcs;
  case AttributedType::attr_pnaclcall:
    return AttributeList::AT_PnaclCall;
  case AttributedType::attr_inteloclbicc:
    return AttributeList::AT_IntelOclBicc;
  }
  llvm_unreachable("unexpected attribute kind!");
}

static void fillAttributedTypeLoc(AttributedTypeLoc TL,
                                  const AttributeList *attrs) {
  AttributedType::Kind kind = TL.getAttrKind();

  assert(attrs && "no type attributes in the expected location!");
  AttributeList::Kind parsedKind = getAttrListKind(kind);
  while (attrs->getKind() != parsedKind) {
    attrs = attrs->getNext();
    assert(attrs && "no matching attribute in expected location!");
  }

  TL.setAttrNameLoc(attrs->getLoc());
  if (TL.hasAttrExprOperand())
    TL.setAttrExprOperand(attrs->getArg(0));
  else if (TL.hasAttrEnumOperand())
    TL.setAttrEnumOperandLoc(attrs->getParameterLoc());

  // FIXME: preserve this information to here.
  if (TL.hasAttrOperand())
    TL.setAttrOperandParensRange(SourceRange());
}

namespace {
  class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
    ASTContext &Context;
    const DeclSpec &DS;

  public:
    TypeSpecLocFiller(ASTContext &Context, const DeclSpec &DS)
      : Context(Context), DS(DS) {}

    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
      fillAttributedTypeLoc(TL, DS.getAttributes().getList());
      Visit(TL.getModifiedLoc());
    }
    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
      Visit(TL.getUnqualifiedLoc());
    }
    void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
      TL.setNameLoc(DS.getTypeSpecTypeLoc());
    }
    void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
      TL.setNameLoc(DS.getTypeSpecTypeLoc());
      // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
      // addition field. What we have is good enough for dispay of location
      // of 'fixit' on interface name.
      TL.setNameEndLoc(DS.getLocEnd());
    }
    void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
      // Handle the base type, which might not have been written explicitly.
      if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
        TL.setHasBaseTypeAsWritten(false);
        TL.getBaseLoc().initialize(Context, SourceLocation());
      } else {
        TL.setHasBaseTypeAsWritten(true);
        Visit(TL.getBaseLoc());
      }

      // Protocol qualifiers.
      if (DS.getProtocolQualifiers()) {
        assert(TL.getNumProtocols() > 0);
        assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
        TL.setLAngleLoc(DS.getProtocolLAngleLoc());
        TL.setRAngleLoc(DS.getSourceRange().getEnd());
        for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
          TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
      } else {
        assert(TL.getNumProtocols() == 0);
        TL.setLAngleLoc(SourceLocation());
        TL.setRAngleLoc(SourceLocation());
      }
    }
    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
      TL.setStarLoc(SourceLocation());
      Visit(TL.getPointeeLoc());
    }
    void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
      TypeSourceInfo *TInfo = 0;
      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);

      // If we got no declarator info from previous Sema routines,
      // just fill with the typespec loc.
      if (!TInfo) {
        TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
        return;
      }

      TypeLoc OldTL = TInfo->getTypeLoc();
      if (TInfo->getType()->getAs<ElaboratedType>()) {
        ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
        TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
            .castAs<TemplateSpecializationTypeLoc>();
        TL.copy(NamedTL);
      }
      else
        TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
    }
    void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
      TL.setParensRange(DS.getTypeofParensRange());
    }
    void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
      TL.setParensRange(DS.getTypeofParensRange());
      assert(DS.getRepAsType());
      TypeSourceInfo *TInfo = 0;
      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
      TL.setUnderlyingTInfo(TInfo);
    }
    void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
      // FIXME: This holds only because we only have one unary transform.
      assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
      TL.setKWLoc(DS.getTypeSpecTypeLoc());
      TL.setParensRange(DS.getTypeofParensRange());
      assert(DS.getRepAsType());
      TypeSourceInfo *TInfo = 0;
      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
      TL.setUnderlyingTInfo(TInfo);
    }
    void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
      // By default, use the source location of the type specifier.
      TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
      if (TL.needsExtraLocalData()) {
        // Set info for the written builtin specifiers.
        TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
        // Try to have a meaningful source location.
        if (TL.getWrittenSignSpec() != TSS_unspecified)
          // Sign spec loc overrides the others (e.g., 'unsigned long').
          TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
        else if (TL.getWrittenWidthSpec() != TSW_unspecified)
          // Width spec loc overrides type spec loc (e.g., 'short int').
          TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
      }
    }
    void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
      ElaboratedTypeKeyword Keyword
        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
      if (DS.getTypeSpecType() == TST_typename) {
        TypeSourceInfo *TInfo = 0;
        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
        if (TInfo) {
          TL.copy(TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>());
          return;
        }
      }
      TL.setElaboratedKeywordLoc(Keyword != ETK_None
                                 ? DS.getTypeSpecTypeLoc()
                                 : SourceLocation());
      const CXXScopeSpec& SS = DS.getTypeSpecScope();
      TL.setQualifierLoc(SS.getWithLocInContext(Context));
      Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
    }
    void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
      assert(DS.getTypeSpecType() == TST_typename);
      TypeSourceInfo *TInfo = 0;
      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
      assert(TInfo);
      TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
    }
    void VisitDependentTemplateSpecializationTypeLoc(
                                 DependentTemplateSpecializationTypeLoc TL) {
      assert(DS.getTypeSpecType() == TST_typename);
      TypeSourceInfo *TInfo = 0;
      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
      assert(TInfo);
      TL.copy(
          TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
    }
    void VisitTagTypeLoc(TagTypeLoc TL) {
      TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
    }
    void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
      // An AtomicTypeLoc can come from either an _Atomic(...) type specifier
      // or an _Atomic qualifier.
      if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
        TL.setKWLoc(DS.getTypeSpecTypeLoc());
        TL.setParensRange(DS.getTypeofParensRange());

        TypeSourceInfo *TInfo = 0;
        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
        assert(TInfo);
        TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
      } else {
        TL.setKWLoc(DS.getAtomicSpecLoc());
        // No parens, to indicate this was spelled as an _Atomic qualifier.
        TL.setParensRange(SourceRange());
        Visit(TL.getValueLoc());
      }
    }

    void VisitTypeLoc(TypeLoc TL) {
      // FIXME: add other typespec types and change this to an assert.
      TL.initialize(Context, DS.getTypeSpecTypeLoc());
    }
  };

  class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
    ASTContext &Context;
    const DeclaratorChunk &Chunk;

  public:
    DeclaratorLocFiller(ASTContext &Context, const DeclaratorChunk &Chunk)
      : Context(Context), Chunk(Chunk) {}

    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
      llvm_unreachable("qualified type locs not expected here!");
    }

