aboutsummaryrefslogtreecommitdiff
path: root/lib/Sema/SemaInit.cpp
blob: 7b4a41777b6ac32ae1aca1290be65fd947c6ca6e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for initializers. The main entry
// point is Sema::CheckInitList(), but all of the work is performed
// within the InitListChecker class.
//
// This file also implements Sema::CheckInitializerTypes.
//
//===----------------------------------------------------------------------===//

#include "SemaInit.h"
#include "Lookup.h"
#include "Sema.h"
#include "clang/Parse/Designator.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/TypeLoc.h"
#include "llvm/Support/ErrorHandling.h"
#include <map>
using namespace clang;

//===----------------------------------------------------------------------===//
// Sema Initialization Checking
//===----------------------------------------------------------------------===//

static Expr *IsStringInit(Expr *Init, QualType DeclType, ASTContext &Context) {
  const ArrayType *AT = Context.getAsArrayType(DeclType);
  if (!AT) return 0;

  if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
    return 0;

  // See if this is a string literal or @encode.
  Init = Init->IgnoreParens();

  // Handle @encode, which is a narrow string.
  if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
    return Init;

  // Otherwise we can only handle string literals.
  StringLiteral *SL = dyn_cast<StringLiteral>(Init);
  if (SL == 0) return 0;

  QualType ElemTy = Context.getCanonicalType(AT->getElementType());
  // char array can be initialized with a narrow string.
  // Only allow char x[] = "foo";  not char x[] = L"foo";
  if (!SL->isWide())
    return ElemTy->isCharType() ? Init : 0;

  // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
  // correction from DR343): "An array with element type compatible with a
  // qualified or unqualified version of wchar_t may be initialized by a wide
  // string literal, optionally enclosed in braces."
  if (Context.typesAreCompatible(Context.getWCharType(),
                                 ElemTy.getUnqualifiedType()))
    return Init;

  return 0;
}

static void CheckStringInit(Expr *Str, QualType &DeclT, Sema &S) {
  // Get the length of the string as parsed.
  uint64_t StrLength =
    cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();


  const ArrayType *AT = S.Context.getAsArrayType(DeclT);
  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
    // C99 6.7.8p14. We have an array of character type with unknown size
    // being initialized to a string literal.
    llvm::APSInt ConstVal(32);
    ConstVal = StrLength;
    // Return a new array type (C99 6.7.8p22).
    DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
                                           ConstVal,
                                           ArrayType::Normal, 0);
    return;
  }

  const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);

  // C99 6.7.8p14. We have an array of character type with known size.  However,
  // the size may be smaller or larger than the string we are initializing.
  // FIXME: Avoid truncation for 64-bit length strings.
  if (StrLength-1 > CAT->getSize().getZExtValue())
    S.Diag(Str->getSourceRange().getBegin(),
           diag::warn_initializer_string_for_char_array_too_long)
      << Str->getSourceRange();

  // Set the type to the actual size that we are initializing.  If we have
  // something like:
  //   char x[1] = "foo";
  // then this will set the string literal's type to char[1].
  Str->setType(DeclT);
}

//===----------------------------------------------------------------------===//
// Semantic checking for initializer lists.
//===----------------------------------------------------------------------===//

/// @brief Semantic checking for initializer lists.
///
/// The InitListChecker class contains a set of routines that each
/// handle the initialization of a certain kind of entity, e.g.,
/// arrays, vectors, struct/union types, scalars, etc. The
/// InitListChecker itself performs a recursive walk of the subobject
/// structure of the type to be initialized, while stepping through
/// the initializer list one element at a time. The IList and Index
/// parameters to each of the Check* routines contain the active
/// (syntactic) initializer list and the index into that initializer
/// list that represents the current initializer. Each routine is
/// responsible for moving that Index forward as it consumes elements.
///
/// Each Check* routine also has a StructuredList/StructuredIndex
/// arguments, which contains the current the "structured" (semantic)
/// initializer list and the index into that initializer list where we
/// are copying initializers as we map them over to the semantic
/// list. Once we have completed our recursive walk of the subobject
/// structure, we will have constructed a full semantic initializer
/// list.
///
/// C99 designators cause changes in the initializer list traversal,
/// because they make the initialization "jump" into a specific
/// subobject and then continue the initialization from that
/// point. CheckDesignatedInitializer() recursively steps into the
/// designated subobject and manages backing out the recursion to
/// initialize the subobjects after the one designated.
namespace {
class InitListChecker {
  Sema &SemaRef;
  bool hadError;
  std::map<InitListExpr *, InitListExpr *> SyntacticToSemantic;
  InitListExpr *FullyStructuredList;

  void CheckImplicitInitList(const InitializedEntity &Entity,
                             InitListExpr *ParentIList, QualType T,
                             unsigned &Index, InitListExpr *StructuredList,
                             unsigned &StructuredIndex,
                             bool TopLevelObject = false);
  void CheckExplicitInitList(const InitializedEntity &Entity,
                             InitListExpr *IList, QualType &T,
                             unsigned &Index, InitListExpr *StructuredList,
                             unsigned &StructuredIndex,
                             bool TopLevelObject = false);
  void CheckListElementTypes(const InitializedEntity &Entity,
                             InitListExpr *IList, QualType &DeclType,
                             bool SubobjectIsDesignatorContext,
                             unsigned &Index,
                             InitListExpr *StructuredList,
                             unsigned &StructuredIndex,
                             bool TopLevelObject = false);
  void CheckSubElementType(const InitializedEntity &Entity,
                           InitListExpr *IList, QualType ElemType,
                           unsigned &Index,
                           InitListExpr *StructuredList,
                           unsigned &StructuredIndex);
  void CheckScalarType(const InitializedEntity &Entity,
                       InitListExpr *IList, QualType DeclType,
                       unsigned &Index,
                       InitListExpr *StructuredList,
                       unsigned &StructuredIndex);
  void CheckReferenceType(const InitializedEntity &Entity,
                          InitListExpr *IList, QualType DeclType,
                          unsigned &Index,
                          InitListExpr *StructuredList,
                          unsigned &StructuredIndex);
  void CheckVectorType(const InitializedEntity &Entity,
                       InitListExpr *IList, QualType DeclType, unsigned &Index,
                       InitListExpr *StructuredList,
                       unsigned &StructuredIndex);
  void CheckStructUnionTypes(const InitializedEntity &Entity,
                             InitListExpr *IList, QualType DeclType,
                             RecordDecl::field_iterator Field,
                             bool SubobjectIsDesignatorContext, unsigned &Index,
                             InitListExpr *StructuredList,
                             unsigned &StructuredIndex,
                             bool TopLevelObject = false);
  void CheckArrayType(const InitializedEntity &Entity,
                      InitListExpr *IList, QualType &DeclType,
                      llvm::APSInt elementIndex,
                      bool SubobjectIsDesignatorContext, unsigned &Index,
                      InitListExpr *StructuredList,
                      unsigned &StructuredIndex);
  bool CheckDesignatedInitializer(const InitializedEntity &Entity,
                                  InitListExpr *IList, DesignatedInitExpr *DIE,
                                  unsigned DesigIdx,
                                  QualType &CurrentObjectType,
                                  RecordDecl::field_iterator *NextField,
                                  llvm::APSInt *NextElementIndex,
                                  unsigned &Index,
                                  InitListExpr *StructuredList,
                                  unsigned &StructuredIndex,
                                  bool FinishSubobjectInit,
                                  bool TopLevelObject);
  InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
                                           QualType CurrentObjectType,
                                           InitListExpr *StructuredList,
                                           unsigned StructuredIndex,
                                           SourceRange InitRange);
  void UpdateStructuredListElement(InitListExpr *StructuredList,
                                   unsigned &StructuredIndex,
                                   Expr *expr);
  int numArrayElements(QualType DeclType);
  int numStructUnionElements(QualType DeclType);

  void FillInValueInitForField(unsigned Init, FieldDecl *Field,
                               const InitializedEntity &ParentEntity,
                               InitListExpr *ILE, bool &RequiresSecondPass);
  void FillInValueInitializations(const InitializedEntity &Entity,
                                  InitListExpr *ILE, bool &RequiresSecondPass);
public:
  InitListChecker(Sema &S, const InitializedEntity &Entity,
                  InitListExpr *IL, QualType &T);
  bool HadError() { return hadError; }

  // @brief Retrieves the fully-structured initializer list used for
  // semantic analysis and code generation.
  InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
};
} // end anonymous namespace

void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
                                        const InitializedEntity &ParentEntity,
                                              InitListExpr *ILE, 
                                              bool &RequiresSecondPass) {
  SourceLocation Loc = ILE->getSourceRange().getBegin();
  unsigned NumInits = ILE->getNumInits();
  InitializedEntity MemberEntity 
    = InitializedEntity::InitializeMember(Field, &ParentEntity);
  if (Init >= NumInits || !ILE->getInit(Init)) {
    // FIXME: We probably don't need to handle references
    // specially here, since value-initialization of references is
    // handled in InitializationSequence.
    if (Field->getType()->isReferenceType()) {
      // C++ [dcl.init.aggr]p9:
      //   If an incomplete or empty initializer-list leaves a
      //   member of reference type uninitialized, the program is
      //   ill-formed.
      SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
        << Field->getType()
        << ILE->getSyntacticForm()->getSourceRange();
      SemaRef.Diag(Field->getLocation(),
                   diag::note_uninit_reference_member);
      hadError = true;
      return;
    }
    
    InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
                                                              true);
    InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, 0, 0);
    if (!InitSeq) {
      InitSeq.Diagnose(SemaRef, MemberEntity, Kind, 0, 0);
      hadError = true;
      return;
    }
    
    Sema::OwningExprResult MemberInit
      = InitSeq.Perform(SemaRef, MemberEntity, Kind, 
                        Sema::MultiExprArg(SemaRef, 0, 0));
    if (MemberInit.isInvalid()) {
      hadError = true;
      return;
    }
    
    if (hadError) {
      // Do nothing
    } else if (Init < NumInits) {
      ILE->setInit(Init, MemberInit.takeAs<Expr>());
    } else if (InitSeq.getKind()
                 == InitializationSequence::ConstructorInitialization) {
      // Value-initialization requires a constructor call, so
      // extend the initializer list to include the constructor
      // call and make a note that we'll need to take another pass
      // through the initializer list.
      ILE->updateInit(Init, MemberInit.takeAs<Expr>());
      RequiresSecondPass = true;
    }
  } else if (InitListExpr *InnerILE
               = dyn_cast<InitListExpr>(ILE->getInit(Init)))
    FillInValueInitializations(MemberEntity, InnerILE, 
                               RequiresSecondPass);  
}

/// Recursively replaces NULL values within the given initializer list
/// with expressions that perform value-initialization of the
/// appropriate type.
void 
InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
                                            InitListExpr *ILE,
                                            bool &RequiresSecondPass) {
  assert((ILE->getType() != SemaRef.Context.VoidTy) &&
         "Should not have void type");
  SourceLocation Loc = ILE->getSourceRange().getBegin();
  if (ILE->getSyntacticForm())
    Loc = ILE->getSyntacticForm()->getSourceRange().getBegin();

  if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
    if (RType->getDecl()->isUnion() &&
        ILE->getInitializedFieldInUnion())
      FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
                              Entity, ILE, RequiresSecondPass);
    else {
      unsigned Init = 0;
      for (RecordDecl::field_iterator
             Field = RType->getDecl()->field_begin(),
             FieldEnd = RType->getDecl()->field_end();
           Field != FieldEnd; ++Field) {
        if (Field->isUnnamedBitfield())
          continue;

        if (hadError)
          return;

        FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
        if (hadError)
          return;

        ++Init;

        // Only look at the first initialization of a union.
        if (RType->getDecl()->isUnion())
          break;
      }
    }

    return;
  }

  QualType ElementType;

  InitializedEntity ElementEntity = Entity;
  unsigned NumInits = ILE->getNumInits();
  unsigned NumElements = NumInits;
  if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
    ElementType = AType->getElementType();
    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
      NumElements = CAType->getSize().getZExtValue();
    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 
                                                         0, Entity);
  } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
    ElementType = VType->getElementType();
    NumElements = VType->getNumElements();
    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 
                                                         0, Entity);
  } else
    ElementType = ILE->getType();

  
  for (unsigned Init = 0; Init != NumElements; ++Init) {
    if (hadError)
      return;

    if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
        ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
      ElementEntity.setElementIndex(Init);

    if (Init >= NumInits || !ILE->getInit(Init)) {
      InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
                                                                true);
      InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, 0, 0);
      if (!InitSeq) {
        InitSeq.Diagnose(SemaRef, ElementEntity, Kind, 0, 0);
        hadError = true;
        return;
      }

      Sema::OwningExprResult ElementInit
        = InitSeq.Perform(SemaRef, ElementEntity, Kind, 
                          Sema::MultiExprArg(SemaRef, 0, 0));
      if (ElementInit.isInvalid()) {
        hadError = true;
        return;
      }

      if (hadError) {
        // Do nothing
      } else if (Init < NumInits) {
        ILE->setInit(Init, ElementInit.takeAs<Expr>());
      } else if (InitSeq.getKind()
                   == InitializationSequence::ConstructorInitialization) {
        // Value-initialization requires a constructor call, so
        // extend the initializer list to include the constructor
        // call and make a note that we'll need to take another pass
        // through the initializer list.
        ILE->updateInit(Init, ElementInit.takeAs<Expr>());
        RequiresSecondPass = true;
      }
    } else if (InitListExpr *InnerILE
                 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
      FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
  }
}


InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
                                 InitListExpr *IL, QualType &T)
  : SemaRef(S) {
  hadError = false;

  unsigned newIndex = 0;
  unsigned newStructuredIndex = 0;
  FullyStructuredList
    = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
  CheckExplicitInitList(Entity, IL, T, newIndex, 
                        FullyStructuredList, newStructuredIndex,
                        /*TopLevelObject=*/true);

  if (!hadError) {
    bool RequiresSecondPass = false;
    FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
    if (RequiresSecondPass && !hadError)
      FillInValueInitializations(Entity, FullyStructuredList, 
                                 RequiresSecondPass);
  }
}

int InitListChecker::numArrayElements(QualType DeclType) {
  // FIXME: use a proper constant
  int maxElements = 0x7FFFFFFF;
  if (const ConstantArrayType *CAT =
        SemaRef.Context.getAsConstantArrayType(DeclType)) {
    maxElements = static_cast<int>(CAT->getSize().getZExtValue());
  }
  return maxElements;
}

int InitListChecker::numStructUnionElements(QualType DeclType) {
  RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
  int InitializableMembers = 0;
  for (RecordDecl::field_iterator
         Field = structDecl->field_begin(),
         FieldEnd = structDecl->field_end();
       Field != FieldEnd; ++Field) {
    if ((*Field)->getIdentifier() || !(*Field)->isBitField())
      ++InitializableMembers;
  }
  if (structDecl->isUnion())
    return std::min(InitializableMembers, 1);
  return InitializableMembers - structDecl->hasFlexibleArrayMember();
}

void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
                                            InitListExpr *ParentIList,
                                            QualType T, unsigned &Index,
                                            InitListExpr *StructuredList,
                                            unsigned &StructuredIndex,
                                            bool TopLevelObject) {
  int maxElements = 0;

  if (T->isArrayType())
    maxElements = numArrayElements(T);
  else if (T->isStructureType() || T->isUnionType())
    maxElements = numStructUnionElements(T);
  else if (T->isVectorType())
    maxElements = T->getAs<VectorType>()->getNumElements();
  else
    assert(0 && "CheckImplicitInitList(): Illegal type");

  if (maxElements == 0) {
    SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
                  diag::err_implicit_empty_initializer);
    ++Index;
    hadError = true;
    return;
  }

  // Build a structured initializer list corresponding to this subobject.
  InitListExpr *StructuredSubobjectInitList
    = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
                                 StructuredIndex,
          SourceRange(ParentIList->getInit(Index)->getSourceRange().getBegin(),
                      ParentIList->getSourceRange().getEnd()));
  unsigned StructuredSubobjectInitIndex = 0;

  // Check the element types and build the structural subobject.
  unsigned StartIndex = Index;
  CheckListElementTypes(Entity, ParentIList, T, 
                        /*SubobjectIsDesignatorContext=*/false, Index,
                        StructuredSubobjectInitList,
                        StructuredSubobjectInitIndex,
                        TopLevelObject);
  unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
  StructuredSubobjectInitList->setType(T);

