aboutsummaryrefslogtreecommitdiff
path: root/lib/CodeGen/CodeGenTypes.cpp
blob: 4240216b230c66b331b1cfab199b8eb5f6664dc8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
//===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is the code that handles AST -> LLVM type lowering.
//
//===----------------------------------------------------------------------===//

#include "CodeGenTypes.h"
#include "CGCXXABI.h"
#include "CGCall.h"
#include "CGOpenCLRuntime.h"
#include "CGRecordLayout.h"
#include "TargetInfo.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Expr.h"
#include "clang/AST/RecordLayout.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Module.h"
using namespace clang;
using namespace CodeGen;

CodeGenTypes::CodeGenTypes(CodeGenModule &cgm)
  : CGM(cgm), Context(cgm.getContext()), TheModule(cgm.getModule()),
    TheDataLayout(cgm.getDataLayout()),
    Target(cgm.getTarget()), TheCXXABI(cgm.getCXXABI()),
    CodeGenOpts(cgm.getCodeGenOpts()),
    TheABIInfo(cgm.getTargetCodeGenInfo().getABIInfo()) {
  SkippedLayout = false;
}

CodeGenTypes::~CodeGenTypes() {
  for (llvm::DenseMap<const Type *, CGRecordLayout *>::iterator
         I = CGRecordLayouts.begin(), E = CGRecordLayouts.end();
      I != E; ++I)
    delete I->second;

  for (llvm::FoldingSet<CGFunctionInfo>::iterator
       I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
    delete &*I++;
}

void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
                                     llvm::StructType *Ty,
                                     StringRef suffix) {
  SmallString<256> TypeName;
  llvm::raw_svector_ostream OS(TypeName);
  OS << RD->getKindName() << '.';
  
  // Name the codegen type after the typedef name
  // if there is no tag type name available
  if (RD->getIdentifier()) {
    // FIXME: We should not have to check for a null decl context here.
    // Right now we do it because the implicit Obj-C decls don't have one.
    if (RD->getDeclContext())
      RD->printQualifiedName(OS);
    else
      RD->printName(OS);
  } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
    // FIXME: We should not have to check for a null decl context here.
    // Right now we do it because the implicit Obj-C decls don't have one.
    if (TDD->getDeclContext())
      TDD->printQualifiedName(OS);
    else
      TDD->printName(OS);
  } else
    OS << "anon";

  if (!suffix.empty())
    OS << suffix;

  Ty->setName(OS.str());
}

/// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
/// ConvertType in that it is used to convert to the memory representation for
/// a type.  For example, the scalar representation for _Bool is i1, but the
/// memory representation is usually i8 or i32, depending on the target.
llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T){
  llvm::Type *R = ConvertType(T);

  // If this is a non-bool type, don't map it.
  if (!R->isIntegerTy(1))
    return R;

  // Otherwise, return an integer of the target-specified size.
  return llvm::IntegerType::get(getLLVMContext(),
                                (unsigned)Context.getTypeSize(T));
}


/// isRecordLayoutComplete - Return true if the specified type is already
/// completely laid out.
bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const {
  llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I = 
  RecordDeclTypes.find(Ty);
  return I != RecordDeclTypes.end() && !I->second->isOpaque();
}

static bool
isSafeToConvert(QualType T, CodeGenTypes &CGT,
                llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked);


/// isSafeToConvert - Return true if it is safe to convert the specified record
/// decl to IR and lay it out, false if doing so would cause us to get into a
/// recursive compilation mess.
static bool 
isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT,
                llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
  // If we have already checked this type (maybe the same type is used by-value
  // multiple times in multiple structure fields, don't check again.
  if (!AlreadyChecked.insert(RD)) return true;
  
  const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr();
  
  // If this type is already laid out, converting it is a noop.
  if (CGT.isRecordLayoutComplete(Key)) return true;
  
  // If this type is currently being laid out, we can't recursively compile it.
  if (CGT.isRecordBeingLaidOut(Key))
    return false;
  