    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
      fillAttributedTypeLoc(TL, Chunk.getAttrs());
    }
    void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
      assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
      TL.setCaretLoc(Chunk.Loc);
    }
    void VisitPointerTypeLoc(PointerTypeLoc TL) {
      assert(Chunk.Kind == DeclaratorChunk::Pointer);
      TL.setStarLoc(Chunk.Loc);
    }
    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
      assert(Chunk.Kind == DeclaratorChunk::Pointer);
      TL.setStarLoc(Chunk.Loc);
    }
    void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
      assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
      const CXXScopeSpec& SS = Chunk.Mem.Scope();
      NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);

      const Type* ClsTy = TL.getClass();
      QualType ClsQT = QualType(ClsTy, 0);
      TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
      // Now copy source location info into the type loc component.
      TypeLoc ClsTL = ClsTInfo->getTypeLoc();
      switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
      case NestedNameSpecifier::Identifier:
        assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
        {
          DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
          DNTLoc.setElaboratedKeywordLoc(SourceLocation());
          DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
          DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
        }
        break;

      case NestedNameSpecifier::TypeSpec:
      case NestedNameSpecifier::TypeSpecWithTemplate:
        if (isa<ElaboratedType>(ClsTy)) {
          ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
          ETLoc.setElaboratedKeywordLoc(SourceLocation());
          ETLoc.setQualifierLoc(NNSLoc.getPrefix());
          TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
          NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
        } else {
          ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
        }
        break;

      case NestedNameSpecifier::Namespace:
      case NestedNameSpecifier::NamespaceAlias:
      case NestedNameSpecifier::Global:
        llvm_unreachable("Nested-name-specifier must name a type");
      }

      // Finally fill in MemberPointerLocInfo fields.
      TL.setStarLoc(Chunk.Loc);
      TL.setClassTInfo(ClsTInfo);
    }
    void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
      assert(Chunk.Kind == DeclaratorChunk::Reference);
      // 'Amp' is misleading: this might have been originally
      /// spelled with AmpAmp.
      TL.setAmpLoc(Chunk.Loc);
    }
    void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
      assert(Chunk.Kind == DeclaratorChunk::Reference);
      assert(!Chunk.Ref.LValueRef);
      TL.setAmpAmpLoc(Chunk.Loc);
    }
    void VisitArrayTypeLoc(ArrayTypeLoc TL) {
      assert(Chunk.Kind == DeclaratorChunk::Array);
      TL.setLBracketLoc(Chunk.Loc);
      TL.setRBracketLoc(Chunk.EndLoc);
      TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
    }
    void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
      assert(Chunk.Kind == DeclaratorChunk::Function);
      TL.setLocalRangeBegin(Chunk.Loc);
      TL.setLocalRangeEnd(Chunk.EndLoc);

      const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
      TL.setLParenLoc(FTI.getLParenLoc());
      TL.setRParenLoc(FTI.getRParenLoc());
      for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
        TL.setArg(tpi++, Param);
      }
      // FIXME: exception specs
    }
    void VisitParenTypeLoc(ParenTypeLoc TL) {
      assert(Chunk.Kind == DeclaratorChunk::Paren);
      TL.setLParenLoc(Chunk.Loc);
      TL.setRParenLoc(Chunk.EndLoc);
    }

    void VisitTypeLoc(TypeLoc TL) {
      llvm_unreachable("unsupported TypeLoc kind in declarator!");
    }
  };
}

static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
  SourceLocation Loc;
  switch (Chunk.Kind) {
  case DeclaratorChunk::Function:
  case DeclaratorChunk::Array:
  case DeclaratorChunk::Paren:
    llvm_unreachable("cannot be _Atomic qualified");

  case DeclaratorChunk::Pointer:
    Loc = SourceLocation::getFromRawEncoding(Chunk.Ptr.AtomicQualLoc);
    break;

  case DeclaratorChunk::BlockPointer:
  case DeclaratorChunk::Reference:
  case DeclaratorChunk::MemberPointer:
    // FIXME: Provide a source location for the _Atomic keyword.
    break;
  }

  ATL.setKWLoc(Loc);
  ATL.setParensRange(SourceRange());
}

/// \brief Create and instantiate a TypeSourceInfo with type source information.
///
/// \param T QualType referring to the type as written in source code.
///
/// \param ReturnTypeInfo For declarators whose return type does not show
/// up in the normal place in the declaration specifiers (such as a C++
/// conversion function), this pointer will refer to a type source information
/// for that return type.
TypeSourceInfo *
Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
                                     TypeSourceInfo *ReturnTypeInfo) {
  TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
  UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();

  // Handle parameter packs whose type is a pack expansion.
  if (isa<PackExpansionType>(T)) {
    CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
  }

  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
    // An AtomicTypeLoc might be produced by an atomic qualifier in this
    // declarator chunk.
    if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
      fillAtomicQualLoc(ATL, D.getTypeObject(i));
      CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
    }

    while (AttributedTypeLoc TL = CurrTL.getAs<AttributedTypeLoc>()) {
      fillAttributedTypeLoc(TL, D.getTypeObject(i).getAttrs());
      CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
    }

    DeclaratorLocFiller(Context, D.getTypeObject(i)).Visit(CurrTL);
    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
  }

  // If we have different source information for the return type, use
  // that.  This really only applies to C++ conversion functions.
  if (ReturnTypeInfo) {
    TypeLoc TL = ReturnTypeInfo->getTypeLoc();
    assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
    memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
  } else {
    TypeSpecLocFiller(Context, D.getDeclSpec()).Visit(CurrTL);
  }

  return TInfo;
}

/// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
  // and Sema during declaration parsing. Try deallocating/caching them when
  // it's appropriate, instead of allocating them and keeping them around.
  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
                                                       TypeAlignment);
  new (LocT) LocInfoType(T, TInfo);
  assert(LocT->getTypeClass() != T->getTypeClass() &&
         "LocInfoType's TypeClass conflicts with an existing Type class");
  return ParsedType::make(QualType(LocT, 0));
}

void LocInfoType::getAsStringInternal(std::string &Str,
                                      const PrintingPolicy &Policy) const {
  llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
         " was used directly instead of getting the QualType through"
         " GetTypeFromParser");
}

TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
  // C99 6.7.6: Type names have no identifier.  This is already validated by
  // the parser.
  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");

  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
  QualType T = TInfo->getType();
  if (D.isInvalidType())
    return true;

  // Make sure there are no unused decl attributes on the declarator.
  // We don't want to do this for ObjC parameters because we're going
  // to apply them to the actual parameter declaration.
  // Likewise, we don't want to do this for alias declarations, because
  // we are actually going to build a declaration from this eventually.
  if (D.getContext() != Declarator::ObjCParameterContext &&
      D.getContext() != Declarator::AliasDeclContext &&
      D.getContext() != Declarator::AliasTemplateContext)
    checkUnusedDeclAttributes(D);

  if (getLangOpts().CPlusPlus) {
    // Check that there are no default arguments (C++ only).
    CheckExtraCXXDefaultArguments(D);
  }

  return CreateParsedType(T, TInfo);
}

ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
  QualType T = Context.getObjCInstanceType();
  TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
  return CreateParsedType(T, TInfo);
}


//===----------------------------------------------------------------------===//
// Type Attribute Processing
//===----------------------------------------------------------------------===//

/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
/// specified type.  The attribute contains 1 argument, the id of the address
/// space for the type.
static void HandleAddressSpaceTypeAttribute(QualType &Type,
                                            const AttributeList &Attr, Sema &S){