  // Update the structured sub-object initializer so that it's ending
  // range corresponds with the end of the last initializer it used.
  if (EndIndex < ParentIList->getNumInits()) {
    SourceLocation EndLoc
      = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
    StructuredSubobjectInitList->setRBraceLoc(EndLoc);
  }
}

void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
                                            InitListExpr *IList, QualType &T,
                                            unsigned &Index,
                                            InitListExpr *StructuredList,
                                            unsigned &StructuredIndex,
                                            bool TopLevelObject) {
  assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
  SyntacticToSemantic[IList] = StructuredList;
  StructuredList->setSyntacticForm(IList);
  CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true, 
                        Index, StructuredList, StructuredIndex, TopLevelObject);
  IList->setType(T.getNonReferenceType());
  StructuredList->setType(T.getNonReferenceType());
  if (hadError)
    return;

  if (Index < IList->getNumInits()) {
    // We have leftover initializers
    if (StructuredIndex == 1 &&
        IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
      unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
      if (SemaRef.getLangOptions().CPlusPlus) {
        DK = diag::err_excess_initializers_in_char_array_initializer;
        hadError = true;
      }
      // Special-case
      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
        << IList->getInit(Index)->getSourceRange();
    } else if (!T->isIncompleteType()) {
      // Don't complain for incomplete types, since we'll get an error
      // elsewhere
      QualType CurrentObjectType = StructuredList->getType();
      int initKind =
        CurrentObjectType->isArrayType()? 0 :
        CurrentObjectType->isVectorType()? 1 :
        CurrentObjectType->isScalarType()? 2 :
        CurrentObjectType->isUnionType()? 3 :
        4;

      unsigned DK = diag::warn_excess_initializers;
      if (SemaRef.getLangOptions().CPlusPlus) {
        DK = diag::err_excess_initializers;
        hadError = true;
      }
      if (SemaRef.getLangOptions().OpenCL && initKind == 1) {
        DK = diag::err_excess_initializers;
        hadError = true;
      }

      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
        << initKind << IList->getInit(Index)->getSourceRange();
    }
  }

  if (T->isScalarType() && !TopLevelObject)
    SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
      << IList->getSourceRange()
      << CodeModificationHint::CreateRemoval(IList->getLocStart())
      << CodeModificationHint::CreateRemoval(IList->getLocEnd());
}

void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
                                            InitListExpr *IList,
                                            QualType &DeclType,
                                            bool SubobjectIsDesignatorContext,
                                            unsigned &Index,
                                            InitListExpr *StructuredList,
                                            unsigned &StructuredIndex,
                                            bool TopLevelObject) {
  if (DeclType->isScalarType()) {
    CheckScalarType(Entity, IList, DeclType, Index,
                    StructuredList, StructuredIndex);
  } else if (DeclType->isVectorType()) {
    CheckVectorType(Entity, IList, DeclType, Index, 
                    StructuredList, StructuredIndex);
  } else if (DeclType->isAggregateType()) {
    if (DeclType->isRecordType()) {
      RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
      CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
                            SubobjectIsDesignatorContext, Index,
                            StructuredList, StructuredIndex,
                            TopLevelObject);
    } else if (DeclType->isArrayType()) {
      llvm::APSInt Zero(
                      SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
                      false);
      CheckArrayType(Entity, IList, DeclType, Zero, 
                     SubobjectIsDesignatorContext, Index,
                     StructuredList, StructuredIndex);
    } else
      assert(0 && "Aggregate that isn't a structure or array?!");
  } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
    // This type is invalid, issue a diagnostic.
    ++Index;
    SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
      << DeclType;
    hadError = true;
  } else if (DeclType->isRecordType()) {
    // C++ [dcl.init]p14:
    //   [...] If the class is an aggregate (8.5.1), and the initializer
    //   is a brace-enclosed list, see 8.5.1.
    //
    // Note: 8.5.1 is handled below; here, we diagnose the case where
    // we have an initializer list and a destination type that is not
    // an aggregate.
    // FIXME: In C++0x, this is yet another form of initialization.
    SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
      << DeclType << IList->getSourceRange();
    hadError = true;
  } else if (DeclType->isReferenceType()) {
    CheckReferenceType(Entity, IList, DeclType, Index,
                       StructuredList, StructuredIndex);
  } else {
    // In C, all types are either scalars or aggregates, but
    // additional handling is needed here for C++ (and possibly others?).
    assert(0 && "Unsupported initializer type");
  }
}

void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
                                          InitListExpr *IList,
                                          QualType ElemType,
                                          unsigned &Index,
                                          InitListExpr *StructuredList,
                                          unsigned &StructuredIndex) {
  Expr *expr = IList->getInit(Index);
  if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
    unsigned newIndex = 0;
    unsigned newStructuredIndex = 0;
    InitListExpr *newStructuredList
      = getStructuredSubobjectInit(IList, Index, ElemType,
                                   StructuredList, StructuredIndex,
                                   SubInitList->getSourceRange());
    CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
                          newStructuredList, newStructuredIndex);
    ++StructuredIndex;
    ++Index;
  } else if (Expr *Str = IsStringInit(expr, ElemType, SemaRef.Context)) {
    CheckStringInit(Str, ElemType, SemaRef);
    UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
    ++Index;
  } else if (ElemType->isScalarType()) {
    CheckScalarType(Entity, IList, ElemType, Index, 
                    StructuredList, StructuredIndex);
  } else if (ElemType->isReferenceType()) {
    CheckReferenceType(Entity, IList, ElemType, Index,
                       StructuredList, StructuredIndex);
  } else {
    if (SemaRef.getLangOptions().CPlusPlus) {
      // C++ [dcl.init.aggr]p12:
      //   All implicit type conversions (clause 4) are considered when
      //   initializing the aggregate member with an ini- tializer from
      //   an initializer-list. If the initializer can initialize a
      //   member, the member is initialized. [...]

      // FIXME: Better EqualLoc?
      InitializationKind Kind = 
        InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
      InitializationSequence Seq(SemaRef, Entity, Kind, &expr, 1);
      
      if (Seq) {
        Sema::OwningExprResult Result = 
          Seq.Perform(SemaRef, Entity, Kind,
                      Sema::MultiExprArg(SemaRef, (void **)&expr, 1));
        if (Result.isInvalid())
          hadError = true;
        
        UpdateStructuredListElement(StructuredList, StructuredIndex, 
                                    Result.takeAs<Expr>());
        ++Index;
        return;
      }

      // Fall through for subaggregate initialization
    } else {
      // C99 6.7.8p13:
      //
      //   The initializer for a structure or union object that has
      //   automatic storage duration shall be either an initializer
      //   list as described below, or a single expression that has
      //   compatible structure or union type. In the latter case, the
      //   initial value of the object, including unnamed members, is
      //   that of the expression.
      if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
          SemaRef.Context.hasSameUnqualifiedType(expr->getType(), ElemType)) {
        UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
        ++Index;
        return;
      }

      // Fall through for subaggregate initialization
    }

    // C++ [dcl.init.aggr]p12:
    //
    //   [...] Otherwise, if the member is itself a non-empty
    //   subaggregate, brace elision is assumed and the initializer is
    //   considered for the initialization of the first member of
    //   the subaggregate.
    if (ElemType->isAggregateType() || ElemType->isVectorType()) {
      CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
                            StructuredIndex);
      ++StructuredIndex;
    } else {
      // We cannot initialize this element, so let
      // PerformCopyInitialization produce the appropriate diagnostic.
      SemaRef.PerformCopyInitialization(Entity, SourceLocation(), 
                                        SemaRef.Owned(expr));
      IList->setInit(Index, 0);
      hadError = true;
      ++Index;
      ++StructuredIndex;
    }
  }
}

void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
                                      InitListExpr *IList, QualType DeclType,
                                      unsigned &Index,
                                      InitListExpr *StructuredList,
                                      unsigned &StructuredIndex) {
  if (Index < IList->getNumInits()) {
    Expr *expr = IList->getInit(Index);
    if (isa<InitListExpr>(expr)) {
      SemaRef.Diag(IList->getLocStart(),
                    diag::err_many_braces_around_scalar_init)
        << IList->getSourceRange();
      hadError = true;
      ++Index;
      ++StructuredIndex;
      return;
    } else if (isa<DesignatedInitExpr>(expr)) {
      SemaRef.Diag(expr->getSourceRange().getBegin(),
                    diag::err_designator_for_scalar_init)
        << DeclType << expr->getSourceRange();
      hadError = true;
      ++Index;
      ++StructuredIndex;
      return;
    }

    Sema::OwningExprResult Result =
      SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
                                        SemaRef.Owned(expr));

    Expr *ResultExpr = 0;

    if (Result.isInvalid())
      hadError = true; // types weren't compatible.
    else {
      ResultExpr = Result.takeAs<Expr>();
      
      if (ResultExpr != expr) {
        // The type was promoted, update initializer list.
        IList->setInit(Index, ResultExpr);
      }
    }
    if (hadError)
      ++StructuredIndex;
    else
      UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
    ++Index;
  } else {
    SemaRef.Diag(IList->getLocStart(), diag::err_empty_scalar_initializer)
      << IList->getSourceRange();
    hadError = true;
    ++Index;
    ++StructuredIndex;
    return;
  }
}

void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
                                         InitListExpr *IList, QualType DeclType,
                                         unsigned &Index,
                                         InitListExpr *StructuredList,
                                         unsigned &StructuredIndex) {
  if (Index < IList->getNumInits()) {
    Expr *expr = IList->getInit(Index);
    if (isa<InitListExpr>(expr)) {
      SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
        << DeclType << IList->getSourceRange();
      hadError = true;
      ++Index;
      ++StructuredIndex;
      return;
    }

    Sema::OwningExprResult Result =
      SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
                                        SemaRef.Owned(expr));

    if (Result.isInvalid())
      hadError = true;

    expr = Result.takeAs<Expr>();
    IList->setInit(Index, expr);

    if (hadError)
      ++StructuredIndex;
    else
      UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
    ++Index;
  } else {
    // FIXME: It would be wonderful if we could point at the actual member. In
    // general, it would be useful to pass location information down the stack,
    // so that we know the location (or decl) of the "current object" being
    // initialized.
    SemaRef.Diag(IList->getLocStart(),
                  diag::err_init_reference_member_uninitialized)
      << DeclType
      << IList->getSourceRange();
    hadError = true;
    ++Index;
    ++StructuredIndex;
    return;
  }
}

void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
                                      InitListExpr *IList, QualType DeclType,
                                      unsigned &Index,
                                      InitListExpr *StructuredList,
                                      unsigned &StructuredIndex) {
  if (Index < IList->getNumInits()) {
    const VectorType *VT = DeclType->getAs<VectorType>();
    unsigned maxElements = VT->getNumElements();
    unsigned numEltsInit = 0;
    QualType elementType = VT->getElementType();

    if (!SemaRef.getLangOptions().OpenCL) {
      InitializedEntity ElementEntity =
        InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);

      for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
        // Don't attempt to go past the end of the init list
        if (Index >= IList->getNumInits())
          break;
        
        ElementEntity.setElementIndex(Index);
        CheckSubElementType(ElementEntity, IList, elementType, Index,
                            StructuredList, StructuredIndex);
      }
    } else {
      InitializedEntity ElementEntity =
        InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
      
      // OpenCL initializers allows vectors to be constructed from vectors.
      for (unsigned i = 0; i < maxElements; ++i) {
        // Don't attempt to go past the end of the init list
        if (Index >= IList->getNumInits())
          break;
        
        ElementEntity.setElementIndex(Index);

        QualType IType = IList->getInit(Index)->getType();
        if (!IType->isVectorType()) {
          CheckSubElementType(ElementEntity, IList, elementType, Index,
                              StructuredList, StructuredIndex);
          ++numEltsInit;
        } else {
          const VectorType *IVT = IType->getAs<VectorType>();
          unsigned numIElts = IVT->getNumElements();
          QualType VecType = SemaRef.Context.getExtVectorType(elementType,
                                                              numIElts);
          CheckSubElementType(ElementEntity, IList, VecType, Index,
                              StructuredList, StructuredIndex);
          numEltsInit += numIElts;
        }
      }
    }

    // OpenCL & AltiVec require all elements to be initialized.
    if (numEltsInit != maxElements)
      if (SemaRef.getLangOptions().OpenCL || SemaRef.getLangOptions().AltiVec)
        SemaRef.Diag(IList->getSourceRange().getBegin(),
                     diag::err_vector_incorrect_num_initializers)
          << (numEltsInit < maxElements) << maxElements << numEltsInit;
  }
}

void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
                                     InitListExpr *IList, QualType &DeclType,
                                     llvm::APSInt elementIndex,
                                     bool SubobjectIsDesignatorContext,
                                     unsigned &Index,
                                     InitListExpr *StructuredList,
                                     unsigned &StructuredIndex) {
  // Check for the special-case of initializing an array with a string.
  if (Index < IList->getNumInits()) {
    if (Expr *Str = IsStringInit(IList->getInit(Index), DeclType,
                                 SemaRef.Context)) {
      CheckStringInit(Str, DeclType, SemaRef);
      // We place the string literal directly into the resulting
      // initializer list. This is the only place where the structure
      // of the structured initializer list doesn't match exactly,
      // because doing so would involve allocating one character
      // constant for each string.
      UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
      StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
      ++Index;
      return;
    }
  }
  if (const VariableArrayType *VAT =
        SemaRef.Context.getAsVariableArrayType(DeclType)) {
    // Check for VLAs; in standard C it would be possible to check this
    // earlier, but I don't know where clang accepts VLAs (gcc accepts
    // them in all sorts of strange places).
    SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
                  diag::err_variable_object_no_init)
      << VAT->getSizeExpr()->getSourceRange();
    hadError = true;
    ++Index;
    ++StructuredIndex;
    return;
  }

  // We might know the maximum number of elements in advance.
  llvm::APSInt maxElements(elementIndex.getBitWidth(),
                           elementIndex.isUnsigned());
  bool maxElementsKnown = false;
  if (const ConstantArrayType *CAT =
        SemaRef.Context.getAsConstantArrayType(DeclType)) {
    maxElements = CAT->getSize();
    elementIndex.extOrTrunc(maxElements.getBitWidth());
    elementIndex.setIsUnsigned(maxElements.isUnsigned());
    maxElementsKnown = true;
  }

  QualType elementType = SemaRef.Context.getAsArrayType(DeclType)
                             ->getElementType();
  while (Index < IList->getNumInits()) {
    Expr *Init = IList->getInit(Index);
    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
      // If we're not the subobject that matches up with the '{' for
      // the designator, we shouldn't be handling the
      // designator. Return immediately.
      if (!SubobjectIsDesignatorContext)
        return;

      // Handle this designated initializer. elementIndex will be
      // updated to be the next array element we'll initialize.
      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
                                     DeclType, 0, &elementIndex, Index,
                                     StructuredList, StructuredIndex, true,
                                     false)) {
        hadError = true;
        continue;
      }

      if (elementIndex.getBitWidth() > maxElements.getBitWidth())
        maxElements.extend(elementIndex.getBitWidth());
      else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
        elementIndex.extend(maxElements.getBitWidth());
      elementIndex.setIsUnsigned(maxElements.isUnsigned());

      // If the array is of incomplete type, keep track of the number of
      // elements in the initializer.
      if (!maxElementsKnown && elementIndex > maxElements)
        maxElements = elementIndex;

      continue;
    }

    // If we know the maximum number of elements, and we've already
    // hit it, stop consuming elements in the initializer list.
    if (maxElementsKnown && elementIndex == maxElements)
      break;

    InitializedEntity ElementEntity =
      InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex, 
                                           Entity);
    // Check this element.
    CheckSubElementType(ElementEntity, IList, elementType, Index,
                        StructuredList, StructuredIndex);
    ++elementIndex;

    // If the array is of incomplete type, keep track of the number of
    // elements in the initializer.
    if (!maxElementsKnown && elementIndex > maxElements)
      maxElements = elementIndex;
  }
  if (!hadError && DeclType->isIncompleteArrayType()) {
    // If this is an incomplete array type, the actual type needs to
    // be calculated here.
    llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
    if (maxElements == Zero) {
      // Sizing an array implicitly to zero is not allowed by ISO C,
      // but is supported by GNU.
      SemaRef.Diag(IList->getLocStart(),
                    diag::ext_typecheck_zero_array_size);
    }

    DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
                                                     ArrayType::Normal, 0);
  }
}

void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
                                            InitListExpr *IList,
                                            QualType DeclType,
                                            RecordDecl::field_iterator Field,
                                            bool SubobjectIsDesignatorContext,
                                            unsigned &Index,
                                            InitListExpr *StructuredList,
                                            unsigned &StructuredIndex,
                                            bool TopLevelObject) {
  RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();

  // If the record is invalid, some of it's members are invalid. To avoid
  // confusion, we forgo checking the intializer for the entire record.
  if (structDecl->isInvalidDecl()) {
    hadError = true;
    return;
  }

  if (DeclType->isUnionType() && IList->getNumInits() == 0) {
    // Value-initialize the first named member of the union.
    RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
    for (RecordDecl::field_iterator FieldEnd = RD->field_end();
         Field != FieldEnd; ++Field) {
      if (Field->getDeclName()) {
        StructuredList->setInitializedFieldInUnion(*Field);
        break;
      }
    }
    return;
  }

  // If structDecl is a forward declaration, this loop won't do
  // anything except look at designated initializers; That's okay,
  // because an error should get printed out elsewhere. It might be
  // worthwhile to skip over the rest of the initializer, though.
  RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
  RecordDecl::field_iterator FieldEnd = RD->field_end();
  bool InitializedSomething = false;
  while (Index < IList->getNumInits()) {
    Expr *Init = IList->getInit(Index);

    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
      // If we're not the subobject that matches up with the '{' for
      // the designator, we shouldn't be handling the
      // designator. Return immediately.
      if (!SubobjectIsDesignatorContext)
        return;

      // Handle this designated initializer. Field will be updated to
      // the next field that we'll be initializing.
      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
                                     DeclType, &Field, 0, Index,
                                     StructuredList, StructuredIndex,
                                     true, TopLevelObject))
        hadError = true;

      InitializedSomething = true;
      continue;
    }

    if (Field == FieldEnd) {
      // We've run out of fields. We're done.
      break;
    }

    // We've already initialized a member of a union. We're done.
    if (InitializedSomething && DeclType->isUnionType())
      break;

    // If we've hit the flexible array member at the end, we're done.
    if (Field->getType()->isIncompleteArrayType())
      break;

    if (Field->isUnnamedBitfield()) {
      // Don't initialize unnamed bitfields, e.g. "int : 20;"
      ++Field;
      continue;
    }

    InitializedEntity MemberEntity =
      InitializedEntity::InitializeMember(*Field, &Entity);
    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
                        StructuredList, StructuredIndex);
    InitializedSomething = true;

    if (DeclType->isUnionType()) {
      // Initialize the first field within the union.
      StructuredList->setInitializedFieldInUnion(*Field);
    }

    ++Field;
  }

  if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
      Index >= IList->getNumInits())
    return;

  // Handle GNU flexible array initializers.
  if (!TopLevelObject &&
      (!isa<InitListExpr>(IList->getInit(Index)) ||
       cast<InitListExpr>(IList->getInit(Index))->getNumInits() > 0)) {
    SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
                  diag::err_flexible_array_init_nonempty)
      << IList->getInit(Index)->getSourceRange().getBegin();
    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
      << *Field;
    hadError = true;
    ++Index;
    return;
  } else {
    SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
                 diag::ext_flexible_array_init)
      << IList->getInit(Index)->getSourceRange().getBegin();
    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
      << *Field;
  }

  InitializedEntity MemberEntity =
    InitializedEntity::InitializeMember(*Field, &Entity);
    
  if (isa<InitListExpr>(IList->getInit(Index)))
    CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 
                        StructuredList, StructuredIndex);
  else
    CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index, 
                          StructuredList, StructuredIndex);
}

/// \brief Expand a field designator that refers to a member of an
/// anonymous struct or union into a series of field designators that
/// refers to the field within the appropriate subobject.
///
/// Field/FieldIndex will be updated to point to the (new)
/// currently-designated field.
static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
                                           DesignatedInitExpr *DIE,
                                           unsigned DesigIdx,
                                           FieldDecl *Field,
                                        RecordDecl::field_iterator &FieldIter,
                                           unsigned &FieldIndex) {
  typedef DesignatedInitExpr::Designator Designator;

  // Build the path from the current object to the member of the
  // anonymous struct/union (backwards).
  llvm::SmallVector<FieldDecl *, 4> Path;
  SemaRef.BuildAnonymousStructUnionMemberPath(Field, Path);

  // Build the replacement designators.
  llvm::SmallVector<Designator, 4> Replacements;
  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
         FI = Path.rbegin(), FIEnd = Path.rend();
       FI != FIEnd; ++FI) {
    if (FI + 1 == FIEnd)
      Replacements.push_back(Designator((IdentifierInfo *)0,
                                    DIE->getDesignator(DesigIdx)->getDotLoc(),
                                DIE->getDesignator(DesigIdx)->getFieldLoc()));
    else
      Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
                                        SourceLocation()));
    Replacements.back().setField(*FI);
  }

  // Expand the current designator into the set of replacement
  // designators, so we have a full subobject path down to where the
  // member of the anonymous struct/union is actually stored.
  DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
                        &Replacements[0] + Replacements.size());

  // Update FieldIter/FieldIndex;
  RecordDecl *Record = cast<RecordDecl>(Path.back()->getDeclContext());
  FieldIter = Record->field_begin();
  FieldIndex = 0;
  for (RecordDecl::field_iterator FEnd = Record->field_end();
       FieldIter != FEnd; ++FieldIter) {
    if (FieldIter->isUnnamedBitfield())
        continue;

    if (*FieldIter == Path.back())
      return;

    ++FieldIndex;
  }

  assert(false && "Unable to find anonymous struct/union field");
}

/// @brief Check the well-formedness of a C99 designated initializer.
///
/// Determines whether the designated initializer @p DIE, which
/// resides at the given @p Index within the initializer list @p
/// IList, is well-formed for a current object of type @p DeclType
/// (C99 6.7.8). The actual subobject that this designator refers to
/// within the current subobject is returned in either
/// @p NextField or @p NextElementIndex (whichever is appropriate).
///
/// @param IList  The initializer list in which this designated
/// initializer occurs.
///
/// @param DIE The designated initializer expression.
///
/// @param DesigIdx  The index of the current designator.
///
/// @param DeclType  The type of the "current object" (C99 6.7.8p17),
/// into which the designation in @p DIE should refer.
///
/// @param NextField  If non-NULL and the first designator in @p DIE is
/// a field, this will be set to the field declaration corresponding
/// to the field named by the designator.
///
/// @param NextElementIndex  If non-NULL and the first designator in @p
/// DIE is an array designator or GNU array-range designator, this
/// will be set to the last index initialized by this designator.
///
/// @param Index  Index into @p IList where the designated initializer
/// @p DIE occurs.
///
/// @param StructuredList  The initializer list expression that
/// describes all of the subobject initializers in the order they'll
/// actually be initialized.
///
/// @returns true if there was an error, false otherwise.
bool
InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
                                            InitListExpr *IList,
                                      DesignatedInitExpr *DIE,
                                      unsigned DesigIdx,
                                      QualType &CurrentObjectType,
                                      RecordDecl::field_iterator *NextField,
                                      llvm::APSInt *NextElementIndex,
                                      unsigned &Index,
                                      InitListExpr *StructuredList,
                                      unsigned &StructuredIndex,
                                            bool FinishSubobjectInit,
                                            bool TopLevelObject) {
  if (DesigIdx == DIE->size()) {
    // Check the actual initialization for the designated object type.
    bool prevHadError = hadError;

    // Temporarily remove the designator expression from the
    // initializer list that the child calls see, so that we don't try
    // to re-process the designator.
    unsigned OldIndex = Index;
    IList->setInit(OldIndex, DIE->getInit());

    CheckSubElementType(Entity, IList, CurrentObjectType, Index,
                        StructuredList, StructuredIndex);

    // Restore the designated initializer expression in the syntactic
    // form of the initializer list.
    if (IList->getInit(OldIndex) != DIE->getInit())
      DIE->setInit(IList->getInit(OldIndex));
    IList->setInit(OldIndex, DIE);

    return hadError && !prevHadError;
  }

  bool IsFirstDesignator = (DesigIdx == 0);
  assert((IsFirstDesignator || StructuredList) &&
         "Need a non-designated initializer list to start from");

  DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
  // Determine the structural initializer list that corresponds to the
  // current subobject.
  StructuredList = IsFirstDesignator? SyntacticToSemantic[IList]
    : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
                                 StructuredList, StructuredIndex,
                                 SourceRange(D->getStartLocation(),
                                             DIE->getSourceRange().getEnd()));
  assert(StructuredList && "Expected a structured initializer list");

  if (D->isFieldDesignator()) {
    // C99 6.7.8p7:
    //
    //   If a designator has the form
    //
    //      . identifier
    //
    //   then the current object (defined below) shall have
    //   structure or union type and the identifier shall be the
    //   name of a member of that type.
    const RecordType *RT = CurrentObjectType->getAs<RecordType>();
    if (!RT) {
      SourceLocation Loc = D->getDotLoc();
      if (Loc.isInvalid())
        Loc = D->getFieldLoc();
      SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
        << SemaRef.getLangOptions().CPlusPlus << CurrentObjectType;
      ++Index;
      return true;
    }

    // Note: we perform a linear search of the fields here, despite
    // the fact that we have a faster lookup method, because we always
    // need to compute the field's index.
    FieldDecl *KnownField = D->getField();
    IdentifierInfo *FieldName = D->getFieldName();
    unsigned FieldIndex = 0;
    RecordDecl::field_iterator
      Field = RT->getDecl()->field_begin(),
      FieldEnd = RT->getDecl()->field_end();
    for (; Field != FieldEnd; ++Field) {
      if (Field->isUnnamedBitfield())
        continue;

      if (KnownField == *Field || Field->getIdentifier() == FieldName)
        break;

      ++FieldIndex;
    }

    if (Field == FieldEnd) {
      // There was no normal field in the struct with the designated
      // name. Perform another lookup for this name, which may find
      // something that we can't designate (e.g., a member function),
      // may find nothing, or may find a member of an anonymous
      // struct/union.
      DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
      FieldDecl *ReplacementField = 0;
      if (Lookup.first == Lookup.second) {
        // Name lookup didn't find anything. Determine whether this
        // was a typo for another field name.
        LookupResult R(SemaRef, FieldName, D->getFieldLoc(), 
                       Sema::LookupMemberName);
        if (SemaRef.CorrectTypo(R, /*Scope=*/0, /*SS=*/0, RT->getDecl()) &&
            (ReplacementField = R.getAsSingle<FieldDecl>()) &&
            ReplacementField->getDeclContext()->getLookupContext()
                                                      ->Equals(RT->getDecl())) {
          SemaRef.Diag(D->getFieldLoc(), 
                       diag::err_field_designator_unknown_suggest)
            << FieldName << CurrentObjectType << R.getLookupName()
            << CodeModificationHint::CreateReplacement(D->getFieldLoc(),
                                               R.getLookupName().getAsString());
          SemaRef.Diag(ReplacementField->getLocation(), 
                       diag::note_previous_decl)
            << ReplacementField->getDeclName();
        } else {
          SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
            << FieldName << CurrentObjectType;
          ++Index;
          return true;
        }
      } else if (!KnownField) {
        // Determine whether we found a field at all.
        ReplacementField = dyn_cast<FieldDecl>(*Lookup.first);
      }

      if (!ReplacementField) {
        // Name lookup found something, but it wasn't a field.
        SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
          << FieldName;
        SemaRef.Diag((*Lookup.first)->getLocation(),
                      diag::note_field_designator_found);
        ++Index;
        return true;
      }

      if (!KnownField && 
          cast<RecordDecl>((ReplacementField)->getDeclContext())
                                                 ->isAnonymousStructOrUnion()) {
        // Handle an field designator that refers to a member of an
        // anonymous struct or union.
        ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx,
                                       ReplacementField,
                                       Field, FieldIndex);
        D = DIE->getDesignator(DesigIdx);
      } else if (!KnownField) {
        // The replacement field comes from typo correction; find it
        // in the list of fields.
        FieldIndex = 0;
        Field = RT->getDecl()->field_begin();
        for (; Field != FieldEnd; ++Field) {
          if (Field->isUnnamedBitfield())
            continue;

          if (ReplacementField == *Field || 
              Field->getIdentifier() == ReplacementField->getIdentifier())
            break;

          ++FieldIndex;
        }
      }
    } else if (!KnownField &&
               cast<RecordDecl>((*Field)->getDeclContext())
                 ->isAnonymousStructOrUnion()) {
      ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, *Field,
                                     Field, FieldIndex);
      D = DIE->getDesignator(DesigIdx);
    }

    // All of the fields of a union are located at the same place in
    // the initializer list.
    if (RT->getDecl()->isUnion()) {
      FieldIndex = 0;
      StructuredList->setInitializedFieldInUnion(*Field);
    }

    // Update the designator with the field declaration.
    D->setField(*Field);

    // Make sure that our non-designated initializer list has space
    // for a subobject corresponding to this field.
    if (FieldIndex >= StructuredList->getNumInits())
      StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);

    // This designator names a flexible array member.
    if (Field->getType()->isIncompleteArrayType()) {
      bool Invalid = false;
      if ((DesigIdx + 1) != DIE->size()) {
        // We can't designate an object within the flexible array
        // member (because GCC doesn't allow it).
        DesignatedInitExpr::Designator *NextD
          = DIE->getDesignator(DesigIdx + 1);
        SemaRef.Diag(NextD->getStartLocation(),
                      diag::err_designator_into_flexible_array_member)
          << SourceRange(NextD->getStartLocation(),
                         DIE->getSourceRange().getEnd());
        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
          << *Field;
        Invalid = true;
      }

      if (!hadError && !isa<InitListExpr>(DIE->getInit())) {
        // The initializer is not an initializer list.
        SemaRef.Diag(DIE->getInit()->getSourceRange().getBegin(),
                      diag::err_flexible_array_init_needs_braces)
          << DIE->getInit()->getSourceRange();
        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
          << *Field;
        Invalid = true;
      }

      // Handle GNU flexible array initializers.
      if (!Invalid && !TopLevelObject &&
          cast<InitListExpr>(DIE->getInit())->getNumInits() > 0) {
        SemaRef.Diag(DIE->getSourceRange().getBegin(),
                      diag::err_flexible_array_init_nonempty)
          << DIE->getSourceRange().getBegin();
        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
          << *Field;
        Invalid = true;
      }

      if (Invalid) {
        ++Index;
        return true;
      }

      // Initialize the array.
      bool prevHadError = hadError;
      unsigned newStructuredIndex = FieldIndex;
      unsigned OldIndex = Index;
      IList->setInit(Index, DIE->getInit());

      InitializedEntity MemberEntity =
        InitializedEntity::InitializeMember(*Field, &Entity);
      CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
                          StructuredList, newStructuredIndex);

      IList->setInit(OldIndex, DIE);
      if (hadError && !prevHadError) {
        ++Field;
        ++FieldIndex;
        if (NextField)
          *NextField = Field;
        StructuredIndex = FieldIndex;
        return true;
      }
    } else {
      // Recurse to check later designated subobjects.
      QualType FieldType = (*Field)->getType();
      unsigned newStructuredIndex = FieldIndex;
      
      InitializedEntity MemberEntity =
        InitializedEntity::InitializeMember(*Field, &Entity);
      if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1, 
                                     FieldType, 0, 0, Index, 
                                     StructuredList, newStructuredIndex,
                                     true, false))
        return true;
    }

    // Find the position of the next field to be initialized in this
    // subobject.
    ++Field;
    ++FieldIndex;

    // If this the first designator, our caller will continue checking
    // the rest of this struct/class/union subobject.
    if (IsFirstDesignator) {
      if (NextField)
        *NextField = Field;
      StructuredIndex = FieldIndex;
      return false;
    }

    if (!FinishSubobjectInit)
      return false;

    // We've already initialized something in the union; we're done.
    if (RT->getDecl()->isUnion())
      return hadError;

    // Check the remaining fields within this class/struct/union subobject.
    bool prevHadError = hadError;
    
    CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
                          StructuredList, FieldIndex);
    return hadError && !prevHadError;
  }

  // C99 6.7.8p6:
  //
  //   If a designator has the form
  //
  //      [ constant-expression ]
  //
  //   then the current object (defined below) shall have array
  //   type and the expression shall be an integer constant
  //   expression. If the array is of unknown size, any
  //   nonnegative value is valid.
  //
  // Additionally, cope with the GNU extension that permits
  // designators of the form
  //
  //      [ constant-expression ... constant-expression ]
  const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
  if (!AT) {
    SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
      << CurrentObjectType;
    ++Index;
    return true;
  }

  Expr *IndexExpr = 0;
  llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
  if (D->isArrayDesignator()) {
    IndexExpr = DIE->getArrayIndex(*D);
    DesignatedStartIndex = IndexExpr->EvaluateAsInt(SemaRef.Context);
    DesignatedEndIndex = DesignatedStartIndex;
  } else {
    assert(D->isArrayRangeDesignator() && "Need array-range designator");


    DesignatedStartIndex =
      DIE->getArrayRangeStart(*D)->EvaluateAsInt(SemaRef.Context);
    DesignatedEndIndex =
      DIE->getArrayRangeEnd(*D)->EvaluateAsInt(SemaRef.Context);
    IndexExpr = DIE->getArrayRangeEnd(*D);

    if (DesignatedStartIndex.getZExtValue() !=DesignatedEndIndex.getZExtValue())
      FullyStructuredList->sawArrayRangeDesignator();
  }

  if (isa<ConstantArrayType>(AT)) {
    llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
    DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
    DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
    DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
    DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
    if (DesignatedEndIndex >= MaxElements) {
      SemaRef.Diag(IndexExpr->getSourceRange().getBegin(),
                    diag::err_array_designator_too_large)
        << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
        << IndexExpr->getSourceRange();
      ++Index;
      return true;
    }
  } else {
    // Make sure the bit-widths and signedness match.
    if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
      DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
    else if (DesignatedStartIndex.getBitWidth() <
             DesignatedEndIndex.getBitWidth())
      DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
    DesignatedStartIndex.setIsUnsigned(true);
    DesignatedEndIndex.setIsUnsigned(true);
  }

  // Make sure that our non-designated initializer list has space
  // for a subobject corresponding to this array element.
  if (DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
    StructuredList->resizeInits(SemaRef.Context,
                                DesignatedEndIndex.getZExtValue() + 1);

  // Repeatedly perform subobject initializations in the range
  // [DesignatedStartIndex, DesignatedEndIndex].

  // Move to the next designator
  unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
  unsigned OldIndex = Index;
  
  InitializedEntity ElementEntity =
    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);

  while (DesignatedStartIndex <= DesignatedEndIndex) {
    // Recurse to check later designated subobjects.
    QualType ElementType = AT->getElementType();
    Index = OldIndex;
    
    ElementEntity.setElementIndex(ElementIndex);
    if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1, 
                                   ElementType, 0, 0, Index, 
                                   StructuredList, ElementIndex,
                                   (DesignatedStartIndex == DesignatedEndIndex),
                                   false))
      return true;

    // Move to the next index in the array that we'll be initializing.
    ++DesignatedStartIndex;
    ElementIndex = DesignatedStartIndex.getZExtValue();
  }

  // If this the first designator, our caller will continue checking
  // the rest of this array subobject.
  if (IsFirstDesignator) {
    if (NextElementIndex)
      *NextElementIndex = DesignatedStartIndex;
    StructuredIndex = ElementIndex;
    return false;
  }

  if (!FinishSubobjectInit)
    return false;

  // Check the remaining elements within this array subobject.
  bool prevHadError = hadError;
  CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex, 
                 /*SubobjectIsDesignatorContext=*/false, Index,
                 StructuredList, ElementIndex);
  return hadError && !prevHadError;
}

// Get the structured initializer list for a subobject of type
// @p CurrentObjectType.
InitListExpr *
InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
                                            QualType CurrentObjectType,
                                            InitListExpr *StructuredList,
                                            unsigned StructuredIndex,
                                            SourceRange InitRange) {
  Expr *ExistingInit = 0;
  if (!StructuredList)
    ExistingInit = SyntacticToSemantic[IList];
  else if (StructuredIndex < StructuredList->getNumInits())
    ExistingInit = StructuredList->getInit(StructuredIndex);

  if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
    return Result;

  if (ExistingInit) {
    // We are creating an initializer list that initializes the
    // subobjects of the current object, but there was already an
    // initialization that completely initialized the current
    // subobject, e.g., by a compound literal:
    //
    // struct X { int a, b; };
    // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
    //
    // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
    // designated initializer re-initializes the whole
    // subobject [0], overwriting previous initializers.
    SemaRef.Diag(InitRange.getBegin(),
                 diag::warn_subobject_initializer_overrides)
      << InitRange;
    SemaRef.Diag(ExistingInit->getSourceRange().getBegin(),
                  diag::note_previous_initializer)
      << /*FIXME:has side effects=*/0
      << ExistingInit->getSourceRange();
  }

  InitListExpr *Result
    = new (SemaRef.Context) InitListExpr(InitRange.getBegin(), 0, 0,
                                         InitRange.getEnd());

  Result->setType(CurrentObjectType.getNonReferenceType());

  // Pre-allocate storage for the structured initializer list.
  unsigned NumElements = 0;
  unsigned NumInits = 0;
  if (!StructuredList)
    NumInits = IList->getNumInits();
  else if (Index < IList->getNumInits()) {
    if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index)))
      NumInits = SubList->getNumInits();
  }

  if (const ArrayType *AType
      = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
      NumElements = CAType->getSize().getZExtValue();
      // Simple heuristic so that we don't allocate a very large
      // initializer with many empty entries at the end.
      if (NumInits && NumElements > NumInits)
        NumElements = 0;
    }
  } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
    NumElements = VType->getNumElements();
  else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
    RecordDecl *RDecl = RType->getDecl();
    if (RDecl->isUnion())
      NumElements = 1;
    else
      NumElements = std::distance(RDecl->field_begin(),
                                  RDecl->field_end());
  }

  if (NumElements < NumInits)
    NumElements = IList->getNumInits();

  Result->reserveInits(NumElements);

  // Link this new initializer list into the structured initializer
  // lists.
  if (StructuredList)
    StructuredList->updateInit(StructuredIndex, Result);
  else {
    Result->setSyntacticForm(IList);
    SyntacticToSemantic[IList] = Result;
  }

  return Result;
}

/// Update the initializer at index @p StructuredIndex within the
/// structured initializer list to the value @p expr.
void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
                                                  unsigned &StructuredIndex,
                                                  Expr *expr) {
  // No structured initializer list to update
  if (!StructuredList)
    return;

  if (Expr *PrevInit = StructuredList->updateInit(StructuredIndex, expr)) {
    // This initializer overwrites a previous initializer. Warn.
    SemaRef.Diag(expr->getSourceRange().getBegin(),
                  diag::warn_initializer_overrides)
      << expr->getSourceRange();
    SemaRef.Diag(PrevInit->getSourceRange().getBegin(),
                  diag::note_previous_initializer)
      << /*FIXME:has side effects=*/0
      << PrevInit->getSourceRange();
  }

  ++StructuredIndex;
}

/// Check that the given Index expression is a valid array designator
/// value. This is essentailly just a wrapper around
/// VerifyIntegerConstantExpression that also checks for negative values
/// and produces a reasonable diagnostic if there is a
/// failure. Returns true if there was an error, false otherwise.  If
/// everything went okay, Value will receive the value of the constant
/// expression.
static bool
CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
  SourceLocation Loc = Index->getSourceRange().getBegin();

  // Make sure this is an integer constant expression.
  if (S.VerifyIntegerConstantExpression(Index, &Value))
    return true;

  if (Value.isSigned() && Value.isNegative())
    return S.Diag(Loc, diag::err_array_designator_negative)
      << Value.toString(10) << Index->getSourceRange();

  Value.setIsUnsigned(true);
  return false;
}

Sema::OwningExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
                                                        SourceLocation Loc,
                                                        bool GNUSyntax,
                                                        OwningExprResult Init) {
  typedef DesignatedInitExpr::Designator ASTDesignator;

  bool Invalid = false;
  llvm::SmallVector<ASTDesignator, 32> Designators;
  llvm::SmallVector<Expr *, 32> InitExpressions;

  // Build designators and check array designator expressions.
  for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
    const Designator &D = Desig.getDesignator(Idx);
    switch (D.getKind()) {
    case Designator::FieldDesignator:
      Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
                                          D.getFieldLoc()));
      break;

    case Designator::ArrayDesignator: {
      Expr *Index = static_cast<Expr *>(D.getArrayIndex());
      llvm::APSInt IndexValue;
      if (!Index->isTypeDependent() &&
          !Index->isValueDependent() &&
          CheckArrayDesignatorExpr(*this, Index, IndexValue))
        Invalid = true;
      else {
        Designators.push_back(ASTDesignator(InitExpressions.size(),
                                            D.getLBracketLoc(),
                                            D.getRBracketLoc()));
        InitExpressions.push_back(Index);
      }
      break;
    }

    case Designator::ArrayRangeDesignator: {
      Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
      Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
      llvm::APSInt StartValue;
      llvm::APSInt EndValue;
      bool StartDependent = StartIndex->isTypeDependent() ||
                            StartIndex->isValueDependent();
      bool EndDependent = EndIndex->isTypeDependent() ||
                          EndIndex->isValueDependent();
      if ((!StartDependent &&
           CheckArrayDesignatorExpr(*this, StartIndex, StartValue)) ||
          (!EndDependent &&
           CheckArrayDesignatorExpr(*this, EndIndex, EndValue)))
        Invalid = true;
      else {
        // Make sure we're comparing values with the same bit width.
        if (StartDependent || EndDependent) {
          // Nothing to compute.
        } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
          EndValue.extend(StartValue.getBitWidth());
        else if (StartValue.getBitWidth() < EndValue.getBitWidth())
          StartValue.extend(EndValue.getBitWidth());

        if (!StartDependent && !EndDependent && EndValue < StartValue) {
          Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
            << StartValue.toString(10) << EndValue.toString(10)
            << StartIndex->getSourceRange() << EndIndex->getSourceRange();
          Invalid = true;
        } else {
          Designators.push_back(ASTDesignator(InitExpressions.size(),
                                              D.getLBracketLoc(),
                                              D.getEllipsisLoc(),
                                              D.getRBracketLoc()));
          InitExpressions.push_back(StartIndex);
          InitExpressions.push_back(EndIndex);
        }
      }
      break;
    }
    }
  }

  if (Invalid || Init.isInvalid())
    return ExprError();

  // Clear out the expressions within the designation.
  Desig.ClearExprs(*this);

  DesignatedInitExpr *DIE
    = DesignatedInitExpr::Create(Context,
                                 Designators.data(), Designators.size(),
                                 InitExpressions.data(), InitExpressions.size(),
                                 Loc, GNUSyntax, Init.takeAs<Expr>());
  return Owned(DIE);
}

bool Sema::CheckInitList(const InitializedEntity &Entity,
                         InitListExpr *&InitList, QualType &DeclType) {
  InitListChecker CheckInitList(*this, Entity, InitList, DeclType);
  if (!CheckInitList.HadError())
    InitList = CheckInitList.getFullyStructuredList();

  return CheckInitList.HadError();
}

//===----------------------------------------------------------------------===//
// Initialization entity
//===----------------------------------------------------------------------===//

InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index, 
                                     const InitializedEntity &Parent)
  : Parent(&Parent), Index(Index) 
{
  if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
    Kind = EK_ArrayElement;
    Type = AT->getElementType();
  } else {
    Kind = EK_VectorElement;
    Type = Parent.getType()->getAs<VectorType>()->getElementType();
  }
}

InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context, 
                                                    CXXBaseSpecifier *Base)
{
  InitializedEntity Result;
  Result.Kind = EK_Base;
  Result.Base = Base;
  Result.Type = Base->getType();
  return Result;
}

DeclarationName InitializedEntity::getName() const {
  switch (getKind()) {
  case EK_Parameter:
    if (!VariableOrMember)
      return DeclarationName();
    // Fall through

  case EK_Variable:
  case EK_Member:
    return VariableOrMember->getDeclName();

  case EK_Result:
  case EK_Exception:
  case EK_New:
  case EK_Temporary:
  case EK_Base:
  case EK_ArrayElement:
  case EK_VectorElement:
    return DeclarationName();
  }
  
  // Silence GCC warning
  return DeclarationName();
}

DeclaratorDecl *InitializedEntity::getDecl() const {
  switch (getKind()) {
  case EK_Variable:
  case EK_Parameter:
  case EK_Member:
    return VariableOrMember;

  case EK_Result:
  case EK_Exception:
  case EK_New:
  case EK_Temporary:
  case EK_Base:
  case EK_ArrayElement:
  case EK_VectorElement:
    return 0;
  }
  
  // Silence GCC warning
  return 0;
}

//===----------------------------------------------------------------------===//
// Initialization sequence
//===----------------------------------------------------------------------===//

void InitializationSequence::Step::Destroy() {
  switch (Kind) {
  case SK_ResolveAddressOfOverloadedFunction:
  case SK_CastDerivedToBaseRValue:
  case SK_CastDerivedToBaseLValue:
  case SK_BindReference:
  case SK_BindReferenceToTemporary:
  case SK_UserConversion:
  case SK_QualificationConversionRValue:
  case SK_QualificationConversionLValue:
  case SK_ListInitialization:
  case SK_ConstructorInitialization:
  case SK_ZeroInitialization:
  case SK_CAssignment:
  case SK_StringInit:
    break;
    
  case SK_ConversionSequence:
    delete ICS;
  }
}

void InitializationSequence::AddAddressOverloadResolutionStep(
                                                      FunctionDecl *Function) {
  Step S;
  S.Kind = SK_ResolveAddressOfOverloadedFunction;
  S.Type = Function->getType();
  // Access is currently ignored for these.
  S.Function = DeclAccessPair::make(Function, AccessSpecifier(0));
  Steps.push_back(S);
}

void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType, 
                                                      bool IsLValue) {
  Step S;
  S.Kind = IsLValue? SK_CastDerivedToBaseLValue : SK_CastDerivedToBaseRValue;
  S.Type = BaseType;
  Steps.push_back(S);
}

void InitializationSequence::AddReferenceBindingStep(QualType T, 
                                                     bool BindingTemporary) {
  Step S;
  S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
  S.Type = T;
  Steps.push_back(S);
}

void InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
                                                   AccessSpecifier Access,
                                                   QualType T) {
  Step S;
  S.Kind = SK_UserConversion;
  S.Type = T;
  S.Function = DeclAccessPair::make(Function, Access);
  Steps.push_back(S);
}

void InitializationSequence::AddQualificationConversionStep(QualType Ty,
                                                            bool IsLValue) {
  Step S;
  S.Kind = IsLValue? SK_QualificationConversionLValue 
                   : SK_QualificationConversionRValue;
  S.Type = Ty;
  Steps.push_back(S);
}

void InitializationSequence::AddConversionSequenceStep(
                                       const ImplicitConversionSequence &ICS,
                                                       QualType T) {
  Step S;
  S.Kind = SK_ConversionSequence;
  S.Type = T;
  S.ICS = new ImplicitConversionSequence(ICS);
  Steps.push_back(S);
}

void InitializationSequence::AddListInitializationStep(QualType T) {
  Step S;
  S.Kind = SK_ListInitialization;
  S.Type = T;
  Steps.push_back(S);
}

void 
InitializationSequence::AddConstructorInitializationStep(
                                              CXXConstructorDecl *Constructor,
                                                       AccessSpecifier Access,
                                                         QualType T) {
  Step S;
  S.Kind = SK_ConstructorInitialization;
  S.Type = T;
  S.Function = DeclAccessPair::make(Constructor, Access);
  Steps.push_back(S);
}

void InitializationSequence::AddZeroInitializationStep(QualType T) {
  Step S;
  S.Kind = SK_ZeroInitialization;
  S.Type = T;
  Steps.push_back(S);
}

void InitializationSequence::AddCAssignmentStep(QualType T) {
  Step S;
  S.Kind = SK_CAssignment;
  S.Type = T;
  Steps.push_back(S);
}

void InitializationSequence::AddStringInitStep(QualType T) {
  Step S;
  S.Kind = SK_StringInit;
  S.Type = T;
  Steps.push_back(S);
}

void InitializationSequence::SetOverloadFailure(FailureKind Failure, 
                                                OverloadingResult Result) {
  SequenceKind = FailedSequence;
  this->Failure = Failure;
  this->FailedOverloadResult = Result;
}

