1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
|
//===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//===----------------------------------------------------------------------===/
//
// This file implements C++ template argument deduction.
//
//===----------------------------------------------------------------------===/
#include "clang/Sema/TemplateDeduction.h"
#include "TreeTransform.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/Sema.h"
#include "clang/Sema/Template.h"
#include "llvm/ADT/SmallBitVector.h"
#include <algorithm>
namespace clang {
using namespace sema;
/// \brief Various flags that control template argument deduction.
///
/// These flags can be bitwise-OR'd together.
enum TemplateDeductionFlags {
/// \brief No template argument deduction flags, which indicates the
/// strictest results for template argument deduction (as used for, e.g.,
/// matching class template partial specializations).
TDF_None = 0,
/// \brief Within template argument deduction from a function call, we are
/// matching with a parameter type for which the original parameter was
/// a reference.
TDF_ParamWithReferenceType = 0x1,
/// \brief Within template argument deduction from a function call, we
/// are matching in a case where we ignore cv-qualifiers.
TDF_IgnoreQualifiers = 0x02,
/// \brief Within template argument deduction from a function call,
/// we are matching in a case where we can perform template argument
/// deduction from a template-id of a derived class of the argument type.
TDF_DerivedClass = 0x04,
/// \brief Allow non-dependent types to differ, e.g., when performing
/// template argument deduction from a function call where conversions
/// may apply.
TDF_SkipNonDependent = 0x08,
/// \brief Whether we are performing template argument deduction for
/// parameters and arguments in a top-level template argument
TDF_TopLevelParameterTypeList = 0x10
};
}
using namespace clang;
/// \brief Compare two APSInts, extending and switching the sign as
/// necessary to compare their values regardless of underlying type.
static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
if (Y.getBitWidth() > X.getBitWidth())
X = X.extend(Y.getBitWidth());
else if (Y.getBitWidth() < X.getBitWidth())
Y = Y.extend(X.getBitWidth());
// If there is a signedness mismatch, correct it.
if (X.isSigned() != Y.isSigned()) {
// If the signed value is negative, then the values cannot be the same.
if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
return false;
Y.setIsSigned(true);
X.setIsSigned(true);
}
return X == Y;
}
static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema &S,
TemplateParameterList *TemplateParams,
const TemplateArgument &Param,
TemplateArgument Arg,
TemplateDeductionInfo &Info,
SmallVectorImpl<DeducedTemplateArgument> &Deduced);
/// \brief Whether template argument deduction for two reference parameters
/// resulted in the argument type, parameter type, or neither type being more
/// qualified than the other.
enum DeductionQualifierComparison {
NeitherMoreQualified = 0,
ParamMoreQualified,
ArgMoreQualified
};
/// \brief Stores the result of comparing two reference parameters while
/// performing template argument deduction for partial ordering of function
/// templates.
struct RefParamPartialOrderingComparison {
/// \brief Whether the parameter type is an rvalue reference type.
bool ParamIsRvalueRef;
/// \brief Whether the argument type is an rvalue reference type.
bool ArgIsRvalueRef;
/// \brief Whether the parameter or argument (or neither) is more qualified.
DeductionQualifierComparison Qualifiers;
};
static Sema::TemplateDeductionResult
DeduceTemplateArgumentsByTypeMatch(Sema &S,
TemplateParameterList *TemplateParams,
QualType Param,
QualType Arg,
TemplateDeductionInfo &Info,
SmallVectorImpl<DeducedTemplateArgument> &
Deduced,
unsigned TDF,
bool PartialOrdering = false,
SmallVectorImpl<RefParamPartialOrderingComparison> *
RefParamComparisons = 0);
static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema &S,
TemplateParameterList *TemplateParams,
const TemplateArgument *Params, unsigned NumParams,
const TemplateArgument *Args, unsigned NumArgs,
TemplateDeductionInfo &Info,
SmallVectorImpl<DeducedTemplateArgument> &Deduced);
/// \brief If the given expression is of a form that permits the deduction
/// of a non-type template parameter, return the declaration of that
/// non-type template parameter.
static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
// If we are within an alias template, the expression may have undergone
// any number of parameter substitutions already.
while (1) {
if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
E = IC->getSubExpr();
else if (SubstNonTypeTemplateParmExpr *Subst =
dyn_cast<SubstNonTypeTemplateParmExpr>(E))
E = Subst->getReplacement();
else
break;
}
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
return 0;
}
/// \brief Determine whether two declaration pointers refer to the same
/// declaration.
static bool isSameDeclaration(Decl *X, Decl *Y) {
if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
X = NX->getUnderlyingDecl();
if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
Y = NY->getUnderlyingDecl();
return X->getCanonicalDecl() == Y->getCanonicalDecl();
}
/// \brief Verify that the given, deduced template arguments are compatible.
///
/// \returns The deduced template argument, or a NULL template argument if
/// the deduced template arguments were incompatible.
static DeducedTemplateArgument
checkDeducedTemplateArguments(ASTContext &Context,
const DeducedTemplateArgument &X,
const DeducedTemplateArgument &Y) {
// We have no deduction for one or both of the arguments; they're compatible.
if (X.isNull())
return Y;
if (Y.isNull())
return X;
switch (X.getKind()) {
case TemplateArgument::Null:
llvm_unreachable("Non-deduced template arguments handled above");
case TemplateArgument::Type:
// If two template type arguments have the same type, they're compatible.
if (Y.getKind() == TemplateArgument::Type &&
Context.hasSameType(X.getAsType(), Y.getAsType()))
return X;
return DeducedTemplateArgument();
case TemplateArgument::Integral:
// If we deduced a constant in one case and either a dependent expression or
// declaration in another case, keep the integral constant.
// If both are integral constants with the same value, keep that value.
if (Y.getKind() == TemplateArgument::Expression ||
Y.getKind() == TemplateArgument::Declaration ||
(Y.getKind() == TemplateArgument::Integral &&
hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral())))
return DeducedTemplateArgument(X,
X.wasDeducedFromArrayBound() &&
Y.wasDeducedFromArrayBound());
// All other combinations are incompatible.
return DeducedTemplateArgument();
case TemplateArgument::Template:
if (Y.getKind() == TemplateArgument::Template &&
Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
return X;
// All other combinations are incompatible.
return DeducedTemplateArgument();
case TemplateArgument::TemplateExpansion:
if (Y.getKind() == TemplateArgument::TemplateExpansion &&
Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
Y.getAsTemplateOrTemplatePattern()))
return X;
// All other combinations are incompatible.
return DeducedTemplateArgument();
case TemplateArgument::Expression:
// If we deduced a dependent expression in one case and either an integral
// constant or a declaration in another case, keep the integral constant
// or declaration.
if (Y.getKind() == TemplateArgument::Integral ||
Y.getKind() == TemplateArgument::Declaration)
return DeducedTemplateArgument(Y, X.wasDeducedFromArrayBound() &&
Y.wasDeducedFromArrayBound());
if (Y.getKind() == TemplateArgument::Expression) {
// Compare the expressions for equality
llvm::FoldingSetNodeID ID1, ID2;
X.getAsExpr()->Profile(ID1, Context, true);
Y.getAsExpr()->Profile(ID2, Context, true);
if (ID1 == ID2)
return X;
}
// All other combinations are incompatible.
return DeducedTemplateArgument();
case TemplateArgument::Declaration:
// If we deduced a declaration and a dependent expression, keep the
// declaration.
if (Y.getKind() == TemplateArgument::Expression)
return X;
// If we deduced a declaration and an integral constant, keep the
// integral constant.
if (Y.getKind() == TemplateArgument::Integral)
return Y;
// If we deduced two declarations, make sure they they refer to the
// same declaration.
if (Y.getKind() == TemplateArgument::Declaration &&
isSameDeclaration(X.getAsDecl(), Y.getAsDecl()) &&
X.isDeclForReferenceParam() == Y.isDeclForReferenceParam())
return X;
// All other combinations are incompatible.
return DeducedTemplateArgument();
case TemplateArgument::NullPtr:
// If we deduced a null pointer and a dependent expression, keep the
// null pointer.
if (Y.getKind() == TemplateArgument::Expression)
return X;
// If we deduced a null pointer and an integral constant, keep the
// integral constant.
if (Y.getKind() == TemplateArgument::Integral)
return Y;
// If we deduced two null pointers, make sure they have the same type.
if (Y.getKind() == TemplateArgument::NullPtr &&
Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType()))
return X;
// All other combinations are incompatible.
return DeducedTemplateArgument();
case TemplateArgument::Pack:
if (Y.getKind() != TemplateArgument::Pack ||
X.pack_size() != Y.pack_size())
return DeducedTemplateArgument();
for (TemplateArgument::pack_iterator XA = X.pack_begin(),
XAEnd = X.pack_end(),
YA = Y.pack_begin();
XA != XAEnd; ++XA, ++YA) {
if (checkDeducedTemplateArguments(Context,
DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()))
.isNull())
return DeducedTemplateArgument();
}
return X;
}
llvm_unreachable("Invalid TemplateArgument Kind!");
}
/// \brief Deduce the value of the given non-type template parameter
/// from the given constant.
static Sema::TemplateDeductionResult
DeduceNonTypeTemplateArgument(Sema &S,
NonTypeTemplateParmDecl *NTTP,
llvm::APSInt Value, QualType ValueType,
bool DeducedFromArrayBound,
TemplateDeductionInfo &Info,
SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
assert(NTTP->getDepth() == 0 &&
"Cannot deduce non-type template argument with depth > 0");
DeducedTemplateArgument NewDeduced(S.Context, Value, ValueType,
DeducedFromArrayBound);
DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
Deduced[NTTP->getIndex()],
NewDeduced);
if (Result.isNull()) {
Info.Param = NTTP;
Info.FirstArg = Deduced[NTTP->getIndex()];
Info.SecondArg = NewDeduced;
return Sema::TDK_Inconsistent;
}
Deduced[NTTP->getIndex()] = Result;
return Sema::TDK_Success;
}
/// \brief Deduce the value of the given non-type template parameter
/// from the given type- or value-dependent expression.
///
/// \returns true if deduction succeeded, false otherwise.
static Sema::TemplateDeductionResult
DeduceNonTypeTemplateArgument(Sema &S,
NonTypeTemplateParmDecl *NTTP,
Expr *Value,
TemplateDeductionInfo &Info,
SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
assert(NTTP->getDepth() == 0 &&
"Cannot deduce non-type template argument with depth > 0");
assert((Value->isTypeDependent() || Value->isValueDependent()) &&
"Expression template argument must be type- or value-dependent.");
DeducedTemplateArgument NewDeduced(Value);
DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
Deduced[NTTP->getIndex()],
NewDeduced);
if (Result.isNull()) {
Info.Param = NTTP;
Info.FirstArg = Deduced[NTTP->getIndex()];
Info.SecondArg = NewDeduced;
return Sema::TDK_Inconsistent;
}
Deduced[NTTP->getIndex()] = Result;
return Sema::TDK_Success;
}
/// \brief Deduce the value of the given non-type template parameter
/// from the given declaration.
///
/// \returns true if deduction succeeded, false otherwise.
static Sema::TemplateDeductionResult
DeduceNonTypeTemplateArgument(Sema &S,
NonTypeTemplateParmDecl *NTTP,
ValueDecl *D,
TemplateDeductionInfo &Info,
SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
assert(NTTP->getDepth() == 0 &&
"Cannot deduce non-type template argument with depth > 0");
D = D ? cast<ValueDecl>(D->getCanonicalDecl()) : 0;
TemplateArgument New(D, NTTP->getType()->isReferenceType());
DeducedTemplateArgument NewDeduced(New);
DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
Deduced[NTTP->getIndex()],
NewDeduced);
if (Result.isNull()) {
Info.Param = NTTP;
Info.FirstArg = Deduced[NTTP->getIndex()];
Info.SecondArg = NewDeduced;
return Sema::TDK_Inconsistent;
}
Deduced[NTTP->getIndex()] = Result;
return Sema::TDK_Success;
}
static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema &S,
TemplateParameterList *TemplateParams,
TemplateName Param,
TemplateName Arg,
TemplateDeductionInfo &Info,
SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
if (!ParamDecl) {
// The parameter type is dependent and is not a template template parameter,
// so there is nothing that we can deduce.
return Sema::TDK_Success;
}
if (TemplateTemplateParmDecl *TempParam
= dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
Deduced[TempParam->getIndex()],
NewDeduced);
if (Result.isNull()) {
Info.Param = TempParam;
Info.FirstArg = Deduced[TempParam->getIndex()];
Info.SecondArg = NewDeduced;
return Sema::TDK_Inconsistent;
}
Deduced[TempParam->getIndex()] = Result;
return Sema::TDK_Success;
}
// Verify that the two template names are equivalent.
if (S.Context.hasSameTemplateName(Param, Arg))
return Sema::TDK_Success;
// Mismatch of non-dependent template parameter to argument.
Info.FirstArg = TemplateArgument(Param);
Info.SecondArg = TemplateArgument(Arg);
return Sema::TDK_NonDeducedMismatch;
}
/// \brief Deduce the template arguments by comparing the template parameter
/// type (which is a template-id) with the template argument type.
///
/// \param S the Sema
///
/// \param TemplateParams the template parameters that we are deducing
///
/// \param Param the parameter type
///
/// \param Arg the argument type
///
/// \param Info information about the template argument deduction itself
///
/// \param Deduced the deduced template arguments
///
/// \returns the result of template argument deduction so far. Note that a
/// "success" result means that template argument deduction has not yet failed,
/// but it may still fail, later, for other reasons.
static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema &S,
TemplateParameterList *TemplateParams,
const TemplateSpecializationType *Param,
QualType Arg,
TemplateDeductionInfo &Info,
SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
assert(Arg.isCanonical() && "Argument type must be canonical");
// Check whether the template argument is a dependent template-id.
if (const TemplateSpecializationType *SpecArg
= dyn_cast<TemplateSpecializationType>(Arg)) {
// Perform template argument deduction for the template name.
if (Sema::TemplateDeductionResult Result
= DeduceTemplateArguments(S, TemplateParams,
Param->getTemplateName(),
SpecArg->getTemplateName(),
Info, Deduced))
return Result;
// Perform template argument deduction on each template
// argument. Ignore any missing/extra arguments, since they could be
// filled in by default arguments.
return DeduceTemplateArguments(S, TemplateParams,
Param->getArgs(), Param->getNumArgs(),
SpecArg->getArgs(), SpecArg->getNumArgs(),
Info, Deduced);
}
// If the argument type is a class template specialization, we
// perform template argument deduction using its template
// arguments.
const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
if (!RecordArg) {
Info.FirstArg = TemplateArgument(QualType(Param, 0));
Info.SecondArg = TemplateArgument(Arg);
return Sema::TDK_NonDeducedMismatch;
}
ClassTemplateSpecializationDecl *SpecArg
= dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
if (!SpecArg) {
Info.FirstArg = TemplateArgument(QualType(Param, 0));
Info.SecondArg = TemplateArgument(Arg);
return Sema::TDK_NonDeducedMismatch;
}
// Perform template argument deduction for the template name.
if (Sema::TemplateDeductionResult Result
= DeduceTemplateArguments(S,
TemplateParams,
Param->getTemplateName(),
TemplateName(SpecArg->getSpecializedTemplate()),
Info, Deduced))
return Result;
// Perform template argument deduction for the template arguments.
return DeduceTemplateArguments(S, TemplateParams,
Param->getArgs(), Param->getNumArgs(),
SpecArg->getTemplateArgs().data(),
SpecArg->getTemplateArgs().size(),
Info, Deduced);
}
/// \brief Determines whether the given type is an opaque type that
/// might be more qualified when instantiated.
static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
switch (T->getTypeClass()) {
case Type::TypeOfExpr:
case Type::TypeOf:
case Type::DependentName:
case Type::Decltype:
case Type::UnresolvedUsing:
case Type::TemplateTypeParm:
return true;
case Type::ConstantArray:
case Type::IncompleteArray:
case Type::VariableArray:
case Type::DependentSizedArray:
return IsPossiblyOpaquelyQualifiedType(
cast<ArrayType>(T)->getElementType());
default:
return false;
}
}
/// \brief Retrieve the depth and index of a template parameter.
static std::pair<unsigned, unsigned>
getDepthAndIndex(NamedDecl *ND) {
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ND))
return std::make_pair(TTP->getDepth(), TTP->getIndex());
if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(ND))
return std::make_pair(NTTP->getDepth(), NTTP->getIndex());
TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(ND);
return std::make_pair(TTP->getDepth(), TTP->getIndex());
}
/// \brief Retrieve the depth and index of an unexpanded parameter pack.
static std::pair<unsigned, unsigned>
getDepthAndIndex(UnexpandedParameterPack UPP) {
if (const TemplateTypeParmType *TTP
= UPP.first.dyn_cast<const TemplateTypeParmType *>())
return std::make_pair(TTP->getDepth(), TTP->getIndex());
return getDepthAndIndex(UPP.first.get<NamedDecl *>());
}
/// \brief Helper function to build a TemplateParameter when we don't
/// know its type statically.
static TemplateParameter makeTemplateParameter(Decl *D) {
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
return TemplateParameter(TTP);
else if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
return TemplateParameter(NTTP);
return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
}
/// \brief Prepare to perform template argument deduction for all of the
/// arguments in a set of argument packs.
static void PrepareArgumentPackDeduction(Sema &S,
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
ArrayRef<unsigned> PackIndices,
SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
SmallVectorImpl<
SmallVector<DeducedTemplateArgument, 4> > &NewlyDeducedPacks) {
// Save the deduced template arguments for each parameter pack expanded
// by this pack expansion, then clear out the deduction.
for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
// Save the previously-deduced argument pack, then clear it out so that we
// can deduce a new argument pack.