  // If this type is already address space qualified, reject it.
  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified by
  // qualifiers for two or more different address spaces."
  if (Type.getAddressSpace()) {
    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
    Attr.setInvalid();
    return;
  }

  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
  // qualified by an address-space qualifier."
  if (Type->isFunctionType()) {
    S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
    Attr.setInvalid();
    return;
  }

  // Check the attribute arguments.
  if (Attr.getNumArgs() != 1) {
    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
    Attr.setInvalid();
    return;
  }
  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
  llvm::APSInt addrSpace(32);
  if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
      !ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
      << ASArgExpr->getSourceRange();
    Attr.setInvalid();
    return;
  }

  // Bounds checking.
  if (addrSpace.isSigned()) {
    if (addrSpace.isNegative()) {
      S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
        << ASArgExpr->getSourceRange();
      Attr.setInvalid();
      return;
    }
    addrSpace.setIsSigned(false);
  }
  llvm::APSInt max(addrSpace.getBitWidth());
  max = Qualifiers::MaxAddressSpace;
  if (addrSpace > max) {
    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
      << Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange();
    Attr.setInvalid();
    return;
  }

  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
}

/// Does this type have a "direct" ownership qualifier?  That is,
/// is it written like "__strong id", as opposed to something like
/// "typeof(foo)", where that happens to be strong?
static bool hasDirectOwnershipQualifier(QualType type) {
  // Fast path: no qualifier at all.
  assert(type.getQualifiers().hasObjCLifetime());

  while (true) {
    // __strong id
    if (const AttributedType *attr = dyn_cast<AttributedType>(type)) {
      if (attr->getAttrKind() == AttributedType::attr_objc_ownership)
        return true;

      type = attr->getModifiedType();

    // X *__strong (...)
    } else if (const ParenType *paren = dyn_cast<ParenType>(type)) {
      type = paren->getInnerType();

    // That's it for things we want to complain about.  In particular,
    // we do not want to look through typedefs, typeof(expr),
    // typeof(type), or any other way that the type is somehow
    // abstracted.
    } else {

      return false;
    }
  }
}

/// handleObjCOwnershipTypeAttr - Process an objc_ownership
/// attribute on the specified type.
///
/// Returns 'true' if the attribute was handled.
static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
                                       AttributeList &attr,
                                       QualType &type) {
  bool NonObjCPointer = false;

  if (!type->isDependentType() && !type->isUndeducedType()) {
    if (const PointerType *ptr = type->getAs<PointerType>()) {
      QualType pointee = ptr->getPointeeType();
      if (pointee->isObjCRetainableType() || pointee->isPointerType())
        return false;
      // It is important not to lose the source info that there was an attribute
      // applied to non-objc pointer. We will create an attributed type but
      // its type will be the same as the original type.
      NonObjCPointer = true;
    } else if (!type->isObjCRetainableType()) {
      return false;
    }

    // Don't accept an ownership attribute in the declspec if it would
    // just be the return type of a block pointer.
    if (state.isProcessingDeclSpec()) {
      Declarator &D = state.getDeclarator();
      if (maybeMovePastReturnType(D, D.getNumTypeObjects()))
        return false;
    }
  }

  Sema &S = state.getSema();
  SourceLocation AttrLoc = attr.getLoc();
  if (AttrLoc.isMacroID())
    AttrLoc = S.getSourceManager().getImmediateExpansionRange(AttrLoc).first;

  if (!attr.getParameterName()) {
    S.Diag(AttrLoc, diag::err_attribute_argument_n_not_string)
      << "objc_ownership" << 1;
    attr.setInvalid();
    return true;
  }

  // Consume lifetime attributes without further comment outside of
  // ARC mode.
  if (!S.getLangOpts().ObjCAutoRefCount)
    return true;

  Qualifiers::ObjCLifetime lifetime;
  if (attr.getParameterName()->isStr("none"))
    lifetime = Qualifiers::OCL_ExplicitNone;
  else if (attr.getParameterName()->isStr("strong"))
    lifetime = Qualifiers::OCL_Strong;
  else if (attr.getParameterName()->isStr("weak"))
    lifetime = Qualifiers::OCL_Weak;
  else if (attr.getParameterName()->isStr("autoreleasing"))
    lifetime = Qualifiers::OCL_Autoreleasing;
  else {
    S.Diag(AttrLoc, diag::warn_attribute_type_not_supported)
      << "objc_ownership" << attr.getParameterName();
    attr.setInvalid();
    return true;
  }

  SplitQualType underlyingType = type.split();

  // Check for redundant/conflicting ownership qualifiers.
  if (Qualifiers::ObjCLifetime previousLifetime
        = type.getQualifiers().getObjCLifetime()) {
    // If it's written directly, that's an error.
    if (hasDirectOwnershipQualifier(type)) {
      S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
        << type;
      return true;
    }

    // Otherwise, if the qualifiers actually conflict, pull sugar off
    // until we reach a type that is directly qualified.
    if (previousLifetime != lifetime) {
      // This should always terminate: the canonical type is
      // qualified, so some bit of sugar must be hiding it.
      while (!underlyingType.Quals.hasObjCLifetime()) {
        underlyingType = underlyingType.getSingleStepDesugaredType();
      }
      underlyingType.Quals.removeObjCLifetime();
    }
  }

  underlyingType.Quals.addObjCLifetime(lifetime);

  if (NonObjCPointer) {
    StringRef name = attr.getName()->getName();
    switch (lifetime) {
    case Qualifiers::OCL_None:
    case Qualifiers::OCL_ExplicitNone:
      break;
    case Qualifiers::OCL_Strong: name = "__strong"; break;
    case Qualifiers::OCL_Weak: name = "__weak"; break;
    case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
    }
    S.Diag(AttrLoc, diag::warn_objc_object_attribute_wrong_type)
      << name << type;
  }

  QualType origType = type;
  if (!NonObjCPointer)
    type = S.Context.getQualifiedType(underlyingType);

  // If we have a valid source location for the attribute, use an
  // AttributedType instead.
  if (AttrLoc.isValid())
    type = S.Context.getAttributedType(AttributedType::attr_objc_ownership,
                                       origType, type);

  // Forbid __weak if the runtime doesn't support it.
  if (lifetime == Qualifiers::OCL_Weak &&
      !S.getLangOpts().ObjCARCWeak && !NonObjCPointer) {

    // Actually, delay this until we know what we're parsing.
    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
      S.DelayedDiagnostics.add(
          sema::DelayedDiagnostic::makeForbiddenType(
              S.getSourceManager().getExpansionLoc(AttrLoc),
              diag::err_arc_weak_no_runtime, type, /*ignored*/ 0));
    } else {
      S.Diag(AttrLoc, diag::err_arc_weak_no_runtime);
    }

    attr.setInvalid();
    return true;
  }

  // Forbid __weak for class objects marked as
  // objc_arc_weak_reference_unavailable
  if (lifetime == Qualifiers::OCL_Weak) {
    if (const ObjCObjectPointerType *ObjT =
          type->getAs<ObjCObjectPointerType>()) {
      if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
        if (Class->isArcWeakrefUnavailable()) {
            S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
            S.Diag(ObjT->getInterfaceDecl()->getLocation(),
                   diag::note_class_declared);
        }
      }
    }
  }

  return true;
}

/// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
/// attribute on the specified type.  Returns true to indicate that
/// the attribute was handled, false to indicate that the type does
/// not permit the attribute.
static bool handleObjCGCTypeAttr(TypeProcessingState &state,
                                 AttributeList &attr,
                                 QualType &type) {
  Sema &S = state.getSema();