//===----------------------------------------------------------------------===//
// Attempt initialization
//===----------------------------------------------------------------------===//

/// \brief Attempt list initialization (C++0x [dcl.init.list]) 
static void TryListInitialization(Sema &S, 
                                  const InitializedEntity &Entity,
                                  const InitializationKind &Kind,
                                  InitListExpr *InitList,
                                  InitializationSequence &Sequence) {
  // FIXME: We only perform rudimentary checking of list
  // initializations at this point, then assume that any list
  // initialization of an array, aggregate, or scalar will be
  // well-formed. We we actually "perform" list initialization, we'll
  // do all of the necessary checking.  C++0x initializer lists will
  // force us to perform more checking here.
  Sequence.setSequenceKind(InitializationSequence::ListInitialization);

  QualType DestType = Entity.getType();

  // C++ [dcl.init]p13:
  //   If T is a scalar type, then a declaration of the form 
  //
  //     T x = { a };
  //
  //   is equivalent to
  //
  //     T x = a;
  if (DestType->isScalarType()) {
    if (InitList->getNumInits() > 1 && S.getLangOptions().CPlusPlus) {
      Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
      return;
    }

    // Assume scalar initialization from a single value works.
  } else if (DestType->isAggregateType()) {
    // Assume aggregate initialization works.
  } else if (DestType->isVectorType()) {
    // Assume vector initialization works.
  } else if (DestType->isReferenceType()) {
    // FIXME: C++0x defines behavior for this.
    Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
    return;
  } else if (DestType->isRecordType()) {
    // FIXME: C++0x defines behavior for this
    Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
  }

  // Add a general "list initialization" step.
  Sequence.AddListInitializationStep(DestType);
}

/// \brief Try a reference initialization that involves calling a conversion
/// function.
///
/// FIXME: look intos DRs 656, 896
static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
                                             const InitializedEntity &Entity,
                                             const InitializationKind &Kind,
                                                          Expr *Initializer,
                                                          bool AllowRValues,
                                             InitializationSequence &Sequence) {
  QualType DestType = Entity.getType();
  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
  QualType T1 = cv1T1.getUnqualifiedType();
  QualType cv2T2 = Initializer->getType();
  QualType T2 = cv2T2.getUnqualifiedType();

  bool DerivedToBase;
  assert(!S.CompareReferenceRelationship(Initializer->getLocStart(), 
                                         T1, T2, DerivedToBase) &&
         "Must have incompatible references when binding via conversion");
  (void)DerivedToBase;

  // Build the candidate set directly in the initialization sequence
  // structure, so that it will persist if we fail.
  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
  CandidateSet.clear();

  // Determine whether we are allowed to call explicit constructors or
  // explicit conversion operators.
  bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
  
  const RecordType *T1RecordType = 0;
  if (AllowRValues && (T1RecordType = T1->getAs<RecordType>())) {
    // The type we're converting to is a class type. Enumerate its constructors
    // to see if there is a suitable conversion.
    CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
    
    DeclarationName ConstructorName
      = S.Context.DeclarationNames.getCXXConstructorName(
                           S.Context.getCanonicalType(T1).getUnqualifiedType());
    DeclContext::lookup_iterator Con, ConEnd;
    for (llvm::tie(Con, ConEnd) = T1RecordDecl->lookup(ConstructorName);
         Con != ConEnd; ++Con) {
      // Find the constructor (which may be a template).
      CXXConstructorDecl *Constructor = 0;
      FunctionTemplateDecl *ConstructorTmpl
        = dyn_cast<FunctionTemplateDecl>(*Con);
      if (ConstructorTmpl)
        Constructor = cast<CXXConstructorDecl>(
                                         ConstructorTmpl->getTemplatedDecl());
      else
        Constructor = cast<CXXConstructorDecl>(*Con);
      
      if (!Constructor->isInvalidDecl() &&
          Constructor->isConvertingConstructor(AllowExplicit)) {
        if (ConstructorTmpl)
          S.AddTemplateOverloadCandidate(ConstructorTmpl,
                                         ConstructorTmpl->getAccess(),
                                         /*ExplicitArgs*/ 0,
                                         &Initializer, 1, CandidateSet);
        else
          S.AddOverloadCandidate(Constructor, Constructor->getAccess(),
                                 &Initializer, 1, CandidateSet);
      }
    }    
  }
  
  if (const RecordType *T2RecordType = T2->getAs<RecordType>()) {
    // The type we're converting from is a class type, enumerate its conversion
    // functions.
    CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());

    // Determine the type we are converting to. If we are allowed to
    // convert to an rvalue, take the type that the destination type
    // refers to.
    QualType ToType = AllowRValues? cv1T1 : DestType;

    const UnresolvedSetImpl *Conversions
      = T2RecordDecl->getVisibleConversionFunctions();
    for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
           E = Conversions->end(); I != E; ++I) {
      NamedDecl *D = *I;
      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
      if (isa<UsingShadowDecl>(D))
        D = cast<UsingShadowDecl>(D)->getTargetDecl();
      
      FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
      CXXConversionDecl *Conv;
      if (ConvTemplate)
        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
      else
        Conv = cast<CXXConversionDecl>(*I);
      
      // If the conversion function doesn't return a reference type,
      // it can't be considered for this conversion unless we're allowed to
      // consider rvalues.
      // FIXME: Do we need to make sure that we only consider conversion 
      // candidates with reference-compatible results? That might be needed to 
      // break recursion.
      if ((AllowExplicit || !Conv->isExplicit()) &&
          (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
        if (ConvTemplate)
          S.AddTemplateConversionCandidate(ConvTemplate, I.getAccess(),
                                           ActingDC, Initializer,
                                           ToType, CandidateSet);
        else
          S.AddConversionCandidate(Conv, I.getAccess(), ActingDC,
                                   Initializer, cv1T1, CandidateSet);
      }
    }
  }
  
  SourceLocation DeclLoc = Initializer->getLocStart();

  // Perform overload resolution. If it fails, return the failed result.  
  OverloadCandidateSet::iterator Best;
  if (OverloadingResult Result 
        = S.BestViableFunction(CandidateSet, DeclLoc, Best))
    return Result;

  FunctionDecl *Function = Best->Function;

  // Compute the returned type of the conversion.
  if (isa<CXXConversionDecl>(Function))
    T2 = Function->getResultType();
  else
    T2 = cv1T1;

  // Add the user-defined conversion step.
  Sequence.AddUserConversionStep(Function, Best->getAccess(),
                                 T2.getNonReferenceType());

  // Determine whether we need to perform derived-to-base or 
  // cv-qualification adjustments.
  bool NewDerivedToBase = false;
  Sema::ReferenceCompareResult NewRefRelationship
    = S.CompareReferenceRelationship(DeclLoc, T1, T2.getNonReferenceType(),
                                     NewDerivedToBase);
  assert(NewRefRelationship != Sema::Ref_Incompatible &&
         "Overload resolution picked a bad conversion function");
  (void)NewRefRelationship;
  if (NewDerivedToBase)
    Sequence.AddDerivedToBaseCastStep(
                                S.Context.getQualifiedType(T1,
                                  T2.getNonReferenceType().getQualifiers()), 
                                  /*isLValue=*/true);
  
  if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
    Sequence.AddQualificationConversionStep(cv1T1, T2->isReferenceType());
  
  Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
  return OR_Success;
}
  
/// \brief Attempt reference initialization (C++0x [dcl.init.list]) 
static void TryReferenceInitialization(Sema &S, 
                                       const InitializedEntity &Entity,
                                       const InitializationKind &Kind,
                                       Expr *Initializer,
                                       InitializationSequence &Sequence) {
  Sequence.setSequenceKind(InitializationSequence::ReferenceBinding);
  
  QualType DestType = Entity.getType();
  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
  Qualifiers T1Quals;
  QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
  QualType cv2T2 = Initializer->getType();
  Qualifiers T2Quals;
  QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
  SourceLocation DeclLoc = Initializer->getLocStart();
  
  // If the initializer is the address of an overloaded function, try
  // to resolve the overloaded function. If all goes well, T2 is the
  // type of the resulting function.
  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
    FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Initializer, 
                                                            T1,
                                                            false);
    if (!Fn) {
      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
      return;
    }
    
    Sequence.AddAddressOverloadResolutionStep(Fn);
    cv2T2 = Fn->getType();
    T2 = cv2T2.getUnqualifiedType();
  }
  
  // FIXME: Rvalue references
  bool ForceRValue = false;
  
  // Compute some basic properties of the types and the initializer.
  bool isLValueRef = DestType->isLValueReferenceType();
  bool isRValueRef = !isLValueRef;
  bool DerivedToBase = false;
  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
                                    Initializer->isLvalue(S.Context);
  Sema::ReferenceCompareResult RefRelationship
    = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase);
  
  // C++0x [dcl.init.ref]p5:
  //   A reference to type "cv1 T1" is initialized by an expression of type 
  //   "cv2 T2" as follows:
  //
  //     - If the reference is an lvalue reference and the initializer 
  //       expression
  OverloadingResult ConvOvlResult = OR_Success;
  if (isLValueRef) {
    if (InitLvalue == Expr::LV_Valid && 
        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
      //   - is an lvalue (but is not a bit-field), and "cv1 T1" is 
      //     reference-compatible with "cv2 T2," or
      //
      // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a 
      // bit-field when we're determining whether the reference initialization
      // can occur. However, we do pay attention to whether it is a bit-field
      // to decide whether we're actually binding to a temporary created from
      // the bit-field.
      if (DerivedToBase)
        Sequence.AddDerivedToBaseCastStep(
                         S.Context.getQualifiedType(T1, T2Quals), 
                         /*isLValue=*/true);
      if (T1Quals != T2Quals)
        Sequence.AddQualificationConversionStep(cv1T1, /*IsLValue=*/true);
      bool BindingTemporary = T1Quals.hasConst() && !T1Quals.hasVolatile() &&
        (Initializer->getBitField() || Initializer->refersToVectorElement());
      Sequence.AddReferenceBindingStep(cv1T1, BindingTemporary);
      return;
    }
    
    //     - has a class type (i.e., T2 is a class type), where T1 is not 
    //       reference-related to T2, and can be implicitly converted to an 
    //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible 
    //       with "cv3 T3" (this conversion is selected by enumerating the 
    //       applicable conversion functions (13.3.1.6) and choosing the best
    //       one through overload resolution (13.3)),
    if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType()) {
      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind, 
                                                       Initializer,
                                                       /*AllowRValues=*/false,
                                                       Sequence);
      if (ConvOvlResult == OR_Success)
        return;
      if (ConvOvlResult != OR_No_Viable_Function) {
        Sequence.SetOverloadFailure(
                      InitializationSequence::FK_ReferenceInitOverloadFailed,
                                    ConvOvlResult);
      }
    }
  }
  
  //     - Otherwise, the reference shall be an lvalue reference to a 
  //       non-volatile const type (i.e., cv1 shall be const), or the reference
  //       shall be an rvalue reference and the initializer expression shall 
  //       be an rvalue.
  if (!((isLValueRef && T1Quals.hasConst() && !T1Quals.hasVolatile()) ||
        (isRValueRef && InitLvalue != Expr::LV_Valid))) {
    if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
      Sequence.SetOverloadFailure(
                        InitializationSequence::FK_ReferenceInitOverloadFailed,
                                  ConvOvlResult);
    else if (isLValueRef)
      Sequence.SetFailed(InitLvalue == Expr::LV_Valid
        ? (RefRelationship == Sema::Ref_Related
             ? InitializationSequence::FK_ReferenceInitDropsQualifiers
             : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
        : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
    else
      Sequence.SetFailed(
                    InitializationSequence::FK_RValueReferenceBindingToLValue);
    
    return;
  }
  
  //       - If T1 and T2 are class types and
  if (T1->isRecordType() && T2->isRecordType()) {
    //       - the initializer expression is an rvalue and "cv1 T1" is 
    //         reference-compatible with "cv2 T2", or
    if (InitLvalue != Expr::LV_Valid && 
        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
      if (DerivedToBase)
        Sequence.AddDerivedToBaseCastStep(
                         S.Context.getQualifiedType(T1, T2Quals), 
                         /*isLValue=*/false);
      if (T1Quals != T2Quals)
        Sequence.AddQualificationConversionStep(cv1T1, /*IsLValue=*/false);
      Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
      return;
    }
    
    //       - T1 is not reference-related to T2 and the initializer expression
    //         can be implicitly converted to an rvalue of type "cv3 T3" (this
    //         conversion is selected by enumerating the applicable conversion
    //         functions (13.3.1.6) and choosing the best one through overload 
    //         resolution (13.3)),
    if (RefRelationship == Sema::Ref_Incompatible) {
      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
                                                       Kind, Initializer,
                                                       /*AllowRValues=*/true,
                                                       Sequence);
      if (ConvOvlResult)
        Sequence.SetOverloadFailure(
                      InitializationSequence::FK_ReferenceInitOverloadFailed,
                                    ConvOvlResult);
        
      return;
    }
    
    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
    return;
  }
  
  //      - If the initializer expression is an rvalue, with T2 an array type,
  //        and "cv1 T1" is reference-compatible with "cv2 T2," the reference
  //        is bound to the object represented by the rvalue (see 3.10).
  // FIXME: How can an array type be reference-compatible with anything?
  // Don't we mean the element types of T1 and T2?
  
  //      - Otherwise, a temporary of type “cv1 T1” is created and initialized
  //        from the initializer expression using the rules for a non-reference
  //        copy initialization (8.5). The reference is then bound to the 
  //        temporary. [...]
  // Determine whether we are allowed to call explicit constructors or
  // explicit conversion operators.
  bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct);
  ImplicitConversionSequence ICS
    = S.TryImplicitConversion(Initializer, cv1T1,
                              /*SuppressUserConversions=*/false, AllowExplicit, 
                              /*ForceRValue=*/false, 
                              /*FIXME:InOverloadResolution=*/false,
                              /*UserCast=*/Kind.isExplicitCast());
            
  if (ICS.isBad()) {
    // FIXME: Use the conversion function set stored in ICS to turn
    // this into an overloading ambiguity diagnostic. However, we need
    // to keep that set as an OverloadCandidateSet rather than as some
    // other kind of set.
    if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
      Sequence.SetOverloadFailure(
                        InitializationSequence::FK_ReferenceInitOverloadFailed,
                                  ConvOvlResult);
    else
      Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
    return;
  }

  //        [...] If T1 is reference-related to T2, cv1 must be the
  //        same cv-qualification as, or greater cv-qualification
  //        than, cv2; otherwise, the program is ill-formed.
  unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
  unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
  if (RefRelationship == Sema::Ref_Related && 
      (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
    return;
  }

  // Perform the actual conversion.
  Sequence.AddConversionSequenceStep(ICS, cv1T1);
  Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
  return;
}

/// \brief Attempt character array initialization from a string literal
/// (C++ [dcl.init.string], C99 6.7.8). 
static void TryStringLiteralInitialization(Sema &S, 
                                           const InitializedEntity &Entity,
                                           const InitializationKind &Kind,
                                           Expr *Initializer,
                                       InitializationSequence &Sequence) {
  Sequence.setSequenceKind(InitializationSequence::StringInit);
  Sequence.AddStringInitStep(Entity.getType());
}

/// \brief Attempt initialization by constructor (C++ [dcl.init]), which
/// enumerates the constructors of the initialized entity and performs overload
/// resolution to select the best.
static void TryConstructorInitialization(Sema &S, 
                                         const InitializedEntity &Entity,
                                         const InitializationKind &Kind,
                                         Expr **Args, unsigned NumArgs,
                                         QualType DestType,
                                         InitializationSequence &Sequence) {
  if (Kind.getKind() == InitializationKind::IK_Copy)
    Sequence.setSequenceKind(InitializationSequence::UserDefinedConversion);
  else
    Sequence.setSequenceKind(InitializationSequence::ConstructorInitialization);
  