  // If this type would require laying out bases that are currently being laid
  // out, don't do it.  This includes virtual base classes which get laid out
  // when a class is translated, even though they aren't embedded by-value into
  // the class.
  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
    for (CXXRecordDecl::base_class_const_iterator I = CRD->bases_begin(),
         E = CRD->bases_end(); I != E; ++I)
      if (!isSafeToConvert(I->getType()->getAs<RecordType>()->getDecl(),
                           CGT, AlreadyChecked))
        return false;
  }
  
  // If this type would require laying out members that are currently being laid
  // out, don't do it.
  for (RecordDecl::field_iterator I = RD->field_begin(),
       E = RD->field_end(); I != E; ++I)
    if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked))
      return false;
  
  // If there are no problems, lets do it.
  return true;
}

/// isSafeToConvert - Return true if it is safe to convert this field type,
/// which requires the structure elements contained by-value to all be
/// recursively safe to convert.
static bool
isSafeToConvert(QualType T, CodeGenTypes &CGT,
                llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
  T = T.getCanonicalType();
  
  // If this is a record, check it.
  if (const RecordType *RT = dyn_cast<RecordType>(T))
    return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked);
  
  // If this is an array, check the elements, which are embedded inline.
  if (const ArrayType *AT = dyn_cast<ArrayType>(T))
    return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked);

  // Otherwise, there is no concern about transforming this.  We only care about
  // things that are contained by-value in a structure that can have another 
  // structure as a member.
  return true;
}


/// isSafeToConvert - Return true if it is safe to convert the specified record
/// decl to IR and lay it out, false if doing so would cause us to get into a
/// recursive compilation mess.
static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) {
  // If no structs are being laid out, we can certainly do this one.
  if (CGT.noRecordsBeingLaidOut()) return true;
  
  llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked;
  return isSafeToConvert(RD, CGT, AlreadyChecked);
}


/// isFuncTypeArgumentConvertible - Return true if the specified type in a 
/// function argument or result position can be converted to an IR type at this
/// point.  This boils down to being whether it is complete, as well as whether
/// we've temporarily deferred expanding the type because we're in a recursive
/// context.
bool CodeGenTypes::isFuncTypeArgumentConvertible(QualType Ty) {
  // If this isn't a tagged type, we can convert it!
  const TagType *TT = Ty->getAs<TagType>();
  if (TT == 0) return true;
    
  // Incomplete types cannot be converted.
  if (TT->isIncompleteType())
    return false;
  
  // If this is an enum, then it is always safe to convert.
  const RecordType *RT = dyn_cast<RecordType>(TT);
  if (RT == 0) return true;

  // Otherwise, we have to be careful.  If it is a struct that we're in the
  // process of expanding, then we can't convert the function type.  That's ok
  // though because we must be in a pointer context under the struct, so we can
  // just convert it to a dummy type.
  //
  // We decide this by checking whether ConvertRecordDeclType returns us an
  // opaque type for a struct that we know is defined.
  return isSafeToConvert(RT->getDecl(), *this);
}


/// Code to verify a given function type is complete, i.e. the return type
/// and all of the argument types are complete.  Also check to see if we are in
/// a RS_StructPointer context, and if so whether any struct types have been
/// pended.  If so, we don't want to ask the ABI lowering code to handle a type
/// that cannot be converted to an IR type.
bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
  if (!isFuncTypeArgumentConvertible(FT->getResultType()))
    return false;
  
  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
    for (unsigned i = 0, e = FPT->getNumArgs(); i != e; i++)
      if (!isFuncTypeArgumentConvertible(FPT->getArgType(i)))
        return false;

  return true;
}

/// UpdateCompletedType - When we find the full definition for a TagDecl,
/// replace the 'opaque' type we previously made for it if applicable.
void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
  // If this is an enum being completed, then we flush all non-struct types from
  // the cache.  This allows function types and other things that may be derived
  // from the enum to be recomputed.
  if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
    // Only flush the cache if we've actually already converted this type.
    if (TypeCache.count(ED->getTypeForDecl())) {
      // Okay, we formed some types based on this.  We speculated that the enum
      // would be lowered to i32, so we only need to flush the cache if this
      // didn't happen.
      if (!ConvertType(ED->getIntegerType())->isIntegerTy(32))
        TypeCache.clear();
    }
    return;
  }
  