  // Delay if this isn't some kind of pointer.
  if (!type->isPointerType() &&
      !type->isObjCObjectPointerType() &&
      !type->isBlockPointerType())
    return false;

  if (type.getObjCGCAttr() != Qualifiers::GCNone) {
    S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
    attr.setInvalid();
    return true;
  }

  // Check the attribute arguments.
  if (!attr.getParameterName()) {
    S.Diag(attr.getLoc(), diag::err_attribute_argument_n_not_string)
      << "objc_gc" << 1;
    attr.setInvalid();
    return true;
  }
  Qualifiers::GC GCAttr;
  if (attr.getNumArgs() != 0) {
    S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
    attr.setInvalid();
    return true;
  }
  if (attr.getParameterName()->isStr("weak"))
    GCAttr = Qualifiers::Weak;
  else if (attr.getParameterName()->isStr("strong"))
    GCAttr = Qualifiers::Strong;
  else {
    S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
      << "objc_gc" << attr.getParameterName();
    attr.setInvalid();
    return true;
  }

  QualType origType = type;
  type = S.Context.getObjCGCQualType(origType, GCAttr);

  // Make an attributed type to preserve the source information.
  if (attr.getLoc().isValid())
    type = S.Context.getAttributedType(AttributedType::attr_objc_gc,
                                       origType, type);

  return true;
}

namespace {
  /// A helper class to unwrap a type down to a function for the
  /// purposes of applying attributes there.
  ///
  /// Use:
  ///   FunctionTypeUnwrapper unwrapped(SemaRef, T);
  ///   if (unwrapped.isFunctionType()) {
  ///     const FunctionType *fn = unwrapped.get();
  ///     // change fn somehow
  ///     T = unwrapped.wrap(fn);
  ///   }
  struct FunctionTypeUnwrapper {
    enum WrapKind {
      Desugar,
      Parens,
      Pointer,
      BlockPointer,
      Reference,
      MemberPointer
    };

    QualType Original;
    const FunctionType *Fn;
    SmallVector<unsigned char /*WrapKind*/, 8> Stack;

    FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
      while (true) {
        const Type *Ty = T.getTypePtr();
        if (isa<FunctionType>(Ty)) {
          Fn = cast<FunctionType>(Ty);
          return;
        } else if (isa<ParenType>(Ty)) {
          T = cast<ParenType>(Ty)->getInnerType();
          Stack.push_back(Parens);
        } else if (isa<PointerType>(Ty)) {
          T = cast<PointerType>(Ty)->getPointeeType();
          Stack.push_back(Pointer);
        } else if (isa<BlockPointerType>(Ty)) {
          T = cast<BlockPointerType>(Ty)->getPointeeType();
          Stack.push_back(BlockPointer);
        } else if (isa<MemberPointerType>(Ty)) {
          T = cast<MemberPointerType>(Ty)->getPointeeType();
          Stack.push_back(MemberPointer);
        } else if (isa<ReferenceType>(Ty)) {
          T = cast<ReferenceType>(Ty)->getPointeeType();
          Stack.push_back(Reference);
        } else {
          const Type *DTy = Ty->getUnqualifiedDesugaredType();
          if (Ty == DTy) {
            Fn = 0;
            return;
          }

          T = QualType(DTy, 0);
          Stack.push_back(Desugar);
        }
      }
    }

    bool isFunctionType() const { return (Fn != 0); }
    const FunctionType *get() const { return Fn; }

    QualType wrap(Sema &S, const FunctionType *New) {
      // If T wasn't modified from the unwrapped type, do nothing.
      if (New == get()) return Original;

      Fn = New;
      return wrap(S.Context, Original, 0);
    }

  private:
    QualType wrap(ASTContext &C, QualType Old, unsigned I) {
      if (I == Stack.size())
        return C.getQualifiedType(Fn, Old.getQualifiers());

      // Build up the inner type, applying the qualifiers from the old
      // type to the new type.
      SplitQualType SplitOld = Old.split();

      // As a special case, tail-recurse if there are no qualifiers.
      if (SplitOld.Quals.empty())
        return wrap(C, SplitOld.Ty, I);
      return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
    }

    QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
      if (I == Stack.size()) return QualType(Fn, 0);

      switch (static_cast<WrapKind>(Stack[I++])) {
      case Desugar:
        // This is the point at which we potentially lose source
        // information.
        return wrap(C, Old->getUnqualifiedDesugaredType(), I);

      case Parens: {
        QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
        return C.getParenType(New);
      }

      case Pointer: {
        QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
        return C.getPointerType(New);
      }

      case BlockPointer: {
        QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
        return C.getBlockPointerType(New);
      }

      case MemberPointer: {
        const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
        QualType New = wrap(C, OldMPT->getPointeeType(), I);
        return C.getMemberPointerType(New, OldMPT->getClass());
      }

      case Reference: {
        const ReferenceType *OldRef = cast<ReferenceType>(Old);
        QualType New = wrap(C, OldRef->getPointeeType(), I);
        if (isa<LValueReferenceType>(OldRef))
          return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
        else
          return C.getRValueReferenceType(New);
      }
      }

      llvm_unreachable("unknown wrapping kind");
    }
  };
}

/// Process an individual function attribute.  Returns true to
/// indicate that the attribute was handled, false if it wasn't.
static bool handleFunctionTypeAttr(TypeProcessingState &state,
                                   AttributeList &attr,
                                   QualType &type) {
  Sema &S = state.getSema();

  FunctionTypeUnwrapper unwrapped(S, type);

  if (attr.getKind() == AttributeList::AT_NoReturn) {
    if (S.CheckNoReturnAttr(attr))
      return true;

    // Delay if this is not a function type.
    if (!unwrapped.isFunctionType())
      return false;

    // Otherwise we can process right away.
    FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
    return true;
  }

  // ns_returns_retained is not always a type attribute, but if we got
  // here, we're treating it as one right now.
  if (attr.getKind() == AttributeList::AT_NSReturnsRetained) {
    assert(S.getLangOpts().ObjCAutoRefCount &&
           "ns_returns_retained treated as type attribute in non-ARC");
    if (attr.getNumArgs()) return true;

    // Delay if this is not a function type.
    if (!unwrapped.isFunctionType())
      return false;

    FunctionType::ExtInfo EI
      = unwrapped.get()->getExtInfo().withProducesResult(true);
    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
    return true;
  }

  if (attr.getKind() == AttributeList::AT_Regparm) {
    unsigned value;
    if (S.CheckRegparmAttr(attr, value))
      return true;

    // Delay if this is not a function type.
    if (!unwrapped.isFunctionType())
      return false;

