aboutsummaryrefslogtreecommitdiff
path: root/lib/Sema/SemaExprMember.cpp
blob: 7b016c6574abfce8b7ec6f22762c90a564125580 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
//===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file implements semantic analysis member access expressions.
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/SemaInternal.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/ScopeInfo.h"

using namespace clang;
using namespace sema;

typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> BaseSet;
static bool BaseIsNotInSet(const CXXRecordDecl *Base, void *BasesPtr) {
  const BaseSet &Bases = *reinterpret_cast<const BaseSet*>(BasesPtr);
  return !Bases.count(Base->getCanonicalDecl());
}

/// Determines if the given class is provably not derived from all of
/// the prospective base classes.
static bool isProvablyNotDerivedFrom(Sema &SemaRef, CXXRecordDecl *Record,
                                     const BaseSet &Bases) {
  void *BasesPtr = const_cast<void*>(reinterpret_cast<const void*>(&Bases));
  return BaseIsNotInSet(Record, BasesPtr) &&
         Record->forallBases(BaseIsNotInSet, BasesPtr);
}

enum IMAKind {
  /// The reference is definitely not an instance member access.
  IMA_Static,

  /// The reference may be an implicit instance member access.
  IMA_Mixed,

  /// The reference may be to an instance member, but it might be invalid if
  /// so, because the context is not an instance method.
  IMA_Mixed_StaticContext,

  /// The reference may be to an instance member, but it is invalid if
  /// so, because the context is from an unrelated class.
  IMA_Mixed_Unrelated,

  /// The reference is definitely an implicit instance member access.
  IMA_Instance,

  /// The reference may be to an unresolved using declaration.
  IMA_Unresolved,

  /// The reference may be to an unresolved using declaration and the
  /// context is not an instance method.
  IMA_Unresolved_StaticContext,

  // The reference refers to a field which is not a member of the containing
  // class, which is allowed because we're in C++11 mode and the context is
  // unevaluated.
  IMA_Field_Uneval_Context,

  /// All possible referrents are instance members and the current
  /// context is not an instance method.
  IMA_Error_StaticContext,

  /// All possible referrents are instance members of an unrelated
  /// class.
  IMA_Error_Unrelated
};

/// The given lookup names class member(s) and is not being used for
/// an address-of-member expression.  Classify the type of access
/// according to whether it's possible that this reference names an
/// instance member.  This is best-effort in dependent contexts; it is okay to
/// conservatively answer "yes", in which case some errors will simply
/// not be caught until template-instantiation.
static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
                                            Scope *CurScope,
                                            const LookupResult &R) {
  assert(!R.empty() && (*R.begin())->isCXXClassMember());

  DeclContext *DC = SemaRef.getFunctionLevelDeclContext();

  bool isStaticContext = SemaRef.CXXThisTypeOverride.isNull() &&
    (!isa<CXXMethodDecl>(DC) || cast<CXXMethodDecl>(DC)->isStatic());

  if (R.isUnresolvableResult())
    return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;

  // Collect all the declaring classes of instance members we find.
  bool hasNonInstance = false;
  bool isField = false;
  BaseSet Classes;
  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
    NamedDecl *D = *I;

    if (D->isCXXInstanceMember()) {
      if (dyn_cast<FieldDecl>(D) || dyn_cast<IndirectFieldDecl>(D))
        isField = true;

      CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
      Classes.insert(R->getCanonicalDecl());
    }
    else
      hasNonInstance = true;
  }

  // If we didn't find any instance members, it can't be an implicit
  // member reference.
  if (Classes.empty())
    return IMA_Static;

  bool IsCXX11UnevaluatedField = false;
  if (SemaRef.getLangOpts().CPlusPlus11 && isField) {
    // C++11 [expr.prim.general]p12:
    //   An id-expression that denotes a non-static data member or non-static
    //   member function of a class can only be used:
    //   (...)
    //   - if that id-expression denotes a non-static data member and it
    //     appears in an unevaluated operand.
    const Sema::ExpressionEvaluationContextRecord& record
      = SemaRef.ExprEvalContexts.back();
    if (record.Context == Sema::Unevaluated)
      IsCXX11UnevaluatedField = true;
  }

  // If the current context is not an instance method, it can't be
  // an implicit member reference.
  if (isStaticContext) {
    if (hasNonInstance)
      return IMA_Mixed_StaticContext;

    return IsCXX11UnevaluatedField ? IMA_Field_Uneval_Context
                                   : IMA_Error_StaticContext;
  }

  CXXRecordDecl *contextClass;
  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
    contextClass = MD->getParent()->getCanonicalDecl();
  else
    contextClass = cast<CXXRecordDecl>(DC);

  // [class.mfct.non-static]p3: 
  // ...is used in the body of a non-static member function of class X,
  // if name lookup (3.4.1) resolves the name in the id-expression to a
  // non-static non-type member of some class C [...]
  // ...if C is not X or a base class of X, the class member access expression
  // is ill-formed.
  if (R.getNamingClass() &&
      contextClass->getCanonicalDecl() !=
        R.getNamingClass()->getCanonicalDecl()) {
    // If the naming class is not the current context, this was a qualified
    // member name lookup, and it's sufficient to check that we have the naming
    // class as a base class.
    Classes.clear();
    Classes.insert(R.getNamingClass()->getCanonicalDecl());
  }

  // If we can prove that the current context is unrelated to all the
  // declaring classes, it can't be an implicit member reference (in
  // which case it's an error if any of those members are selected).
  if (isProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
    return hasNonInstance ? IMA_Mixed_Unrelated :
           IsCXX11UnevaluatedField ? IMA_Field_Uneval_Context :
                                     IMA_Error_Unrelated;

  return (hasNonInstance ? IMA_Mixed : IMA_Instance);
}

/// Diagnose a reference to a field with no object available.
static void diagnoseInstanceReference(Sema &SemaRef,
                                      const CXXScopeSpec &SS,
                                      NamedDecl *Rep,
                                      const DeclarationNameInfo &nameInfo) {
  SourceLocation Loc = nameInfo.getLoc();
  SourceRange Range(Loc);
  if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());

  DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext();
  CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FunctionLevelDC);
  CXXRecordDecl *ContextClass = Method ? Method->getParent() : 0;
  CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext());

  bool InStaticMethod = Method && Method->isStatic();
  bool IsField = isa<FieldDecl>(Rep) || isa<IndirectFieldDecl>(Rep);

  if (IsField && InStaticMethod)
    // "invalid use of member 'x' in static member function"
    SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
        << Range << nameInfo.getName();
  else if (ContextClass && RepClass && SS.isEmpty() && !InStaticMethod &&
           !RepClass->Equals(ContextClass) && RepClass->Encloses(ContextClass))
    // Unqualified lookup in a non-static member function found a member of an
    // enclosing class.
    SemaRef.Diag(Loc, diag::err_nested_non_static_member_use)
      << IsField << RepClass << nameInfo.getName() << ContextClass << Range;
  else if (IsField)
    SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
      << nameInfo.getName() << Range;
  else
    SemaRef.Diag(Loc, diag::err_member_call_without_object)
      << Range;
}