  // If we completed a RecordDecl that we previously used and converted to an
  // anonymous type, then go ahead and complete it now.
  const RecordDecl *RD = cast<RecordDecl>(TD);
  if (RD->isDependentType()) return;

  // Only complete it if we converted it already.  If we haven't converted it
  // yet, we'll just do it lazily.
  if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
    ConvertRecordDeclType(RD);
}

static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
                                    const llvm::fltSemantics &format,
                                    bool UseNativeHalf = false) {
  if (&format == &llvm::APFloat::IEEEhalf) {
    if (UseNativeHalf)
      return llvm::Type::getHalfTy(VMContext);
    else
      return llvm::Type::getInt16Ty(VMContext);
  }
  if (&format == &llvm::APFloat::IEEEsingle)
    return llvm::Type::getFloatTy(VMContext);
  if (&format == &llvm::APFloat::IEEEdouble)
    return llvm::Type::getDoubleTy(VMContext);
  if (&format == &llvm::APFloat::IEEEquad)
    return llvm::Type::getFP128Ty(VMContext);
  if (&format == &llvm::APFloat::PPCDoubleDouble)
    return llvm::Type::getPPC_FP128Ty(VMContext);
  if (&format == &llvm::APFloat::x87DoubleExtended)
    return llvm::Type::getX86_FP80Ty(VMContext);
  llvm_unreachable("Unknown float format!");
}

/// ConvertType - Convert the specified type to its LLVM form.
llvm::Type *CodeGenTypes::ConvertType(QualType T) {
  T = Context.getCanonicalType(T);

  const Type *Ty = T.getTypePtr();

  // RecordTypes are cached and processed specially.
  if (const RecordType *RT = dyn_cast<RecordType>(Ty))
    return ConvertRecordDeclType(RT->getDecl());
  
  // See if type is already cached.
  llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty);
  // If type is found in map then use it. Otherwise, convert type T.
  if (TCI != TypeCache.end())
    return TCI->second;

  // If we don't have it in the cache, convert it now.
  llvm::Type *ResultType = 0;
  switch (Ty->getTypeClass()) {
  case Type::Record: // Handled above.
#define TYPE(Class, Base)
#define ABSTRACT_TYPE(Class, Base)
#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
#include "clang/AST/TypeNodes.def"
    llvm_unreachable("Non-canonical or dependent types aren't possible.");

  case Type::Builtin: {
    switch (cast<BuiltinType>(Ty)->getKind()) {
    case BuiltinType::Void:
    case BuiltinType::ObjCId:
    case BuiltinType::ObjCClass:
    case BuiltinType::ObjCSel:
      // LLVM void type can only be used as the result of a function call.  Just
      // map to the same as char.
      ResultType = llvm::Type::getInt8Ty(getLLVMContext());
      break;

    case BuiltinType::Bool:
      // Note that we always return bool as i1 for use as a scalar type.
      ResultType = llvm::Type::getInt1Ty(getLLVMContext());
      break;

    case BuiltinType::Char_S:
    case BuiltinType::Char_U:
    case BuiltinType::SChar:
    case BuiltinType::UChar:
    case BuiltinType::Short:
    case BuiltinType::UShort:
    case BuiltinType::Int:
    case BuiltinType::UInt:
    case BuiltinType::Long:
    case BuiltinType::ULong:
    case BuiltinType::LongLong:
    case BuiltinType::ULongLong:
    case BuiltinType::WChar_S:
    case BuiltinType::WChar_U:
    case BuiltinType::Char16:
    case BuiltinType::Char32:
      ResultType = llvm::IntegerType::get(getLLVMContext(),
                                 static_cast<unsigned>(Context.getTypeSize(T)));
      break;