    // Diagnose regparm with fastcall.
    const FunctionType *fn = unwrapped.get();
    CallingConv CC = fn->getCallConv();
    if (CC == CC_X86FastCall) {
      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
        << FunctionType::getNameForCallConv(CC)
        << "regparm";
      attr.setInvalid();
      return true;
    }

    FunctionType::ExtInfo EI =
      unwrapped.get()->getExtInfo().withRegParm(value);
    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
    return true;
  }

  // Delay if the type didn't work out to a function.
  if (!unwrapped.isFunctionType()) return false;

  // Otherwise, a calling convention.
  CallingConv CC;
  if (S.CheckCallingConvAttr(attr, CC))
    return true;

  const FunctionType *fn = unwrapped.get();
  CallingConv CCOld = fn->getCallConv();
  if (S.Context.getCanonicalCallConv(CC) ==
      S.Context.getCanonicalCallConv(CCOld)) {
    FunctionType::ExtInfo EI= unwrapped.get()->getExtInfo().withCallingConv(CC);
    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
    return true;
  }

  if (CCOld != (S.LangOpts.MRTD ? CC_X86StdCall : CC_Default)) {
    // Should we diagnose reapplications of the same convention?
    S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
      << FunctionType::getNameForCallConv(CC)
      << FunctionType::getNameForCallConv(CCOld);
    attr.setInvalid();
    return true;
  }

  // Diagnose the use of X86 fastcall on varargs or unprototyped functions.
  if (CC == CC_X86FastCall) {
    if (isa<FunctionNoProtoType>(fn)) {
      S.Diag(attr.getLoc(), diag::err_cconv_knr)
        << FunctionType::getNameForCallConv(CC);
      attr.setInvalid();
      return true;
    }

    const FunctionProtoType *FnP = cast<FunctionProtoType>(fn);
    if (FnP->isVariadic()) {
      S.Diag(attr.getLoc(), diag::err_cconv_varargs)
        << FunctionType::getNameForCallConv(CC);
      attr.setInvalid();
      return true;
    }

    // Also diagnose fastcall with regparm.
    if (fn->getHasRegParm()) {
      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
        << "regparm"
        << FunctionType::getNameForCallConv(CC);
      attr.setInvalid();
      return true;
    }
  }

  FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
  type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
  return true;
}

/// Handle OpenCL image access qualifiers: read_only, write_only, read_write
static void HandleOpenCLImageAccessAttribute(QualType& CurType,
                                             const AttributeList &Attr,
                                             Sema &S) {
  // Check the attribute arguments.
  if (Attr.getNumArgs() != 1) {
    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
    Attr.setInvalid();
    return;
  }
  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
  llvm::APSInt arg(32);
  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
      !sizeExpr->isIntegerConstantExpr(arg, S.Context)) {
    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
      << "opencl_image_access" << sizeExpr->getSourceRange();
    Attr.setInvalid();
    return;
  }
  unsigned iarg = static_cast<unsigned>(arg.getZExtValue());
  switch (iarg) {
  case CLIA_read_only:
  case CLIA_write_only:
  case CLIA_read_write:
    // Implemented in a separate patch
    break;
  default:
    // Implemented in a separate patch
    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
      << sizeExpr->getSourceRange();
    Attr.setInvalid();
    break;
  }
}

/// HandleVectorSizeAttribute - this attribute is only applicable to integral
/// and float scalars, although arrays, pointers, and function return values are
/// allowed in conjunction with this construct. Aggregates with this attribute
/// are invalid, even if they are of the same size as a corresponding scalar.
/// The raw attribute should contain precisely 1 argument, the vector size for
/// the variable, measured in bytes. If curType and rawAttr are well formed,
/// this routine will return a new vector type.
static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
                                 Sema &S) {
  // Check the attribute arguments.
  if (Attr.getNumArgs() != 1) {
    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
    Attr.setInvalid();
    return;
  }
  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
  llvm::APSInt vecSize(32);
  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
      !sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
      << "vector_size" << sizeExpr->getSourceRange();
    Attr.setInvalid();
    return;
  }
  // the base type must be integer or float, and can't already be a vector.
  if (!CurType->isIntegerType() && !CurType->isRealFloatingType()) {
    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
    Attr.setInvalid();
    return;
  }
  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
  // vecSize is specified in bytes - convert to bits.
  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);

  // the vector size needs to be an integral multiple of the type size.
  if (vectorSize % typeSize) {
    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
      << sizeExpr->getSourceRange();
    Attr.setInvalid();
    return;
  }
  if (vectorSize == 0) {
    S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
      << sizeExpr->getSourceRange();
    Attr.setInvalid();
    return;
  }

  // Success! Instantiate the vector type, the number of elements is > 0, and
  // not required to be a power of 2, unlike GCC.
  CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
                                    VectorType::GenericVector);
}

/// \brief Process the OpenCL-like ext_vector_type attribute when it occurs on
/// a type.
static void HandleExtVectorTypeAttr(QualType &CurType,
                                    const AttributeList &Attr,
                                    Sema &S) {
  Expr *sizeExpr;

  // Special case where the argument is a template id.
  if (Attr.getParameterName()) {
    CXXScopeSpec SS;
    SourceLocation TemplateKWLoc;
    UnqualifiedId id;
    id.setIdentifier(Attr.getParameterName(), Attr.getLoc());

    ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
                                          id, false, false);
    if (Size.isInvalid())
      return;

    sizeExpr = Size.get();
  } else {
    // check the attribute arguments.
    if (Attr.getNumArgs() != 1) {
      S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
      return;
    }
    sizeExpr = Attr.getArg(0);
  }

  // Create the vector type.
  QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
  if (!T.isNull())
    CurType = T;
}

/// HandleNeonVectorTypeAttr - The "neon_vector_type" and
/// "neon_polyvector_type" attributes are used to create vector types that
/// are mangled according to ARM's ABI.  Otherwise, these types are identical
/// to those created with the "vector_size" attribute.  Unlike "vector_size"
/// the argument to these Neon attributes is the number of vector elements,
/// not the vector size in bytes.  The vector width and element type must
/// match one of the standard Neon vector types.
static void HandleNeonVectorTypeAttr(QualType& CurType,
                                     const AttributeList &Attr, Sema &S,
                                     VectorType::VectorKind VecKind,
                                     const char *AttrName) {
  // Check the attribute arguments.
  if (Attr.getNumArgs() != 1) {
    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
    Attr.setInvalid();
    return;
  }
  // The number of elements must be an ICE.
  Expr *numEltsExpr = static_cast<Expr *>(Attr.getArg(0));
  llvm::APSInt numEltsInt(32);
  if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
      !numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
      << AttrName << numEltsExpr->getSourceRange();
    Attr.setInvalid();
    return;
  }
  // Only certain element types are supported for Neon vectors.
  const BuiltinType* BTy = CurType->getAs<BuiltinType>();
  if (!BTy ||
      (VecKind == VectorType::NeonPolyVector &&
       BTy->getKind() != BuiltinType::SChar &&
       BTy->getKind() != BuiltinType::Short) ||
      (BTy->getKind() != BuiltinType::SChar &&
       BTy->getKind() != BuiltinType::UChar &&
       BTy->getKind() != BuiltinType::Short &&
       BTy->getKind() != BuiltinType::UShort &&
       BTy->getKind() != BuiltinType::Int &&
       BTy->getKind() != BuiltinType::UInt &&
       BTy->getKind() != BuiltinType::LongLong &&
       BTy->getKind() != BuiltinType::ULongLong &&
       BTy->getKind() != BuiltinType::Float)) {
    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) <<CurType;
    Attr.setInvalid();
    return;
  }
  // The total size of the vector must be 64 or 128 bits.
  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
  unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
  unsigned vecSize = typeSize * numElts;
  if (vecSize != 64 && vecSize != 128) {
    S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
    Attr.setInvalid();
    return;
  }