/// Builds an expression which might be an implicit member expression.
ExprResult
Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
                                      SourceLocation TemplateKWLoc,
                                      LookupResult &R,
                                const TemplateArgumentListInfo *TemplateArgs) {
  switch (ClassifyImplicitMemberAccess(*this, CurScope, R)) {
  case IMA_Instance:
    return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, true);

  case IMA_Mixed:
  case IMA_Mixed_Unrelated:
  case IMA_Unresolved:
    return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, false);

  case IMA_Field_Uneval_Context:
    Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use)
      << R.getLookupNameInfo().getName();
    // Fall through.
  case IMA_Static:
  case IMA_Mixed_StaticContext:
  case IMA_Unresolved_StaticContext:
    if (TemplateArgs || TemplateKWLoc.isValid())
      return BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, TemplateArgs);
    return BuildDeclarationNameExpr(SS, R, false);

  case IMA_Error_StaticContext:
  case IMA_Error_Unrelated:
    diagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
                              R.getLookupNameInfo());
    return ExprError();
  }

  llvm_unreachable("unexpected instance member access kind");
}

/// Check an ext-vector component access expression.
///
/// VK should be set in advance to the value kind of the base
/// expression.
static QualType
CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
                        SourceLocation OpLoc, const IdentifierInfo *CompName,
                        SourceLocation CompLoc) {
  // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
  // see FIXME there.
  //
  // FIXME: This logic can be greatly simplified by splitting it along
  // halving/not halving and reworking the component checking.
  const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();

  // The vector accessor can't exceed the number of elements.
  const char *compStr = CompName->getNameStart();

  // This flag determines whether or not the component is one of the four
  // special names that indicate a subset of exactly half the elements are
  // to be selected.
  bool HalvingSwizzle = false;

  // This flag determines whether or not CompName has an 's' char prefix,
  // indicating that it is a string of hex values to be used as vector indices.
  bool HexSwizzle = *compStr == 's' || *compStr == 'S';

  bool HasRepeated = false;
  bool HasIndex[16] = {};

  int Idx;

  // Check that we've found one of the special components, or that the component
  // names must come from the same set.
  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
    HalvingSwizzle = true;
  } else if (!HexSwizzle &&
             (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
    do {
      if (HasIndex[Idx]) HasRepeated = true;
      HasIndex[Idx] = true;
      compStr++;
    } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
  } else {
    if (HexSwizzle) compStr++;
    while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
      if (HasIndex[Idx]) HasRepeated = true;
      HasIndex[Idx] = true;
      compStr++;
    }
  }

  if (!HalvingSwizzle && *compStr) {
    // We didn't get to the end of the string. This means the component names
    // didn't come from the same set *or* we encountered an illegal name.
    S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
      << StringRef(compStr, 1) << SourceRange(CompLoc);
    return QualType();
  }

  // Ensure no component accessor exceeds the width of the vector type it
  // operates on.
  if (!HalvingSwizzle) {
    compStr = CompName->getNameStart();

    if (HexSwizzle)
      compStr++;

    while (*compStr) {
      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
        S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
          << baseType << SourceRange(CompLoc);
        return QualType();
      }
    }
  }

  // The component accessor looks fine - now we need to compute the actual type.
  // The vector type is implied by the component accessor. For example,
  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
  unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
                                     : CompName->getLength();
  if (HexSwizzle)
    CompSize--;

  if (CompSize == 1)
    return vecType->getElementType();

  if (HasRepeated) VK = VK_RValue;

  QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
  // Now look up the TypeDefDecl from the vector type. Without this,
  // diagostics look bad. We want extended vector types to appear built-in.
  for (Sema::ExtVectorDeclsType::iterator 
         I = S.ExtVectorDecls.begin(S.getExternalSource()),
         E = S.ExtVectorDecls.end(); 
       I != E; ++I) {
    if ((*I)->getUnderlyingType() == VT)
      return S.Context.getTypedefType(*I);
  }
  
  return VT; // should never get here (a typedef type should always be found).
}

static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
                                                IdentifierInfo *Member,
                                                const Selector &Sel,
                                                ASTContext &Context) {
  if (Member)
    if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
      return PD;
  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
    return OMD;

  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
       E = PDecl->protocol_end(); I != E; ++I) {
    if (Decl *D = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
                                                           Context))
      return D;
  }
  return 0;
}

static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
                                      IdentifierInfo *Member,
                                      const Selector &Sel,
                                      ASTContext &Context) {
  // Check protocols on qualified interfaces.
  Decl *GDecl = 0;
  for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
       E = QIdTy->qual_end(); I != E; ++I) {
    if (Member)
      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
        GDecl = PD;
        break;
      }
    // Also must look for a getter or setter name which uses property syntax.
    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
      GDecl = OMD;
      break;
    }
  }
  if (!GDecl) {
    for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
         E = QIdTy->qual_end(); I != E; ++I) {
      // Search in the protocol-qualifier list of current protocol.
      GDecl = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel, 
                                                       Context);
      if (GDecl)
        return GDecl;
    }
  }
  return GDecl;
}

ExprResult
Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
                               bool IsArrow, SourceLocation OpLoc,
                               const CXXScopeSpec &SS,
                               SourceLocation TemplateKWLoc,
                               NamedDecl *FirstQualifierInScope,
                               const DeclarationNameInfo &NameInfo,
                               const TemplateArgumentListInfo *TemplateArgs) {
  // Even in dependent contexts, try to diagnose base expressions with
  // obviously wrong types, e.g.:
  //
  // T* t;
  // t.f;
  //
  // In Obj-C++, however, the above expression is valid, since it could be
  // accessing the 'f' property if T is an Obj-C interface. The extra check
  // allows this, while still reporting an error if T is a struct pointer.
  if (!IsArrow) {
    const PointerType *PT = BaseType->getAs<PointerType>();
    if (PT && (!getLangOpts().ObjC1 ||
               PT->getPointeeType()->isRecordType())) {
      assert(BaseExpr && "cannot happen with implicit member accesses");
      Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
        << BaseType << BaseExpr->getSourceRange() << NameInfo.getSourceRange();
      return ExprError();
    }
  }

  assert(BaseType->isDependentType() ||
         NameInfo.getName().isDependentName() ||
         isDependentScopeSpecifier(SS));

  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
  // must have pointer type, and the accessed type is the pointee.
  return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType,
                                                   IsArrow, OpLoc,
                                               SS.getWithLocInContext(Context),
                                                   TemplateKWLoc,
                                                   FirstQualifierInScope,
                                                   NameInfo, TemplateArgs));
}

/// We know that the given qualified member reference points only to
/// declarations which do not belong to the static type of the base
/// expression.  Diagnose the problem.
static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
                                             Expr *BaseExpr,
                                             QualType BaseType,
                                             const CXXScopeSpec &SS,
                                             NamedDecl *rep,
                                       const DeclarationNameInfo &nameInfo) {
  // If this is an implicit member access, use a different set of
  // diagnostics.
  if (!BaseExpr)
    return diagnoseInstanceReference(SemaRef, SS, rep, nameInfo);

  SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
    << SS.getRange() << rep << BaseType;
}

// Check whether the declarations we found through a nested-name
// specifier in a member expression are actually members of the base
// type.  The restriction here is:
//
//   C++ [expr.ref]p2:
//     ... In these cases, the id-expression shall name a
//     member of the class or of one of its base classes.
//
// So it's perfectly legitimate for the nested-name specifier to name
// an unrelated class, and for us to find an overload set including
// decls from classes which are not superclasses, as long as the decl
// we actually pick through overload resolution is from a superclass.
bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
                                         QualType BaseType,
                                         const CXXScopeSpec &SS,
                                         const LookupResult &R) {
  CXXRecordDecl *BaseRecord =
    cast_or_null<CXXRecordDecl>(computeDeclContext(BaseType));
  if (!BaseRecord) {
    // We can't check this yet because the base type is still
    // dependent.
    assert(BaseType->isDependentType());
    return false;
  }

  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
    // If this is an implicit member reference and we find a
    // non-instance member, it's not an error.
    if (!BaseExpr && !(*I)->isCXXInstanceMember())
      return false;

    // Note that we use the DC of the decl, not the underlying decl.
    DeclContext *DC = (*I)->getDeclContext();
    while (DC->isTransparentContext())
      DC = DC->getParent();

    if (!DC->isRecord())
      continue;

    CXXRecordDecl *MemberRecord = cast<CXXRecordDecl>(DC)->getCanonicalDecl();
    if (BaseRecord->getCanonicalDecl() == MemberRecord ||
        !BaseRecord->isProvablyNotDerivedFrom(MemberRecord))
      return false;
  }

  DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
                                   R.getRepresentativeDecl(),
                                   R.getLookupNameInfo());
  return true;
}

namespace {

// Callback to only accept typo corrections that are either a ValueDecl or a
// FunctionTemplateDecl.
class RecordMemberExprValidatorCCC : public CorrectionCandidateCallback {
 public:
  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
    NamedDecl *ND = candidate.getCorrectionDecl();
    return ND && (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND));
  }
};

}

static bool
LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R, 
                         SourceRange BaseRange, const RecordType *RTy,
                         SourceLocation OpLoc, CXXScopeSpec &SS,
                         bool HasTemplateArgs) {
  RecordDecl *RDecl = RTy->getDecl();
  if (!SemaRef.isThisOutsideMemberFunctionBody(QualType(RTy, 0)) &&
      SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
                                  diag::err_typecheck_incomplete_tag,
                                  BaseRange))
    return true;

  if (HasTemplateArgs) {
    // LookupTemplateName doesn't expect these both to exist simultaneously.
    QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);

    bool MOUS;
    SemaRef.LookupTemplateName(R, 0, SS, ObjectType, false, MOUS);
    return false;
  }

  DeclContext *DC = RDecl;
  if (SS.isSet()) {
    // If the member name was a qualified-id, look into the
    // nested-name-specifier.
    DC = SemaRef.computeDeclContext(SS, false);

    if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
      SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
        << SS.getRange() << DC;
      return true;
    }

    assert(DC && "Cannot handle non-computable dependent contexts in lookup");

    if (!isa<TypeDecl>(DC)) {
      SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
        << DC << SS.getRange();
      return true;
    }
  }

  // The record definition is complete, now look up the member.
  SemaRef.LookupQualifiedName(R, DC);

  if (!R.empty())
    return false;

  // We didn't find anything with the given name, so try to correct
  // for typos.
  DeclarationName Name = R.getLookupName();
  RecordMemberExprValidatorCCC Validator;
  TypoCorrection Corrected = SemaRef.CorrectTypo(R.getLookupNameInfo(),
                                                 R.getLookupKind(), NULL,
                                                 &SS, Validator, DC);
  R.clear();
  if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
    std::string CorrectedStr(
        Corrected.getAsString(SemaRef.getLangOpts()));
    std::string CorrectedQuotedStr(
        Corrected.getQuoted(SemaRef.getLangOpts()));
    R.setLookupName(Corrected.getCorrection());
    R.addDecl(ND);
    SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest)
      << Name << DC << CorrectedQuotedStr << SS.getRange()
      << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
                                      CorrectedStr);
    SemaRef.Diag(ND->getLocation(), diag::note_previous_decl)
      << ND->getDeclName();
  }

  return false;
}

ExprResult
Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
                               SourceLocation OpLoc, bool IsArrow,
                               CXXScopeSpec &SS,
                               SourceLocation TemplateKWLoc,
                               NamedDecl *FirstQualifierInScope,
                               const DeclarationNameInfo &NameInfo,
                               const TemplateArgumentListInfo *TemplateArgs) {
  if (BaseType->isDependentType() ||
      (SS.isSet() && isDependentScopeSpecifier(SS)))
    return ActOnDependentMemberExpr(Base, BaseType,
                                    IsArrow, OpLoc,
                                    SS, TemplateKWLoc, FirstQualifierInScope,
                                    NameInfo, TemplateArgs);

  LookupResult R(*this, NameInfo, LookupMemberName);

  // Implicit member accesses.
  if (!Base) {
    QualType RecordTy = BaseType;
    if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
    if (LookupMemberExprInRecord(*this, R, SourceRange(),
                                 RecordTy->getAs<RecordType>(),
                                 OpLoc, SS, TemplateArgs != 0))
      return ExprError();

  // Explicit member accesses.
  } else {
    ExprResult BaseResult = Owned(Base);
    ExprResult Result =
      LookupMemberExpr(R, BaseResult, IsArrow, OpLoc,
                       SS, /*ObjCImpDecl*/ 0, TemplateArgs != 0);

    if (BaseResult.isInvalid())
      return ExprError();
    Base = BaseResult.take();

    if (Result.isInvalid()) {
      Owned(Base);
      return ExprError();
    }

    if (Result.get())
      return Result;

    // LookupMemberExpr can modify Base, and thus change BaseType
    BaseType = Base->getType();
  }

  return BuildMemberReferenceExpr(Base, BaseType,
                                  OpLoc, IsArrow, SS, TemplateKWLoc,
                                  FirstQualifierInScope, R, TemplateArgs);
}

static ExprResult
BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
                        const CXXScopeSpec &SS, FieldDecl *Field,
                        DeclAccessPair FoundDecl,
                        const DeclarationNameInfo &MemberNameInfo);

ExprResult
Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
                                               SourceLocation loc,
                                               IndirectFieldDecl *indirectField,
                                               Expr *baseObjectExpr,
                                               SourceLocation opLoc) {
  // First, build the expression that refers to the base object.
  
  bool baseObjectIsPointer = false;
  Qualifiers baseQuals;
  
  // Case 1:  the base of the indirect field is not a field.
  VarDecl *baseVariable = indirectField->getVarDecl();
  CXXScopeSpec EmptySS;
  if (baseVariable) {
    assert(baseVariable->getType()->isRecordType());
    