SavedPacks[I] = Deduced[PackIndices[I]];
Deduced[PackIndices[I]] = TemplateArgument();
if (!S.CurrentInstantiationScope)
continue;
// If the template argument pack was explicitly specified, add that to
// the set of deduced arguments.
const TemplateArgument *ExplicitArgs;
unsigned NumExplicitArgs;
if (NamedDecl *PartiallySubstitutedPack
= S.CurrentInstantiationScope->getPartiallySubstitutedPack(
&ExplicitArgs,
&NumExplicitArgs)) {
if (getDepthAndIndex(PartiallySubstitutedPack).second == PackIndices[I])
NewlyDeducedPacks[I].append(ExplicitArgs,
ExplicitArgs + NumExplicitArgs);
}
}
}
/// \brief Finish template argument deduction for a set of argument packs,
/// producing the argument packs and checking for consistency with prior
/// deductions.
static Sema::TemplateDeductionResult
FinishArgumentPackDeduction(Sema &S,
TemplateParameterList *TemplateParams,
bool HasAnyArguments,
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
ArrayRef<unsigned> PackIndices,
SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
SmallVectorImpl<
SmallVector<DeducedTemplateArgument, 4> > &NewlyDeducedPacks,
TemplateDeductionInfo &Info) {
// Build argument packs for each of the parameter packs expanded by this
// pack expansion.
for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
if (HasAnyArguments && NewlyDeducedPacks[I].empty()) {
// We were not able to deduce anything for this parameter pack,
// so just restore the saved argument pack.
Deduced[PackIndices[I]] = SavedPacks[I];
continue;
}
DeducedTemplateArgument NewPack;
if (NewlyDeducedPacks[I].empty()) {
// If we deduced an empty argument pack, create it now.
NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack());
} else {
TemplateArgument *ArgumentPack
= new (S.Context) TemplateArgument [NewlyDeducedPacks[I].size()];
std::copy(NewlyDeducedPacks[I].begin(), NewlyDeducedPacks[I].end(),
ArgumentPack);
NewPack
= DeducedTemplateArgument(TemplateArgument(ArgumentPack,
NewlyDeducedPacks[I].size()),
NewlyDeducedPacks[I][0].wasDeducedFromArrayBound());
}
DeducedTemplateArgument Result
= checkDeducedTemplateArguments(S.Context, SavedPacks[I], NewPack);
if (Result.isNull()) {
Info.Param
= makeTemplateParameter(TemplateParams->getParam(PackIndices[I]));
Info.FirstArg = SavedPacks[I];
Info.SecondArg = NewPack;
return Sema::TDK_Inconsistent;
}
Deduced[PackIndices[I]] = Result;
}
return Sema::TDK_Success;
}
/// \brief Deduce the template arguments by comparing the list of parameter
/// types to the list of argument types, as in the parameter-type-lists of
/// function types (C++ [temp.deduct.type]p10).
///
/// \param S The semantic analysis object within which we are deducing
///
/// \param TemplateParams The template parameters that we are deducing
///
/// \param Params The list of parameter types
///
/// \param NumParams The number of types in \c Params
///
/// \param Args The list of argument types
///
/// \param NumArgs The number of types in \c Args
///
/// \param Info information about the template argument deduction itself
///
/// \param Deduced the deduced template arguments
///
/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
/// how template argument deduction is performed.
///
/// \param PartialOrdering If true, we are performing template argument
/// deduction for during partial ordering for a call
/// (C++0x [temp.deduct.partial]).
///
/// \param RefParamComparisons If we're performing template argument deduction
/// in the context of partial ordering, the set of qualifier comparisons.
///
/// \returns the result of template argument deduction so far. Note that a
/// "success" result means that template argument deduction has not yet failed,
/// but it may still fail, later, for other reasons.
static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema &S,
TemplateParameterList *TemplateParams,
const QualType *Params, unsigned NumParams,
const QualType *Args, unsigned NumArgs,
TemplateDeductionInfo &Info,
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
unsigned TDF,
bool PartialOrdering = false,
SmallVectorImpl<RefParamPartialOrderingComparison> *
RefParamComparisons = 0) {
// Fast-path check to see if we have too many/too few arguments.
if (NumParams != NumArgs &&
!(NumParams && isa<PackExpansionType>(Params[NumParams - 1])) &&
!(NumArgs && isa<PackExpansionType>(Args[NumArgs - 1])))
return Sema::TDK_MiscellaneousDeductionFailure;
// C++0x [temp.deduct.type]p10:
// Similarly, if P has a form that contains (T), then each parameter type
// Pi of the respective parameter-type- list of P is compared with the
// corresponding parameter type Ai of the corresponding parameter-type-list
// of A. [...]
unsigned ArgIdx = 0, ParamIdx = 0;
for (; ParamIdx != NumParams; ++ParamIdx) {
// Check argument types.
const PackExpansionType *Expansion
= dyn_cast<PackExpansionType>(Params[ParamIdx]);
if (!Expansion) {
// Simple case: compare the parameter and argument types at this point.
// Make sure we have an argument.
if (ArgIdx >= NumArgs)
return Sema::TDK_MiscellaneousDeductionFailure;
if (isa<PackExpansionType>(Args[ArgIdx])) {
// C++0x [temp.deduct.type]p22:
// If the original function parameter associated with A is a function
// parameter pack and the function parameter associated with P is not
// a function parameter pack, then template argument deduction fails.
return Sema::TDK_MiscellaneousDeductionFailure;
}
if (Sema::TemplateDeductionResult Result
= DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
Params[ParamIdx], Args[ArgIdx],
Info, Deduced, TDF,
PartialOrdering,
RefParamComparisons))
return Result;
++ArgIdx;
continue;
}
// C++0x [temp.deduct.type]p5:
// The non-deduced contexts are:
// - A function parameter pack that does not occur at the end of the
// parameter-declaration-clause.
if (ParamIdx + 1 < NumParams)
return Sema::TDK_Success;
// C++0x [temp.deduct.type]p10:
// If the parameter-declaration corresponding to Pi is a function
// parameter pack, then the type of its declarator- id is compared with
// each remaining parameter type in the parameter-type-list of A. Each
// comparison deduces template arguments for subsequent positions in the
// template parameter packs expanded by the function parameter pack.
// Compute the set of template parameter indices that correspond to
// parameter packs expanded by the pack expansion.
SmallVector<unsigned, 2> PackIndices;
QualType Pattern = Expansion->getPattern();
{
llvm::SmallBitVector SawIndices(TemplateParams->size());
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
unsigned Depth, Index;
llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
if (Depth == 0 && !SawIndices[Index]) {
SawIndices[Index] = true;
PackIndices.push_back(Index);
}
}
}
assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
// Keep track of the deduced template arguments for each parameter pack
// expanded by this pack expansion (the outer index) and for each
// template argument (the inner SmallVectors).
SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
NewlyDeducedPacks(PackIndices.size());
SmallVector<DeducedTemplateArgument, 2>
SavedPacks(PackIndices.size());
PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
NewlyDeducedPacks);
bool HasAnyArguments = false;
for (; ArgIdx < NumArgs; ++ArgIdx) {
HasAnyArguments = true;
// Deduce template arguments from the pattern.
if (Sema::TemplateDeductionResult Result
= DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern,
Args[ArgIdx], Info, Deduced,
TDF, PartialOrdering,
RefParamComparisons))
return Result;
// Capture the deduced template arguments for each parameter pack expanded
// by this pack expansion, add them to the list of arguments we've deduced
// for that pack, then clear out the deduced argument.
for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
if (!DeducedArg.isNull()) {
NewlyDeducedPacks[I].push_back(DeducedArg);
DeducedArg = DeducedTemplateArgument();
}
}
}
// Build argument packs for each of the parameter packs expanded by this
// pack expansion.
if (Sema::TemplateDeductionResult Result
= FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
Deduced, PackIndices, SavedPacks,
NewlyDeducedPacks, Info))
return Result;
}
// Make sure we don't have any extra arguments.
if (ArgIdx < NumArgs)
return Sema::TDK_MiscellaneousDeductionFailure;
return Sema::TDK_Success;
}
/// \brief Determine whether the parameter has qualifiers that are either
/// inconsistent with or a superset of the argument's qualifiers.
static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType,
QualType ArgType) {
Qualifiers ParamQs = ParamType.getQualifiers();
Qualifiers ArgQs = ArgType.getQualifiers();
if (ParamQs == ArgQs)
return false;
// Mismatched (but not missing) Objective-C GC attributes.
if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() &&
ParamQs.hasObjCGCAttr())
return true;
// Mismatched (but not missing) address spaces.
if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
ParamQs.hasAddressSpace())
return true;
// Mismatched (but not missing) Objective-C lifetime qualifiers.
if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
ParamQs.hasObjCLifetime())
return true;
// CVR qualifier superset.
return (ParamQs.getCVRQualifiers() != ArgQs.getCVRQualifiers()) &&
((ParamQs.getCVRQualifiers() | ArgQs.getCVRQualifiers())
== ParamQs.getCVRQualifiers());
}
/// \brief Deduce the template arguments by comparing the parameter type and
/// the argument type (C++ [temp.deduct.type]).
///
/// \param S the semantic analysis object within which we are deducing
///
/// \param TemplateParams the template parameters that we are deducing
///
/// \param ParamIn the parameter type
///
/// \param ArgIn the argument type
///
/// \param Info information about the template argument deduction itself
///
/// \param Deduced the deduced template arguments
///
/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
/// how template argument deduction is performed.
///
/// \param PartialOrdering Whether we're performing template argument deduction
/// in the context of partial ordering (C++0x [temp.deduct.partial]).
///
/// \param RefParamComparisons If we're performing template argument deduction
/// in the context of partial ordering, the set of qualifier comparisons.
///
/// \returns the result of template argument deduction so far. Note that a
/// "success" result means that template argument deduction has not yet failed,
/// but it may still fail, later, for other reasons.
static Sema::TemplateDeductionResult
DeduceTemplateArgumentsByTypeMatch(Sema &S,
TemplateParameterList *TemplateParams,
QualType ParamIn, QualType ArgIn,
TemplateDeductionInfo &Info,
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
unsigned TDF,
bool PartialOrdering,
SmallVectorImpl<RefParamPartialOrderingComparison> *
RefParamComparisons) {
// We only want to look at the canonical types, since typedefs and
// sugar are not part of template argument deduction.
QualType Param = S.Context.getCanonicalType(ParamIn);
QualType Arg = S.Context.getCanonicalType(ArgIn);
// If the argument type is a pack expansion, look at its pattern.
// This isn't explicitly called out
if (const PackExpansionType *ArgExpansion
= dyn_cast<PackExpansionType>(Arg))
Arg = ArgExpansion->getPattern();
if (PartialOrdering) {
// C++0x [temp.deduct.partial]p5:
// Before the partial ordering is done, certain transformations are
// performed on the types used for partial ordering:
// - If P is a reference type, P is replaced by the type referred to.
const ReferenceType *ParamRef = Param->getAs<ReferenceType>();
if (ParamRef)
Param = ParamRef->getPointeeType();
// - If A is a reference type, A is replaced by the type referred to.
const ReferenceType *ArgRef = Arg->getAs<ReferenceType>();
if (ArgRef)
Arg = ArgRef->getPointeeType();
if (RefParamComparisons && ParamRef && ArgRef) {
// C++0x [temp.deduct.partial]p6:
// If both P and A were reference types (before being replaced with the
// type referred to above), determine which of the two types (if any) is
// more cv-qualified than the other; otherwise the types are considered
// to be equally cv-qualified for partial ordering purposes. The result
// of this determination will be used below.
//
// We save this information for later, using it only when deduction
// succeeds in both directions.
RefParamPartialOrderingComparison Comparison;
Comparison.ParamIsRvalueRef = ParamRef->getAs<RValueReferenceType>();
Comparison.ArgIsRvalueRef = ArgRef->getAs<RValueReferenceType>();
Comparison.Qualifiers = NeitherMoreQualified;
Qualifiers ParamQuals = Param.getQualifiers();
Qualifiers ArgQuals = Arg.getQualifiers();
if (ParamQuals.isStrictSupersetOf(ArgQuals))
Comparison.Qualifiers = ParamMoreQualified;
else if (ArgQuals.isStrictSupersetOf(ParamQuals))
Comparison.Qualifiers = ArgMoreQualified;
RefParamComparisons->push_back(Comparison);
}
// C++0x [temp.deduct.partial]p7:
// Remove any top-level cv-qualifiers:
// - If P is a cv-qualified type, P is replaced by the cv-unqualified
// version of P.
Param = Param.getUnqualifiedType();
// - If A is a cv-qualified type, A is replaced by the cv-unqualified
// version of A.
Arg = Arg.getUnqualifiedType();
} else {
// C++0x [temp.deduct.call]p4 bullet 1:
// - If the original P is a reference type, the deduced A (i.e., the type
// referred to by the reference) can be more cv-qualified than the
// transformed A.
if (TDF & TDF_ParamWithReferenceType) {
Qualifiers Quals;
QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
Arg.getCVRQualifiers());
Param = S.Context.getQualifiedType(UnqualParam, Quals);
}
if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) {
// C++0x [temp.deduct.type]p10:
// If P and A are function types that originated from deduction when
// taking the address of a function template (14.8.2.2) or when deducing
// template arguments from a function declaration (14.8.2.6) and Pi and
// Ai are parameters of the top-level parameter-type-list of P and A,
// respectively, Pi is adjusted if it is an rvalue reference to a
// cv-unqualified template parameter and Ai is an lvalue reference, in
// which case the type of Pi is changed to be the template parameter
// type (i.e., T&& is changed to simply T). [ Note: As a result, when
// Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
// deduced as X&. - end note ]
TDF &= ~TDF_TopLevelParameterTypeList;
if (const RValueReferenceType *ParamRef
= Param->getAs<RValueReferenceType>()) {
if (isa<TemplateTypeParmType>(ParamRef->getPointeeType()) &&
!ParamRef->getPointeeType().getQualifiers())
if (Arg->isLValueReferenceType())
Param = ParamRef->getPointeeType();
}
}
}
// C++ [temp.deduct.type]p9:
// A template type argument T, a template template argument TT or a
// template non-type argument i can be deduced if P and A have one of
// the following forms:
//
// T
// cv-list T
if (const TemplateTypeParmType *TemplateTypeParm
= Param->getAs<TemplateTypeParmType>()) {
// Just skip any attempts to deduce from a placeholder type.
if (Arg->isPlaceholderType())
return Sema::TDK_Success;
unsigned Index = TemplateTypeParm->getIndex();
bool RecanonicalizeArg = false;
// If the argument type is an array type, move the qualifiers up to the
// top level, so they can be matched with the qualifiers on the parameter.
if (isa<ArrayType>(Arg)) {
Qualifiers Quals;
Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
if (Quals) {
Arg = S.Context.getQualifiedType(Arg, Quals);
RecanonicalizeArg = true;
}
}
// The argument type can not be less qualified than the parameter
// type.
if (!(TDF & TDF_IgnoreQualifiers) &&
hasInconsistentOrSupersetQualifiersOf(Param, Arg)) {
Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
Info.FirstArg = TemplateArgument(Param);
Info.SecondArg = TemplateArgument(Arg);
return Sema::TDK_Underqualified;
}
assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
QualType DeducedType = Arg;
// Remove any qualifiers on the parameter from the deduced type.
// We checked the qualifiers for consistency above.
Qualifiers DeducedQs = DeducedType.getQualifiers();
Qualifiers ParamQs = Param.getQualifiers();
DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
if (ParamQs.hasObjCGCAttr())
DeducedQs.removeObjCGCAttr();
if (ParamQs.hasAddressSpace())
DeducedQs.removeAddressSpace();
if (ParamQs.hasObjCLifetime())
DeducedQs.removeObjCLifetime();
// Objective-C ARC:
// If template deduction would produce a lifetime qualifier on a type
// that is not a lifetime type, template argument deduction fails.
if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() &&
!DeducedType->isDependentType()) {
Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
Info.FirstArg = TemplateArgument(Param);
Info.SecondArg = TemplateArgument(Arg);
return Sema::TDK_Underqualified;
}
// Objective-C ARC:
// If template deduction would produce an argument type with lifetime type
// but no lifetime qualifier, the __strong lifetime qualifier is inferred.
if (S.getLangOpts().ObjCAutoRefCount &&
DeducedType->isObjCLifetimeType() &&
!DeducedQs.hasObjCLifetime())
DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong);
DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(),
DeducedQs);
if (RecanonicalizeArg)
DeducedType = S.Context.getCanonicalType(DeducedType);
DeducedTemplateArgument NewDeduced(DeducedType);
DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
Deduced[Index],
NewDeduced);
if (Result.isNull()) {
Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
Info.FirstArg = Deduced[Index];
Info.SecondArg = NewDeduced;
return Sema::TDK_Inconsistent;
}
Deduced[Index] = Result;
return Sema::TDK_Success;
}
// Set up the template argument deduction information for a failure.
Info.FirstArg = TemplateArgument(ParamIn);
Info.SecondArg = TemplateArgument(ArgIn);
// If the parameter is an already-substituted template parameter
// pack, do nothing: we don't know which of its arguments to look
// at, so we have to wait until all of the parameter packs in this
// expansion have arguments.
if (isa<SubstTemplateTypeParmPackType>(Param))
return Sema::TDK_Success;
// Check the cv-qualifiers on the parameter and argument types.
if (!(TDF & TDF_IgnoreQualifiers)) {
if (TDF & TDF_ParamWithReferenceType) {
if (hasInconsistentOrSupersetQualifiersOf(Param, Arg))
return Sema::TDK_NonDeducedMismatch;
} else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
return Sema::TDK_NonDeducedMismatch;
}
// If the parameter type is not dependent, there is nothing to deduce.
if (!Param->isDependentType()) {
if (!(TDF & TDF_SkipNonDependent) && Param != Arg)
return Sema::TDK_NonDeducedMismatch;
return Sema::TDK_Success;
}
} else if (!Param->isDependentType() &&
Param.getUnqualifiedType() == Arg.getUnqualifiedType()) {
return Sema::TDK_Success;
}
switch (Param->getTypeClass()) {
// Non-canonical types cannot appear here.