  // Build the candidate set directly in the initialization sequence
  // structure, so that it will persist if we fail.
  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
  CandidateSet.clear();
  
  // Determine whether we are allowed to call explicit constructors or
  // explicit conversion operators.
  bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct ||
                        Kind.getKind() == InitializationKind::IK_Value ||
                        Kind.getKind() == InitializationKind::IK_Default);                      
  
  // The type we're converting to is a class type. Enumerate its constructors
  // to see if one is suitable.
  const RecordType *DestRecordType = DestType->getAs<RecordType>();
  assert(DestRecordType && "Constructor initialization requires record type");  
  CXXRecordDecl *DestRecordDecl
    = cast<CXXRecordDecl>(DestRecordType->getDecl());
    
  DeclarationName ConstructorName
    = S.Context.DeclarationNames.getCXXConstructorName(
                     S.Context.getCanonicalType(DestType).getUnqualifiedType());
  DeclContext::lookup_iterator Con, ConEnd;
  for (llvm::tie(Con, ConEnd) = DestRecordDecl->lookup(ConstructorName);
       Con != ConEnd; ++Con) {
    // Find the constructor (which may be a template).
    CXXConstructorDecl *Constructor = 0;
    FunctionTemplateDecl *ConstructorTmpl
      = dyn_cast<FunctionTemplateDecl>(*Con);
    if (ConstructorTmpl)
      Constructor = cast<CXXConstructorDecl>(
                                           ConstructorTmpl->getTemplatedDecl());
    else
      Constructor = cast<CXXConstructorDecl>(*Con);
    
    if (!Constructor->isInvalidDecl() &&
        (AllowExplicit || !Constructor->isExplicit())) {
      if (ConstructorTmpl)
        S.AddTemplateOverloadCandidate(ConstructorTmpl,
                                       ConstructorTmpl->getAccess(),
                                       /*ExplicitArgs*/ 0,
                                       Args, NumArgs, CandidateSet);
      else
        S.AddOverloadCandidate(Constructor, Constructor->getAccess(),
                               Args, NumArgs, CandidateSet);
    }
  }    
    
  SourceLocation DeclLoc = Kind.getLocation();
  
  // Perform overload resolution. If it fails, return the failed result.  
  OverloadCandidateSet::iterator Best;
  if (OverloadingResult Result 
        = S.BestViableFunction(CandidateSet, DeclLoc, Best)) {
    Sequence.SetOverloadFailure(
                          InitializationSequence::FK_ConstructorOverloadFailed, 
                                Result);
    return;
  }

  // C++0x [dcl.init]p6:
  //   If a program calls for the default initialization of an object
  //   of a const-qualified type T, T shall be a class type with a
  //   user-provided default constructor.
  if (Kind.getKind() == InitializationKind::IK_Default &&
      Entity.getType().isConstQualified() &&
      cast<CXXConstructorDecl>(Best->Function)->isImplicit()) {
    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
    return;
  }

  // Add the constructor initialization step. Any cv-qualification conversion is
  // subsumed by the initialization.
  if (Kind.getKind() == InitializationKind::IK_Copy) {
    Sequence.AddUserConversionStep(Best->Function, Best->getAccess(), DestType);
  } else {
    Sequence.AddConstructorInitializationStep(
                                      cast<CXXConstructorDecl>(Best->Function), 
                                      Best->getAccess(),
                                      DestType);
  }
}

/// \brief Attempt value initialization (C++ [dcl.init]p7).
static void TryValueInitialization(Sema &S, 
                                   const InitializedEntity &Entity,
                                   const InitializationKind &Kind,
                                   InitializationSequence &Sequence) {
  // C++ [dcl.init]p5:
  //
  //   To value-initialize an object of type T means:
  QualType T = Entity.getType();
  
  //     -- if T is an array type, then each element is value-initialized;
  while (const ArrayType *AT = S.Context.getAsArrayType(T))
    T = AT->getElementType();
  
  if (const RecordType *RT = T->getAs<RecordType>()) {
    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
      // -- if T is a class type (clause 9) with a user-declared
      //    constructor (12.1), then the default constructor for T is
      //    called (and the initialization is ill-formed if T has no
      //    accessible default constructor);
      //
      // FIXME: we really want to refer to a single subobject of the array,
      // but Entity doesn't have a way to capture that (yet).
      if (ClassDecl->hasUserDeclaredConstructor())
        return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
      
      // -- if T is a (possibly cv-qualified) non-union class type
      //    without a user-provided constructor, then the object is
      //    zero-initialized and, if T’s implicitly-declared default
      //    constructor is non-trivial, that constructor is called.
      if ((ClassDecl->getTagKind() == TagDecl::TK_class ||
           ClassDecl->getTagKind() == TagDecl::TK_struct) &&
          !ClassDecl->hasTrivialConstructor()) {
        Sequence.AddZeroInitializationStep(Entity.getType());
        return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);        
      }
    }
  }

  Sequence.AddZeroInitializationStep(Entity.getType());
  Sequence.setSequenceKind(InitializationSequence::ZeroInitialization);
}

/// \brief Attempt default initialization (C++ [dcl.init]p6).
static void TryDefaultInitialization(Sema &S,
                                     const InitializedEntity &Entity,
                                     const InitializationKind &Kind,
                                     InitializationSequence &Sequence) {
  assert(Kind.getKind() == InitializationKind::IK_Default);
  
  // C++ [dcl.init]p6:
  //   To default-initialize an object of type T means:
  //     - if T is an array type, each element is default-initialized;
  QualType DestType = Entity.getType();
  while (const ArrayType *Array = S.Context.getAsArrayType(DestType))
    DestType = Array->getElementType();
         
  //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
  //       constructor for T is called (and the initialization is ill-formed if
  //       T has no accessible default constructor);
  if (DestType->isRecordType() && S.getLangOptions().CPlusPlus) {
    return TryConstructorInitialization(S, Entity, Kind, 0, 0, DestType,
                                        Sequence);
  }
  
  //     - otherwise, no initialization is performed.
  Sequence.setSequenceKind(InitializationSequence::NoInitialization);
  
  //   If a program calls for the default initialization of an object of
  //   a const-qualified type T, T shall be a class type with a user-provided 
  //   default constructor.
  if (DestType.isConstQualified() && S.getLangOptions().CPlusPlus)
    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
}

/// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
/// which enumerates all conversion functions and performs overload resolution
/// to select the best.
static void TryUserDefinedConversion(Sema &S, 
                                     const InitializedEntity &Entity,
                                     const InitializationKind &Kind,
                                     Expr *Initializer,
                                     InitializationSequence &Sequence) {
  Sequence.setSequenceKind(InitializationSequence::UserDefinedConversion);
  
  QualType DestType = Entity.getType();
  assert(!DestType->isReferenceType() && "References are handled elsewhere");
  QualType SourceType = Initializer->getType();
  assert((DestType->isRecordType() || SourceType->isRecordType()) &&
         "Must have a class type to perform a user-defined conversion");
  
  // Build the candidate set directly in the initialization sequence
  // structure, so that it will persist if we fail.
  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
  CandidateSet.clear();
  
  // Determine whether we are allowed to call explicit constructors or
  // explicit conversion operators.
  bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
  
  if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
    // The type we're converting to is a class type. Enumerate its constructors
    // to see if there is a suitable conversion.
    CXXRecordDecl *DestRecordDecl
      = cast<CXXRecordDecl>(DestRecordType->getDecl());
    
    DeclarationName ConstructorName
      = S.Context.DeclarationNames.getCXXConstructorName(
                     S.Context.getCanonicalType(DestType).getUnqualifiedType());
    DeclContext::lookup_iterator Con, ConEnd;
    for (llvm::tie(Con, ConEnd) = DestRecordDecl->lookup(ConstructorName);
         Con != ConEnd; ++Con) {
      // Find the constructor (which may be a template).
      CXXConstructorDecl *Constructor = 0;
      FunctionTemplateDecl *ConstructorTmpl
        = dyn_cast<FunctionTemplateDecl>(*Con);
      if (ConstructorTmpl)
        Constructor = cast<CXXConstructorDecl>(
                                           ConstructorTmpl->getTemplatedDecl());
      else
        Constructor = cast<CXXConstructorDecl>(*Con);
      
      if (!Constructor->isInvalidDecl() &&
          Constructor->isConvertingConstructor(AllowExplicit)) {
        if (ConstructorTmpl)
          S.AddTemplateOverloadCandidate(ConstructorTmpl,
                                         ConstructorTmpl->getAccess(),
                                         /*ExplicitArgs*/ 0,
                                         &Initializer, 1, CandidateSet);
        else
          S.AddOverloadCandidate(Constructor, Constructor->getAccess(),
                                 &Initializer, 1, CandidateSet);
      }
    }    
  }

  SourceLocation DeclLoc = Initializer->getLocStart();

  if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
    // The type we're converting from is a class type, enumerate its conversion
    // functions.

    // We can only enumerate the conversion functions for a complete type; if
    // the type isn't complete, simply skip this step.
    if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
      CXXRecordDecl *SourceRecordDecl
        = cast<CXXRecordDecl>(SourceRecordType->getDecl());
      
      const UnresolvedSetImpl *Conversions
        = SourceRecordDecl->getVisibleConversionFunctions();
      for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
           E = Conversions->end(); 
           I != E; ++I) {
        NamedDecl *D = *I;
        CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
        if (isa<UsingShadowDecl>(D))
          D = cast<UsingShadowDecl>(D)->getTargetDecl();
        
        FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
        CXXConversionDecl *Conv;
        if (ConvTemplate)
          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
        else
          Conv = cast<CXXConversionDecl>(*I);
        
        if (AllowExplicit || !Conv->isExplicit()) {
          if (ConvTemplate)
            S.AddTemplateConversionCandidate(ConvTemplate, I.getAccess(),
                                             ActingDC, Initializer, DestType,
                                             CandidateSet);
          else
            S.AddConversionCandidate(Conv, I.getAccess(), ActingDC,
                                     Initializer, DestType, CandidateSet);
        }
      }
    }
  }
  
  // Perform overload resolution. If it fails, return the failed result.  
  OverloadCandidateSet::iterator Best;
  if (OverloadingResult Result
        = S.BestViableFunction(CandidateSet, DeclLoc, Best)) {
    Sequence.SetOverloadFailure(
                        InitializationSequence::FK_UserConversionOverloadFailed, 
                                Result);
    return;
  }

  FunctionDecl *Function = Best->Function;
  
  if (isa<CXXConstructorDecl>(Function)) {
    // Add the user-defined conversion step. Any cv-qualification conversion is
    // subsumed by the initialization.
    Sequence.AddUserConversionStep(Function, Best->getAccess(), DestType);
    return;
  }

  // Add the user-defined conversion step that calls the conversion function.
  QualType ConvType = Function->getResultType().getNonReferenceType();
  Sequence.AddUserConversionStep(Function, Best->getAccess(), ConvType);

  // If the conversion following the call to the conversion function is 
  // interesting, add it as a separate step.
  if (Best->FinalConversion.First || Best->FinalConversion.Second ||
      Best->FinalConversion.Third) {
    ImplicitConversionSequence ICS;
    ICS.setStandard();
    ICS.Standard = Best->FinalConversion;
    Sequence.AddConversionSequenceStep(ICS, DestType);
  }
}

/// \brief Attempt an implicit conversion (C++ [conv]) converting from one
/// non-class type to another.
static void TryImplicitConversion(Sema &S, 
                                  const InitializedEntity &Entity,
                                  const InitializationKind &Kind,
                                  Expr *Initializer,
                                  InitializationSequence &Sequence) {
  ImplicitConversionSequence ICS
    = S.TryImplicitConversion(Initializer, Entity.getType(),
                              /*SuppressUserConversions=*/true, 
                              /*AllowExplicit=*/false,
                              /*ForceRValue=*/false, 
                              /*FIXME:InOverloadResolution=*/false,
                              /*UserCast=*/Kind.isExplicitCast());
  
  if (ICS.isBad()) {
    Sequence.SetFailed(InitializationSequence::FK_ConversionFailed);
    return;
  }
  
  Sequence.AddConversionSequenceStep(ICS, Entity.getType());
}

InitializationSequence::InitializationSequence(Sema &S,
                                               const InitializedEntity &Entity,
                                               const InitializationKind &Kind,
                                               Expr **Args,
                                               unsigned NumArgs)
    : FailedCandidateSet(Kind.getLocation()) {
  ASTContext &Context = S.Context;
  
  // C++0x [dcl.init]p16:
  //   The semantics of initializers are as follows. The destination type is 
  //   the type of the object or reference being initialized and the source 
  //   type is the type of the initializer expression. The source type is not
  //   defined when the initializer is a braced-init-list or when it is a 
  //   parenthesized list of expressions.
  QualType DestType = Entity.getType();

  if (DestType->isDependentType() ||
      Expr::hasAnyTypeDependentArguments(Args, NumArgs)) {
    SequenceKind = DependentSequence;
    return;
  }

  QualType SourceType;
  Expr *Initializer = 0;
  if (NumArgs == 1) {
    Initializer = Args[0];
    if (!isa<InitListExpr>(Initializer))
      SourceType = Initializer->getType();
  }
  
  //     - If the initializer is a braced-init-list, the object is 
  //       list-initialized (8.5.4).
  if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
    TryListInitialization(S, Entity, Kind, InitList, *this);
    return;
  }
  
  //     - If the destination type is a reference type, see 8.5.3.
  if (DestType->isReferenceType()) {
    // C++0x [dcl.init.ref]p1:
    //   A variable declared to be a T& or T&&, that is, "reference to type T"
    //   (8.3.2), shall be initialized by an object, or function, of type T or
    //   by an object that can be converted into a T.
    // (Therefore, multiple arguments are not permitted.)
    if (NumArgs != 1)
      SetFailed(FK_TooManyInitsForReference);
    else
      TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
    return;
  }
  
  //     - If the destination type is an array of characters, an array of 
  //       char16_t, an array of char32_t, or an array of wchar_t, and the 
  //       initializer is a string literal, see 8.5.2.
  if (Initializer && IsStringInit(Initializer, DestType, Context)) {
    TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
    return;
  }
  
  //     - If the initializer is (), the object is value-initialized.
  if (Kind.getKind() == InitializationKind::IK_Value ||
      (Kind.getKind() == InitializationKind::IK_Direct && NumArgs == 0)) {
    TryValueInitialization(S, Entity, Kind, *this);
    return;
  }
  
  // Handle default initialization.
  if (Kind.getKind() == InitializationKind::IK_Default){
    TryDefaultInitialization(S, Entity, Kind, *this);
    return;
  }

  //     - Otherwise, if the destination type is an array, the program is 
  //       ill-formed.
  if (const ArrayType *AT = Context.getAsArrayType(DestType)) {
    if (AT->getElementType()->isAnyCharacterType())
      SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
    else
      SetFailed(FK_ArrayNeedsInitList);
    
    return;
  }

  // Handle initialization in C
  if (!S.getLangOptions().CPlusPlus) {
    setSequenceKind(CAssignment);
    AddCAssignmentStep(DestType);
    return;
  }
  
  //     - If the destination type is a (possibly cv-qualified) class type:
  if (DestType->isRecordType()) {
    //     - If the initialization is direct-initialization, or if it is 
    //       copy-initialization where the cv-unqualified version of the 
    //       source type is the same class as, or a derived class of, the 
    //       class of the destination, constructors are considered. [...]
    if (Kind.getKind() == InitializationKind::IK_Direct ||
        (Kind.getKind() == InitializationKind::IK_Copy &&
         (Context.hasSameUnqualifiedType(SourceType, DestType) ||
          S.IsDerivedFrom(SourceType, DestType))))
      TryConstructorInitialization(S, Entity, Kind, Args, NumArgs, 
                                   Entity.getType(), *this);
    //     - Otherwise (i.e., for the remaining copy-initialization cases), 
    //       user-defined conversion sequences that can convert from the source
    //       type to the destination type or (when a conversion function is 
    //       used) to a derived class thereof are enumerated as described in
    //       13.3.1.4, and the best one is chosen through overload resolution
    //       (13.3).
    else
      TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
    return;
  }
  
  if (NumArgs > 1) {
    SetFailed(FK_TooManyInitsForScalar);
    return;
  }
  assert(NumArgs == 1 && "Zero-argument case handled above");
  