  CurType = S.Context.getVectorType(CurType, numElts, VecKind);
}

static void processTypeAttrs(TypeProcessingState &state, QualType &type,
                             TypeAttrLocation TAL, AttributeList *attrs) {
  // Scan through and apply attributes to this type where it makes sense.  Some
  // attributes (such as __address_space__, __vector_size__, etc) apply to the
  // type, but others can be present in the type specifiers even though they
  // apply to the decl.  Here we apply type attributes and ignore the rest.

  AttributeList *next;
  do {
    AttributeList &attr = *attrs;
    next = attr.getNext();

    // Skip attributes that were marked to be invalid.
    if (attr.isInvalid())
      continue;

    if (attr.isCXX11Attribute()) {
      // [[gnu::...]] attributes are treated as declaration attributes, so may
      // not appertain to a DeclaratorChunk, even if we handle them as type
      // attributes.
      if (attr.getScopeName() && attr.getScopeName()->isStr("gnu")) {
        if (TAL == TAL_DeclChunk) {
          state.getSema().Diag(attr.getLoc(),
                               diag::warn_cxx11_gnu_attribute_on_type)
              << attr.getName();
          continue;
        }
      } else if (TAL != TAL_DeclChunk) {
        // Otherwise, only consider type processing for a C++11 attribute if
        // it's actually been applied to a type.
        continue;
      }
    }

    // If this is an attribute we can handle, do so now,
    // otherwise, add it to the FnAttrs list for rechaining.
    switch (attr.getKind()) {
    default:
      // A C++11 attribute on a declarator chunk must appertain to a type.
      if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk) {
        state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
          << attr.getName();
        attr.setUsedAsTypeAttr();
      }
      break;

    case AttributeList::UnknownAttribute:
      if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk)
        state.getSema().Diag(attr.getLoc(),
                             diag::warn_unknown_attribute_ignored)
          << attr.getName();
      break;

    case AttributeList::IgnoredAttribute:
      break;

    case AttributeList::AT_MayAlias:
      // FIXME: This attribute needs to actually be handled, but if we ignore
      // it it breaks large amounts of Linux software.
      attr.setUsedAsTypeAttr();
      break;
    case AttributeList::AT_AddressSpace:
      HandleAddressSpaceTypeAttribute(type, attr, state.getSema());
      attr.setUsedAsTypeAttr();
      break;
    OBJC_POINTER_TYPE_ATTRS_CASELIST:
      if (!handleObjCPointerTypeAttr(state, attr, type))
        distributeObjCPointerTypeAttr(state, attr, type);
      attr.setUsedAsTypeAttr();
      break;
    case AttributeList::AT_VectorSize:
      HandleVectorSizeAttr(type, attr, state.getSema());
      attr.setUsedAsTypeAttr();
      break;
    case AttributeList::AT_ExtVectorType:
      HandleExtVectorTypeAttr(type, attr, state.getSema());
      attr.setUsedAsTypeAttr();
      break;
    case AttributeList::AT_NeonVectorType:
      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
                               VectorType::NeonVector, "neon_vector_type");
      attr.setUsedAsTypeAttr();
      break;
    case AttributeList::AT_NeonPolyVectorType:
      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
                               VectorType::NeonPolyVector,
                               "neon_polyvector_type");
      attr.setUsedAsTypeAttr();
      break;
    case AttributeList::AT_OpenCLImageAccess:
      HandleOpenCLImageAccessAttribute(type, attr, state.getSema());
      attr.setUsedAsTypeAttr();
      break;

    case AttributeList::AT_Win64:
    case AttributeList::AT_Ptr32:
    case AttributeList::AT_Ptr64:
      // FIXME: Don't ignore these. We have partial handling for them as
      // declaration attributes in SemaDeclAttr.cpp; that should be moved here.
      attr.setUsedAsTypeAttr();
      break;

    case AttributeList::AT_NSReturnsRetained:
      if (!state.getSema().getLangOpts().ObjCAutoRefCount)
        break;
      // fallthrough into the function attrs

    FUNCTION_TYPE_ATTRS_CASELIST:
      attr.setUsedAsTypeAttr();

      // Never process function type attributes as part of the
      // declaration-specifiers.
      if (TAL == TAL_DeclSpec)
        distributeFunctionTypeAttrFromDeclSpec(state, attr, type);

      // Otherwise, handle the possible delays.
      else if (!handleFunctionTypeAttr(state, attr, type))
        distributeFunctionTypeAttr(state, attr, type);
      break;
    }
  } while ((attrs = next));
}

/// \brief Ensure that the type of the given expression is complete.
///
/// This routine checks whether the expression \p E has a complete type. If the
/// expression refers to an instantiable construct, that instantiation is
/// performed as needed to complete its type. Furthermore
/// Sema::RequireCompleteType is called for the expression's type (or in the
/// case of a reference type, the referred-to type).
///
/// \param E The expression whose type is required to be complete.
/// \param Diagnoser The object that will emit a diagnostic if the type is
/// incomplete.
///
/// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
/// otherwise.
bool Sema::RequireCompleteExprType(Expr *E, TypeDiagnoser &Diagnoser){
  QualType T = E->getType();

  // Fast path the case where the type is already complete.
  if (!T->isIncompleteType())
    return false;

  // Incomplete array types may be completed by the initializer attached to
  // their definitions. For static data members of class templates we need to
  // instantiate the definition to get this initializer and complete the type.
  if (T->isIncompleteArrayType()) {
    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
      if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
        if (Var->isStaticDataMember() &&
            Var->getInstantiatedFromStaticDataMember()) {

          MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
          assert(MSInfo && "Missing member specialization information?");
          if (MSInfo->getTemplateSpecializationKind()
                != TSK_ExplicitSpecialization) {
            // If we don't already have a point of instantiation, this is it.
            if (MSInfo->getPointOfInstantiation().isInvalid()) {
              MSInfo->setPointOfInstantiation(E->getLocStart());

              // This is a modification of an existing AST node. Notify
              // listeners.
              if (ASTMutationListener *L = getASTMutationListener())
                L->StaticDataMemberInstantiated(Var);
            }

            InstantiateStaticDataMemberDefinition(E->getExprLoc(), Var);

            // Update the type to the newly instantiated definition's type both
            // here and within the expression.
            if (VarDecl *Def = Var->getDefinition()) {
              DRE->setDecl(Def);
              T = Def->getType();
              DRE->setType(T);
              E->setType(T);
            }
          }

          // We still go on to try to complete the type independently, as it
          // may also require instantiations or diagnostics if it remains
          // incomplete.
        }
      }
    }
  }

  // FIXME: Are there other cases which require instantiating something other
  // than the type to complete the type of an expression?