#define NON_CANONICAL_TYPE(Class, Base) \
case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
#define TYPE(Class, Base)
#include "clang/AST/TypeNodes.def"
case Type::TemplateTypeParm:
case Type::SubstTemplateTypeParmPack:
llvm_unreachable("Type nodes handled above");
// These types cannot be dependent, so simply check whether the types are
// the same.
case Type::Builtin:
case Type::VariableArray:
case Type::Vector:
case Type::FunctionNoProto:
case Type::Record:
case Type::Enum:
case Type::ObjCObject:
case Type::ObjCInterface:
case Type::ObjCObjectPointer: {
if (TDF & TDF_SkipNonDependent)
return Sema::TDK_Success;
if (TDF & TDF_IgnoreQualifiers) {
Param = Param.getUnqualifiedType();
Arg = Arg.getUnqualifiedType();
}
return Param == Arg? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch;
}
// _Complex T [placeholder extension]
case Type::Complex:
if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>())
return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
cast<ComplexType>(Param)->getElementType(),
ComplexArg->getElementType(),
Info, Deduced, TDF);
return Sema::TDK_NonDeducedMismatch;
// _Atomic T [extension]
case Type::Atomic:
if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>())
return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
cast<AtomicType>(Param)->getValueType(),
AtomicArg->getValueType(),
Info, Deduced, TDF);
return Sema::TDK_NonDeducedMismatch;
// T *
case Type::Pointer: {
QualType PointeeType;
if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
PointeeType = PointerArg->getPointeeType();
} else if (const ObjCObjectPointerType *PointerArg
= Arg->getAs<ObjCObjectPointerType>()) {
PointeeType = PointerArg->getPointeeType();
} else {
return Sema::TDK_NonDeducedMismatch;
}
unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
cast<PointerType>(Param)->getPointeeType(),
PointeeType,
Info, Deduced, SubTDF);
}
// T &
case Type::LValueReference: {
const LValueReferenceType *ReferenceArg = Arg->getAs<LValueReferenceType>();
if (!ReferenceArg)
return Sema::TDK_NonDeducedMismatch;
return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
cast<LValueReferenceType>(Param)->getPointeeType(),
ReferenceArg->getPointeeType(), Info, Deduced, 0);
}
// T && [C++0x]
case Type::RValueReference: {
const RValueReferenceType *ReferenceArg = Arg->getAs<RValueReferenceType>();
if (!ReferenceArg)
return Sema::TDK_NonDeducedMismatch;
return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
cast<RValueReferenceType>(Param)->getPointeeType(),
ReferenceArg->getPointeeType(),
Info, Deduced, 0);
}
// T [] (implied, but not stated explicitly)
case Type::IncompleteArray: {
const IncompleteArrayType *IncompleteArrayArg =
S.Context.getAsIncompleteArrayType(Arg);
if (!IncompleteArrayArg)
return Sema::TDK_NonDeducedMismatch;
unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
S.Context.getAsIncompleteArrayType(Param)->getElementType(),
IncompleteArrayArg->getElementType(),
Info, Deduced, SubTDF);
}
// T [integer-constant]
case Type::ConstantArray: {
const ConstantArrayType *ConstantArrayArg =
S.Context.getAsConstantArrayType(Arg);
if (!ConstantArrayArg)
return Sema::TDK_NonDeducedMismatch;
const ConstantArrayType *ConstantArrayParm =
S.Context.getAsConstantArrayType(Param);
if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
return Sema::TDK_NonDeducedMismatch;
unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
ConstantArrayParm->getElementType(),
ConstantArrayArg->getElementType(),
Info, Deduced, SubTDF);
}
// type [i]
case Type::DependentSizedArray: {
const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
if (!ArrayArg)
return Sema::TDK_NonDeducedMismatch;
unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
// Check the element type of the arrays
const DependentSizedArrayType *DependentArrayParm
= S.Context.getAsDependentSizedArrayType(Param);
if (Sema::TemplateDeductionResult Result
= DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
DependentArrayParm->getElementType(),
ArrayArg->getElementType(),
Info, Deduced, SubTDF))
return Result;
// Determine the array bound is something we can deduce.
NonTypeTemplateParmDecl *NTTP
= getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
if (!NTTP)
return Sema::TDK_Success;
// We can perform template argument deduction for the given non-type
// template parameter.
assert(NTTP->getDepth() == 0 &&
"Cannot deduce non-type template argument at depth > 0");
if (const ConstantArrayType *ConstantArrayArg
= dyn_cast<ConstantArrayType>(ArrayArg)) {
llvm::APSInt Size(ConstantArrayArg->getSize());
return DeduceNonTypeTemplateArgument(S, NTTP, Size,
S.Context.getSizeType(),
/*ArrayBound=*/true,
Info, Deduced);
}
if (const DependentSizedArrayType *DependentArrayArg
= dyn_cast<DependentSizedArrayType>(ArrayArg))
if (DependentArrayArg->getSizeExpr())
return DeduceNonTypeTemplateArgument(S, NTTP,
DependentArrayArg->getSizeExpr(),
Info, Deduced);
// Incomplete type does not match a dependently-sized array type
return Sema::TDK_NonDeducedMismatch;
}
// type(*)(T)
// T(*)()
// T(*)(T)
case Type::FunctionProto: {
unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList;
const FunctionProtoType *FunctionProtoArg =
dyn_cast<FunctionProtoType>(Arg);
if (!FunctionProtoArg)
return Sema::TDK_NonDeducedMismatch;
const FunctionProtoType *FunctionProtoParam =
cast<FunctionProtoType>(Param);
if (FunctionProtoParam->getTypeQuals()
!= FunctionProtoArg->getTypeQuals() ||
FunctionProtoParam->getRefQualifier()
!= FunctionProtoArg->getRefQualifier() ||
FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
return Sema::TDK_NonDeducedMismatch;
// Check return types.
if (Sema::TemplateDeductionResult Result
= DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
FunctionProtoParam->getResultType(),
FunctionProtoArg->getResultType(),
Info, Deduced, 0))
return Result;
return DeduceTemplateArguments(S, TemplateParams,
FunctionProtoParam->arg_type_begin(),
FunctionProtoParam->getNumArgs(),
FunctionProtoArg->arg_type_begin(),
FunctionProtoArg->getNumArgs(),
Info, Deduced, SubTDF);
}
case Type::InjectedClassName: {
// Treat a template's injected-class-name as if the template
// specialization type had been used.
Param = cast<InjectedClassNameType>(Param)
->getInjectedSpecializationType();
assert(isa<TemplateSpecializationType>(Param) &&
"injected class name is not a template specialization type");
// fall through
}
// template-name<T> (where template-name refers to a class template)
// template-name<i>
// TT<T>
// TT<i>
// TT<>
case Type::TemplateSpecialization: {
const TemplateSpecializationType *SpecParam
= cast<TemplateSpecializationType>(Param);
// Try to deduce template arguments from the template-id.
Sema::TemplateDeductionResult Result
= DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
Info, Deduced);
if (Result && (TDF & TDF_DerivedClass)) {
// C++ [temp.deduct.call]p3b3:
// If P is a class, and P has the form template-id, then A can be a
// derived class of the deduced A. Likewise, if P is a pointer to a
// class of the form template-id, A can be a pointer to a derived
// class pointed to by the deduced A.
//
// More importantly:
// These alternatives are considered only if type deduction would
// otherwise fail.
if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
// We cannot inspect base classes as part of deduction when the type
// is incomplete, so either instantiate any templates necessary to
// complete the type, or skip over it if it cannot be completed.
if (S.RequireCompleteType(Info.getLocation(), Arg, 0))
return Result;
// Use data recursion to crawl through the list of base classes.
// Visited contains the set of nodes we have already visited, while
// ToVisit is our stack of records that we still need to visit.
llvm::SmallPtrSet<const RecordType *, 8> Visited;
SmallVector<const RecordType *, 8> ToVisit;
ToVisit.push_back(RecordT);
bool Successful = false;
SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(),
Deduced.end());
while (!ToVisit.empty()) {
// Retrieve the next class in the inheritance hierarchy.
const RecordType *NextT = ToVisit.back();
ToVisit.pop_back();
// If we have already seen this type, skip it.
if (!Visited.insert(NextT))
continue;
// If this is a base class, try to perform template argument
// deduction from it.
if (NextT != RecordT) {
TemplateDeductionInfo BaseInfo(Info.getLocation());
Sema::TemplateDeductionResult BaseResult
= DeduceTemplateArguments(S, TemplateParams, SpecParam,
QualType(NextT, 0), BaseInfo,
Deduced);
// If template argument deduction for this base was successful,
// note that we had some success. Otherwise, ignore any deductions
// from this base class.
if (BaseResult == Sema::TDK_Success) {
Successful = true;
DeducedOrig.clear();
DeducedOrig.append(Deduced.begin(), Deduced.end());
Info.Param = BaseInfo.Param;
Info.FirstArg = BaseInfo.FirstArg;
Info.SecondArg = BaseInfo.SecondArg;
}
else
Deduced = DeducedOrig;
}
// Visit base classes
CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
for (CXXRecordDecl::base_class_iterator Base = Next->bases_begin(),
BaseEnd = Next->bases_end();
Base != BaseEnd; ++Base) {
assert(Base->getType()->isRecordType() &&
"Base class that isn't a record?");
ToVisit.push_back(Base->getType()->getAs<RecordType>());
}
}
if (Successful)
return Sema::TDK_Success;
}
}
return Result;
}
// T type::*
// T T::*
// T (type::*)()
// type (T::*)()
// type (type::*)(T)
// type (T::*)(T)
// T (type::*)(T)
// T (T::*)()
// T (T::*)(T)
case Type::MemberPointer: {
const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
if (!MemPtrArg)
return Sema::TDK_NonDeducedMismatch;
if (Sema::TemplateDeductionResult Result
= DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
MemPtrParam->getPointeeType(),
MemPtrArg->getPointeeType(),
Info, Deduced,
TDF & TDF_IgnoreQualifiers))
return Result;
return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
QualType(MemPtrParam->getClass(), 0),
QualType(MemPtrArg->getClass(), 0),
Info, Deduced,
TDF & TDF_IgnoreQualifiers);
}
// (clang extension)
//
// type(^)(T)
// T(^)()
// T(^)(T)
case Type::BlockPointer: {
const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
if (!BlockPtrArg)
return Sema::TDK_NonDeducedMismatch;
return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
BlockPtrParam->getPointeeType(),
BlockPtrArg->getPointeeType(),
Info, Deduced, 0);
}
// (clang extension)
//
// T __attribute__(((ext_vector_type(<integral constant>))))
case Type::ExtVector: {
const ExtVectorType *VectorParam = cast<ExtVectorType>(Param);
if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
// Make sure that the vectors have the same number of elements.
if (VectorParam->getNumElements() != VectorArg->getNumElements())
return Sema::TDK_NonDeducedMismatch;
// Perform deduction on the element types.
return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
VectorParam->getElementType(),
VectorArg->getElementType(),
Info, Deduced, TDF);
}
if (const DependentSizedExtVectorType *VectorArg
= dyn_cast<DependentSizedExtVectorType>(Arg)) {
// We can't check the number of elements, since the argument has a
// dependent number of elements. This can only occur during partial
// ordering.
// Perform deduction on the element types.
return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
VectorParam->getElementType(),
VectorArg->getElementType(),
Info, Deduced, TDF);
}
return Sema::TDK_NonDeducedMismatch;
}
// (clang extension)
//
// T __attribute__(((ext_vector_type(N))))
case Type::DependentSizedExtVector: {
const DependentSizedExtVectorType *VectorParam
= cast<DependentSizedExtVectorType>(Param);
if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
// Perform deduction on the element types.
if (Sema::TemplateDeductionResult Result
= DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
VectorParam->getElementType(),
VectorArg->getElementType(),
Info, Deduced, TDF))
return Result;
// Perform deduction on the vector size, if we can.
NonTypeTemplateParmDecl *NTTP
= getDeducedParameterFromExpr(VectorParam->getSizeExpr());
if (!NTTP)
return Sema::TDK_Success;
llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
ArgSize = VectorArg->getNumElements();
return DeduceNonTypeTemplateArgument(S, NTTP, ArgSize, S.Context.IntTy,
false, Info, Deduced);
}
if (const DependentSizedExtVectorType *VectorArg
= dyn_cast<DependentSizedExtVectorType>(Arg)) {
// Perform deduction on the element types.
if (Sema::TemplateDeductionResult Result
= DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
VectorParam->getElementType(),
VectorArg->getElementType(),
Info, Deduced, TDF))
return Result;
// Perform deduction on the vector size, if we can.
NonTypeTemplateParmDecl *NTTP
= getDeducedParameterFromExpr(VectorParam->getSizeExpr());
if (!NTTP)
return Sema::TDK_Success;
return DeduceNonTypeTemplateArgument(S, NTTP, VectorArg->getSizeExpr(),
Info, Deduced);
}
return Sema::TDK_NonDeducedMismatch;
}
case Type::TypeOfExpr:
case Type::TypeOf:
case Type::DependentName:
case Type::UnresolvedUsing:
case Type::Decltype:
case Type::UnaryTransform:
case Type::Auto:
case Type::DependentTemplateSpecialization:
case Type::PackExpansion:
// No template argument deduction for these types
return Sema::TDK_Success;
}
llvm_unreachable("Invalid Type Class!");
}
static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema &S,
TemplateParameterList *TemplateParams,
const TemplateArgument &Param,
TemplateArgument Arg,
TemplateDeductionInfo &Info,
SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
// If the template argument is a pack expansion, perform template argument
// deduction against the pattern of that expansion. This only occurs during
// partial ordering.
if (Arg.isPackExpansion())
Arg = Arg.getPackExpansionPattern();
switch (Param.getKind()) {
case TemplateArgument::Null:
llvm_unreachable("Null template argument in parameter list");
case TemplateArgument::Type:
if (Arg.getKind() == TemplateArgument::Type)
return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
Param.getAsType(),
Arg.getAsType(),
Info, Deduced, 0);
Info.FirstArg = Param;
Info.SecondArg = Arg;
return Sema::TDK_NonDeducedMismatch;
case TemplateArgument::Template:
if (Arg.getKind() == TemplateArgument::Template)
return DeduceTemplateArguments(S, TemplateParams,
Param.getAsTemplate(),
Arg.getAsTemplate(), Info, Deduced);
Info.FirstArg = Param;
Info.SecondArg = Arg;
return Sema::TDK_NonDeducedMismatch;
case TemplateArgument::TemplateExpansion:
llvm_unreachable("caller should handle pack expansions");
case TemplateArgument::Declaration:
if (Arg.getKind() == TemplateArgument::Declaration &&
isSameDeclaration(Param.getAsDecl(), Arg.getAsDecl()) &&
Param.isDeclForReferenceParam() == Arg.isDeclForReferenceParam())
return Sema::TDK_Success;
Info.FirstArg = Param;
Info.SecondArg = Arg;
return Sema::TDK_NonDeducedMismatch;
case TemplateArgument::NullPtr:
if (Arg.getKind() == TemplateArgument::NullPtr &&
S.Context.hasSameType(Param.getNullPtrType(), Arg.getNullPtrType()))
return Sema::TDK_Success;
Info.FirstArg = Param;
Info.SecondArg = Arg;
return Sema::TDK_NonDeducedMismatch;
case TemplateArgument::Integral:
if (Arg.getKind() == TemplateArgument::Integral) {
if (hasSameExtendedValue(Param.getAsIntegral(), Arg.getAsIntegral()))
return Sema::TDK_Success;
Info.FirstArg = Param;
Info.SecondArg = Arg;
return Sema::TDK_NonDeducedMismatch;
}
if (Arg.getKind() == TemplateArgument::Expression) {
Info.FirstArg = Param;
Info.SecondArg = Arg;
return Sema::TDK_NonDeducedMismatch;
}
Info.FirstArg = Param;
Info.SecondArg = Arg;
return Sema::TDK_NonDeducedMismatch;
case TemplateArgument::Expression: {
if (NonTypeTemplateParmDecl *NTTP
= getDeducedParameterFromExpr(Param.getAsExpr())) {
if (Arg.getKind() == TemplateArgument::Integral)
return DeduceNonTypeTemplateArgument(S, NTTP,
Arg.getAsIntegral(),
Arg.getIntegralType(),
/*ArrayBound=*/false,
Info, Deduced);
if (Arg.getKind() == TemplateArgument::Expression)
return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
Info, Deduced);
if (Arg.getKind() == TemplateArgument::Declaration)
return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
Info, Deduced);
Info.FirstArg = Param;
Info.SecondArg = Arg;
return Sema::TDK_NonDeducedMismatch;
}
// Can't deduce anything, but that's okay.
return Sema::TDK_Success;
}
case TemplateArgument::Pack:
llvm_unreachable("Argument packs should be expanded by the caller!");
}
llvm_unreachable("Invalid TemplateArgument Kind!");
}
/// \brief Determine whether there is a template argument to be used for
/// deduction.
///
/// This routine "expands" argument packs in-place, overriding its input
/// parameters so that \c Args[ArgIdx] will be the available template argument.