  //    - Otherwise, if the source type is a (possibly cv-qualified) class 
  //      type, conversion functions are considered.
  if (!SourceType.isNull() && SourceType->isRecordType()) {
    TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
    return;
  }
  
  //    - Otherwise, the initial value of the object being initialized is the
  //      (possibly converted) value of the initializer expression. Standard
  //      conversions (Clause 4) will be used, if necessary, to convert the
  //      initializer expression to the cv-unqualified version of the 
  //      destination type; no user-defined conversions are considered.
  setSequenceKind(StandardConversion);
  TryImplicitConversion(S, Entity, Kind, Initializer, *this);
}

InitializationSequence::~InitializationSequence() {
  for (llvm::SmallVectorImpl<Step>::iterator Step = Steps.begin(),
                                          StepEnd = Steps.end();
       Step != StepEnd; ++Step)
    Step->Destroy();
}

//===----------------------------------------------------------------------===//
// Perform initialization
//===----------------------------------------------------------------------===//
static Sema::AssignmentAction 
getAssignmentAction(const InitializedEntity &Entity) {
  switch(Entity.getKind()) {
  case InitializedEntity::EK_Variable:
  case InitializedEntity::EK_New:
    return Sema::AA_Initializing;

  case InitializedEntity::EK_Parameter:
    // FIXME: Can we tell when we're sending vs. passing?
    return Sema::AA_Passing;

  case InitializedEntity::EK_Result:
    return Sema::AA_Returning;

  case InitializedEntity::EK_Exception:
  case InitializedEntity::EK_Base:
    llvm_unreachable("No assignment action for C++-specific initialization");
    break;

  case InitializedEntity::EK_Temporary:
    // FIXME: Can we tell apart casting vs. converting?
    return Sema::AA_Casting;
    
  case InitializedEntity::EK_Member:
  case InitializedEntity::EK_ArrayElement:
  case InitializedEntity::EK_VectorElement:
    return Sema::AA_Initializing;
  }

  return Sema::AA_Converting;
}

static bool shouldBindAsTemporary(const InitializedEntity &Entity,
                                  bool IsCopy) {
  switch (Entity.getKind()) {
  case InitializedEntity::EK_Result:
  case InitializedEntity::EK_ArrayElement:
  case InitializedEntity::EK_Member:
    return !IsCopy;
      
  case InitializedEntity::EK_New:
  case InitializedEntity::EK_Variable:
  case InitializedEntity::EK_Base:
  case InitializedEntity::EK_VectorElement:
  case InitializedEntity::EK_Exception:
    return false;
    
  case InitializedEntity::EK_Parameter:
  case InitializedEntity::EK_Temporary:
    return true;
  }
  
  llvm_unreachable("missed an InitializedEntity kind?");
}

/// \brief If we need to perform an additional copy of the initialized object
/// for this kind of entity (e.g., the result of a function or an object being
/// thrown), make the copy. 
static Sema::OwningExprResult CopyIfRequiredForEntity(Sema &S,
                                            const InitializedEntity &Entity,
                                             const InitializationKind &Kind,
                                             Sema::OwningExprResult CurInit) {
  Expr *CurInitExpr = (Expr *)CurInit.get();
  
  SourceLocation Loc;
  
  switch (Entity.getKind()) {
  case InitializedEntity::EK_Result:
    if (Entity.getType()->isReferenceType())
      return move(CurInit);
    Loc = Entity.getReturnLoc();
    break;
      
  case InitializedEntity::EK_Exception:
    Loc = Entity.getThrowLoc();
    break;
    
  case InitializedEntity::EK_Variable:
    if (Entity.getType()->isReferenceType() ||
        Kind.getKind() != InitializationKind::IK_Copy)
      return move(CurInit);
    Loc = Entity.getDecl()->getLocation();
    break;

  case InitializedEntity::EK_ArrayElement:
  case InitializedEntity::EK_Member:
    if (Entity.getType()->isReferenceType() ||
        Kind.getKind() != InitializationKind::IK_Copy)
      return move(CurInit);
    Loc = CurInitExpr->getLocStart();
    break;

  case InitializedEntity::EK_Parameter:
    // FIXME: Do we need this initialization for a parameter?
    return move(CurInit);

  case InitializedEntity::EK_New:
  case InitializedEntity::EK_Temporary:
  case InitializedEntity::EK_Base:
  case InitializedEntity::EK_VectorElement:
    // We don't need to copy for any of these initialized entities.
    return move(CurInit);
  }
  
  CXXRecordDecl *Class = 0; 
  if (const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>())
    Class = cast<CXXRecordDecl>(Record->getDecl());
  if (!Class)
    return move(CurInit);
  
  // Perform overload resolution using the class's copy constructors.
  DeclarationName ConstructorName
    = S.Context.DeclarationNames.getCXXConstructorName(
                  S.Context.getCanonicalType(S.Context.getTypeDeclType(Class)));
  DeclContext::lookup_iterator Con, ConEnd;
  OverloadCandidateSet CandidateSet(Loc);
  for (llvm::tie(Con, ConEnd) = Class->lookup(ConstructorName);
       Con != ConEnd; ++Con) {
    // Find the constructor (which may be a template).
    CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(*Con);
    if (!Constructor || Constructor->isInvalidDecl() ||
        !Constructor->isCopyConstructor())
      continue;
    
    S.AddOverloadCandidate(Constructor, Constructor->getAccess(),
                           &CurInitExpr, 1, CandidateSet);
  }    
  
  OverloadCandidateSet::iterator Best;
  switch (S.BestViableFunction(CandidateSet, Loc, Best)) {
  case OR_Success:
    break;
      
  case OR_No_Viable_Function:
    S.Diag(Loc, diag::err_temp_copy_no_viable)
      << (int)Entity.getKind() << CurInitExpr->getType()
      << CurInitExpr->getSourceRange();
    S.PrintOverloadCandidates(CandidateSet, Sema::OCD_AllCandidates,
                              &CurInitExpr, 1);
    return S.ExprError();
      
  case OR_Ambiguous:
    S.Diag(Loc, diag::err_temp_copy_ambiguous)
      << (int)Entity.getKind() << CurInitExpr->getType()
      << CurInitExpr->getSourceRange();
    S.PrintOverloadCandidates(CandidateSet, Sema::OCD_ViableCandidates,
                              &CurInitExpr, 1);
    return S.ExprError();
    
  case OR_Deleted:
    S.Diag(Loc, diag::err_temp_copy_deleted)
      << (int)Entity.getKind() << CurInitExpr->getType()
      << CurInitExpr->getSourceRange();
    S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
      << Best->Function->isDeleted();
    return S.ExprError();
  }

  CurInit.release();
  return S.BuildCXXConstructExpr(Loc, CurInitExpr->getType(),
                                 cast<CXXConstructorDecl>(Best->Function),
                                 /*Elidable=*/true,
                                 Sema::MultiExprArg(S, 
                                                    (void**)&CurInitExpr, 1));
}

Action::OwningExprResult 
InitializationSequence::Perform(Sema &S,
                                const InitializedEntity &Entity,
                                const InitializationKind &Kind,
                                Action::MultiExprArg Args,
                                QualType *ResultType) {
  if (SequenceKind == FailedSequence) {
    unsigned NumArgs = Args.size();
    Diagnose(S, Entity, Kind, (Expr **)Args.release(), NumArgs);
    return S.ExprError();
  }
  
  if (SequenceKind == DependentSequence) {
    // If the declaration is a non-dependent, incomplete array type
    // that has an initializer, then its type will be completed once
    // the initializer is instantiated.
    if (ResultType && !Entity.getType()->isDependentType() &&
        Args.size() == 1) {
      QualType DeclType = Entity.getType();
      if (const IncompleteArrayType *ArrayT
                           = S.Context.getAsIncompleteArrayType(DeclType)) {
        // FIXME: We don't currently have the ability to accurately
        // compute the length of an initializer list without
        // performing full type-checking of the initializer list
        // (since we have to determine where braces are implicitly
        // introduced and such).  So, we fall back to making the array
        // type a dependently-sized array type with no specified
        // bound.
        if (isa<InitListExpr>((Expr *)Args.get()[0])) {
          SourceRange Brackets;

          // Scavange the location of the brackets from the entity, if we can.
          if (DeclaratorDecl *DD = Entity.getDecl()) {
            if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
              TypeLoc TL = TInfo->getTypeLoc();
              if (IncompleteArrayTypeLoc *ArrayLoc
                                      = dyn_cast<IncompleteArrayTypeLoc>(&TL))
              Brackets = ArrayLoc->getBracketsRange();
            }
          }

          *ResultType
            = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
                                                   /*NumElts=*/0,
                                                   ArrayT->getSizeModifier(),
                                       ArrayT->getIndexTypeCVRQualifiers(),
                                                   Brackets);
        }

      }
    }

    if (Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast())
      return Sema::OwningExprResult(S, Args.release()[0]);

    if (Args.size() == 0)
      return S.Owned((Expr *)0);

    unsigned NumArgs = Args.size();
    return S.Owned(new (S.Context) ParenListExpr(S.Context,
                                                 SourceLocation(),
                                                 (Expr **)Args.release(), 
                                                 NumArgs,
                                                 SourceLocation()));
  }

  if (SequenceKind == NoInitialization)
    return S.Owned((Expr *)0);
  
  QualType DestType = Entity.getType().getNonReferenceType();
  // FIXME: Ugly hack around the fact that Entity.getType() is not
  // the same as Entity.getDecl()->getType() in cases involving type merging,
  //  and we want latter when it makes sense.
  if (ResultType)
    *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
                                     Entity.getType();

  Sema::OwningExprResult CurInit = S.Owned((Expr *)0);
  
  assert(!Steps.empty() && "Cannot have an empty initialization sequence");
  
  // For initialization steps that start with a single initializer, 
  // grab the only argument out the Args and place it into the "current"
  // initializer.
  switch (Steps.front().Kind) {
  case SK_ResolveAddressOfOverloadedFunction:
  case SK_CastDerivedToBaseRValue:
  case SK_CastDerivedToBaseLValue:
  case SK_BindReference:
  case SK_BindReferenceToTemporary:
  case SK_UserConversion:
  case SK_QualificationConversionLValue:
  case SK_QualificationConversionRValue:
  case SK_ConversionSequence:
  case SK_ListInitialization:
  case SK_CAssignment:
  case SK_StringInit:
    assert(Args.size() == 1);
    CurInit = Sema::OwningExprResult(S, ((Expr **)(Args.get()))[0]->Retain());
    if (CurInit.isInvalid())
      return S.ExprError();
    break;
    
  case SK_ConstructorInitialization:
  case SK_ZeroInitialization:
    break;
  }
    
  // Walk through the computed steps for the initialization sequence, 
  // performing the specified conversions along the way.
  bool ConstructorInitRequiresZeroInit = false;
  for (step_iterator Step = step_begin(), StepEnd = step_end();
       Step != StepEnd; ++Step) {
    if (CurInit.isInvalid())
      return S.ExprError();
    
    Expr *CurInitExpr = (Expr *)CurInit.get();
    QualType SourceType = CurInitExpr? CurInitExpr->getType() : QualType();
    
    switch (Step->Kind) {
    case SK_ResolveAddressOfOverloadedFunction:
      // Overload resolution determined which function invoke; update the 
      // initializer to reflect that choice.
      // Access control was done in overload resolution.
      CurInit = S.FixOverloadedFunctionReference(move(CurInit),
                              cast<FunctionDecl>(Step->Function.getDecl()));
      break;
        
    case SK_CastDerivedToBaseRValue:
    case SK_CastDerivedToBaseLValue: {
      // We have a derived-to-base cast that produces either an rvalue or an
      // lvalue. Perform that cast.
      
      // Casts to inaccessible base classes are allowed with C-style casts.
      bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
      if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
                                         CurInitExpr->getLocStart(),
                                         CurInitExpr->getSourceRange(),
                                         IgnoreBaseAccess))
        return S.ExprError();
        
      CurInit = S.Owned(new (S.Context) ImplicitCastExpr(Step->Type,
                                                    CastExpr::CK_DerivedToBase,
                                                      (Expr*)CurInit.release(),
                                     Step->Kind == SK_CastDerivedToBaseLValue));
      break;
    }
        
    case SK_BindReference:
      if (FieldDecl *BitField = CurInitExpr->getBitField()) {
        // References cannot bind to bit fields (C++ [dcl.init.ref]p5).
        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
          << Entity.getType().isVolatileQualified()
          << BitField->getDeclName()
          << CurInitExpr->getSourceRange();
        S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
        return S.ExprError();
      }

      if (CurInitExpr->refersToVectorElement()) {
        // References cannot bind to vector elements.
        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
          << Entity.getType().isVolatileQualified()
          << CurInitExpr->getSourceRange();
        return S.ExprError();
      }
        
      // Reference binding does not have any corresponding ASTs.

      // Check exception specifications
      if (S.CheckExceptionSpecCompatibility(CurInitExpr, DestType))
        return S.ExprError();

      break;

    case SK_BindReferenceToTemporary:
      // Reference binding does not have any corresponding ASTs.

      // Check exception specifications
      if (S.CheckExceptionSpecCompatibility(CurInitExpr, DestType))
        return S.ExprError();

      break;
        
    case SK_UserConversion: {
      // We have a user-defined conversion that invokes either a constructor
      // or a conversion function.
      CastExpr::CastKind CastKind = CastExpr::CK_Unknown;
      bool IsCopy = false;
      FunctionDecl *Fn = cast<FunctionDecl>(Step->Function.getDecl());
      AccessSpecifier FnAccess = Step->Function.getAccess();
      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
        // Build a call to the selected constructor.
        ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(S);
        SourceLocation Loc = CurInitExpr->getLocStart();
        CurInit.release(); // Ownership transferred into MultiExprArg, below.

        // Determine the arguments required to actually perform the constructor
        // call.
        if (S.CompleteConstructorCall(Constructor,
                                      Sema::MultiExprArg(S, 
                                                         (void **)&CurInitExpr,
                                                         1),
                                      Loc, ConstructorArgs))
          return S.ExprError();
        
        // Build the an expression that constructs a temporary.
        CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor, 
                                          move_arg(ConstructorArgs));
        if (CurInit.isInvalid())
          return S.ExprError();

        S.CheckConstructorAccess(Kind.getLocation(), Constructor, FnAccess);
        
        CastKind = CastExpr::CK_ConstructorConversion;
        QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
        if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
            S.IsDerivedFrom(SourceType, Class))
          IsCopy = true;
      } else {
        // Build a call to the conversion function.
        CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);

        S.CheckMemberOperatorAccess(Kind.getLocation(), CurInitExpr,
                                    Conversion, FnAccess);
        
        // FIXME: Should we move this initialization into a separate 
        // derived-to-base conversion? I believe the answer is "no", because
        // we don't want to turn off access control here for c-style casts.
        if (S.PerformObjectArgumentInitialization(CurInitExpr, Conversion))
          return S.ExprError();

        // Do a little dance to make sure that CurInit has the proper
        // pointer.
        CurInit.release();
        
        // Build the actual call to the conversion function.
        CurInit = S.Owned(S.BuildCXXMemberCallExpr(CurInitExpr, Conversion));
        if (CurInit.isInvalid() || !CurInit.get())
          return S.ExprError();
        
        CastKind = CastExpr::CK_UserDefinedConversion;
      }
      
      if (shouldBindAsTemporary(Entity, IsCopy))
        CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());

      CurInitExpr = CurInit.takeAs<Expr>();
      CurInit = S.Owned(new (S.Context) ImplicitCastExpr(CurInitExpr->getType(),
                                                         CastKind, 
                                                         CurInitExpr,
                                                         false));
      
      if (!IsCopy)
        CurInit = CopyIfRequiredForEntity(S, Entity, Kind, move(CurInit));
      break;
    }
        
    case SK_QualificationConversionLValue:
    case SK_QualificationConversionRValue:
      // Perform a qualification conversion; these can never go wrong.
      S.ImpCastExprToType(CurInitExpr, Step->Type,
                          CastExpr::CK_NoOp, 
                          Step->Kind == SK_QualificationConversionLValue);
      CurInit.release();
      CurInit = S.Owned(CurInitExpr);
      break;
        
    case SK_ConversionSequence:
        if (S.PerformImplicitConversion(CurInitExpr, Step->Type, Sema::AA_Converting, 
                                      false, false, *Step->ICS))
        return S.ExprError();
        