    case BuiltinType::Half:
      // Half FP can either be storage-only (lowered to i16) or native.
      ResultType = getTypeForFormat(getLLVMContext(),
          Context.getFloatTypeSemantics(T),
          Context.getLangOpts().NativeHalfType);
      break;
    case BuiltinType::Float:
    case BuiltinType::Double:
    case BuiltinType::LongDouble:
      ResultType = getTypeForFormat(getLLVMContext(),
                                    Context.getFloatTypeSemantics(T),
                                    /* UseNativeHalf = */ false);
      break;

    case BuiltinType::NullPtr:
      // Model std::nullptr_t as i8*
      ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
      break;
        
    case BuiltinType::UInt128:
    case BuiltinType::Int128:
      ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
      break;

    case BuiltinType::OCLImage1d:
    case BuiltinType::OCLImage1dArray:
    case BuiltinType::OCLImage1dBuffer:
    case BuiltinType::OCLImage2d:
    case BuiltinType::OCLImage2dArray:
    case BuiltinType::OCLImage3d:
    case BuiltinType::OCLSampler:
    case BuiltinType::OCLEvent:
      ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(Ty);
      break;
    
    case BuiltinType::Dependent:
#define BUILTIN_TYPE(Id, SingletonId)
#define PLACEHOLDER_TYPE(Id, SingletonId) \
    case BuiltinType::Id:
#include "clang/AST/BuiltinTypes.def"
      llvm_unreachable("Unexpected placeholder builtin type!");
    }
    break;
  }
  case Type::Auto:
    llvm_unreachable("Unexpected undeduced auto type!");
  case Type::Complex: {
    llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
    ResultType = llvm::StructType::get(EltTy, EltTy, NULL);
    break;
  }
  case Type::LValueReference:
  case Type::RValueReference: {
    const ReferenceType *RTy = cast<ReferenceType>(Ty);
    QualType ETy = RTy->getPointeeType();
    llvm::Type *PointeeType = ConvertTypeForMem(ETy);
    unsigned AS = Context.getTargetAddressSpace(ETy);
    ResultType = llvm::PointerType::get(PointeeType, AS);
    break;
  }
  case Type::Pointer: {
    const PointerType *PTy = cast<PointerType>(Ty);
    QualType ETy = PTy->getPointeeType();
    llvm::Type *PointeeType = ConvertTypeForMem(ETy);
    if (PointeeType->isVoidTy())
      PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
    unsigned AS = Context.getTargetAddressSpace(ETy);
    ResultType = llvm::PointerType::get(PointeeType, AS);
    break;
  }

  case Type::VariableArray: {
    const VariableArrayType *A = cast<VariableArrayType>(Ty);
    assert(A->getIndexTypeCVRQualifiers() == 0 &&
           "FIXME: We only handle trivial array types so far!");
    // VLAs resolve to the innermost element type; this matches
    // the return of alloca, and there isn't any obviously better choice.
    ResultType = ConvertTypeForMem(A->getElementType());
    break;
  }
  case Type::IncompleteArray: {
    const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
    assert(A->getIndexTypeCVRQualifiers() == 0 &&
           "FIXME: We only handle trivial array types so far!");
    // int X[] -> [0 x int], unless the element type is not sized.  If it is
    // unsized (e.g. an incomplete struct) just use [0 x i8].
    ResultType = ConvertTypeForMem(A->getElementType());
    if (!ResultType->isSized()) {
      SkippedLayout = true;
      ResultType = llvm::Type::getInt8Ty(getLLVMContext());
    }
    ResultType = llvm::ArrayType::get(ResultType, 0);
    break;
  }
  case Type::ConstantArray: {
    const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
    llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
    
    // Lower arrays of undefined struct type to arrays of i8 just to have a 
    // concrete type.
    if (!EltTy->isSized()) {
      SkippedLayout = true;
      EltTy = llvm::Type::getInt8Ty(getLLVMContext());
    }

    ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
    break;
  }
  case Type::ExtVector:
  case Type::Vector: {
    const VectorType *VT = cast<VectorType>(Ty);
    ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()),
                                       VT->getNumElements());
    break;
  }
  case Type::FunctionNoProto:
  case Type::FunctionProto: {
    const FunctionType *FT = cast<FunctionType>(Ty);
    // First, check whether we can build the full function type.  If the
    // function type depends on an incomplete type (e.g. a struct or enum), we
    // cannot lower the function type.
    if (!isFuncTypeConvertible(FT)) {
      // This function's type depends on an incomplete tag type.