///
/// \returns true if there is another template argument (which will be at
/// \c Args[ArgIdx]), false otherwise.
static bool hasTemplateArgumentForDeduction(const TemplateArgument *&Args,
unsigned &ArgIdx,
unsigned &NumArgs) {
if (ArgIdx == NumArgs)
return false;
const TemplateArgument &Arg = Args[ArgIdx];
if (Arg.getKind() != TemplateArgument::Pack)
return true;
assert(ArgIdx == NumArgs - 1 && "Pack not at the end of argument list?");
Args = Arg.pack_begin();
NumArgs = Arg.pack_size();
ArgIdx = 0;
return ArgIdx < NumArgs;
}
/// \brief Determine whether the given set of template arguments has a pack
/// expansion that is not the last template argument.
static bool hasPackExpansionBeforeEnd(const TemplateArgument *Args,
unsigned NumArgs) {
unsigned ArgIdx = 0;
while (ArgIdx < NumArgs) {
const TemplateArgument &Arg = Args[ArgIdx];
// Unwrap argument packs.
if (Args[ArgIdx].getKind() == TemplateArgument::Pack) {
Args = Arg.pack_begin();
NumArgs = Arg.pack_size();
ArgIdx = 0;
continue;
}
++ArgIdx;
if (ArgIdx == NumArgs)
return false;
if (Arg.isPackExpansion())
return true;
}
return false;
}
static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema &S,
TemplateParameterList *TemplateParams,
const TemplateArgument *Params, unsigned NumParams,
const TemplateArgument *Args, unsigned NumArgs,
TemplateDeductionInfo &Info,
SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
// C++0x [temp.deduct.type]p9:
// If the template argument list of P contains a pack expansion that is not
// the last template argument, the entire template argument list is a
// non-deduced context.
if (hasPackExpansionBeforeEnd(Params, NumParams))
return Sema::TDK_Success;
// C++0x [temp.deduct.type]p9:
// If P has a form that contains <T> or <i>, then each argument Pi of the
// respective template argument list P is compared with the corresponding
// argument Ai of the corresponding template argument list of A.
unsigned ArgIdx = 0, ParamIdx = 0;
for (; hasTemplateArgumentForDeduction(Params, ParamIdx, NumParams);
++ParamIdx) {
if (!Params[ParamIdx].isPackExpansion()) {
// The simple case: deduce template arguments by matching Pi and Ai.
// Check whether we have enough arguments.
if (!hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
return Sema::TDK_Success;
if (Args[ArgIdx].isPackExpansion()) {
// FIXME: We follow the logic of C++0x [temp.deduct.type]p22 here,
// but applied to pack expansions that are template arguments.
return Sema::TDK_MiscellaneousDeductionFailure;
}
// Perform deduction for this Pi/Ai pair.
if (Sema::TemplateDeductionResult Result
= DeduceTemplateArguments(S, TemplateParams,
Params[ParamIdx], Args[ArgIdx],
Info, Deduced))
return Result;
// Move to the next argument.
++ArgIdx;
continue;
}
// The parameter is a pack expansion.
// C++0x [temp.deduct.type]p9:
// If Pi is a pack expansion, then the pattern of Pi is compared with
// each remaining argument in the template argument list of A. Each
// comparison deduces template arguments for subsequent positions in the
// template parameter packs expanded by Pi.
TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern();
// Compute the set of template parameter indices that correspond to
// parameter packs expanded by the pack expansion.
SmallVector<unsigned, 2> PackIndices;
{
llvm::SmallBitVector SawIndices(TemplateParams->size());
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
unsigned Depth, Index;
llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
if (Depth == 0 && !SawIndices[Index]) {
SawIndices[Index] = true;
PackIndices.push_back(Index);
}
}
}
assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
// FIXME: If there are no remaining arguments, we can bail out early
// and set any deduced parameter packs to an empty argument pack.
// The latter part of this is a (minor) correctness issue.
// Save the deduced template arguments for each parameter pack expanded
// by this pack expansion, then clear out the deduction.
SmallVector<DeducedTemplateArgument, 2>
SavedPacks(PackIndices.size());
SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
NewlyDeducedPacks(PackIndices.size());
PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
NewlyDeducedPacks);
// Keep track of the deduced template arguments for each parameter pack
// expanded by this pack expansion (the outer index) and for each
// template argument (the inner SmallVectors).
bool HasAnyArguments = false;
while (hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs)) {
HasAnyArguments = true;
// Deduce template arguments from the pattern.
if (Sema::TemplateDeductionResult Result
= DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
Info, Deduced))
return Result;
// Capture the deduced template arguments for each parameter pack expanded
// by this pack expansion, add them to the list of arguments we've deduced
// for that pack, then clear out the deduced argument.
for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
if (!DeducedArg.isNull()) {
NewlyDeducedPacks[I].push_back(DeducedArg);
DeducedArg = DeducedTemplateArgument();
}
}
++ArgIdx;
}
// Build argument packs for each of the parameter packs expanded by this
// pack expansion.
if (Sema::TemplateDeductionResult Result
= FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
Deduced, PackIndices, SavedPacks,
NewlyDeducedPacks, Info))
return Result;
}
return Sema::TDK_Success;
}
static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema &S,
TemplateParameterList *TemplateParams,
const TemplateArgumentList &ParamList,
const TemplateArgumentList &ArgList,
TemplateDeductionInfo &Info,
SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
return DeduceTemplateArguments(S, TemplateParams,
ParamList.data(), ParamList.size(),
ArgList.data(), ArgList.size(),
Info, Deduced);
}
/// \brief Determine whether two template arguments are the same.
static bool isSameTemplateArg(ASTContext &Context,
const TemplateArgument &X,
const TemplateArgument &Y) {
if (X.getKind() != Y.getKind())
return false;
switch (X.getKind()) {
case TemplateArgument::Null:
llvm_unreachable("Comparing NULL template argument");
case TemplateArgument::Type:
return Context.getCanonicalType(X.getAsType()) ==
Context.getCanonicalType(Y.getAsType());
case TemplateArgument::Declaration:
return isSameDeclaration(X.getAsDecl(), Y.getAsDecl()) &&
X.isDeclForReferenceParam() == Y.isDeclForReferenceParam();
case TemplateArgument::NullPtr:
return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType());
case TemplateArgument::Template:
case TemplateArgument::TemplateExpansion:
return Context.getCanonicalTemplateName(
X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
Context.getCanonicalTemplateName(
Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();
case TemplateArgument::Integral:
return X.getAsIntegral() == Y.getAsIntegral();
case TemplateArgument::Expression: {
llvm::FoldingSetNodeID XID, YID;
X.getAsExpr()->Profile(XID, Context, true);
Y.getAsExpr()->Profile(YID, Context, true);
return XID == YID;
}
case TemplateArgument::Pack:
if (X.pack_size() != Y.pack_size())
return false;
for (TemplateArgument::pack_iterator XP = X.pack_begin(),
XPEnd = X.pack_end(),
YP = Y.pack_begin();
XP != XPEnd; ++XP, ++YP)
if (!isSameTemplateArg(Context, *XP, *YP))
return false;
return true;
}
llvm_unreachable("Invalid TemplateArgument Kind!");
}
/// \brief Allocate a TemplateArgumentLoc where all locations have
/// been initialized to the given location.
///
/// \param S The semantic analysis object.
///
/// \param Arg The template argument we are producing template argument
/// location information for.
///
/// \param NTTPType For a declaration template argument, the type of
/// the non-type template parameter that corresponds to this template
/// argument.
///
/// \param Loc The source location to use for the resulting template
/// argument.
static TemplateArgumentLoc
getTrivialTemplateArgumentLoc(Sema &S,
const TemplateArgument &Arg,
QualType NTTPType,
SourceLocation Loc) {
switch (Arg.getKind()) {
case TemplateArgument::Null:
llvm_unreachable("Can't get a NULL template argument here");
case TemplateArgument::Type:
return TemplateArgumentLoc(Arg,
S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
case TemplateArgument::Declaration: {
Expr *E
= S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
.takeAs<Expr>();
return TemplateArgumentLoc(TemplateArgument(E), E);
}
case TemplateArgument::NullPtr: {
Expr *E
= S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
.takeAs<Expr>();
return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true),
E);
}
case TemplateArgument::Integral: {
Expr *E
= S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).takeAs<Expr>();
return TemplateArgumentLoc(TemplateArgument(E), E);
}
case TemplateArgument::Template:
case TemplateArgument::TemplateExpansion: {
NestedNameSpecifierLocBuilder Builder;
TemplateName Template = Arg.getAsTemplate();
if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
Builder.MakeTrivial(S.Context, DTN->getQualifier(), Loc);
else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
Builder.MakeTrivial(S.Context, QTN->getQualifier(), Loc);
if (Arg.getKind() == TemplateArgument::Template)
return TemplateArgumentLoc(Arg,
Builder.getWithLocInContext(S.Context),
Loc);
return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(S.Context),
Loc, Loc);
}
case TemplateArgument::Expression:
return TemplateArgumentLoc(Arg, Arg.getAsExpr());
case TemplateArgument::Pack:
return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
}
llvm_unreachable("Invalid TemplateArgument Kind!");
}
/// \brief Convert the given deduced template argument and add it to the set of
/// fully-converted template arguments.
static bool ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param,
DeducedTemplateArgument Arg,
NamedDecl *Template,
QualType NTTPType,
unsigned ArgumentPackIndex,
TemplateDeductionInfo &Info,
bool InFunctionTemplate,
SmallVectorImpl<TemplateArgument> &Output) {
if (Arg.getKind() == TemplateArgument::Pack) {
// This is a template argument pack, so check each of its arguments against
// the template parameter.
SmallVector<TemplateArgument, 2> PackedArgsBuilder;
for (TemplateArgument::pack_iterator PA = Arg.pack_begin(),
PAEnd = Arg.pack_end();
PA != PAEnd; ++PA) {
// When converting the deduced template argument, append it to the
// general output list. We need to do this so that the template argument
// checking logic has all of the prior template arguments available.
DeducedTemplateArgument InnerArg(*PA);
InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
if (ConvertDeducedTemplateArgument(S, Param, InnerArg, Template,
NTTPType, PackedArgsBuilder.size(),
Info, InFunctionTemplate, Output))
return true;
// Move the converted template argument into our argument pack.
PackedArgsBuilder.push_back(Output.back());
Output.pop_back();
}
// Create the resulting argument pack.
Output.push_back(TemplateArgument::CreatePackCopy(S.Context,
PackedArgsBuilder.data(),
PackedArgsBuilder.size()));
return false;
}
// Convert the deduced template argument into a template
// argument that we can check, almost as if the user had written
// the template argument explicitly.
TemplateArgumentLoc ArgLoc = getTrivialTemplateArgumentLoc(S, Arg, NTTPType,
Info.getLocation());
// Check the template argument, converting it as necessary.
return S.CheckTemplateArgument(Param, ArgLoc,
Template,
Template->getLocation(),
Template->getSourceRange().getEnd(),
ArgumentPackIndex,
Output,
InFunctionTemplate
? (Arg.wasDeducedFromArrayBound()
? Sema::CTAK_DeducedFromArrayBound
: Sema::CTAK_Deduced)
: Sema::CTAK_Specified);
}
/// Complete template argument deduction for a class template partial
/// specialization.
static Sema::TemplateDeductionResult
FinishTemplateArgumentDeduction(Sema &S,
ClassTemplatePartialSpecializationDecl *Partial,
const TemplateArgumentList &TemplateArgs,
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
TemplateDeductionInfo &Info) {
// Unevaluated SFINAE context.
EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
Sema::SFINAETrap Trap(S);
Sema::ContextRAII SavedContext(S, Partial);
// C++ [temp.deduct.type]p2:
// [...] or if any template argument remains neither deduced nor
// explicitly specified, template argument deduction fails.
SmallVector<TemplateArgument, 4> Builder;
TemplateParameterList *PartialParams = Partial->getTemplateParameters();
for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
NamedDecl *Param = PartialParams->getParam(I);
if (Deduced[I].isNull()) {
Info.Param = makeTemplateParameter(Param);
return Sema::TDK_Incomplete;
}
// We have deduced this argument, so it still needs to be
// checked and converted.
// First, for a non-type template parameter type that is
// initialized by a declaration, we need the type of the
// corresponding non-type template parameter.
QualType NTTPType;
if (NonTypeTemplateParmDecl *NTTP
= dyn_cast<NonTypeTemplateParmDecl>(Param)) {
NTTPType = NTTP->getType();
if (NTTPType->isDependentType()) {
TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
Builder.data(), Builder.size());
NTTPType = S.SubstType(NTTPType,
MultiLevelTemplateArgumentList(TemplateArgs),
NTTP->getLocation(),
NTTP->getDeclName());
if (NTTPType.isNull()) {
Info.Param = makeTemplateParameter(Param);
// FIXME: These template arguments are temporary. Free them!
Info.reset(TemplateArgumentList::CreateCopy(S.Context,
Builder.data(),
Builder.size()));
return Sema::TDK_SubstitutionFailure;
}
}
}
if (ConvertDeducedTemplateArgument(S, Param, Deduced[I],
Partial, NTTPType, 0, Info, false,
Builder)) {
Info.Param = makeTemplateParameter(Param);
// FIXME: These template arguments are temporary. Free them!
Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
Builder.size()));
return Sema::TDK_SubstitutionFailure;
}
}
// Form the template argument list from the deduced template arguments.
TemplateArgumentList *DeducedArgumentList
= TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
Builder.size());
Info.reset(DeducedArgumentList);
// Substitute the deduced template arguments into the template
// arguments of the class template partial specialization, and
// verify that the instantiated template arguments are both valid
// and are equivalent to the template arguments originally provided
// to the class template.
LocalInstantiationScope InstScope(S);
ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
const TemplateArgumentLoc *PartialTemplateArgs
= Partial->getTemplateArgsAsWritten();
// Note that we don't provide the langle and rangle locations.
TemplateArgumentListInfo InstArgs;
if (S.Subst(PartialTemplateArgs,
Partial->getNumTemplateArgsAsWritten(),
InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
if (ParamIdx >= Partial->getTemplateParameters()->size())
ParamIdx = Partial->getTemplateParameters()->size() - 1;
Decl *Param
= const_cast<NamedDecl *>(
Partial->getTemplateParameters()->getParam(ParamIdx));
Info.Param = makeTemplateParameter(Param);
Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
return Sema::TDK_SubstitutionFailure;
}
SmallVector<TemplateArgument, 4> ConvertedInstArgs;
if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
InstArgs, false, ConvertedInstArgs))
return Sema::TDK_SubstitutionFailure;
TemplateParameterList *TemplateParams
= ClassTemplate->getTemplateParameters();
for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
TemplateArgument InstArg = ConvertedInstArgs.data()[I];
if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
Info.FirstArg = TemplateArgs[I];
Info.SecondArg = InstArg;
return Sema::TDK_NonDeducedMismatch;
}
}
if (Trap.hasErrorOccurred())
return Sema::TDK_SubstitutionFailure;
return Sema::TDK_Success;
}
/// \brief Perform template argument deduction to determine whether
/// the given template arguments match the given class template
/// partial specialization per C++ [temp.class.spec.match].
Sema::TemplateDeductionResult
Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
const TemplateArgumentList &TemplateArgs,
TemplateDeductionInfo &Info) {
if (Partial->isInvalidDecl())
return TDK_Invalid;
// C++ [temp.class.spec.match]p2:
// A partial specialization matches a given actual template
// argument list if the template arguments of the partial
// specialization can be deduced from the actual template argument
// list (14.8.2).
// Unevaluated SFINAE context.
EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
SFINAETrap Trap(*this);
SmallVector<DeducedTemplateArgument, 4> Deduced;
Deduced.resize(Partial->getTemplateParameters()->size());
if (TemplateDeductionResult Result
= ::DeduceTemplateArguments(*this,
Partial->getTemplateParameters(),
Partial->getTemplateArgs(),
TemplateArgs, Info, Deduced))
return Result;
SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
DeducedArgs, Info);
if (Inst)
return TDK_InstantiationDepth;
if (Trap.hasErrorOccurred())
return Sema::TDK_SubstitutionFailure;
return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
Deduced, Info);
}
/// \brief Determine whether the given type T is a simple-template-id type.
static bool isSimpleTemplateIdType(QualType T) {
if (const TemplateSpecializationType *Spec
= T->getAs<TemplateSpecializationType>())
return Spec->getTemplateName().getAsTemplateDecl() != 0;
return false;
}
/// \brief Substitute the explicitly-provided template arguments into the
/// given function template according to C++ [temp.arg.explicit].
///
/// \param FunctionTemplate the function template into which the explicit
/// template arguments will be substituted.
///
/// \param ExplicitTemplateArgs the explicitly-specified template
/// arguments.
///
/// \param Deduced the deduced template arguments, which will be populated
/// with the converted and checked explicit template arguments.
///
/// \param ParamTypes will be populated with the instantiated function
/// parameters.
///
/// \param FunctionType if non-NULL, the result type of the function template
/// will also be instantiated and the pointed-to value will be updated with
/// the instantiated function type.
///
/// \param Info if substitution fails for any reason, this object will be
/// populated with more information about the failure.
///
/// \returns TDK_Success if substitution was successful, or some failure
/// condition.
Sema::TemplateDeductionResult
Sema::SubstituteExplicitTemplateArguments(
FunctionTemplateDecl *FunctionTemplate,
TemplateArgumentListInfo &ExplicitTemplateArgs,
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
SmallVectorImpl<QualType> &ParamTypes,
QualType *FunctionType,
TemplateDeductionInfo &Info) {
FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
TemplateParameterList *TemplateParams
= FunctionTemplate->getTemplateParameters();
if (ExplicitTemplateArgs.size() == 0) {
// No arguments to substitute; just copy over the parameter types and
// fill in the function type.
for (FunctionDecl::param_iterator P = Function->param_begin(),
PEnd = Function->param_end();
P != PEnd;
++P)
ParamTypes.push_back((*P)->getType());
if (FunctionType)
*FunctionType = Function->getType();
return TDK_Success;
}
// Unevaluated SFINAE context.
EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
SFINAETrap Trap(*this);
// C++ [temp.arg.explicit]p3:
// Template arguments that are present shall be specified in the
// declaration order of their corresponding template-parameters. The
// template argument list shall not specify more template-arguments than
// there are corresponding template-parameters.
SmallVector<TemplateArgument, 4> Builder;
// Enter a new template instantiation context where we check the
// explicitly-specified template arguments against this function template,
// and then substitute them into the function parameter types.
SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
FunctionTemplate, DeducedArgs,
ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution,
Info);
if (Inst)
return TDK_InstantiationDepth;
if (CheckTemplateArgumentList(FunctionTemplate,
SourceLocation(),
ExplicitTemplateArgs,
true,
Builder) || Trap.hasErrorOccurred()) {
unsigned Index = Builder.size();
if (Index >= TemplateParams->size())
Index = TemplateParams->size() - 1;
Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
return TDK_InvalidExplicitArguments;
}
// Form the template argument list from the explicitly-specified
// template arguments.
TemplateArgumentList *ExplicitArgumentList
= TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
Info.reset(ExplicitArgumentList);
// Template argument deduction and the final substitution should be
// done in the context of the templated declaration. Explicit
// argument substitution, on the other hand, needs to happen in the
// calling context.
ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
// If we deduced template arguments for a template parameter pack,
// note that the template argument pack is partially substituted and record
// the explicit template arguments. They'll be used as part of deduction
// for this template parameter pack.
for (unsigned I = 0, N = Builder.size(); I != N; ++I) {
const TemplateArgument &Arg = Builder[I];
if (Arg.getKind() == TemplateArgument::Pack) {
CurrentInstantiationScope->SetPartiallySubstitutedPack(
TemplateParams->getParam(I),
Arg.pack_begin(),
Arg.pack_size());
break;
}
}
const FunctionProtoType *Proto
= Function->getType()->getAs<FunctionProtoType>();
assert(Proto && "Function template does not have a prototype?");
// Instantiate the types of each of the function parameters given the
// explicitly-specified template arguments. If the function has a trailing
// return type, substitute it after the arguments to ensure we substitute
// in lexical order.
if (Proto->hasTrailingReturn()) {
if (SubstParmTypes(Function->getLocation(),
Function->param_begin(), Function->getNumParams(),
MultiLevelTemplateArgumentList(*ExplicitArgumentList),
ParamTypes))
return TDK_SubstitutionFailure;
}
// Instantiate the return type.
// FIXME: exception-specifications?
QualType ResultType;
{
// C++11 [expr.prim.general]p3:
// If a declaration declares a member function or member function
// template of a class X, the expression this is a prvalue of type
// "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
// and the end of the function-definition, member-declarator, or
// declarator.
unsigned ThisTypeQuals = 0;
CXXRecordDecl *ThisContext = 0;
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
ThisContext = Method->getParent();
ThisTypeQuals = Method->getTypeQualifiers();
}
CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals,
getLangOpts().CPlusPlus11);
ResultType = SubstType(Proto->getResultType(),
MultiLevelTemplateArgumentList(*ExplicitArgumentList),
Function->getTypeSpecStartLoc(),
Function->getDeclName());
if (ResultType.isNull() || Trap.hasErrorOccurred())
return TDK_SubstitutionFailure;
}
// Instantiate the types of each of the function parameters given the
// explicitly-specified template arguments if we didn't do so earlier.
if (!Proto->hasTrailingReturn() &&
SubstParmTypes(Function->getLocation(),
Function->param_begin(), Function->getNumParams(),
MultiLevelTemplateArgumentList(*ExplicitArgumentList),
ParamTypes))
return TDK_SubstitutionFailure;
if (FunctionType) {
*FunctionType = BuildFunctionType(ResultType, ParamTypes,
Function->getLocation(),
Function->getDeclName(),
Proto->getExtProtoInfo());
if (FunctionType->isNull() || Trap.hasErrorOccurred())
return TDK_SubstitutionFailure;
}
// C++ [temp.arg.explicit]p2:
// Trailing template arguments that can be deduced (14.8.2) may be
// omitted from the list of explicit template-arguments. If all of the
// template arguments can be deduced, they may all be omitted; in this
// case, the empty template argument list <> itself may also be omitted.
//
// Take all of the explicitly-specified arguments and put them into
// the set of deduced template arguments. Explicitly-specified
// parameter packs, however, will be set to NULL since the deduction
// mechanisms handle explicitly-specified argument packs directly.
Deduced.reserve(TemplateParams->size());
for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) {
const TemplateArgument &Arg = ExplicitArgumentList->get(I);
if (Arg.getKind() == TemplateArgument::Pack)
Deduced.push_back(DeducedTemplateArgument());
else
Deduced.push_back(Arg);
}
return TDK_Success;
}
/// \brief Check whether the deduced argument type for a call to a function
/// template matches the actual argument type per C++ [temp.deduct.call]p4.
static bool
CheckOriginalCallArgDeduction(Sema &S, Sema::OriginalCallArg OriginalArg,
QualType DeducedA) {
ASTContext &Context = S.Context;
QualType A = OriginalArg.OriginalArgType;
QualType OriginalParamType = OriginalArg.OriginalParamType;
// Check for type equality (top-level cv-qualifiers are ignored).
if (Context.hasSameUnqualifiedType(A, DeducedA))
return false;
// Strip off references on the argument types; they aren't needed for
// the following checks.
if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
DeducedA = DeducedARef->getPointeeType();
if (const ReferenceType *ARef = A->getAs<ReferenceType>())
A = ARef->getPointeeType();
// C++ [temp.deduct.call]p4:
// [...] However, there are three cases that allow a difference:
// - If the original P is a reference type, the deduced A (i.e., the
// type referred to by the reference) can be more cv-qualified than
// the transformed A.
if (const ReferenceType *OriginalParamRef
= OriginalParamType->getAs<ReferenceType>()) {
// We don't want to keep the reference around any more.
OriginalParamType = OriginalParamRef->getPointeeType();
Qualifiers AQuals = A.getQualifiers();
Qualifiers DeducedAQuals = DeducedA.getQualifiers();
// Under Objective-C++ ARC, the deduced type may have implicitly been
// given strong lifetime. If so, update the original qualifiers to
// include this strong lifetime.
if (S.getLangOpts().ObjCAutoRefCount &&
DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong &&
AQuals.getObjCLifetime() == Qualifiers::OCL_None) {
AQuals.setObjCLifetime(Qualifiers::OCL_Strong);
}
if (AQuals == DeducedAQuals) {
// Qualifiers match; there's nothing to do.
} else if (!DeducedAQuals.compatiblyIncludes(AQuals)) {
return true;
} else {
// Qualifiers are compatible, so have the argument type adopt the
// deduced argument type's qualifiers as if we had performed the
// qualification conversion.
A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
}
}
// - The transformed A can be another pointer or pointer to member
// type that can be converted to the deduced A via a qualification
// conversion.
//
// Also allow conversions which merely strip [[noreturn]] from function types
// (recursively) as an extension.
// FIXME: Currently, this doesn't place nicely with qualfication conversions.
bool ObjCLifetimeConversion = false;
QualType ResultTy;
if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
(S.IsQualificationConversion(A, DeducedA, false,
ObjCLifetimeConversion) ||
S.IsNoReturnConversion(A, DeducedA, ResultTy)))
return false;
// - If P is a class and P has the form simple-template-id, then the
// transformed A can be a derived class of the deduced A. [...]
// [...] Likewise, if P is a pointer to a class of the form
// simple-template-id, the transformed A can be a pointer to a
// derived class pointed to by the deduced A.
if (const PointerType *OriginalParamPtr
= OriginalParamType->getAs<PointerType>()) {
if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
if (const PointerType *APtr = A->getAs<PointerType>()) {
if (A->getPointeeType()->isRecordType()) {
OriginalParamType = OriginalParamPtr->getPointeeType();
DeducedA = DeducedAPtr->getPointeeType();
A = APtr->getPointeeType();
}
}
}
}
if (Context.hasSameUnqualifiedType(A, DeducedA))
return false;
if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
S.IsDerivedFrom(A, DeducedA))
return false;
return true;
}
/// \brief Finish template argument deduction for a function template,
/// checking the deduced template arguments for completeness and forming
/// the function template specialization.
///
/// \param OriginalCallArgs If non-NULL, the original call arguments against
/// which the deduced argument types should be compared.
Sema::TemplateDeductionResult
Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
unsigned NumExplicitlySpecified,
FunctionDecl *&Specialization,
TemplateDeductionInfo &Info,
SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs) {
TemplateParameterList *TemplateParams
= FunctionTemplate->getTemplateParameters();
// Unevaluated SFINAE context.
EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
SFINAETrap Trap(*this);
// Enter a new template instantiation context while we instantiate the
// actual function declaration.
SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
FunctionTemplate, DeducedArgs,
ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution,
Info);
if (Inst)
return TDK_InstantiationDepth;
ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
// C++ [temp.deduct.type]p2:
// [...] or if any template argument remains neither deduced nor
// explicitly specified, template argument deduction fails.
SmallVector<TemplateArgument, 4> Builder;
for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
NamedDecl *Param = TemplateParams->getParam(I);
if (!Deduced[I].isNull()) {
if (I < NumExplicitlySpecified) {
// We have already fully type-checked and converted this
// argument, because it was explicitly-specified. Just record the
// presence of this argument.
Builder.push_back(Deduced[I]);
continue;
}
// We have deduced this argument, so it still needs to be
// checked and converted.
// First, for a non-type template parameter type that is
// initialized by a declaration, we need the type of the
// corresponding non-type template parameter.
QualType NTTPType;
if (NonTypeTemplateParmDecl *NTTP
= dyn_cast<NonTypeTemplateParmDecl>(Param)) {
NTTPType = NTTP->getType();
if (NTTPType->isDependentType()) {
TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
Builder.data(), Builder.size());
NTTPType = SubstType(NTTPType,
MultiLevelTemplateArgumentList(TemplateArgs),
NTTP->getLocation(),
NTTP->getDeclName());
if (NTTPType.isNull()) {
Info.Param = makeTemplateParameter(Param);
// FIXME: These template arguments are temporary. Free them!
Info.reset(TemplateArgumentList::CreateCopy(Context,
Builder.data(),
Builder.size()));
return TDK_SubstitutionFailure;
}
}
}
if (ConvertDeducedTemplateArgument(*this, Param, Deduced[I],
FunctionTemplate, NTTPType, 0, Info,
true, Builder)) {
Info.Param = makeTemplateParameter(Param);
// FIXME: These template arguments are temporary. Free them!
Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
Builder.size()));
return TDK_SubstitutionFailure;
}
continue;
}
// C++0x [temp.arg.explicit]p3:
// A trailing template parameter pack (14.5.3) not otherwise deduced will
// be deduced to an empty sequence of template arguments.
// FIXME: Where did the word "trailing" come from?
if (Param->isTemplateParameterPack()) {
// We may have had explicitly-specified template arguments for this
// template parameter pack. If so, our empty deduction extends the
// explicitly-specified set (C++0x [temp.arg.explicit]p9).
const TemplateArgument *ExplicitArgs;
unsigned NumExplicitArgs;
if (CurrentInstantiationScope &&
CurrentInstantiationScope->getPartiallySubstitutedPack(&ExplicitArgs,
&NumExplicitArgs)
== Param) {
Builder.push_back(TemplateArgument(ExplicitArgs, NumExplicitArgs));
// Forget the partially-substituted pack; it's substitution is now
// complete.
CurrentInstantiationScope->ResetPartiallySubstitutedPack();
} else {
Builder.push_back(TemplateArgument::getEmptyPack());
}
continue;
}
// Substitute into the default template argument, if available.
TemplateArgumentLoc DefArg
= SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
FunctionTemplate->getLocation(),
FunctionTemplate->getSourceRange().getEnd(),
Param,
Builder);
// If there was no default argument, deduction is incomplete.
if (DefArg.getArgument().isNull()) {
Info.Param = makeTemplateParameter(
const_cast<NamedDecl *>(TemplateParams->getParam(I)));
return TDK_Incomplete;
}
// Check whether we can actually use the default argument.
if (CheckTemplateArgument(Param, DefArg,
FunctionTemplate,
FunctionTemplate->getLocation(),
FunctionTemplate->getSourceRange().getEnd(),
0, Builder,
CTAK_Specified)) {
Info.Param = makeTemplateParameter(
const_cast<NamedDecl *>(TemplateParams->getParam(I)));
// FIXME: These template arguments are temporary. Free them!
Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
Builder.size()));
return TDK_SubstitutionFailure;
}
// If we get here, we successfully used the default template argument.
}
// Form the template argument list from the deduced template arguments.
TemplateArgumentList *DeducedArgumentList
= TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
Info.reset(DeducedArgumentList);
// Substitute the deduced template arguments into the function template
// declaration to produce the function template specialization.
DeclContext *Owner = FunctionTemplate->getDeclContext();
if (FunctionTemplate->getFriendObjectKind())
Owner = FunctionTemplate->getLexicalDeclContext();
Specialization = cast_or_null<FunctionDecl>(
SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner,
MultiLevelTemplateArgumentList(*DeducedArgumentList)));
if (!Specialization || Specialization->isInvalidDecl())
return TDK_SubstitutionFailure;
assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
FunctionTemplate->getCanonicalDecl());
// If the template argument list is owned by the function template
// specialization, release it.
if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
!Trap.hasErrorOccurred())
Info.take();
// There may have been an error that did not prevent us from constructing a
// declaration. Mark the declaration invalid and return with a substitution
// failure.
if (Trap.hasErrorOccurred()) {
Specialization->setInvalidDecl(true);
return TDK_SubstitutionFailure;
}
if (OriginalCallArgs) {
// C++ [temp.deduct.call]p4:
// In general, the deduction process attempts to find template argument
// values that will make the deduced A identical to A (after the type A
// is transformed as described above). [...]
for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];
unsigned ParamIdx = OriginalArg.ArgIdx;
if (ParamIdx >= Specialization->getNumParams())
continue;
QualType DeducedA = Specialization->getParamDecl(ParamIdx)->getType();
if (CheckOriginalCallArgDeduction(*this, OriginalArg, DeducedA))
return Sema::TDK_SubstitutionFailure;
}
}
// If we suppressed any diagnostics while performing template argument
// deduction, and if we haven't already instantiated this declaration,
// keep track of these diagnostics. They'll be emitted if this specialization
// is actually used.
if (Info.diag_begin() != Info.diag_end()) {
llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >::iterator
Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
if (Pos == SuppressedDiagnostics.end())
SuppressedDiagnostics[Specialization->getCanonicalDecl()]
.append(Info.diag_begin(), Info.diag_end());
}
return TDK_Success;
}
/// Gets the type of a function for template-argument-deducton
/// purposes when it's considered as part of an overload set.
static QualType GetTypeOfFunction(ASTContext &Context,
const OverloadExpr::FindResult &R,
FunctionDecl *Fn) {
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
if (Method->isInstance()) {
// An instance method that's referenced in a form that doesn't
// look like a member pointer is just invalid.
if (!R.HasFormOfMemberPointer) return QualType();
return Context.getMemberPointerType(Fn->getType(),
Context.getTypeDeclType(Method->getParent()).getTypePtr());
}
if (!R.IsAddressOfOperand) return Fn->getType();
return Context.getPointerType(Fn->getType());
}
/// Apply the deduction rules for overload sets.
///
/// \return the null type if this argument should be treated as an
/// undeduced context
static QualType
ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
Expr *Arg, QualType ParamType,
bool ParamWasReference) {
OverloadExpr::FindResult R = OverloadExpr::find(Arg);
OverloadExpr *Ovl = R.Expression;
// C++0x [temp.deduct.call]p4
unsigned TDF = 0;
if (ParamWasReference)
TDF |= TDF_ParamWithReferenceType;
if (R.IsAddressOfOperand)
TDF |= TDF_IgnoreQualifiers;
// C++0x [temp.deduct.call]p6:
// When P is a function type, pointer to function type, or pointer
// to member function type:
if (!ParamType->isFunctionType() &&
!ParamType->isFunctionPointerType() &&
!ParamType->isMemberFunctionPointerType()) {
if (Ovl->hasExplicitTemplateArgs()) {
// But we can still look for an explicit specialization.
if (FunctionDecl *ExplicitSpec
= S.ResolveSingleFunctionTemplateSpecialization(Ovl))
return GetTypeOfFunction(S.Context, R, ExplicitSpec);
}
return QualType();
}
// Gather the explicit template arguments, if any.
TemplateArgumentListInfo ExplicitTemplateArgs;
if (Ovl->hasExplicitTemplateArgs())
Ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
QualType Match;
for (UnresolvedSetIterator I = Ovl->decls_begin(),
E = Ovl->decls_end(); I != E; ++I) {
NamedDecl *D = (*I)->getUnderlyingDecl();
if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) {
// - If the argument is an overload set containing one or more
// function templates, the parameter is treated as a
// non-deduced context.
if (!Ovl->hasExplicitTemplateArgs())
return QualType();
// Otherwise, see if we can resolve a function type
FunctionDecl *Specialization = 0;
TemplateDeductionInfo Info(Ovl->getNameLoc());
if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs,
Specialization, Info))
continue;
D = Specialization;
}
FunctionDecl *Fn = cast<FunctionDecl>(D);
QualType ArgType = GetTypeOfFunction(S.Context, R, Fn);
if (ArgType.isNull()) continue;
// Function-to-pointer conversion.
if (!ParamWasReference && ParamType->isPointerType() &&
ArgType->isFunctionType())
ArgType = S.Context.getPointerType(ArgType);
// - If the argument is an overload set (not containing function
// templates), trial argument deduction is attempted using each
// of the members of the set. If deduction succeeds for only one
// of the overload set members, that member is used as the
// argument value for the deduction. If deduction succeeds for
// more than one member of the overload set the parameter is
// treated as a non-deduced context.
// We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
// Type deduction is done independently for each P/A pair, and
// the deduced template argument values are then combined.
// So we do not reject deductions which were made elsewhere.
SmallVector<DeducedTemplateArgument, 8>
Deduced(TemplateParams->size());
TemplateDeductionInfo Info(Ovl->getNameLoc());
Sema::TemplateDeductionResult Result
= DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
ArgType, Info, Deduced, TDF);
if (Result) continue;
if (!Match.isNull()) return QualType();
Match = ArgType;
}
return Match;
}
/// \brief Perform the adjustments to the parameter and argument types
/// described in C++ [temp.deduct.call].