      CurInit.release();
      CurInit = S.Owned(CurInitExpr);        
      break;

    case SK_ListInitialization: {
      InitListExpr *InitList = cast<InitListExpr>(CurInitExpr);
      QualType Ty = Step->Type;
      if (S.CheckInitList(Entity, InitList, ResultType? *ResultType : Ty))
        return S.ExprError();

      CurInit.release();
      CurInit = S.Owned(InitList);
      break;
    }

    case SK_ConstructorInitialization: {
      CXXConstructorDecl *Constructor
        = cast<CXXConstructorDecl>(Step->Function.getDecl());

      // Build a call to the selected constructor.
      ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(S);
      SourceLocation Loc = Kind.getLocation();
          
      // Determine the arguments required to actually perform the constructor
      // call.
      if (S.CompleteConstructorCall(Constructor, move(Args), 
                                    Loc, ConstructorArgs))
        return S.ExprError();
          
      // Build the an expression that constructs a temporary.
      CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
                                        Constructor, 
                                        move_arg(ConstructorArgs),
                                        ConstructorInitRequiresZeroInit,
                               Entity.getKind() == InitializedEntity::EK_Base);
      if (CurInit.isInvalid())
        return S.ExprError();

      // Only check access if all of that succeeded.
      S.CheckConstructorAccess(Loc, Constructor, Step->Function.getAccess());
      
      bool Elidable 
        = cast<CXXConstructExpr>((Expr *)CurInit.get())->isElidable();
      if (shouldBindAsTemporary(Entity, Elidable))
        CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
      
      if (!Elidable)
        CurInit = CopyIfRequiredForEntity(S, Entity, Kind, move(CurInit));
      break;
    }
        
    case SK_ZeroInitialization: {
      step_iterator NextStep = Step;
      ++NextStep;
      if (NextStep != StepEnd && 
          NextStep->Kind == SK_ConstructorInitialization) {
        // The need for zero-initialization is recorded directly into
        // the call to the object's constructor within the next step.
        ConstructorInitRequiresZeroInit = true;
      } else if (Kind.getKind() == InitializationKind::IK_Value &&
                 S.getLangOptions().CPlusPlus &&
                 !Kind.isImplicitValueInit()) {
        CurInit = S.Owned(new (S.Context) CXXZeroInitValueExpr(Step->Type,
                                                   Kind.getRange().getBegin(),
                                                    Kind.getRange().getEnd()));
      } else {
        CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
      }
      break;
    }

    case SK_CAssignment: {
      QualType SourceType = CurInitExpr->getType();
      Sema::AssignConvertType ConvTy =
        S.CheckSingleAssignmentConstraints(Step->Type, CurInitExpr);

      // If this is a call, allow conversion to a transparent union.
      if (ConvTy != Sema::Compatible &&
          Entity.getKind() == InitializedEntity::EK_Parameter &&
          S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExpr)
            == Sema::Compatible)
        ConvTy = Sema::Compatible;

      if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
                                     Step->Type, SourceType,
                                     CurInitExpr, getAssignmentAction(Entity)))
        return S.ExprError();

      CurInit.release();
      CurInit = S.Owned(CurInitExpr);
      break;
    }

    case SK_StringInit: {
      QualType Ty = Step->Type;
      CheckStringInit(CurInitExpr, ResultType ? *ResultType : Ty, S);
      break;
    }
    }
  }
  
  return move(CurInit);
}

//===----------------------------------------------------------------------===//
// Diagnose initialization failures
//===----------------------------------------------------------------------===//
bool InitializationSequence::Diagnose(Sema &S, 
                                      const InitializedEntity &Entity,
                                      const InitializationKind &Kind,
                                      Expr **Args, unsigned NumArgs) {
  if (SequenceKind != FailedSequence)
    return false;
  
  QualType DestType = Entity.getType();
  switch (Failure) {
  case FK_TooManyInitsForReference:
    // FIXME: Customize for the initialized entity?
    if (NumArgs == 0)
      S.Diag(Kind.getLocation(), diag::err_reference_without_init)
        << DestType.getNonReferenceType();
    else  // FIXME: diagnostic below could be better!
      S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
        << SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
    break;
    
  case FK_ArrayNeedsInitList:
  case FK_ArrayNeedsInitListOrStringLiteral:
    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list)
      << (Failure == FK_ArrayNeedsInitListOrStringLiteral);
    break;
      
  case FK_AddressOfOverloadFailed:
    S.ResolveAddressOfOverloadedFunction(Args[0], 
                                         DestType.getNonReferenceType(),
                                         true);
    break;
      
  case FK_ReferenceInitOverloadFailed:
  case FK_UserConversionOverloadFailed:
    switch (FailedOverloadResult) {
    case OR_Ambiguous:
      if (Failure == FK_UserConversionOverloadFailed)
        S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
          << Args[0]->getType() << DestType
          << Args[0]->getSourceRange();
      else
        S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
          << DestType << Args[0]->getType()
          << Args[0]->getSourceRange();

      S.PrintOverloadCandidates(FailedCandidateSet, Sema::OCD_ViableCandidates,
                                Args, NumArgs);
      break;
        
    case OR_No_Viable_Function:
      S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
        << Args[0]->getType() << DestType.getNonReferenceType()
        << Args[0]->getSourceRange();
      S.PrintOverloadCandidates(FailedCandidateSet, Sema::OCD_AllCandidates,
                                Args, NumArgs);
      break;
        
    case OR_Deleted: {
      S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
        << Args[0]->getType() << DestType.getNonReferenceType()
        << Args[0]->getSourceRange();
      OverloadCandidateSet::iterator Best;
      OverloadingResult Ovl = S.BestViableFunction(FailedCandidateSet,
                                                   Kind.getLocation(),
                                                   Best);
      if (Ovl == OR_Deleted) {
        S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
          << Best->Function->isDeleted();
      } else {
        llvm_unreachable("Inconsistent overload resolution?");
      }
      break;
    }
        
    case OR_Success:
      llvm_unreachable("Conversion did not fail!");
      break;
    }
    break;
      
  case FK_NonConstLValueReferenceBindingToTemporary:
  case FK_NonConstLValueReferenceBindingToUnrelated:
    S.Diag(Kind.getLocation(), 
           Failure == FK_NonConstLValueReferenceBindingToTemporary
             ? diag::err_lvalue_reference_bind_to_temporary
             : diag::err_lvalue_reference_bind_to_unrelated)
      << DestType.getNonReferenceType().isVolatileQualified()
      << DestType.getNonReferenceType()
      << Args[0]->getType()
      << Args[0]->getSourceRange();
    break;
      
  case FK_RValueReferenceBindingToLValue:
    S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
      << Args[0]->getSourceRange();
    break;
      
  case FK_ReferenceInitDropsQualifiers:
    S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
      << DestType.getNonReferenceType()
      << Args[0]->getType()
      << Args[0]->getSourceRange();
    break;
      
  case FK_ReferenceInitFailed:
    S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
      << DestType.getNonReferenceType()
      << (Args[0]->isLvalue(S.Context) == Expr::LV_Valid)
      << Args[0]->getType()
      << Args[0]->getSourceRange();
    break;
      
  case FK_ConversionFailed:
    S.Diag(Kind.getLocation(), diag::err_init_conversion_failed)
      << (int)Entity.getKind()
      << DestType
      << (Args[0]->isLvalue(S.Context) == Expr::LV_Valid)
      << Args[0]->getType()
      << Args[0]->getSourceRange();
    break;

  case FK_TooManyInitsForScalar: {
    SourceRange R;

    if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
      R = SourceRange(InitList->getInit(1)->getLocStart(),
                      InitList->getLocEnd());
    else
      R = SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());

    S.Diag(Kind.getLocation(), diag::err_excess_initializers)
      << /*scalar=*/2 << R;
    break;
  }

  case FK_ReferenceBindingToInitList:
    S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
      << DestType.getNonReferenceType() << Args[0]->getSourceRange();
    break;

  case FK_InitListBadDestinationType:
    S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
      << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
    break;
      
  case FK_ConstructorOverloadFailed: {
    SourceRange ArgsRange;
    if (NumArgs)
      ArgsRange = SourceRange(Args[0]->getLocStart(), 
                              Args[NumArgs - 1]->getLocEnd());
    
    // FIXME: Using "DestType" for the entity we're printing is probably
    // bad.
    switch (FailedOverloadResult) {
      case OR_Ambiguous:
        S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
          << DestType << ArgsRange;
        S.PrintOverloadCandidates(FailedCandidateSet,
                                  Sema::OCD_ViableCandidates, Args, NumArgs);
        break;
        
      case OR_No_Viable_Function:
        if (Kind.getKind() == InitializationKind::IK_Default &&
            (Entity.getKind() == InitializedEntity::EK_Base ||
             Entity.getKind() == InitializedEntity::EK_Member) &&
            isa<CXXConstructorDecl>(S.CurContext)) {
          // This is implicit default initialization of a member or
          // base within a constructor. If no viable function was
          // found, notify the user that she needs to explicitly
          // initialize this base/member.
          CXXConstructorDecl *Constructor
            = cast<CXXConstructorDecl>(S.CurContext);
          if (Entity.getKind() == InitializedEntity::EK_Base) {
            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
              << Constructor->isImplicit()
              << S.Context.getTypeDeclType(Constructor->getParent())
              << /*base=*/0
              << Entity.getType();

            RecordDecl *BaseDecl
              = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
                                                                  ->getDecl();
            S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
              << S.Context.getTagDeclType(BaseDecl);
          } else {
            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
              << Constructor->isImplicit()
              << S.Context.getTypeDeclType(Constructor->getParent())
              << /*member=*/1
              << Entity.getName();
            S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);

            if (const RecordType *Record
                                 = Entity.getType()->getAs<RecordType>())
              S.Diag(Record->getDecl()->getLocation(), 
                     diag::note_previous_decl)
                << S.Context.getTagDeclType(Record->getDecl());
          }
          break;
        }

        S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
          << DestType << ArgsRange;
        S.PrintOverloadCandidates(FailedCandidateSet, Sema::OCD_AllCandidates,
                                  Args, NumArgs);
        break;
        
      case OR_Deleted: {
        S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
          << true << DestType << ArgsRange;
        OverloadCandidateSet::iterator Best;
        OverloadingResult Ovl = S.BestViableFunction(FailedCandidateSet,
                                                     Kind.getLocation(),
                                                     Best);
        if (Ovl == OR_Deleted) {
          S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
            << Best->Function->isDeleted();
        } else {
          llvm_unreachable("Inconsistent overload resolution?");
        }
        break;
      }
        
      case OR_Success:
        llvm_unreachable("Conversion did not fail!");
        break;
    }
    break;
  }
      
  case FK_DefaultInitOfConst:
    if (Entity.getKind() == InitializedEntity::EK_Member &&
        isa<CXXConstructorDecl>(S.CurContext)) {
      // This is implicit default-initialization of a const member in
      // a constructor. Complain that it needs to be explicitly
      // initialized.
      CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
      S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
        << Constructor->isImplicit()
        << S.Context.getTypeDeclType(Constructor->getParent())
        << /*const=*/1
        << Entity.getName();
      S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
        << Entity.getName();
    } else {
      S.Diag(Kind.getLocation(), diag::err_default_init_const)
        << DestType << (bool)DestType->getAs<RecordType>();
    }
    break;
  }
  
  return true;
}

void InitializationSequence::dump(llvm::raw_ostream &OS) const {
  switch (SequenceKind) {
  case FailedSequence: {
    OS << "Failed sequence: ";
    switch (Failure) {
    case FK_TooManyInitsForReference:
      OS << "too many initializers for reference";
      break;
      
    case FK_ArrayNeedsInitList:
      OS << "array requires initializer list";
      break;
      
    case FK_ArrayNeedsInitListOrStringLiteral:
      OS << "array requires initializer list or string literal";
      break;
      
    case FK_AddressOfOverloadFailed:
      OS << "address of overloaded function failed";
      break;
      
    case FK_ReferenceInitOverloadFailed:
      OS << "overload resolution for reference initialization failed";
      break;
      
    case FK_NonConstLValueReferenceBindingToTemporary:
      OS << "non-const lvalue reference bound to temporary";
      break;
      
    case FK_NonConstLValueReferenceBindingToUnrelated:
      OS << "non-const lvalue reference bound to unrelated type";
      break;
      
    case FK_RValueReferenceBindingToLValue:
      OS << "rvalue reference bound to an lvalue";
      break;
      
    case FK_ReferenceInitDropsQualifiers:
      OS << "reference initialization drops qualifiers";
      break;
      
    case FK_ReferenceInitFailed:
      OS << "reference initialization failed";
      break;
      
    case FK_ConversionFailed:
      OS << "conversion failed";
      break;
      
    case FK_TooManyInitsForScalar:
      OS << "too many initializers for scalar";
      break;
      
    case FK_ReferenceBindingToInitList:
      OS << "referencing binding to initializer list";
      break;
      
    case FK_InitListBadDestinationType:
      OS << "initializer list for non-aggregate, non-scalar type";
      break;
      
    case FK_UserConversionOverloadFailed:
      OS << "overloading failed for user-defined conversion";
      break;
      
    case FK_ConstructorOverloadFailed:
      OS << "constructor overloading failed";
      break;
      
    case FK_DefaultInitOfConst:
      OS << "default initialization of a const variable";
      break;
    }   
    OS << '\n';
    return;
  }
      
  case DependentSequence:
    OS << "Dependent sequence: ";
    return;
      
  case UserDefinedConversion:
    OS << "User-defined conversion sequence: ";
    break;
      
  case ConstructorInitialization:
    OS << "Constructor initialization sequence: ";
    break;
      
  case ReferenceBinding:
    OS << "Reference binding: ";
    break;
      
  case ListInitialization:
    OS << "List initialization: ";
    break;

  case ZeroInitialization:
    OS << "Zero initialization\n";
    return;
      
  case NoInitialization:
    OS << "No initialization\n";
    return;
      
  case StandardConversion:
    OS << "Standard conversion: ";
    break;
      
  case CAssignment:
    OS << "C assignment: ";
    break;
      
  case StringInit:
    OS << "String initialization: ";
    break;
  }
  
  for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
    if (S != step_begin()) {
      OS << " -> ";
    }
    
    switch (S->Kind) {
    case SK_ResolveAddressOfOverloadedFunction:
      OS << "resolve address of overloaded function";
      break;
      
    case SK_CastDerivedToBaseRValue:
      OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
      break;
      
    case SK_CastDerivedToBaseLValue:
      OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
      break;
      
    case SK_BindReference:
      OS << "bind reference to lvalue";
      break;
      
    case SK_BindReferenceToTemporary:
      OS << "bind reference to a temporary";
      break;
      
    case SK_UserConversion:
      OS << "user-defined conversion via " << S->Function->getNameAsString();
      break;
      
    case SK_QualificationConversionRValue:
      OS << "qualification conversion (rvalue)";

    case SK_QualificationConversionLValue:
      OS << "qualification conversion (lvalue)";
      break;
      
    case SK_ConversionSequence:
      OS << "implicit conversion sequence (";
      S->ICS->DebugPrint(); // FIXME: use OS
      OS << ")";
      break;
      
    case SK_ListInitialization:
      OS << "list initialization";
      break;
      
    case SK_ConstructorInitialization:
      OS << "constructor initialization";
      break;
      
    case SK_ZeroInitialization:
      OS << "zero initialization";
      break;
      
    case SK_CAssignment:
      OS << "C assignment";
      break;
      
    case SK_StringInit:
      OS << "string initialization";
      break;
    }
  }
}

void InitializationSequence::dump() const {
  dump(llvm::errs());
}

//===----------------------------------------------------------------------===//
// Initialization helper functions
//===----------------------------------------------------------------------===//
Sema::OwningExprResult 
Sema::PerformCopyInitialization(const InitializedEntity &Entity,
                                SourceLocation EqualLoc,
                                OwningExprResult Init) {
  if (Init.isInvalid())
    return ExprError();

  Expr *InitE = (Expr *)Init.get();
  assert(InitE && "No initialization expression?");

  if (EqualLoc.isInvalid())
    EqualLoc = InitE->getLocStart();

  InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
                                                           EqualLoc);
  InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
  Init.release();
  return Seq.Perform(*this, Entity, Kind, 
                     MultiExprArg(*this, (void**)&InitE, 1));
}