    // In principle we could have a member access expression that
    // accesses an anonymous struct/union that's a static member of
    // the base object's class.  However, under the current standard,
    // static data members cannot be anonymous structs or unions.
    // Supporting this is as easy as building a MemberExpr here.
    assert(!baseObjectExpr && "anonymous struct/union is static data member?");
    
    DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
    
    ExprResult result 
      = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
    if (result.isInvalid()) return ExprError();
    
    baseObjectExpr = result.take();    
    baseObjectIsPointer = false;
    baseQuals = baseObjectExpr->getType().getQualifiers();
    
    // Case 2: the base of the indirect field is a field and the user
    // wrote a member expression.
  } else if (baseObjectExpr) {
    // The caller provided the base object expression. Determine
    // whether its a pointer and whether it adds any qualifiers to the
    // anonymous struct/union fields we're looking into.
    QualType objectType = baseObjectExpr->getType();
    
    if (const PointerType *ptr = objectType->getAs<PointerType>()) {
      baseObjectIsPointer = true;
      objectType = ptr->getPointeeType();
    } else {
      baseObjectIsPointer = false;
    }
    baseQuals = objectType.getQualifiers();
    
    // Case 3: the base of the indirect field is a field and we should
    // build an implicit member access.
  } else {
    // We've found a member of an anonymous struct/union that is
    // inside a non-anonymous struct/union, so in a well-formed
    // program our base object expression is "this".
    QualType ThisTy = getCurrentThisType();
    if (ThisTy.isNull()) {
      Diag(loc, diag::err_invalid_member_use_in_static_method)
        << indirectField->getDeclName();
      return ExprError();
    }
    
    // Our base object expression is "this".
    CheckCXXThisCapture(loc);
    baseObjectExpr 
      = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/ true);
    baseObjectIsPointer = true;
    baseQuals = ThisTy->castAs<PointerType>()->getPointeeType().getQualifiers();
  }
  
  // Build the implicit member references to the field of the
  // anonymous struct/union.
  Expr *result = baseObjectExpr;
  IndirectFieldDecl::chain_iterator
  FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
  
  // Build the first member access in the chain with full information.
  if (!baseVariable) {
    FieldDecl *field = cast<FieldDecl>(*FI);
    
    // FIXME: use the real found-decl info!
    DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess());
    
    // Make a nameInfo that properly uses the anonymous name.
    DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
    
    result = BuildFieldReferenceExpr(*this, result, baseObjectIsPointer,
                                     EmptySS, field, foundDecl,
                                     memberNameInfo).take();
    baseObjectIsPointer = false;
    
    // FIXME: check qualified member access
  }
  
  // In all cases, we should now skip the first declaration in the chain.
  ++FI;
  
  while (FI != FEnd) {
    FieldDecl *field = cast<FieldDecl>(*FI++);
    
    // FIXME: these are somewhat meaningless
    DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
    DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess());
    
    result = BuildFieldReferenceExpr(*this, result, /*isarrow*/ false,
                                     (FI == FEnd? SS : EmptySS), field, 
                                     foundDecl, memberNameInfo).take();
  }
  
  return Owned(result);
}

/// \brief Build a MemberExpr AST node.
static MemberExpr *BuildMemberExpr(Sema &SemaRef,
                                   ASTContext &C, Expr *Base, bool isArrow,
                                   const CXXScopeSpec &SS,
                                   SourceLocation TemplateKWLoc,
                                   ValueDecl *Member,
                                   DeclAccessPair FoundDecl,
                                   const DeclarationNameInfo &MemberNameInfo,
                                   QualType Ty,
                                   ExprValueKind VK, ExprObjectKind OK,
                                   const TemplateArgumentListInfo *TemplateArgs = 0) {
  assert((!isArrow || Base->isRValue()) && "-> base must be a pointer rvalue");
  MemberExpr *E =
      MemberExpr::Create(C, Base, isArrow, SS.getWithLocInContext(C),
                         TemplateKWLoc, Member, FoundDecl, MemberNameInfo,
                         TemplateArgs, Ty, VK, OK);
  SemaRef.MarkMemberReferenced(E);
  return E;
}

ExprResult
Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
                               SourceLocation OpLoc, bool IsArrow,
                               const CXXScopeSpec &SS,
                               SourceLocation TemplateKWLoc,
                               NamedDecl *FirstQualifierInScope,
                               LookupResult &R,
                               const TemplateArgumentListInfo *TemplateArgs,
                               bool SuppressQualifierCheck,
                               ActOnMemberAccessExtraArgs *ExtraArgs) {
  QualType BaseType = BaseExprType;
  if (IsArrow) {
    assert(BaseType->isPointerType());
    BaseType = BaseType->castAs<PointerType>()->getPointeeType();
  }
  R.setBaseObjectType(BaseType);

  const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
  DeclarationName MemberName = MemberNameInfo.getName();
  SourceLocation MemberLoc = MemberNameInfo.getLoc();

  if (R.isAmbiguous())
    return ExprError();

  if (R.empty()) {
    // Rederive where we looked up.
    DeclContext *DC = (SS.isSet()
                       ? computeDeclContext(SS, false)
                       : BaseType->getAs<RecordType>()->getDecl());

    if (ExtraArgs) {
      ExprResult RetryExpr;
      if (!IsArrow && BaseExpr) {
        SFINAETrap Trap(*this, true);
        ParsedType ObjectType;
        bool MayBePseudoDestructor = false;
        RetryExpr = ActOnStartCXXMemberReference(getCurScope(), BaseExpr,
                                                 OpLoc, tok::arrow, ObjectType,
                                                 MayBePseudoDestructor);
        if (RetryExpr.isUsable() && !Trap.hasErrorOccurred()) {
          CXXScopeSpec TempSS(SS);
          RetryExpr = ActOnMemberAccessExpr(
              ExtraArgs->S, RetryExpr.get(), OpLoc, tok::arrow, TempSS,
              TemplateKWLoc, ExtraArgs->Id, ExtraArgs->ObjCImpDecl,
              ExtraArgs->HasTrailingLParen);
        }
        if (Trap.hasErrorOccurred())
          RetryExpr = ExprError();
      }
      if (RetryExpr.isUsable()) {
        Diag(OpLoc, diag::err_no_member_overloaded_arrow)
          << MemberName << DC << FixItHint::CreateReplacement(OpLoc, "->");
        return RetryExpr;
      }
    }

    Diag(R.getNameLoc(), diag::err_no_member)
      << MemberName << DC
      << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
    return ExprError();
  }

  // Diagnose lookups that find only declarations from a non-base
  // type.  This is possible for either qualified lookups (which may
  // have been qualified with an unrelated type) or implicit member
  // expressions (which were found with unqualified lookup and thus
  // may have come from an enclosing scope).  Note that it's okay for
  // lookup to find declarations from a non-base type as long as those
  // aren't the ones picked by overload resolution.
  if ((SS.isSet() || !BaseExpr ||
       (isa<CXXThisExpr>(BaseExpr) &&
        cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
      !SuppressQualifierCheck &&
      CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
    return ExprError();
  
  // Construct an unresolved result if we in fact got an unresolved
  // result.
  if (R.isOverloadedResult() || R.isUnresolvableResult()) {
    // Suppress any lookup-related diagnostics; we'll do these when we
    // pick a member.
    R.suppressDiagnostics();

    UnresolvedMemberExpr *MemExpr
      = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
                                     BaseExpr, BaseExprType,
                                     IsArrow, OpLoc,
                                     SS.getWithLocInContext(Context),
                                     TemplateKWLoc, MemberNameInfo,
                                     TemplateArgs, R.begin(), R.end());

    return Owned(MemExpr);
  }

  assert(R.isSingleResult());
  DeclAccessPair FoundDecl = R.begin().getPair();
  NamedDecl *MemberDecl = R.getFoundDecl();

  // FIXME: diagnose the presence of template arguments now.