  // Look through reference types and complete the referred type.
  if (const ReferenceType *Ref = T->getAs<ReferenceType>())
    T = Ref->getPointeeType();

  return RequireCompleteType(E->getExprLoc(), T, Diagnoser);
}

namespace {
  struct TypeDiagnoserDiag : Sema::TypeDiagnoser {
    unsigned DiagID;

    TypeDiagnoserDiag(unsigned DiagID)
      : Sema::TypeDiagnoser(DiagID == 0), DiagID(DiagID) {}

    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
      if (Suppressed) return;
      S.Diag(Loc, DiagID) << T;
    }
  };
}

bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
  TypeDiagnoserDiag Diagnoser(DiagID);
  return RequireCompleteExprType(E, Diagnoser);
}

/// @brief Ensure that the type T is a complete type.
///
/// This routine checks whether the type @p T is complete in any
/// context where a complete type is required. If @p T is a complete
/// type, returns false. If @p T is a class template specialization,
/// this routine then attempts to perform class template
/// instantiation. If instantiation fails, or if @p T is incomplete
/// and cannot be completed, issues the diagnostic @p diag (giving it
/// the type @p T) and returns true.
///
/// @param Loc  The location in the source that the incomplete type
/// diagnostic should refer to.
///
/// @param T  The type that this routine is examining for completeness.
///
/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
/// @c false otherwise.
bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
                               TypeDiagnoser &Diagnoser) {
  // FIXME: Add this assertion to make sure we always get instantiation points.
  //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
  // FIXME: Add this assertion to help us flush out problems with
  // checking for dependent types and type-dependent expressions.
  //
  //  assert(!T->isDependentType() &&
  //         "Can't ask whether a dependent type is complete");

  // If we have a complete type, we're done.
  NamedDecl *Def = 0;
  if (!T->isIncompleteType(&Def)) {
    // If we know about the definition but it is not visible, complain.
    if (!Diagnoser.Suppressed && Def && !LookupResult::isVisible(Def)) {
      // Suppress this error outside of a SFINAE context if we've already
      // emitted the error once for this type. There's no usefulness in
      // repeating the diagnostic.
      // FIXME: Add a Fix-It that imports the corresponding module or includes
      // the header.
      Module *Owner = Def->getOwningModule();
      Diag(Loc, diag::err_module_private_definition)
        << T << Owner->getFullModuleName();
      Diag(Def->getLocation(), diag::note_previous_definition);

      if (!isSFINAEContext()) {
        // Recover by implicitly importing this module.
        createImplicitModuleImport(Loc, Owner);
      }
    }

    return false;
  }

  const TagType *Tag = T->getAs<TagType>();
  const ObjCInterfaceType *IFace = 0;

  if (Tag) {
    // Avoid diagnosing invalid decls as incomplete.
    if (Tag->getDecl()->isInvalidDecl())
      return true;

    // Give the external AST source a chance to complete the type.
    if (Tag->getDecl()->hasExternalLexicalStorage()) {
      Context.getExternalSource()->CompleteType(Tag->getDecl());
      if (!Tag->isIncompleteType())
        return false;
    }
  }
  else if ((IFace = T->getAs<ObjCInterfaceType>())) {
    // Avoid diagnosing invalid decls as incomplete.
    if (IFace->getDecl()->isInvalidDecl())
      return true;

    // Give the external AST source a chance to complete the type.
    if (IFace->getDecl()->hasExternalLexicalStorage()) {
      Context.getExternalSource()->CompleteType(IFace->getDecl());
      if (!IFace->isIncompleteType())
        return false;
    }
  }

  // If we have a class template specialization or a class member of a
  // class template specialization, or an array with known size of such,
  // try to instantiate it.
  QualType MaybeTemplate = T;
  while (const ConstantArrayType *Array
           = Context.getAsConstantArrayType(MaybeTemplate))
    MaybeTemplate = Array->getElementType();
  if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
        return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
                                                      TSK_ImplicitInstantiation,
                                            /*Complain=*/!Diagnoser.Suppressed);
    } else if (CXXRecordDecl *Rec
                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
      CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass();
      if (!Rec->isBeingDefined() && Pattern) {
        MemberSpecializationInfo *MSI = Rec->getMemberSpecializationInfo();
        assert(MSI && "Missing member specialization information?");
        // This record was instantiated from a class within a template.
        if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
          return InstantiateClass(Loc, Rec, Pattern,
                                  getTemplateInstantiationArgs(Rec),
                                  TSK_ImplicitInstantiation,
                                  /*Complain=*/!Diagnoser.Suppressed);
      }
    }
  }

  if (Diagnoser.Suppressed)
    return true;

  // We have an incomplete type. Produce a diagnostic.
  Diagnoser.diagnose(*this, Loc, T);

  // If the type was a forward declaration of a class/struct/union
  // type, produce a note.
  if (Tag && !Tag->getDecl()->isInvalidDecl())
    Diag(Tag->getDecl()->getLocation(),
         Tag->isBeingDefined() ? diag::note_type_being_defined
                               : diag::note_forward_declaration)
      << QualType(Tag, 0);

  // If the Objective-C class was a forward declaration, produce a note.
  if (IFace && !IFace->getDecl()->isInvalidDecl())
    Diag(IFace->getDecl()->getLocation(), diag::note_forward_class);

  return true;
}

bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
                               unsigned DiagID) {
  TypeDiagnoserDiag Diagnoser(DiagID);
  return RequireCompleteType(Loc, T, Diagnoser);
}

/// \brief Get diagnostic %select index for tag kind for
/// literal type diagnostic message.
/// WARNING: Indexes apply to particular diagnostics only!
///
/// \returns diagnostic %select index.
static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
  switch (Tag) {
  case TTK_Struct: return 0;
  case TTK_Interface: return 1;
  case TTK_Class:  return 2;
  default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
  }
}

/// @brief Ensure that the type T is a literal type.
///
/// This routine checks whether the type @p T is a literal type. If @p T is an
/// incomplete type, an attempt is made to complete it. If @p T is a literal
/// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
/// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
/// it the type @p T), along with notes explaining why the type is not a
/// literal type, and returns true.
///
/// @param Loc  The location in the source that the non-literal type
/// diagnostic should refer to.
///
/// @param T  The type that this routine is examining for literalness.
///
/// @param Diagnoser Emits a diagnostic if T is not a literal type.
///
/// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
/// @c false otherwise.
bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
                              TypeDiagnoser &Diagnoser) {
  assert(!T->isDependentType() && "type should not be dependent");

  QualType ElemType = Context.getBaseElementType(T);
  RequireCompleteType(Loc, ElemType, 0);

  if (T->isLiteralType(Context))
    return false;

  if (Diagnoser.Suppressed)
    return true;