      // Force conversion of all the relevant record types, to make sure
      // we re-convert the FunctionType when appropriate.
      if (const RecordType *RT = FT->getResultType()->getAs<RecordType>())
        ConvertRecordDeclType(RT->getDecl());
      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
        for (unsigned i = 0, e = FPT->getNumArgs(); i != e; i++)
          if (const RecordType *RT = FPT->getArgType(i)->getAs<RecordType>())
            ConvertRecordDeclType(RT->getDecl());

      // Return a placeholder type.
      ResultType = llvm::StructType::get(getLLVMContext());

      SkippedLayout = true;
      break;
    }

    // While we're converting the argument types for a function, we don't want
    // to recursively convert any pointed-to structs.  Converting directly-used
    // structs is ok though.
    if (!RecordsBeingLaidOut.insert(Ty)) {
      ResultType = llvm::StructType::get(getLLVMContext());
      
      SkippedLayout = true;
      break;
    }
    
    // The function type can be built; call the appropriate routines to
    // build it.
    const CGFunctionInfo *FI;
    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
      FI = &arrangeFreeFunctionType(
                   CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)));
    } else {
      const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT);
      FI = &arrangeFreeFunctionType(
                CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
    }
    
    // If there is something higher level prodding our CGFunctionInfo, then
    // don't recurse into it again.
    if (FunctionsBeingProcessed.count(FI)) {

      ResultType = llvm::StructType::get(getLLVMContext());
      SkippedLayout = true;
    } else {

      // Otherwise, we're good to go, go ahead and convert it.
      ResultType = GetFunctionType(*FI);
    }

    RecordsBeingLaidOut.erase(Ty);

    if (SkippedLayout)
      TypeCache.clear();
    
    if (RecordsBeingLaidOut.empty())
      while (!DeferredRecords.empty())
        ConvertRecordDeclType(DeferredRecords.pop_back_val());
    break;
  }

  case Type::ObjCObject:
    ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
    break;

  case Type::ObjCInterface: {
    // Objective-C interfaces are always opaque (outside of the
    // runtime, which can do whatever it likes); we never refine
    // these.
    llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
    if (!T)
      T = llvm::StructType::create(getLLVMContext());
    ResultType = T;
    break;
  }

  case Type::ObjCObjectPointer: {
    // Protocol qualifications do not influence the LLVM type, we just return a
    // pointer to the underlying interface type. We don't need to worry about
    // recursive conversion.
    llvm::Type *T =
      ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
    ResultType = T->getPointerTo();
    break;
  }

  case Type::Enum: {
    const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
    if (ED->isCompleteDefinition() || ED->isFixed())
      return ConvertType(ED->getIntegerType());
    // Return a placeholder 'i32' type.  This can be changed later when the
    // type is defined (see UpdateCompletedType), but is likely to be the
    // "right" answer.
    ResultType = llvm::Type::getInt32Ty(getLLVMContext());
    break;
  }

  case Type::BlockPointer: {
    const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
    llvm::Type *PointeeType = ConvertTypeForMem(FTy);
    unsigned AS = Context.getTargetAddressSpace(FTy);
    ResultType = llvm::PointerType::get(PointeeType, AS);
    break;
  }

  case Type::MemberPointer: {
    ResultType = 
      getCXXABI().ConvertMemberPointerType(cast<MemberPointerType>(Ty));
    break;
  }

  case Type::Atomic: {
    QualType valueType = cast<AtomicType>(Ty)->getValueType();
    ResultType = ConvertTypeForMem(valueType);