  // If the decl being referenced had an error, return an error for this
  // sub-expr without emitting another error, in order to avoid cascading
  // error cases.
  if (MemberDecl->isInvalidDecl())
    return ExprError();

  // Handle the implicit-member-access case.
  if (!BaseExpr) {
    // If this is not an instance member, convert to a non-member access.
    if (!MemberDecl->isCXXInstanceMember())
      return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl);

    SourceLocation Loc = R.getNameLoc();
    if (SS.getRange().isValid())
      Loc = SS.getRange().getBegin();
    CheckCXXThisCapture(Loc);
    BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
  }

  bool ShouldCheckUse = true;
  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
    // Don't diagnose the use of a virtual member function unless it's
    // explicitly qualified.
    if (MD->isVirtual() && !SS.isSet())
      ShouldCheckUse = false;
  }

  // Check the use of this member.
  if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) {
    Owned(BaseExpr);
    return ExprError();
  }

  if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
    return BuildFieldReferenceExpr(*this, BaseExpr, IsArrow,
                                   SS, FD, FoundDecl, MemberNameInfo);

  if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
    // We may have found a field within an anonymous union or struct
    // (C++ [class.union]).
    return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
                                                    BaseExpr, OpLoc);

  if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
    return Owned(BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS,
                                 TemplateKWLoc, Var, FoundDecl, MemberNameInfo,
                                 Var->getType().getNonReferenceType(),
                                 VK_LValue, OK_Ordinary));
  }

  if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
    ExprValueKind valueKind;
    QualType type;
    if (MemberFn->isInstance()) {
      valueKind = VK_RValue;
      type = Context.BoundMemberTy;
    } else {
      valueKind = VK_LValue;
      type = MemberFn->getType();
    }

    return Owned(BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS, 
                                 TemplateKWLoc, MemberFn, FoundDecl, 
                                 MemberNameInfo, type, valueKind,
                                 OK_Ordinary));
  }
  assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");

  if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
    return Owned(BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS,
                                 TemplateKWLoc, Enum, FoundDecl, MemberNameInfo,
                                 Enum->getType(), VK_RValue, OK_Ordinary));
  }

  Owned(BaseExpr);

  // We found something that we didn't expect. Complain.
  if (isa<TypeDecl>(MemberDecl))
    Diag(MemberLoc, diag::err_typecheck_member_reference_type)
      << MemberName << BaseType << int(IsArrow);
  else
    Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
      << MemberName << BaseType << int(IsArrow);

  Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
    << MemberName;
  R.suppressDiagnostics();
  return ExprError();
}

/// Given that normal member access failed on the given expression,
/// and given that the expression's type involves builtin-id or
/// builtin-Class, decide whether substituting in the redefinition
/// types would be profitable.  The redefinition type is whatever
/// this translation unit tried to typedef to id/Class;  we store
/// it to the side and then re-use it in places like this.
static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
  const ObjCObjectPointerType *opty
    = base.get()->getType()->getAs<ObjCObjectPointerType>();
  if (!opty) return false;

  const ObjCObjectType *ty = opty->getObjectType();

  QualType redef;
  if (ty->isObjCId()) {
    redef = S.Context.getObjCIdRedefinitionType();
  } else if (ty->isObjCClass()) {
    redef = S.Context.getObjCClassRedefinitionType();
  } else {
    return false;
  }

  // Do the substitution as long as the redefinition type isn't just a
  // possibly-qualified pointer to builtin-id or builtin-Class again.
  opty = redef->getAs<ObjCObjectPointerType>();
  if (opty && !opty->getObjectType()->getInterface())
    return false;

  base = S.ImpCastExprToType(base.take(), redef, CK_BitCast);
  return true;
}

static bool isRecordType(QualType T) {
  return T->isRecordType();
}
static bool isPointerToRecordType(QualType T) {
  if (const PointerType *PT = T->getAs<PointerType>())
    return PT->getPointeeType()->isRecordType();
  return false;
}

/// Perform conversions on the LHS of a member access expression.
ExprResult
Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) {
  if (IsArrow && !Base->getType()->isFunctionType())
    return DefaultFunctionArrayLvalueConversion(Base);

  return CheckPlaceholderExpr(Base);
}

/// Look up the given member of the given non-type-dependent
/// expression.  This can return in one of two ways:
///  * If it returns a sentinel null-but-valid result, the caller will
///    assume that lookup was performed and the results written into
///    the provided structure.  It will take over from there.
///  * Otherwise, the returned expression will be produced in place of
///    an ordinary member expression.
///
/// The ObjCImpDecl bit is a gross hack that will need to be properly
/// fixed for ObjC++.
ExprResult
Sema::LookupMemberExpr(LookupResult &R, ExprResult &BaseExpr,
                       bool &IsArrow, SourceLocation OpLoc,
                       CXXScopeSpec &SS,
                       Decl *ObjCImpDecl, bool HasTemplateArgs) {
  assert(BaseExpr.get() && "no base expression");

  // Perform default conversions.
  BaseExpr = PerformMemberExprBaseConversion(BaseExpr.take(), IsArrow);
  if (BaseExpr.isInvalid())
    return ExprError();

  QualType BaseType = BaseExpr.get()->getType();
  assert(!BaseType->isDependentType());

  DeclarationName MemberName = R.getLookupName();
  SourceLocation MemberLoc = R.getNameLoc();

  // For later type-checking purposes, turn arrow accesses into dot
  // accesses.  The only access type we support that doesn't follow
  // the C equivalence "a->b === (*a).b" is ObjC property accesses,
  // and those never use arrows, so this is unaffected.
  if (IsArrow) {
    if (const PointerType *Ptr = BaseType->getAs<PointerType>())
      BaseType = Ptr->getPointeeType();
    else if (const ObjCObjectPointerType *Ptr
               = BaseType->getAs<ObjCObjectPointerType>())
      BaseType = Ptr->getPointeeType();
    else if (BaseType->isRecordType()) {
      // Recover from arrow accesses to records, e.g.:
      //   struct MyRecord foo;
      //   foo->bar
      // This is actually well-formed in C++ if MyRecord has an
      // overloaded operator->, but that should have been dealt with
      // by now.
      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
        << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
        << FixItHint::CreateReplacement(OpLoc, ".");
      IsArrow = false;
    } else if (BaseType->isFunctionType()) {
      goto fail;
    } else {
      Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
        << BaseType << BaseExpr.get()->getSourceRange();
      return ExprError();
    }
  }