///
/// \returns true if the caller should not attempt to perform any template
/// argument deduction based on this P/A pair because the argument is an
/// overloaded function set that could not be resolved.
static bool AdjustFunctionParmAndArgTypesForDeduction(Sema &S,
TemplateParameterList *TemplateParams,
QualType &ParamType,
QualType &ArgType,
Expr *Arg,
unsigned &TDF) {
// C++0x [temp.deduct.call]p3:
// If P is a cv-qualified type, the top level cv-qualifiers of P's type
// are ignored for type deduction.
if (ParamType.hasQualifiers())
ParamType = ParamType.getUnqualifiedType();
const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
if (ParamRefType) {
QualType PointeeType = ParamRefType->getPointeeType();
// If the argument has incomplete array type, try to complete its type.
if (ArgType->isIncompleteArrayType() && !S.RequireCompleteExprType(Arg, 0))
ArgType = Arg->getType();
// [C++0x] If P is an rvalue reference to a cv-unqualified
// template parameter and the argument is an lvalue, the type
// "lvalue reference to A" is used in place of A for type
// deduction.
if (isa<RValueReferenceType>(ParamType)) {
if (!PointeeType.getQualifiers() &&
isa<TemplateTypeParmType>(PointeeType) &&
Arg->Classify(S.Context).isLValue() &&
Arg->getType() != S.Context.OverloadTy &&
Arg->getType() != S.Context.BoundMemberTy)
ArgType = S.Context.getLValueReferenceType(ArgType);
}
// [...] If P is a reference type, the type referred to by P is used
// for type deduction.
ParamType = PointeeType;
}
// Overload sets usually make this parameter an undeduced
// context, but there are sometimes special circumstances.
if (ArgType == S.Context.OverloadTy) {
ArgType = ResolveOverloadForDeduction(S, TemplateParams,
Arg, ParamType,
ParamRefType != 0);
if (ArgType.isNull())
return true;
}
if (ParamRefType) {
// C++0x [temp.deduct.call]p3:
// [...] If P is of the form T&&, where T is a template parameter, and
// the argument is an lvalue, the type A& is used in place of A for
// type deduction.
if (ParamRefType->isRValueReferenceType() &&
ParamRefType->getAs<TemplateTypeParmType>() &&
Arg->isLValue())
ArgType = S.Context.getLValueReferenceType(ArgType);
} else {
// C++ [temp.deduct.call]p2:
// If P is not a reference type:
// - If A is an array type, the pointer type produced by the
// array-to-pointer standard conversion (4.2) is used in place of
// A for type deduction; otherwise,
if (ArgType->isArrayType())
ArgType = S.Context.getArrayDecayedType(ArgType);
// - If A is a function type, the pointer type produced by the
// function-to-pointer standard conversion (4.3) is used in place
// of A for type deduction; otherwise,
else if (ArgType->isFunctionType())
ArgType = S.Context.getPointerType(ArgType);
else {
// - If A is a cv-qualified type, the top level cv-qualifiers of A's
// type are ignored for type deduction.
ArgType = ArgType.getUnqualifiedType();
}
}
// C++0x [temp.deduct.call]p4:
// In general, the deduction process attempts to find template argument
// values that will make the deduced A identical to A (after the type A
// is transformed as described above). [...]
TDF = TDF_SkipNonDependent;
// - If the original P is a reference type, the deduced A (i.e., the
// type referred to by the reference) can be more cv-qualified than
// the transformed A.
if (ParamRefType)
TDF |= TDF_ParamWithReferenceType;
// - The transformed A can be another pointer or pointer to member
// type that can be converted to the deduced A via a qualification
// conversion (4.4).
if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
ArgType->isObjCObjectPointerType())
TDF |= TDF_IgnoreQualifiers;
// - If P is a class and P has the form simple-template-id, then the
// transformed A can be a derived class of the deduced A. Likewise,
// if P is a pointer to a class of the form simple-template-id, the
// transformed A can be a pointer to a derived class pointed to by
// the deduced A.
if (isSimpleTemplateIdType(ParamType) ||
(isa<PointerType>(ParamType) &&
isSimpleTemplateIdType(
ParamType->getAs<PointerType>()->getPointeeType())))
TDF |= TDF_DerivedClass;
return false;
}
static bool hasDeducibleTemplateParameters(Sema &S,
FunctionTemplateDecl *FunctionTemplate,
QualType T);
/// \brief Perform template argument deduction by matching a parameter type
/// against a single expression, where the expression is an element of
/// an initializer list that was originally matched against a parameter
/// of type \c initializer_list\<ParamType\>.
static Sema::TemplateDeductionResult
DeduceTemplateArgumentByListElement(Sema &S,
TemplateParameterList *TemplateParams,
QualType ParamType, Expr *Arg,
TemplateDeductionInfo &Info,
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
unsigned TDF) {
// Handle the case where an init list contains another init list as the
// element.
if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
QualType X;
if (!S.isStdInitializerList(ParamType.getNonReferenceType(), &X))
return Sema::TDK_Success; // Just ignore this expression.
// Recurse down into the init list.
for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
if (Sema::TemplateDeductionResult Result =
DeduceTemplateArgumentByListElement(S, TemplateParams, X,
ILE->getInit(i),
Info, Deduced, TDF))
return Result;
}
return Sema::TDK_Success;
}
// For all other cases, just match by type.
QualType ArgType = Arg->getType();
if (AdjustFunctionParmAndArgTypesForDeduction(S, TemplateParams, ParamType,
ArgType, Arg, TDF)) {
Info.Expression = Arg;
return Sema::TDK_FailedOverloadResolution;
}
return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
ArgType, Info, Deduced, TDF);
}
/// \brief Perform template argument deduction from a function call
/// (C++ [temp.deduct.call]).
///
/// \param FunctionTemplate the function template for which we are performing
/// template argument deduction.
///
/// \param ExplicitTemplateArgs the explicit template arguments provided
/// for this call.
///
/// \param Args the function call arguments
///
/// \param Specialization if template argument deduction was successful,
/// this will be set to the function template specialization produced by
/// template argument deduction.
///
/// \param Info the argument will be updated to provide additional information
/// about template argument deduction.
///
/// \returns the result of template argument deduction.
Sema::TemplateDeductionResult
Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
TemplateArgumentListInfo *ExplicitTemplateArgs,
llvm::ArrayRef<Expr *> Args,
FunctionDecl *&Specialization,
TemplateDeductionInfo &Info) {
if (FunctionTemplate->isInvalidDecl())
return TDK_Invalid;
FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
// C++ [temp.deduct.call]p1:
// Template argument deduction is done by comparing each function template
// parameter type (call it P) with the type of the corresponding argument
// of the call (call it A) as described below.
unsigned CheckArgs = Args.size();
if (Args.size() < Function->getMinRequiredArguments())
return TDK_TooFewArguments;
else if (Args.size() > Function->getNumParams()) {
const FunctionProtoType *Proto
= Function->getType()->getAs<FunctionProtoType>();
if (Proto->isTemplateVariadic())
/* Do nothing */;
else if (Proto->isVariadic())
CheckArgs = Function->getNumParams();
else
return TDK_TooManyArguments;
}
// The types of the parameters from which we will perform template argument
// deduction.
LocalInstantiationScope InstScope(*this);
TemplateParameterList *TemplateParams
= FunctionTemplate->getTemplateParameters();
SmallVector<DeducedTemplateArgument, 4> Deduced;
SmallVector<QualType, 4> ParamTypes;
unsigned NumExplicitlySpecified = 0;
if (ExplicitTemplateArgs) {
TemplateDeductionResult Result =
SubstituteExplicitTemplateArguments(FunctionTemplate,
*ExplicitTemplateArgs,
Deduced,
ParamTypes,
0,
Info);
if (Result)
return Result;
NumExplicitlySpecified = Deduced.size();
} else {
// Just fill in the parameter types from the function declaration.
for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
ParamTypes.push_back(Function->getParamDecl(I)->getType());
}
// Deduce template arguments from the function parameters.
Deduced.resize(TemplateParams->size());
unsigned ArgIdx = 0;
SmallVector<OriginalCallArg, 4> OriginalCallArgs;
for (unsigned ParamIdx = 0, NumParams = ParamTypes.size();
ParamIdx != NumParams; ++ParamIdx) {
QualType OrigParamType = ParamTypes[ParamIdx];
QualType ParamType = OrigParamType;
const PackExpansionType *ParamExpansion
= dyn_cast<PackExpansionType>(ParamType);
if (!ParamExpansion) {
// Simple case: matching a function parameter to a function argument.
if (ArgIdx >= CheckArgs)
break;
Expr *Arg = Args[ArgIdx++];
QualType ArgType = Arg->getType();
unsigned TDF = 0;
if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
ParamType, ArgType, Arg,
TDF))
continue;
// If we have nothing to deduce, we're done.
if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
continue;
// If the argument is an initializer list ...
if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
// ... then the parameter is an undeduced context, unless the parameter
// type is (reference to cv) std::initializer_list<P'>, in which case
// deduction is done for each element of the initializer list, and the
// result is the deduced type if it's the same for all elements.
QualType X;
// Removing references was already done.
if (!isStdInitializerList(ParamType, &X))
continue;
for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
if (TemplateDeductionResult Result =
DeduceTemplateArgumentByListElement(*this, TemplateParams, X,
ILE->getInit(i),
Info, Deduced, TDF))
return Result;
}
// Don't track the argument type, since an initializer list has none.
continue;
}
// Keep track of the argument type and corresponding parameter index,
// so we can check for compatibility between the deduced A and A.
OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx-1,
ArgType));
if (TemplateDeductionResult Result
= DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
ParamType, ArgType,
Info, Deduced, TDF))
return Result;
continue;
}
// C++0x [temp.deduct.call]p1:
// For a function parameter pack that occurs at the end of the
// parameter-declaration-list, the type A of each remaining argument of
// the call is compared with the type P of the declarator-id of the
// function parameter pack. Each comparison deduces template arguments
// for subsequent positions in the template parameter packs expanded by
// the function parameter pack. For a function parameter pack that does
// not occur at the end of the parameter-declaration-list, the type of
// the parameter pack is a non-deduced context.
if (ParamIdx + 1 < NumParams)
break;
QualType ParamPattern = ParamExpansion->getPattern();
SmallVector<unsigned, 2> PackIndices;
{
llvm::SmallBitVector SawIndices(TemplateParams->size());
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
collectUnexpandedParameterPacks(ParamPattern, Unexpanded);
for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
unsigned Depth, Index;
llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
if (Depth == 0 && !SawIndices[Index]) {
SawIndices[Index] = true;
PackIndices.push_back(Index);
}
}
}
assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
// Keep track of the deduced template arguments for each parameter pack
// expanded by this pack expansion (the outer index) and for each
// template argument (the inner SmallVectors).
SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
NewlyDeducedPacks(PackIndices.size());
SmallVector<DeducedTemplateArgument, 2>
SavedPacks(PackIndices.size());
PrepareArgumentPackDeduction(*this, Deduced, PackIndices, SavedPacks,
NewlyDeducedPacks);
bool HasAnyArguments = false;
for (; ArgIdx < Args.size(); ++ArgIdx) {
HasAnyArguments = true;
QualType OrigParamType = ParamPattern;
ParamType = OrigParamType;
Expr *Arg = Args[ArgIdx];
QualType ArgType = Arg->getType();
unsigned TDF = 0;
if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
ParamType, ArgType, Arg,
TDF)) {
// We can't actually perform any deduction for this argument, so stop
// deduction at this point.
++ArgIdx;
break;
}
// As above, initializer lists need special handling.
if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
QualType X;
if (!isStdInitializerList(ParamType, &X)) {
++ArgIdx;
break;
}
for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
if (TemplateDeductionResult Result =
DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, X,
ILE->getInit(i)->getType(),
Info, Deduced, TDF))
return Result;
}
} else {
// Keep track of the argument type and corresponding argument index,
// so we can check for compatibility between the deduced A and A.
if (hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx,
ArgType));
if (TemplateDeductionResult Result
= DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
ParamType, ArgType, Info,
Deduced, TDF))
return Result;
}
// Capture the deduced template arguments for each parameter pack expanded
// by this pack expansion, add them to the list of arguments we've deduced
// for that pack, then clear out the deduced argument.
for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
if (!DeducedArg.isNull()) {
NewlyDeducedPacks[I].push_back(DeducedArg);
DeducedArg = DeducedTemplateArgument();
}
}
}
// Build argument packs for each of the parameter packs expanded by this
// pack expansion.
if (Sema::TemplateDeductionResult Result
= FinishArgumentPackDeduction(*this, TemplateParams, HasAnyArguments,
Deduced, PackIndices, SavedPacks,
NewlyDeducedPacks, Info))
return Result;
// After we've matching against a parameter pack, we're done.
break;
}
return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
NumExplicitlySpecified,
Specialization, Info, &OriginalCallArgs);
}
/// \brief Deduce template arguments when taking the address of a function
/// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
/// a template.
///
/// \param FunctionTemplate the function template for which we are performing
/// template argument deduction.
///
/// \param ExplicitTemplateArgs the explicitly-specified template
/// arguments.
///
/// \param ArgFunctionType the function type that will be used as the
/// "argument" type (A) when performing template argument deduction from the
/// function template's function type. This type may be NULL, if there is no
/// argument type to compare against, in C++0x [temp.arg.explicit]p3.
///
/// \param Specialization if template argument deduction was successful,
/// this will be set to the function template specialization produced by
/// template argument deduction.
///
/// \param Info the argument will be updated to provide additional information
/// about template argument deduction.
///
/// \returns the result of template argument deduction.
Sema::TemplateDeductionResult
Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
TemplateArgumentListInfo *ExplicitTemplateArgs,
QualType ArgFunctionType,
FunctionDecl *&Specialization,
TemplateDeductionInfo &Info) {
if (FunctionTemplate->isInvalidDecl())
return TDK_Invalid;
FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
TemplateParameterList *TemplateParams
= FunctionTemplate->getTemplateParameters();
QualType FunctionType = Function->getType();
// Substitute any explicit template arguments.
LocalInstantiationScope InstScope(*this);
SmallVector<DeducedTemplateArgument, 4> Deduced;
unsigned NumExplicitlySpecified = 0;
SmallVector<QualType, 4> ParamTypes;
if (ExplicitTemplateArgs) {
if (TemplateDeductionResult Result
= SubstituteExplicitTemplateArguments(FunctionTemplate,
*ExplicitTemplateArgs,
Deduced, ParamTypes,
&FunctionType, Info))
return Result;
NumExplicitlySpecified = Deduced.size();
}
// Unevaluated SFINAE context.
EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
SFINAETrap Trap(*this);
Deduced.resize(TemplateParams->size());
if (!ArgFunctionType.isNull()) {
// Deduce template arguments from the function type.
if (TemplateDeductionResult Result
= DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
FunctionType, ArgFunctionType, Info,
Deduced, TDF_TopLevelParameterTypeList))
return Result;
}
if (TemplateDeductionResult Result
= FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
NumExplicitlySpecified,
Specialization, Info))
return Result;
// If the requested function type does not match the actual type of the
// specialization, template argument deduction fails.
if (!ArgFunctionType.isNull() &&
!Context.hasSameType(ArgFunctionType, Specialization->getType()))
return TDK_MiscellaneousDeductionFailure;
return TDK_Success;
}
/// \brief Deduce template arguments for a templated conversion
/// function (C++ [temp.deduct.conv]) and, if successful, produce a
/// conversion function template specialization.
Sema::TemplateDeductionResult
Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
QualType ToType,
CXXConversionDecl *&Specialization,
TemplateDeductionInfo &Info) {
if (FunctionTemplate->isInvalidDecl())
return TDK_Invalid;
CXXConversionDecl *Conv
= cast<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl());
QualType FromType = Conv->getConversionType();
// Canonicalize the types for deduction.
QualType P = Context.getCanonicalType(FromType);
QualType A = Context.getCanonicalType(ToType);
// C++0x [temp.deduct.conv]p2:
// If P is a reference type, the type referred to by P is used for
// type deduction.
if (const ReferenceType *PRef = P->getAs<ReferenceType>())
P = PRef->getPointeeType();
// C++0x [temp.deduct.conv]p4:
// [...] If A is a reference type, the type referred to by A is used
// for type deduction.
if (const ReferenceType *ARef = A->getAs<ReferenceType>())
A = ARef->getPointeeType().getUnqualifiedType();
// C++ [temp.deduct.conv]p3:
//
// If A is not a reference type:
else {
assert(!A->isReferenceType() && "Reference types were handled above");
// - If P is an array type, the pointer type produced by the
// array-to-pointer standard conversion (4.2) is used in place
// of P for type deduction; otherwise,
if (P->isArrayType())
P = Context.getArrayDecayedType(P);
// - If P is a function type, the pointer type produced by the
// function-to-pointer standard conversion (4.3) is used in
// place of P for type deduction; otherwise,
else if (P->isFunctionType())
P = Context.getPointerType(P);
// - If P is a cv-qualified type, the top level cv-qualifiers of
// P's type are ignored for type deduction.
else
P = P.getUnqualifiedType();
// C++0x [temp.deduct.conv]p4:
// If A is a cv-qualified type, the top level cv-qualifiers of A's
// type are ignored for type deduction. If A is a reference type, the type
// referred to by A is used for type deduction.
A = A.getUnqualifiedType();
}
// Unevaluated SFINAE context.
EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
SFINAETrap Trap(*this);
// C++ [temp.deduct.conv]p1:
// Template argument deduction is done by comparing the return
// type of the template conversion function (call it P) with the
// type that is required as the result of the conversion (call it
// A) as described in 14.8.2.4.