    // Pad out to the inflated size if necessary.
    uint64_t valueSize = Context.getTypeSize(valueType);
    uint64_t atomicSize = Context.getTypeSize(Ty);
    if (valueSize != atomicSize) {
      assert(valueSize < atomicSize);
      llvm::Type *elts[] = {
        ResultType,
        llvm::ArrayType::get(CGM.Int8Ty, (atomicSize - valueSize) / 8)
      };
      ResultType = llvm::StructType::get(getLLVMContext(),
                                         llvm::makeArrayRef(elts));
    }
    break;
  }
  }
  
  assert(ResultType && "Didn't convert a type?");
  
  TypeCache[Ty] = ResultType;
  return ResultType;
}

bool CodeGenModule::isPaddedAtomicType(QualType type) {
  return isPaddedAtomicType(type->castAs<AtomicType>());
}

bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) {
  return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType());
}

/// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
  // TagDecl's are not necessarily unique, instead use the (clang)
  // type connected to the decl.
  const Type *Key = Context.getTagDeclType(RD).getTypePtr();

  llvm::StructType *&Entry = RecordDeclTypes[Key];

  // If we don't have a StructType at all yet, create the forward declaration.
  if (Entry == 0) {
    Entry = llvm::StructType::create(getLLVMContext());
    addRecordTypeName(RD, Entry, "");
  }
  llvm::StructType *Ty = Entry;

  // If this is still a forward declaration, or the LLVM type is already
  // complete, there's nothing more to do.
  RD = RD->getDefinition();
  if (RD == 0 || !RD->isCompleteDefinition() || !Ty->isOpaque())
    return Ty;
  
  // If converting this type would cause us to infinitely loop, don't do it!
  if (!isSafeToConvert(RD, *this)) {
    DeferredRecords.push_back(RD);
    return Ty;
  }

  // Okay, this is a definition of a type.  Compile the implementation now.
  bool InsertResult = RecordsBeingLaidOut.insert(Key); (void)InsertResult;
  assert(InsertResult && "Recursively compiling a struct?");
  
  // Force conversion of non-virtual base classes recursively.
  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
    for (CXXRecordDecl::base_class_const_iterator i = CRD->bases_begin(),
         e = CRD->bases_end(); i != e; ++i) {
      if (i->isVirtual()) continue;
      
      ConvertRecordDeclType(i->getType()->getAs<RecordType>()->getDecl());
    }
  }

  // Layout fields.
  CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty);
  CGRecordLayouts[Key] = Layout;

  // We're done laying out this struct.
  bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult;
  assert(EraseResult && "struct not in RecordsBeingLaidOut set?");
   
  // If this struct blocked a FunctionType conversion, then recompute whatever
  // was derived from that.
  // FIXME: This is hugely overconservative.
  if (SkippedLayout)
    TypeCache.clear();
    
  // If we're done converting the outer-most record, then convert any deferred
  // structs as well.
  if (RecordsBeingLaidOut.empty())
    while (!DeferredRecords.empty())
      ConvertRecordDeclType(DeferredRecords.pop_back_val());

  return Ty;
}

/// getCGRecordLayout - Return record layout info for the given record decl.
const CGRecordLayout &
CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
  const Type *Key = Context.getTagDeclType(RD).getTypePtr();

  const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key);
  if (!Layout) {
    // Compute the type information.
    ConvertRecordDeclType(RD);

    // Now try again.
    Layout = CGRecordLayouts.lookup(Key);
  }

  assert(Layout && "Unable to find record layout information for type");
  return *Layout;
}

bool CodeGenTypes::isZeroInitializable(QualType T) {
  // No need to check for member pointers when not compiling C++.
  if (!Context.getLangOpts().CPlusPlus)
    return true;
  
  T = Context.getBaseElementType(T);
  
  // Records are non-zero-initializable if they contain any
  // non-zero-initializable subobjects.
  if (const RecordType *RT = T->getAs<RecordType>()) {
    const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
    return isZeroInitializable(RD);
  }

  // We have to ask the ABI about member pointers.
  if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
    return getCXXABI().isZeroInitializable(MPT);
  
  // Everything else is okay.
  return true;
}

bool CodeGenTypes::isZeroInitializable(const CXXRecordDecl *RD) {
  return getCGRecordLayout(RD).isZeroInitializable();
}