  // Handle field access to simple records.
  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
    if (LookupMemberExprInRecord(*this, R, BaseExpr.get()->getSourceRange(),
                                 RTy, OpLoc, SS, HasTemplateArgs))
      return ExprError();

    // Returning valid-but-null is how we indicate to the caller that
    // the lookup result was filled in.
    return Owned((Expr*) 0);
  }

  // Handle ivar access to Objective-C objects.
  if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
    if (!SS.isEmpty() && !SS.isInvalid()) {
      Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
        << 1 << SS.getScopeRep()
        << FixItHint::CreateRemoval(SS.getRange());
      SS.clear();
    }
    
    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();

    // There are three cases for the base type:
    //   - builtin id (qualified or unqualified)
    //   - builtin Class (qualified or unqualified)
    //   - an interface
    ObjCInterfaceDecl *IDecl = OTy->getInterface();
    if (!IDecl) {
      if (getLangOpts().ObjCAutoRefCount &&
          (OTy->isObjCId() || OTy->isObjCClass()))
        goto fail;
      // There's an implicit 'isa' ivar on all objects.
      // But we only actually find it this way on objects of type 'id',
      // apparently.
      if (OTy->isObjCId() && Member->isStr("isa")) {
        Diag(MemberLoc, diag::warn_objc_isa_use);
        return Owned(new (Context) ObjCIsaExpr(BaseExpr.take(), IsArrow, MemberLoc,
                                               Context.getObjCClassType()));
      }

      if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
        return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
                                ObjCImpDecl, HasTemplateArgs);
      goto fail;
    }
    else if (Member && Member->isStr("isa")) {
      // If an ivar is (1) the first ivar in a root class and (2) named `isa`,
      // then issue the same deprecated warning that id->isa gets.
      ObjCInterfaceDecl *ClassDeclared = 0;
      if (ObjCIvarDecl *IV = 
            IDecl->lookupInstanceVariable(Member, ClassDeclared)) {
        if (!ClassDeclared->getSuperClass()
            && (*ClassDeclared->ivar_begin()) == IV) {
          Diag(MemberLoc, diag::warn_objc_isa_use);
          Diag(IV->getLocation(), diag::note_ivar_decl);
        }
      }
    }
    
    if (RequireCompleteType(OpLoc, BaseType, diag::err_typecheck_incomplete_tag,
                            BaseExpr.get()))
      return ExprError();
    
    ObjCInterfaceDecl *ClassDeclared = 0;
    ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);

    if (!IV) {
      // Attempt to correct for typos in ivar names.
      DeclFilterCCC<ObjCIvarDecl> Validator;
      Validator.IsObjCIvarLookup = IsArrow;
      if (TypoCorrection Corrected = CorrectTypo(R.getLookupNameInfo(),
                                                 LookupMemberName, NULL, NULL,
                                                 Validator, IDecl)) {
        IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>();
        Diag(R.getNameLoc(),
             diag::err_typecheck_member_reference_ivar_suggest)
          << IDecl->getDeclName() << MemberName << IV->getDeclName()
          << FixItHint::CreateReplacement(R.getNameLoc(),
                                          IV->getNameAsString());
        Diag(IV->getLocation(), diag::note_previous_decl)
          << IV->getDeclName();
        
        // Figure out the class that declares the ivar.
        assert(!ClassDeclared);
        Decl *D = cast<Decl>(IV->getDeclContext());
        if (ObjCCategoryDecl *CAT = dyn_cast<ObjCCategoryDecl>(D))
          D = CAT->getClassInterface();
        ClassDeclared = cast<ObjCInterfaceDecl>(D);
      } else {
        if (IsArrow && IDecl->FindPropertyDeclaration(Member)) {
          Diag(MemberLoc, 
          diag::err_property_found_suggest)
          << Member << BaseExpr.get()->getType()
          << FixItHint::CreateReplacement(OpLoc, ".");
          return ExprError();
        }

        Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
          << IDecl->getDeclName() << MemberName
          << BaseExpr.get()->getSourceRange();
        return ExprError();
      }
    }
    
    assert(ClassDeclared);

    // If the decl being referenced had an error, return an error for this
    // sub-expr without emitting another error, in order to avoid cascading
    // error cases.
    if (IV->isInvalidDecl())
      return ExprError();

    // Check whether we can reference this field.
    if (DiagnoseUseOfDecl(IV, MemberLoc))
      return ExprError();
    if (IV->getAccessControl() != ObjCIvarDecl::Public &&
        IV->getAccessControl() != ObjCIvarDecl::Package) {
      ObjCInterfaceDecl *ClassOfMethodDecl = 0;
      if (ObjCMethodDecl *MD = getCurMethodDecl())
        ClassOfMethodDecl =  MD->getClassInterface();
      else if (ObjCImpDecl && getCurFunctionDecl()) {
        // Case of a c-function declared inside an objc implementation.
        // FIXME: For a c-style function nested inside an objc implementation
        // class, there is no implementation context available, so we pass
        // down the context as argument to this routine. Ideally, this context
        // need be passed down in the AST node and somehow calculated from the
        // AST for a function decl.
        if (ObjCImplementationDecl *IMPD =
              dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
          ClassOfMethodDecl = IMPD->getClassInterface();
        else if (ObjCCategoryImplDecl* CatImplClass =
                   dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
          ClassOfMethodDecl = CatImplClass->getClassInterface();
      }
      if (!getLangOpts().DebuggerSupport) {
        if (IV->getAccessControl() == ObjCIvarDecl::Private) {
          if (!declaresSameEntity(ClassDeclared, IDecl) ||
              !declaresSameEntity(ClassOfMethodDecl, ClassDeclared))
            Diag(MemberLoc, diag::error_private_ivar_access)
              << IV->getDeclName();
        } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
          // @protected
          Diag(MemberLoc, diag::error_protected_ivar_access)
            << IV->getDeclName();
      }
    }
    bool warn = true;
    if (getLangOpts().ObjCAutoRefCount) {
      Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts();
      if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp))
        if (UO->getOpcode() == UO_Deref)
          BaseExp = UO->getSubExpr()->IgnoreParenCasts();
      
      if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp))
        if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
          Diag(DE->getLocation(), diag::error_arc_weak_ivar_access);
          warn = false;
        }
    }
    if (warn) {
      if (ObjCMethodDecl *MD = getCurMethodDecl()) {
        ObjCMethodFamily MF = MD->getMethodFamily();
        warn = (MF != OMF_init && MF != OMF_dealloc && 
                MF != OMF_finalize &&
                !IvarBacksCurrentMethodAccessor(IDecl, MD, IV));
      }
      if (warn)
        Diag(MemberLoc, diag::warn_direct_ivar_access) << IV->getDeclName();
    }