TemplateParameterList *TemplateParams
= FunctionTemplate->getTemplateParameters();
SmallVector<DeducedTemplateArgument, 4> Deduced;
Deduced.resize(TemplateParams->size());
// C++0x [temp.deduct.conv]p4:
// In general, the deduction process attempts to find template
// argument values that will make the deduced A identical to
// A. However, there are two cases that allow a difference:
unsigned TDF = 0;
// - If the original A is a reference type, A can be more
// cv-qualified than the deduced A (i.e., the type referred to
// by the reference)
if (ToType->isReferenceType())
TDF |= TDF_ParamWithReferenceType;
// - The deduced A can be another pointer or pointer to member
// type that can be converted to A via a qualification
// conversion.
//
// (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
// both P and A are pointers or member pointers. In this case, we
// just ignore cv-qualifiers completely).
if ((P->isPointerType() && A->isPointerType()) ||
(P->isMemberPointerType() && A->isMemberPointerType()))
TDF |= TDF_IgnoreQualifiers;
if (TemplateDeductionResult Result
= DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
P, A, Info, Deduced, TDF))
return Result;
// Finish template argument deduction.
LocalInstantiationScope InstScope(*this);
FunctionDecl *Spec = 0;
TemplateDeductionResult Result
= FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 0, Spec,
Info);
Specialization = cast_or_null<CXXConversionDecl>(Spec);
return Result;
}
/// \brief Deduce template arguments for a function template when there is
/// nothing to deduce against (C++0x [temp.arg.explicit]p3).
///
/// \param FunctionTemplate the function template for which we are performing
/// template argument deduction.
///
/// \param ExplicitTemplateArgs the explicitly-specified template
/// arguments.
///
/// \param Specialization if template argument deduction was successful,
/// this will be set to the function template specialization produced by
/// template argument deduction.
///
/// \param Info the argument will be updated to provide additional information
/// about template argument deduction.
///
/// \returns the result of template argument deduction.
Sema::TemplateDeductionResult
Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
TemplateArgumentListInfo *ExplicitTemplateArgs,
FunctionDecl *&Specialization,
TemplateDeductionInfo &Info) {
return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
QualType(), Specialization, Info);
}
namespace {
/// Substitute the 'auto' type specifier within a type for a given replacement
/// type.
class SubstituteAutoTransform :
public TreeTransform<SubstituteAutoTransform> {
QualType Replacement;
public:
SubstituteAutoTransform(Sema &SemaRef, QualType Replacement) :
TreeTransform<SubstituteAutoTransform>(SemaRef), Replacement(Replacement) {
}
QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
// If we're building the type pattern to deduce against, don't wrap the
// substituted type in an AutoType. Certain template deduction rules
// apply only when a template type parameter appears directly (and not if
// the parameter is found through desugaring). For instance:
// auto &&lref = lvalue;
// must transform into "rvalue reference to T" not "rvalue reference to
// auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
if (isa<TemplateTypeParmType>(Replacement)) {
QualType Result = Replacement;
TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc());
return Result;
} else {
QualType Result = RebuildAutoType(Replacement);
AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc());
return Result;
}
}
ExprResult TransformLambdaExpr(LambdaExpr *E) {
// Lambdas never need to be transformed.
return E;
}
};
/// Determine whether the specified type (which contains an 'auto' type
/// specifier) is dependent. This is not trivial, because the 'auto' specifier
/// itself claims to be type-dependent.
bool isDependentAutoType(QualType Ty) {
while (1) {
QualType Pointee = Ty->getPointeeType();
if (!Pointee.isNull()) {
Ty = Pointee;
} else if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()){
if (MPT->getClass()->isDependentType())
return true;
Ty = MPT->getPointeeType();
} else if (const FunctionProtoType *FPT = Ty->getAs<FunctionProtoType>()){
for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
E = FPT->arg_type_end();
I != E; ++I)
if ((*I)->isDependentType())
return true;
Ty = FPT->getResultType();
} else if (Ty->isDependentSizedArrayType()) {
return true;
} else if (const ArrayType *AT = Ty->getAsArrayTypeUnsafe()) {
Ty = AT->getElementType();
} else if (Ty->getAs<DependentSizedExtVectorType>()) {
return true;
} else if (const VectorType *VT = Ty->getAs<VectorType>()) {
Ty = VT->getElementType();
} else {
break;
}
}
assert(Ty->getAs<AutoType>() && "didn't find 'auto' in auto type");
return false;
}
}
/// \brief Deduce the type for an auto type-specifier (C++0x [dcl.spec.auto]p6)
///
/// \param Type the type pattern using the auto type-specifier.
///
/// \param Init the initializer for the variable whose type is to be deduced.
///
/// \param Result if type deduction was successful, this will be set to the
/// deduced type. This may still contain undeduced autos if the type is
/// dependent. This will be set to null if deduction succeeded, but auto
/// substitution failed; the appropriate diagnostic will already have been
/// produced in that case.
Sema::DeduceAutoResult
Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init,
TypeSourceInfo *&Result) {
if (Init->getType()->isNonOverloadPlaceholderType()) {
ExprResult result = CheckPlaceholderExpr(Init);
if (result.isInvalid()) return DAR_FailedAlreadyDiagnosed;
Init = result.take();
}
if (Init->isTypeDependent() || isDependentAutoType(Type->getType())) {
Result = Type;
return DAR_Succeeded;
}
SourceLocation Loc = Init->getExprLoc();
LocalInstantiationScope InstScope(*this);
// Build template<class TemplParam> void Func(FuncParam);
TemplateTypeParmDecl *TemplParam =
TemplateTypeParmDecl::Create(Context, 0, SourceLocation(), Loc, 0, 0, 0,
false, false);
QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
NamedDecl *TemplParamPtr = TemplParam;
FixedSizeTemplateParameterList<1> TemplateParams(Loc, Loc, &TemplParamPtr,
Loc);
TypeSourceInfo *FuncParamInfo =
SubstituteAutoTransform(*this, TemplArg).TransformType(Type);
assert(FuncParamInfo && "substituting template parameter for 'auto' failed");
QualType FuncParam = FuncParamInfo->getType();
// Deduce type of TemplParam in Func(Init)
SmallVector<DeducedTemplateArgument, 1> Deduced;
Deduced.resize(1);
QualType InitType = Init->getType();
unsigned TDF = 0;
TemplateDeductionInfo Info(Loc);
InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
if (InitList) {
for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) {
if (DeduceTemplateArgumentByListElement(*this, &TemplateParams,
TemplArg,
InitList->getInit(i),
Info, Deduced, TDF))
return DAR_Failed;
}
} else {
if (AdjustFunctionParmAndArgTypesForDeduction(*this, &TemplateParams,
FuncParam, InitType, Init,
TDF))
return DAR_Failed;
if (DeduceTemplateArgumentsByTypeMatch(*this, &TemplateParams, FuncParam,
InitType, Info, Deduced, TDF))
return DAR_Failed;
}
if (Deduced[0].getKind() != TemplateArgument::Type)
return DAR_Failed;
QualType DeducedType = Deduced[0].getAsType();
if (InitList) {
DeducedType = BuildStdInitializerList(DeducedType, Loc);
if (DeducedType.isNull())
return DAR_FailedAlreadyDiagnosed;
}
Result = SubstituteAutoTransform(*this, DeducedType).TransformType(Type);
// Check that the deduced argument type is compatible with the original
// argument type per C++ [temp.deduct.call]p4.
if (!InitList && Result &&
CheckOriginalCallArgDeduction(*this,
Sema::OriginalCallArg(FuncParam,0,InitType),
Result->getType())) {
Result = 0;
return DAR_Failed;
}
return DAR_Succeeded;
}
void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) {
if (isa<InitListExpr>(Init))
Diag(VDecl->getLocation(),
diag::err_auto_var_deduction_failure_from_init_list)
<< VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange();
else
Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
<< VDecl->getDeclName() << VDecl->getType() << Init->getType()
<< Init->getSourceRange();
}
static void
MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
bool OnlyDeduced,
unsigned Level,
llvm::SmallBitVector &Deduced);
/// \brief If this is a non-static member function,
static void AddImplicitObjectParameterType(ASTContext &Context,
CXXMethodDecl *Method,
SmallVectorImpl<QualType> &ArgTypes) {
// C++11 [temp.func.order]p3:
// [...] The new parameter is of type "reference to cv A," where cv are
// the cv-qualifiers of the function template (if any) and A is
// the class of which the function template is a member.
//
// The standard doesn't say explicitly, but we pick the appropriate kind of
// reference type based on [over.match.funcs]p4.
QualType ArgTy = Context.getTypeDeclType(Method->getParent());
ArgTy = Context.getQualifiedType(ArgTy,
Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
if (Method->getRefQualifier() == RQ_RValue)
ArgTy = Context.getRValueReferenceType(ArgTy);
else
ArgTy = Context.getLValueReferenceType(ArgTy);
ArgTypes.push_back(ArgTy);
}
/// \brief Determine whether the function template \p FT1 is at least as
/// specialized as \p FT2.
static bool isAtLeastAsSpecializedAs(Sema &S,
SourceLocation Loc,
FunctionTemplateDecl *FT1,
FunctionTemplateDecl *FT2,
TemplatePartialOrderingContext TPOC,
unsigned NumCallArguments,
SmallVectorImpl<RefParamPartialOrderingComparison> *RefParamComparisons) {
FunctionDecl *FD1 = FT1->getTemplatedDecl();
FunctionDecl *FD2 = FT2->getTemplatedDecl();
const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
assert(Proto1 && Proto2 && "Function templates must have prototypes");
TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
SmallVector<DeducedTemplateArgument, 4> Deduced;
Deduced.resize(TemplateParams->size());
// C++0x [temp.deduct.partial]p3:
// The types used to determine the ordering depend on the context in which
// the partial ordering is done:
TemplateDeductionInfo Info(Loc);
CXXMethodDecl *Method1 = 0;
CXXMethodDecl *Method2 = 0;
bool IsNonStatic2 = false;
bool IsNonStatic1 = false;
unsigned Skip2 = 0;
switch (TPOC) {
case TPOC_Call: {
// - In the context of a function call, the function parameter types are
// used.
Method1 = dyn_cast<CXXMethodDecl>(FD1);
Method2 = dyn_cast<CXXMethodDecl>(FD2);
IsNonStatic1 = Method1 && !Method1->isStatic();
IsNonStatic2 = Method2 && !Method2->isStatic();
// C++11 [temp.func.order]p3:
// [...] If only one of the function templates is a non-static
// member, that function template is considered to have a new
// first parameter inserted in its function parameter list. The
// new parameter is of type "reference to cv A," where cv are
// the cv-qualifiers of the function template (if any) and A is
// the class of which the function template is a member.
//
// Note that we interpret this to mean "if one of the function
// templates is a non-static member and the other is a non-member";
// otherwise, the ordering rules for static functions against non-static
// functions don't make any sense.
//
// C++98/03 doesn't have this provision, so instead we drop the
// first argument of the free function, which seems to match
// existing practice.
SmallVector<QualType, 4> Args1;
unsigned Skip1 = !S.getLangOpts().CPlusPlus11 && IsNonStatic2 && !Method1;
if (S.getLangOpts().CPlusPlus11 && IsNonStatic1 && !Method2)
AddImplicitObjectParameterType(S.Context, Method1, Args1);
Args1.insert(Args1.end(),
Proto1->arg_type_begin() + Skip1, Proto1->arg_type_end());
SmallVector<QualType, 4> Args2;
Skip2 = !S.getLangOpts().CPlusPlus11 && IsNonStatic1 && !Method2;
if (S.getLangOpts().CPlusPlus11 && IsNonStatic2 && !Method1)
AddImplicitObjectParameterType(S.Context, Method2, Args2);
Args2.insert(Args2.end(),
Proto2->arg_type_begin() + Skip2, Proto2->arg_type_end());
// C++ [temp.func.order]p5:
// The presence of unused ellipsis and default arguments has no effect on
// the partial ordering of function templates.
if (Args1.size() > NumCallArguments)
Args1.resize(NumCallArguments);
if (Args2.size() > NumCallArguments)
Args2.resize(NumCallArguments);
if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(),
Args1.data(), Args1.size(), Info, Deduced,
TDF_None, /*PartialOrdering=*/true,
RefParamComparisons))
return false;
break;
}
case TPOC_Conversion:
// - In the context of a call to a conversion operator, the return types
// of the conversion function templates are used.
if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
Proto2->getResultType(),
Proto1->getResultType(),
Info, Deduced, TDF_None,
/*PartialOrdering=*/true,
RefParamComparisons))
return false;
break;
case TPOC_Other:
// - In other contexts (14.6.6.2) the function template's function type
// is used.
if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
FD2->getType(), FD1->getType(),
Info, Deduced, TDF_None,
/*PartialOrdering=*/true,
RefParamComparisons))
return false;
break;
}
// C++0x [temp.deduct.partial]p11:
// In most cases, all template parameters must have values in order for
// deduction to succeed, but for partial ordering purposes a template
// parameter may remain without a value provided it is not used in the
// types being used for partial ordering. [ Note: a template parameter used
// in a non-deduced context is considered used. -end note]
unsigned ArgIdx = 0, NumArgs = Deduced.size();
for (; ArgIdx != NumArgs; ++ArgIdx)
if (Deduced[ArgIdx].isNull())
break;
if (ArgIdx == NumArgs) {
// All template arguments were deduced. FT1 is at least as specialized
// as FT2.
return true;
}
// Figure out which template parameters were used.
llvm::SmallBitVector UsedParameters(TemplateParams->size());
switch (TPOC) {
case TPOC_Call: {
unsigned NumParams = std::min(NumCallArguments,
std::min(Proto1->getNumArgs(),
Proto2->getNumArgs()));
if (S.getLangOpts().CPlusPlus11 && IsNonStatic2 && !IsNonStatic1)
::MarkUsedTemplateParameters(S.Context, Method2->getThisType(S.Context),
false,
TemplateParams->getDepth(), UsedParameters);
for (unsigned I = Skip2; I < NumParams; ++I)
::MarkUsedTemplateParameters(S.Context, Proto2->getArgType(I), false,
TemplateParams->getDepth(),
UsedParameters);
break;
}
case TPOC_Conversion:
::MarkUsedTemplateParameters(S.Context, Proto2->getResultType(), false,
TemplateParams->getDepth(),
UsedParameters);
break;
case TPOC_Other:
::MarkUsedTemplateParameters(S.Context, FD2->getType(), false,
TemplateParams->getDepth(),
UsedParameters);
break;
}
for (; ArgIdx != NumArgs; ++ArgIdx)
// If this argument had no value deduced but was used in one of the types
// used for partial ordering, then deduction fails.
if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
return false;
return true;
}
/// \brief Determine whether this a function template whose parameter-type-list
/// ends with a function parameter pack.
static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) {
FunctionDecl *Function = FunTmpl->getTemplatedDecl();
unsigned NumParams = Function->getNumParams();
if (NumParams == 0)
return false;
ParmVarDecl *Last = Function->getParamDecl(NumParams - 1);
if (!Last->isParameterPack())
return false;
// Make sure that no previous parameter is a parameter pack.
while (--NumParams > 0) {
if (Function->getParamDecl(NumParams - 1)->isParameterPack())
return false;
}
return true;
}
/// \brief Returns the more specialized function template according
/// to the rules of function template partial ordering (C++ [temp.func.order]).
///
/// \param FT1 the first function template
///
/// \param FT2 the second function template
///
/// \param TPOC the context in which we are performing partial ordering of
/// function templates.
///
/// \param NumCallArguments The number of arguments in a call, used only
/// when \c TPOC is \c TPOC_Call.
///
/// \returns the more specialized function template. If neither
/// template is more specialized, returns NULL.
FunctionTemplateDecl *
Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
FunctionTemplateDecl *FT2,
SourceLocation Loc,
TemplatePartialOrderingContext TPOC,
unsigned NumCallArguments) {
SmallVector<RefParamPartialOrderingComparison, 4> RefParamComparisons;
bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC,
NumCallArguments, 0);
bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
NumCallArguments,
&RefParamComparisons);
if (Better1 != Better2) // We have a clear winner
return Better1? FT1 : FT2;
if (!Better1 && !Better2) // Neither is better than the other
return 0;
// C++0x [temp.deduct.partial]p10:
// If for each type being considered a given template is at least as
// specialized for all types and more specialized for some set of types and
// the other template is not more specialized for any types or is not at
// least as specialized for any types, then the given template is more
// specialized than the other template. Otherwise, neither template is more
// specialized than the other.
Better1 = false;
Better2 = false;
for (unsigned I = 0, N = RefParamComparisons.size(); I != N; ++I) {
// C++0x [temp.deduct.partial]p9:
// If, for a given type, deduction succeeds in both directions (i.e., the
// types are identical after the transformations above) and both P and A
// were reference types (before being replaced with the type referred to
// above):
// -- if the type from the argument template was an lvalue reference
// and the type from the parameter template was not, the argument
// type is considered to be more specialized than the other;
// otherwise,
if (!RefParamComparisons[I].ArgIsRvalueRef &&
RefParamComparisons[I].ParamIsRvalueRef) {
Better2 = true;
if (Better1)
return 0;
continue;
} else if (!RefParamComparisons[I].ParamIsRvalueRef &&
RefParamComparisons[I].ArgIsRvalueRef) {
Better1 = true;
if (Better2)
return 0;
continue;
}
// -- if the type from the argument template is more cv-qualified than
// the type from the parameter template (as described above), the
// argument type is considered to be more specialized than the
// other; otherwise,
switch (RefParamComparisons[I].Qualifiers) {
case NeitherMoreQualified:
break;
case ParamMoreQualified:
Better1 = true;
if (Better2)
return 0;
continue;
case ArgMoreQualified:
Better2 = true;
if (Better1)
return 0;
continue;
}
// -- neither type is more specialized than the other.