  Diagnoser.diagnose(*this, Loc, T);

  if (T->isVariableArrayType())
    return true;

  const RecordType *RT = ElemType->getAs<RecordType>();
  if (!RT)
    return true;

  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());

  // A partially-defined class type can't be a literal type, because a literal
  // class type must have a trivial destructor (which can't be checked until
  // the class definition is complete).
  if (!RD->isCompleteDefinition()) {
    RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T);
    return true;
  }

  // If the class has virtual base classes, then it's not an aggregate, and
  // cannot have any constexpr constructors or a trivial default constructor,
  // so is non-literal. This is better to diagnose than the resulting absence
  // of constexpr constructors.
  if (RD->getNumVBases()) {
    Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
      << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
    for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
           E = RD->vbases_end(); I != E; ++I)
      Diag(I->getLocStart(),
           diag::note_constexpr_virtual_base_here) << I->getSourceRange();
  } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
             !RD->hasTrivialDefaultConstructor()) {
    Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
  } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
    for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
         E = RD->bases_end(); I != E; ++I) {
      if (!I->getType()->isLiteralType(Context)) {
        Diag(I->getLocStart(),
             diag::note_non_literal_base_class)
          << RD << I->getType() << I->getSourceRange();
        return true;
      }
    }
    for (CXXRecordDecl::field_iterator I = RD->field_begin(),
         E = RD->field_end(); I != E; ++I) {
      if (!I->getType()->isLiteralType(Context) ||
          I->getType().isVolatileQualified()) {
        Diag(I->getLocation(), diag::note_non_literal_field)
          << RD << *I << I->getType()
          << I->getType().isVolatileQualified();
        return true;
      }
    }
  } else if (!RD->hasTrivialDestructor()) {
    // All fields and bases are of literal types, so have trivial destructors.
    // If this class's destructor is non-trivial it must be user-declared.
    CXXDestructorDecl *Dtor = RD->getDestructor();
    assert(Dtor && "class has literal fields and bases but no dtor?");
    if (!Dtor)
      return true;

    Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
         diag::note_non_literal_user_provided_dtor :
         diag::note_non_literal_nontrivial_dtor) << RD;
    if (!Dtor->isUserProvided())
      SpecialMemberIsTrivial(Dtor, CXXDestructor, /*Diagnose*/true);
  }

  return true;
}

bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
  TypeDiagnoserDiag Diagnoser(DiagID);
  return RequireLiteralType(Loc, T, Diagnoser);
}

/// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
/// and qualified by the nested-name-specifier contained in SS.
QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
                                 const CXXScopeSpec &SS, QualType T) {
  if (T.isNull())
    return T;
  NestedNameSpecifier *NNS;
  if (SS.isValid())
    NNS = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
  else {
    if (Keyword == ETK_None)
      return T;
    NNS = 0;
  }
  return Context.getElaboratedType(Keyword, NNS, T);
}

QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
  ExprResult ER = CheckPlaceholderExpr(E);
  if (ER.isInvalid()) return QualType();
  E = ER.take();

  if (!E->isTypeDependent()) {
    QualType T = E->getType();
    if (const TagType *TT = T->getAs<TagType>())
      DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
  }
  return Context.getTypeOfExprType(E);
}

/// getDecltypeForExpr - Given an expr, will return the decltype for
/// that expression, according to the rules in C++11
/// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
static QualType getDecltypeForExpr(Sema &S, Expr *E) {
  if (E->isTypeDependent())
    return S.Context.DependentTy;

  // C++11 [dcl.type.simple]p4:
  //   The type denoted by decltype(e) is defined as follows:
  //
  //     - if e is an unparenthesized id-expression or an unparenthesized class
  //       member access (5.2.5), decltype(e) is the type of the entity named
  //       by e. If there is no such entity, or if e names a set of overloaded
  //       functions, the program is ill-formed;
  //
  // We apply the same rules for Objective-C ivar and property references.
  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
      return VD->getType();
  } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
      return FD->getType();
  } else if (const ObjCIvarRefExpr *IR = dyn_cast<ObjCIvarRefExpr>(E)) {
    return IR->getDecl()->getType();
  } else if (const ObjCPropertyRefExpr *PR = dyn_cast<ObjCPropertyRefExpr>(E)) {
    if (PR->isExplicitProperty())
      return PR->getExplicitProperty()->getType();
  }
  
  // C++11 [expr.lambda.prim]p18:
  //   Every occurrence of decltype((x)) where x is a possibly
  //   parenthesized id-expression that names an entity of automatic
  //   storage duration is treated as if x were transformed into an
  //   access to a corresponding data member of the closure type that
  //   would have been declared if x were an odr-use of the denoted
  //   entity.
  using namespace sema;
  if (S.getCurLambda()) {
    if (isa<ParenExpr>(E)) {
      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
        if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
          QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
          if (!T.isNull())
            return S.Context.getLValueReferenceType(T);
        }
      }
    }
  }


  // C++11 [dcl.type.simple]p4:
  //   [...]
  QualType T = E->getType();
  switch (E->getValueKind()) {
  //     - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
  //       type of e;
  case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
  //     - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
  //       type of e;
  case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
  //  - otherwise, decltype(e) is the type of e.
  case VK_RValue: break;
  }

  return T;
}

QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc) {
  ExprResult ER = CheckPlaceholderExpr(E);
  if (ER.isInvalid()) return QualType();
  E = ER.take();

  return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
}

QualType Sema::BuildUnaryTransformType(QualType BaseType,
                                       UnaryTransformType::UTTKind UKind,
                                       SourceLocation Loc) {
  switch (UKind) {
  case UnaryTransformType::EnumUnderlyingType:
    if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
      Diag(Loc, diag::err_only_enums_have_underlying_types);
      return QualType();
    } else {
      QualType Underlying = BaseType;
      if (!BaseType->isDependentType()) {
        EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
        assert(ED && "EnumType has no EnumDecl");
        DiagnoseUseOfDecl(ED, Loc);
        Underlying = ED->getIntegerType();
      }
      assert(!Underlying.isNull());
      return Context.getUnaryTransformType(BaseType, Underlying,
                                        UnaryTransformType::EnumUnderlyingType);
    }
  }
  llvm_unreachable("unknown unary transform type");
}

QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
  if (!T->isDependentType()) {
    // FIXME: It isn't entirely clear whether incomplete atomic types
    // are allowed or not; for simplicity, ban them for the moment.
    if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
      return QualType();

    int DisallowedKind = -1;
    if (T->isArrayType())
      DisallowedKind = 1;
    else if (T->isFunctionType())
      DisallowedKind = 2;
    else if (T->isReferenceType())
      DisallowedKind = 3;
    else if (T->isAtomicType())
      DisallowedKind = 4;
    else if (T.hasQualifiers())
      DisallowedKind = 5;
    else if (!T.isTriviallyCopyableType(Context))
      // Some other non-trivially-copyable type (probably a C++ class)
      DisallowedKind = 6;

    if (DisallowedKind != -1) {
      Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
      return QualType();
    }

    // FIXME: Do we need any handling for ARC here?
  }

  // Build the pointer type.
  return Context.getAtomicType(T);
}