    ObjCIvarRefExpr *Result = new (Context) ObjCIvarRefExpr(IV, IV->getType(),
                                                            MemberLoc,
                                                            BaseExpr.take(),
                                                            IsArrow);

    if (getLangOpts().ObjCAutoRefCount) {
      if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
        DiagnosticsEngine::Level Level =
          Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
                                   MemberLoc);
        if (Level != DiagnosticsEngine::Ignored)
          getCurFunction()->recordUseOfWeak(Result);
      }
    }

    return Owned(Result);
  }

  // Objective-C property access.
  const ObjCObjectPointerType *OPT;
  if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
    if (!SS.isEmpty() && !SS.isInvalid()) {
      Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
        << 0 << SS.getScopeRep()
        << FixItHint::CreateRemoval(SS.getRange());
      SS.clear();
    }

    // This actually uses the base as an r-value.
    BaseExpr = DefaultLvalueConversion(BaseExpr.take());
    if (BaseExpr.isInvalid())
      return ExprError();

    assert(Context.hasSameUnqualifiedType(BaseType, BaseExpr.get()->getType()));

    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();

    const ObjCObjectType *OT = OPT->getObjectType();

    // id, with and without qualifiers.
    if (OT->isObjCId()) {
      // Check protocols on qualified interfaces.
      Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
      if (Decl *PMDecl = FindGetterSetterNameDecl(OPT, Member, Sel, Context)) {
        if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
          // Check the use of this declaration
          if (DiagnoseUseOfDecl(PD, MemberLoc))
            return ExprError();

          return Owned(new (Context) ObjCPropertyRefExpr(PD,
                                                         Context.PseudoObjectTy,
                                                         VK_LValue,
                                                         OK_ObjCProperty,
                                                         MemberLoc, 
                                                         BaseExpr.take()));
        }

        if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
          // Check the use of this method.
          if (DiagnoseUseOfDecl(OMD, MemberLoc))
            return ExprError();
          Selector SetterSel =
            SelectorTable::constructSetterName(PP.getIdentifierTable(),
                                               PP.getSelectorTable(), Member);
          ObjCMethodDecl *SMD = 0;
          if (Decl *SDecl = FindGetterSetterNameDecl(OPT, /*Property id*/0, 
                                                     SetterSel, Context))
            SMD = dyn_cast<ObjCMethodDecl>(SDecl);
          
          return Owned(new (Context) ObjCPropertyRefExpr(OMD, SMD,
                                                         Context.PseudoObjectTy,
                                                         VK_LValue, OK_ObjCProperty,
                                                         MemberLoc, BaseExpr.take()));
        }
      }
      // Use of id.member can only be for a property reference. Do not
      // use the 'id' redefinition in this case.
      if (IsArrow && ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
        return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
                                ObjCImpDecl, HasTemplateArgs);

      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
                         << MemberName << BaseType);
    }

    // 'Class', unqualified only.
    if (OT->isObjCClass()) {
      // Only works in a method declaration (??!).
      ObjCMethodDecl *MD = getCurMethodDecl();
      if (!MD) {
        if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
          return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
                                  ObjCImpDecl, HasTemplateArgs);

        goto fail;
      }

      // Also must look for a getter name which uses property syntax.
      Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
      ObjCInterfaceDecl *IFace = MD->getClassInterface();
      ObjCMethodDecl *Getter;
      if ((Getter = IFace->lookupClassMethod(Sel))) {
        // Check the use of this method.
        if (DiagnoseUseOfDecl(Getter, MemberLoc))
          return ExprError();
      } else
        Getter = IFace->lookupPrivateMethod(Sel, false);
      // If we found a getter then this may be a valid dot-reference, we
      // will look for the matching setter, in case it is needed.
      Selector SetterSel =
        SelectorTable::constructSetterName(PP.getIdentifierTable(),
                                           PP.getSelectorTable(), Member);
      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
      if (!Setter) {
        // If this reference is in an @implementation, also check for 'private'
        // methods.
        Setter = IFace->lookupPrivateMethod(SetterSel, false);
      }

      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
        return ExprError();

      if (Getter || Setter) {
        return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
                                                       Context.PseudoObjectTy,
                                                       VK_LValue, OK_ObjCProperty,
                                                       MemberLoc, BaseExpr.take()));
      }

      if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
        return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
                                ObjCImpDecl, HasTemplateArgs);

      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
                         << MemberName << BaseType);
    }

    // Normal property access.
    return HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc, 
                                     MemberName, MemberLoc,
                                     SourceLocation(), QualType(), false);
  }

  // Handle 'field access' to vectors, such as 'V.xx'.
  if (BaseType->isExtVectorType()) {
    // FIXME: this expr should store IsArrow.
    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
    ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr.get()->getValueKind());
    QualType ret = CheckExtVectorComponent(*this, BaseType, VK, OpLoc,
                                           Member, MemberLoc);
    if (ret.isNull())
      return ExprError();

    return Owned(new (Context) ExtVectorElementExpr(ret, VK, BaseExpr.take(),
                                                    *Member, MemberLoc));
  }

  // Adjust builtin-sel to the appropriate redefinition type if that's
  // not just a pointer to builtin-sel again.
  if (IsArrow &&
      BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
      !Context.getObjCSelRedefinitionType()->isObjCSelType()) {
    BaseExpr = ImpCastExprToType(BaseExpr.take(), 
                                 Context.getObjCSelRedefinitionType(),
                                 CK_BitCast);
    return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
                            ObjCImpDecl, HasTemplateArgs);
  }

  // Failure cases.
 fail:

  // Recover from dot accesses to pointers, e.g.:
  //   type *foo;
  //   foo.bar
  // This is actually well-formed in two cases:
  //   - 'type' is an Objective C type
  //   - 'bar' is a pseudo-destructor name which happens to refer to
  //     the appropriate pointer type
  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
    if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
        MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
        << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
          << FixItHint::CreateReplacement(OpLoc, "->");

      // Recurse as an -> access.
      IsArrow = true;
      return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
                              ObjCImpDecl, HasTemplateArgs);
    }
  }

  // If the user is trying to apply -> or . to a function name, it's probably
  // because they forgot parentheses to call that function.
  if (tryToRecoverWithCall(BaseExpr,
                           PDiag(diag::err_member_reference_needs_call),
                           /*complain*/ false,
                           IsArrow ? &isPointerToRecordType : &isRecordType)) {
    if (BaseExpr.isInvalid())
      return ExprError();
    BaseExpr = DefaultFunctionArrayConversion(BaseExpr.take());
    return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
                            ObjCImpDecl, HasTemplateArgs);
  }

  Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
    << BaseType << BaseExpr.get()->getSourceRange() << MemberLoc;

  return ExprError();
}

/// The main callback when the parser finds something like
///   expression . [nested-name-specifier] identifier
///   expression -> [nested-name-specifier] identifier
/// where 'identifier' encompasses a fairly broad spectrum of
/// possibilities, including destructor and operator references.
///
/// \param OpKind either tok::arrow or tok::period
/// \param HasTrailingLParen whether the next token is '(', which
///   is used to diagnose mis-uses of special members that can
///   only be called
/// \param ObjCImpDecl the current Objective-C \@implementation
///   decl; this is an ugly hack around the fact that Objective-C
///   \@implementations aren't properly put in the context chain
ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
                                       SourceLocation OpLoc,
                                       tok::TokenKind OpKind,
                                       CXXScopeSpec &SS,
                                       SourceLocation TemplateKWLoc,
                                       UnqualifiedId &Id,
                                       Decl *ObjCImpDecl,
                                       bool HasTrailingLParen) {
  if (SS.isSet() && SS.isInvalid())
    return ExprError();