}
assert(!(Better1 && Better2) && "Should have broken out in the loop above");
if (Better1)
return FT1;
else if (Better2)
return FT2;
// FIXME: This mimics what GCC implements, but doesn't match up with the
// proposed resolution for core issue 692. This area needs to be sorted out,
// but for now we attempt to maintain compatibility.
bool Variadic1 = isVariadicFunctionTemplate(FT1);
bool Variadic2 = isVariadicFunctionTemplate(FT2);
if (Variadic1 != Variadic2)
return Variadic1? FT2 : FT1;
return 0;
}
/// \brief Determine if the two templates are equivalent.
static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
if (T1 == T2)
return true;
if (!T1 || !T2)
return false;
return T1->getCanonicalDecl() == T2->getCanonicalDecl();
}
/// \brief Retrieve the most specialized of the given function template
/// specializations.
///
/// \param SpecBegin the start iterator of the function template
/// specializations that we will be comparing.
///
/// \param SpecEnd the end iterator of the function template
/// specializations, paired with \p SpecBegin.
///
/// \param TPOC the partial ordering context to use to compare the function
/// template specializations.
///
/// \param NumCallArguments The number of arguments in a call, used only
/// when \c TPOC is \c TPOC_Call.
///
/// \param Loc the location where the ambiguity or no-specializations
/// diagnostic should occur.
///
/// \param NoneDiag partial diagnostic used to diagnose cases where there are
/// no matching candidates.
///
/// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
/// occurs.
///
/// \param CandidateDiag partial diagnostic used for each function template
/// specialization that is a candidate in the ambiguous ordering. One parameter
/// in this diagnostic should be unbound, which will correspond to the string
/// describing the template arguments for the function template specialization.
///
/// \returns the most specialized function template specialization, if
/// found. Otherwise, returns SpecEnd.
///
/// \todo FIXME: Consider passing in the "also-ran" candidates that failed
/// template argument deduction.
UnresolvedSetIterator
Sema::getMostSpecialized(UnresolvedSetIterator SpecBegin,
UnresolvedSetIterator SpecEnd,
TemplatePartialOrderingContext TPOC,
unsigned NumCallArguments,
SourceLocation Loc,
const PartialDiagnostic &NoneDiag,
const PartialDiagnostic &AmbigDiag,
const PartialDiagnostic &CandidateDiag,
bool Complain,
QualType TargetType) {
if (SpecBegin == SpecEnd) {
if (Complain)
Diag(Loc, NoneDiag);
return SpecEnd;
}
if (SpecBegin + 1 == SpecEnd)
return SpecBegin;
// Find the function template that is better than all of the templates it
// has been compared to.
UnresolvedSetIterator Best = SpecBegin;
FunctionTemplateDecl *BestTemplate
= cast<FunctionDecl>(*Best)->getPrimaryTemplate();
assert(BestTemplate && "Not a function template specialization?");
for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
FunctionTemplateDecl *Challenger
= cast<FunctionDecl>(*I)->getPrimaryTemplate();
assert(Challenger && "Not a function template specialization?");
if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
Loc, TPOC, NumCallArguments),
Challenger)) {
Best = I;
BestTemplate = Challenger;
}
}
// Make sure that the "best" function template is more specialized than all
// of the others.
bool Ambiguous = false;
for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
FunctionTemplateDecl *Challenger
= cast<FunctionDecl>(*I)->getPrimaryTemplate();
if (I != Best &&
!isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
Loc, TPOC, NumCallArguments),
BestTemplate)) {
Ambiguous = true;
break;
}
}
if (!Ambiguous) {
// We found an answer. Return it.
return Best;
}
// Diagnose the ambiguity.
if (Complain)
Diag(Loc, AmbigDiag);
if (Complain)
// FIXME: Can we order the candidates in some sane way?
for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
PartialDiagnostic PD = CandidateDiag;
PD << getTemplateArgumentBindingsText(
cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
*cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
if (!TargetType.isNull())
HandleFunctionTypeMismatch(PD, cast<FunctionDecl>(*I)->getType(),
TargetType);
Diag((*I)->getLocation(), PD);
}
return SpecEnd;
}
/// \brief Returns the more specialized class template partial specialization
/// according to the rules of partial ordering of class template partial
/// specializations (C++ [temp.class.order]).
///
/// \param PS1 the first class template partial specialization
///
/// \param PS2 the second class template partial specialization
///
/// \returns the more specialized class template partial specialization. If
/// neither partial specialization is more specialized, returns NULL.
ClassTemplatePartialSpecializationDecl *
Sema::getMoreSpecializedPartialSpecialization(
ClassTemplatePartialSpecializationDecl *PS1,
ClassTemplatePartialSpecializationDecl *PS2,
SourceLocation Loc) {
// C++ [temp.class.order]p1:
// For two class template partial specializations, the first is at least as
// specialized as the second if, given the following rewrite to two
// function templates, the first function template is at least as
// specialized as the second according to the ordering rules for function
// templates (14.6.6.2):
// - the first function template has the same template parameters as the
// first partial specialization and has a single function parameter
// whose type is a class template specialization with the template
// arguments of the first partial specialization, and
// - the second function template has the same template parameters as the
// second partial specialization and has a single function parameter
// whose type is a class template specialization with the template
// arguments of the second partial specialization.
//
// Rather than synthesize function templates, we merely perform the
// equivalent partial ordering by performing deduction directly on
// the template arguments of the class template partial
// specializations. This computation is slightly simpler than the
// general problem of function template partial ordering, because
// class template partial specializations are more constrained. We
// know that every template parameter is deducible from the class
// template partial specialization's template arguments, for
// example.
SmallVector<DeducedTemplateArgument, 4> Deduced;
TemplateDeductionInfo Info(Loc);
QualType PT1 = PS1->getInjectedSpecializationType();
QualType PT2 = PS2->getInjectedSpecializationType();
// Determine whether PS1 is at least as specialized as PS2
Deduced.resize(PS2->getTemplateParameters()->size());
bool Better1 = !DeduceTemplateArgumentsByTypeMatch(*this,
PS2->getTemplateParameters(),
PT2, PT1, Info, Deduced, TDF_None,
/*PartialOrdering=*/true,
/*RefParamComparisons=*/0);
if (Better1) {
SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
InstantiatingTemplate Inst(*this, PS2->getLocation(), PS2,
DeducedArgs, Info);
Better1 = !::FinishTemplateArgumentDeduction(*this, PS2,
PS1->getTemplateArgs(),
Deduced, Info);
}
// Determine whether PS2 is at least as specialized as PS1
Deduced.clear();
Deduced.resize(PS1->getTemplateParameters()->size());
bool Better2 = !DeduceTemplateArgumentsByTypeMatch(*this,
PS1->getTemplateParameters(),
PT1, PT2, Info, Deduced, TDF_None,
/*PartialOrdering=*/true,
/*RefParamComparisons=*/0);
if (Better2) {
SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
InstantiatingTemplate Inst(*this, PS1->getLocation(), PS1,
DeducedArgs, Info);
Better2 = !::FinishTemplateArgumentDeduction(*this, PS1,
PS2->getTemplateArgs(),
Deduced, Info);
}
if (Better1 == Better2)
return 0;
return Better1? PS1 : PS2;
}
static void
MarkUsedTemplateParameters(ASTContext &Ctx,
const TemplateArgument &TemplateArg,
bool OnlyDeduced,
unsigned Depth,
llvm::SmallBitVector &Used);
/// \brief Mark the template parameters that are used by the given
/// expression.
static void
MarkUsedTemplateParameters(ASTContext &Ctx,
const Expr *E,
bool OnlyDeduced,
unsigned Depth,
llvm::SmallBitVector &Used) {
// We can deduce from a pack expansion.
if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
E = Expansion->getPattern();
// Skip through any implicit casts we added while type-checking, and any
// substitutions performed by template alias expansion.
while (1) {
if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
E = ICE->getSubExpr();
else if (const SubstNonTypeTemplateParmExpr *Subst =
dyn_cast<SubstNonTypeTemplateParmExpr>(E))
E = Subst->getReplacement();
else
break;
}
// FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
// find other occurrences of template parameters.
const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
if (!DRE)
return;
const NonTypeTemplateParmDecl *NTTP
= dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
if (!NTTP)
return;
if (NTTP->getDepth() == Depth)
Used[NTTP->getIndex()] = true;
}
/// \brief Mark the template parameters that are used by the given
/// nested name specifier.
static void
MarkUsedTemplateParameters(ASTContext &Ctx,
NestedNameSpecifier *NNS,
bool OnlyDeduced,
unsigned Depth,
llvm::SmallBitVector &Used) {
if (!NNS)
return;
MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth,
Used);
MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0),
OnlyDeduced, Depth, Used);
}
/// \brief Mark the template parameters that are used by the given
/// template name.
static void
MarkUsedTemplateParameters(ASTContext &Ctx,
TemplateName Name,
bool OnlyDeduced,
unsigned Depth,
llvm::SmallBitVector &Used) {
if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
if (TemplateTemplateParmDecl *TTP
= dyn_cast<TemplateTemplateParmDecl>(Template)) {
if (TTP->getDepth() == Depth)
Used[TTP->getIndex()] = true;
}
return;
}
if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced,
Depth, Used);
if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced,
Depth, Used);
}
/// \brief Mark the template parameters that are used by the given
/// type.
static void
MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
bool OnlyDeduced,
unsigned Depth,
llvm::SmallBitVector &Used) {
if (T.isNull())
return;
// Non-dependent types have nothing deducible
if (!T->isDependentType())
return;
T = Ctx.getCanonicalType(T);
switch (T->getTypeClass()) {
case Type::Pointer:
MarkUsedTemplateParameters(Ctx,
cast<PointerType>(T)->getPointeeType(),
OnlyDeduced,
Depth,
Used);
break;
case Type::BlockPointer:
MarkUsedTemplateParameters(Ctx,
cast<BlockPointerType>(T)->getPointeeType(),
OnlyDeduced,
Depth,
Used);
break;
case Type::LValueReference:
case Type::RValueReference:
MarkUsedTemplateParameters(Ctx,
cast<ReferenceType>(T)->getPointeeType(),
OnlyDeduced,
Depth,
Used);
break;
case Type::MemberPointer: {
const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced,
Depth, Used);
MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0),
OnlyDeduced, Depth, Used);
break;
}
case Type::DependentSizedArray:
MarkUsedTemplateParameters(Ctx,
cast<DependentSizedArrayType>(T)->getSizeExpr(),
OnlyDeduced, Depth, Used);
// Fall through to check the element type
case Type::ConstantArray:
case Type::IncompleteArray:
MarkUsedTemplateParameters(Ctx,
cast<ArrayType>(T)->getElementType(),
OnlyDeduced, Depth, Used);
break;
case Type::Vector:
case Type::ExtVector:
MarkUsedTemplateParameters(Ctx,
cast<VectorType>(T)->getElementType(),
OnlyDeduced, Depth, Used);
break;
case Type::DependentSizedExtVector: {
const DependentSizedExtVectorType *VecType
= cast<DependentSizedExtVectorType>(T);
MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
Depth, Used);
MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced,
Depth, Used);
break;
}
case Type::FunctionProto: {
const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
MarkUsedTemplateParameters(Ctx, Proto->getResultType(), OnlyDeduced,
Depth, Used);
for (unsigned I = 0, N = Proto->getNumArgs(); I != N; ++I)
MarkUsedTemplateParameters(Ctx, Proto->getArgType(I), OnlyDeduced,
Depth, Used);
break;
}
case Type::TemplateTypeParm: {
const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
if (TTP->getDepth() == Depth)
Used[TTP->getIndex()] = true;
break;
}
case Type::SubstTemplateTypeParmPack: {
const SubstTemplateTypeParmPackType *Subst
= cast<SubstTemplateTypeParmPackType>(T);
MarkUsedTemplateParameters(Ctx,
QualType(Subst->getReplacedParameter(), 0),
OnlyDeduced, Depth, Used);
MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(),
OnlyDeduced, Depth, Used);
break;
}
case Type::InjectedClassName:
T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
// fall through
case Type::TemplateSpecialization: {
const TemplateSpecializationType *Spec
= cast<TemplateSpecializationType>(T);
MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced,
Depth, Used);
// C++0x [temp.deduct.type]p9:
// If the template argument list of P contains a pack expansion that is not
// the last template argument, the entire template argument list is a
// non-deduced context.
if (OnlyDeduced &&
hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
break;
for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
Used);
break;
}
case Type::Complex:
if (!OnlyDeduced)
MarkUsedTemplateParameters(Ctx,
cast<ComplexType>(T)->getElementType(),
OnlyDeduced, Depth, Used);
break;
case Type::Atomic:
if (!OnlyDeduced)
MarkUsedTemplateParameters(Ctx,
cast<AtomicType>(T)->getValueType(),
OnlyDeduced, Depth, Used);
break;
case Type::DependentName:
if (!OnlyDeduced)
MarkUsedTemplateParameters(Ctx,
cast<DependentNameType>(T)->getQualifier(),
OnlyDeduced, Depth, Used);
break;
case Type::DependentTemplateSpecialization: {
const DependentTemplateSpecializationType *Spec
= cast<DependentTemplateSpecializationType>(T);
if (!OnlyDeduced)
MarkUsedTemplateParameters(Ctx, Spec->getQualifier(),
OnlyDeduced, Depth, Used);
// C++0x [temp.deduct.type]p9:
// If the template argument list of P contains a pack expansion that is not
// the last template argument, the entire template argument list is a
// non-deduced context.
if (OnlyDeduced &&
hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
break;
for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
Used);
break;
}
case Type::TypeOf:
if (!OnlyDeduced)
MarkUsedTemplateParameters(Ctx,
cast<TypeOfType>(T)->getUnderlyingType(),
OnlyDeduced, Depth, Used);
break;
case Type::TypeOfExpr:
if (!OnlyDeduced)
MarkUsedTemplateParameters(Ctx,
cast<TypeOfExprType>(T)->getUnderlyingExpr(),
OnlyDeduced, Depth, Used);
break;
case Type::Decltype:
if (!OnlyDeduced)
MarkUsedTemplateParameters(Ctx,
cast<DecltypeType>(T)->getUnderlyingExpr(),
OnlyDeduced, Depth, Used);
break;
case Type::UnaryTransform:
if (!OnlyDeduced)
MarkUsedTemplateParameters(Ctx,
cast<UnaryTransformType>(T)->getUnderlyingType(),
OnlyDeduced, Depth, Used);
break;
case Type::PackExpansion:
MarkUsedTemplateParameters(Ctx,
cast<PackExpansionType>(T)->getPattern(),
OnlyDeduced, Depth, Used);
break;
case Type::Auto:
MarkUsedTemplateParameters(Ctx,
cast<AutoType>(T)->getDeducedType(),
OnlyDeduced, Depth, Used);
// None of these types have any template parameters in them.
case Type::Builtin:
case Type::VariableArray:
case Type::FunctionNoProto:
case Type::Record:
case Type::Enum:
case Type::ObjCInterface:
case Type::ObjCObject:
case Type::ObjCObjectPointer:
case Type::UnresolvedUsing:
#define TYPE(Class, Base)
#define ABSTRACT_TYPE(Class, Base)
#define DEPENDENT_TYPE(Class, Base)
#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
#include "clang/AST/TypeNodes.def"
break;
}
}
/// \brief Mark the template parameters that are used by this
/// template argument.
static void
MarkUsedTemplateParameters(ASTContext &Ctx,
const TemplateArgument &TemplateArg,
bool OnlyDeduced,
unsigned Depth,
llvm::SmallBitVector &Used) {
switch (TemplateArg.getKind()) {
case TemplateArgument::Null:
case TemplateArgument::Integral:
case TemplateArgument::Declaration:
break;
case TemplateArgument::NullPtr:
MarkUsedTemplateParameters(Ctx, TemplateArg.getNullPtrType(), OnlyDeduced,
Depth, Used);
break;
case TemplateArgument::Type:
MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced,
Depth, Used);
break;
case TemplateArgument::Template:
case TemplateArgument::TemplateExpansion:
MarkUsedTemplateParameters(Ctx,
TemplateArg.getAsTemplateOrTemplatePattern(),
OnlyDeduced, Depth, Used);
break;
case TemplateArgument::Expression:
MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced,
Depth, Used);
break;
case TemplateArgument::Pack:
for (TemplateArgument::pack_iterator P = TemplateArg.pack_begin(),
PEnd = TemplateArg.pack_end();
P != PEnd; ++P)
MarkUsedTemplateParameters(Ctx, *P, OnlyDeduced, Depth, Used);
break;
}
}
/// \brief Mark which template parameters can be deduced from a given
/// template argument list.
///
/// \param TemplateArgs the template argument list from which template
/// parameters will be deduced.
///
/// \param Used a bit vector whose elements will be set to \c true
/// to indicate when the corresponding template parameter will be
/// deduced.
void
Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
bool OnlyDeduced, unsigned Depth,
llvm::SmallBitVector &Used) {
// C++0x [temp.deduct.type]p9:
// If the template argument list of P contains a pack expansion that is not
// the last template argument, the entire template argument list is a
// non-deduced context.
if (OnlyDeduced &&
hasPackExpansionBeforeEnd(TemplateArgs.data(), TemplateArgs.size()))
return;
for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced,
Depth, Used);
}
/// \brief Marks all of the template parameters that will be deduced by a
/// call to the given function template.
void
Sema::MarkDeducedTemplateParameters(ASTContext &Ctx,
const FunctionTemplateDecl *FunctionTemplate,
llvm::SmallBitVector &Deduced) {
TemplateParameterList *TemplateParams
= FunctionTemplate->getTemplateParameters();
Deduced.clear();
Deduced.resize(TemplateParams->size());
FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(),
true, TemplateParams->getDepth(), Deduced);
}
bool hasDeducibleTemplateParameters(Sema &S,
FunctionTemplateDecl *FunctionTemplate,
QualType T) {
if (!T->isDependentType())
return false;
TemplateParameterList *TemplateParams
= FunctionTemplate->getTemplateParameters();
llvm::SmallBitVector Deduced(TemplateParams->size());
::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(),
Deduced);
return Deduced.any();
}
|