  // Warn about the explicit constructor calls Microsoft extension.
  if (getLangOpts().MicrosoftExt &&
      Id.getKind() == UnqualifiedId::IK_ConstructorName)
    Diag(Id.getSourceRange().getBegin(),
         diag::ext_ms_explicit_constructor_call);

  TemplateArgumentListInfo TemplateArgsBuffer;

  // Decompose the name into its component parts.
  DeclarationNameInfo NameInfo;
  const TemplateArgumentListInfo *TemplateArgs;
  DecomposeUnqualifiedId(Id, TemplateArgsBuffer,
                         NameInfo, TemplateArgs);

  DeclarationName Name = NameInfo.getName();
  bool IsArrow = (OpKind == tok::arrow);

  NamedDecl *FirstQualifierInScope
    = (!SS.isSet() ? 0 : FindFirstQualifierInScope(S,
                       static_cast<NestedNameSpecifier*>(SS.getScopeRep())));

  // This is a postfix expression, so get rid of ParenListExprs.
  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
  if (Result.isInvalid()) return ExprError();
  Base = Result.take();

  if (Base->getType()->isDependentType() || Name.isDependentName() ||
      isDependentScopeSpecifier(SS)) {
    Result = ActOnDependentMemberExpr(Base, Base->getType(),
                                      IsArrow, OpLoc,
                                      SS, TemplateKWLoc, FirstQualifierInScope,
                                      NameInfo, TemplateArgs);
  } else {
    LookupResult R(*this, NameInfo, LookupMemberName);
    ExprResult BaseResult = Owned(Base);
    Result = LookupMemberExpr(R, BaseResult, IsArrow, OpLoc,
                              SS, ObjCImpDecl, TemplateArgs != 0);
    if (BaseResult.isInvalid())
      return ExprError();
    Base = BaseResult.take();

    if (Result.isInvalid()) {
      Owned(Base);
      return ExprError();
    }

    if (Result.get()) {
      // The only way a reference to a destructor can be used is to
      // immediately call it, which falls into this case.  If the
      // next token is not a '(', produce a diagnostic and build the
      // call now.
      if (!HasTrailingLParen &&
          Id.getKind() == UnqualifiedId::IK_DestructorName)
        return DiagnoseDtorReference(NameInfo.getLoc(), Result.get());

      return Result;
    }

    ActOnMemberAccessExtraArgs ExtraArgs = {S, Id, ObjCImpDecl, HasTrailingLParen};
    Result = BuildMemberReferenceExpr(Base, Base->getType(),
                                      OpLoc, IsArrow, SS, TemplateKWLoc,
                                      FirstQualifierInScope, R, TemplateArgs,
                                      false, &ExtraArgs);
  }

  return Result;
}

static ExprResult
BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
                        const CXXScopeSpec &SS, FieldDecl *Field,
                        DeclAccessPair FoundDecl,
                        const DeclarationNameInfo &MemberNameInfo) {
  // x.a is an l-value if 'a' has a reference type. Otherwise:
  // x.a is an l-value/x-value/pr-value if the base is (and note
  //   that *x is always an l-value), except that if the base isn't
  //   an ordinary object then we must have an rvalue.
  ExprValueKind VK = VK_LValue;
  ExprObjectKind OK = OK_Ordinary;
  if (!IsArrow) {
    if (BaseExpr->getObjectKind() == OK_Ordinary)
      VK = BaseExpr->getValueKind();
    else
      VK = VK_RValue;
  }
  if (VK != VK_RValue && Field->isBitField())
    OK = OK_BitField;
  
  // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
  QualType MemberType = Field->getType();
  if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
    MemberType = Ref->getPointeeType();
    VK = VK_LValue;
  } else {
    QualType BaseType = BaseExpr->getType();
    if (IsArrow) BaseType = BaseType->getAs<PointerType>()->getPointeeType();

    Qualifiers BaseQuals = BaseType.getQualifiers();

    // GC attributes are never picked up by members.
    BaseQuals.removeObjCGCAttr();

    // CVR attributes from the base are picked up by members,
    // except that 'mutable' members don't pick up 'const'.
    if (Field->isMutable()) BaseQuals.removeConst();

    Qualifiers MemberQuals
    = S.Context.getCanonicalType(MemberType).getQualifiers();

    assert(!MemberQuals.hasAddressSpace());


    Qualifiers Combined = BaseQuals + MemberQuals;
    if (Combined != MemberQuals)
      MemberType = S.Context.getQualifiedType(MemberType, Combined);
  }

  S.UnusedPrivateFields.remove(Field);

  ExprResult Base =
  S.PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
                                  FoundDecl, Field);
  if (Base.isInvalid())
    return ExprError();
  return S.Owned(BuildMemberExpr(S, S.Context, Base.take(), IsArrow, SS,
                                 /*TemplateKWLoc=*/SourceLocation(),
                                 Field, FoundDecl, MemberNameInfo,
                                 MemberType, VK, OK));
}

/// Builds an implicit member access expression.  The current context
/// is known to be an instance method, and the given unqualified lookup
/// set is known to contain only instance members, at least one of which
/// is from an appropriate type.
ExprResult
Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
                              SourceLocation TemplateKWLoc,
                              LookupResult &R,
                              const TemplateArgumentListInfo *TemplateArgs,
                              bool IsKnownInstance) {
  assert(!R.empty() && !R.isAmbiguous());
  
  SourceLocation loc = R.getNameLoc();
  
  // We may have found a field within an anonymous union or struct
  // (C++ [class.union]).
  // FIXME: template-ids inside anonymous structs?
  if (IndirectFieldDecl *FD = R.getAsSingle<IndirectFieldDecl>())
    return BuildAnonymousStructUnionMemberReference(SS, R.getNameLoc(), FD);
  
  // If this is known to be an instance access, go ahead and build an
  // implicit 'this' expression now.
  // 'this' expression now.
  QualType ThisTy = getCurrentThisType();
  assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'");
  
  Expr *baseExpr = 0; // null signifies implicit access
  if (IsKnownInstance) {
    SourceLocation Loc = R.getNameLoc();
    if (SS.getRange().isValid())
      Loc = SS.getRange().getBegin();
    CheckCXXThisCapture(Loc);
    baseExpr = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/true);
  }
  
  return BuildMemberReferenceExpr(baseExpr, ThisTy,
                                  /*OpLoc*/ SourceLocation(),
                                  /*IsArrow*/ true,
                                  SS, TemplateKWLoc,
                                  /*FirstQualifierInScope*/ 0,
                                  R, TemplateArgs);
}