1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
|
//===--- CGCXXRTTI.cpp - Emit LLVM Code for C++ RTTI descriptors ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code dealing with C++ code generation of RTTI descriptors.
//
//===----------------------------------------------------------------------===//
#include "CodeGenModule.h"
#include "CGCXXABI.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/Type.h"
#include "clang/Frontend/CodeGenOptions.h"
#include "CGObjCRuntime.h"
using namespace clang;
using namespace CodeGen;
namespace {
class RTTIBuilder {
CodeGenModule &CGM; // Per-module state.
llvm::LLVMContext &VMContext;
const llvm::Type *Int8PtrTy;
/// Fields - The fields of the RTTI descriptor currently being built.
llvm::SmallVector<llvm::Constant *, 16> Fields;
/// GetAddrOfTypeName - Returns the mangled type name of the given type.
llvm::GlobalVariable *
GetAddrOfTypeName(QualType Ty, llvm::GlobalVariable::LinkageTypes Linkage);
/// GetAddrOfExternalRTTIDescriptor - Returns the constant for the RTTI
/// descriptor of the given type.
llvm::Constant *GetAddrOfExternalRTTIDescriptor(QualType Ty);
/// BuildVTablePointer - Build the vtable pointer for the given type.
void BuildVTablePointer(const Type *Ty);
/// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single
/// inheritance, according to the Itanium C++ ABI, 2.9.5p6b.
void BuildSIClassTypeInfo(const CXXRecordDecl *RD);
/// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for
/// classes with bases that do not satisfy the abi::__si_class_type_info
/// constraints, according ti the Itanium C++ ABI, 2.9.5p5c.
void BuildVMIClassTypeInfo(const CXXRecordDecl *RD);
/// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct, used
/// for pointer types.
void BuildPointerTypeInfo(QualType PointeeTy);
/// BuildObjCObjectTypeInfo - Build the appropriate kind of
/// type_info for an object type.
void BuildObjCObjectTypeInfo(const ObjCObjectType *Ty);
/// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info
/// struct, used for member pointer types.
void BuildPointerToMemberTypeInfo(const MemberPointerType *Ty);
public:
RTTIBuilder(CodeGenModule &CGM) : CGM(CGM),
VMContext(CGM.getModule().getContext()),
Int8PtrTy(llvm::Type::getInt8PtrTy(VMContext)) { }
// Pointer type info flags.
enum {
/// PTI_Const - Type has const qualifier.
PTI_Const = 0x1,
/// PTI_Volatile - Type has volatile qualifier.
PTI_Volatile = 0x2,
/// PTI_Restrict - Type has restrict qualifier.
PTI_Restrict = 0x4,
/// PTI_Incomplete - Type is incomplete.
PTI_Incomplete = 0x8,
/// PTI_ContainingClassIncomplete - Containing class is incomplete.
/// (in pointer to member).
PTI_ContainingClassIncomplete = 0x10
};
// VMI type info flags.
enum {
/// VMI_NonDiamondRepeat - Class has non-diamond repeated inheritance.
VMI_NonDiamondRepeat = 0x1,
/// VMI_DiamondShaped - Class is diamond shaped.
VMI_DiamondShaped = 0x2
};
// Base class type info flags.
enum {
/// BCTI_Virtual - Base class is virtual.
BCTI_Virtual = 0x1,
/// BCTI_Public - Base class is public.
BCTI_Public = 0x2
};
/// BuildTypeInfo - Build the RTTI type info struct for the given type.
///
/// \param Force - true to force the creation of this RTTI value
/// \param ForEH - true if this is for exception handling
llvm::Constant *BuildTypeInfo(QualType Ty, bool Force = false);
};
}
llvm::GlobalVariable *
RTTIBuilder::GetAddrOfTypeName(QualType Ty,
llvm::GlobalVariable::LinkageTypes Linkage) {
llvm::SmallString<256> OutName;
llvm::raw_svector_ostream Out(OutName);
CGM.getCXXABI().getMangleContext().mangleCXXRTTIName(Ty, Out);
Out.flush();
llvm::StringRef Name = OutName.str();
// We know that the mangled name of the type starts at index 4 of the
// mangled name of the typename, so we can just index into it in order to
// get the mangled name of the type.
llvm::Constant *Init = llvm::ConstantArray::get(VMContext, Name.substr(4));
llvm::GlobalVariable *GV =
CGM.CreateOrReplaceCXXRuntimeVariable(Name, Init->getType(), Linkage);
GV->setInitializer(Init);
return GV;
}
llvm::Constant *RTTIBuilder::GetAddrOfExternalRTTIDescriptor(QualType Ty) {
// Mangle the RTTI name.
llvm::SmallString<256> OutName;
llvm::raw_svector_ostream Out(OutName);
CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty, Out);
Out.flush();
llvm::StringRef Name = OutName.str();
// Look for an existing global.
llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name);
if (!GV) {
// Create a new global variable.
GV = new llvm::GlobalVariable(CGM.getModule(), Int8PtrTy, /*Constant=*/true,
llvm::GlobalValue::ExternalLinkage, 0, Name);
}
return llvm::ConstantExpr::getBitCast(GV, Int8PtrTy);
}
/// TypeInfoIsInStandardLibrary - Given a builtin type, returns whether the type
/// info for that type is defined in the standard library.
static bool TypeInfoIsInStandardLibrary(const BuiltinType *Ty) {
// Itanium C++ ABI 2.9.2:
// Basic type information (e.g. for "int", "bool", etc.) will be kept in
// the run-time support library. Specifically, the run-time support
// library should contain type_info objects for the types X, X* and
// X const*, for every X in: void, std::nullptr_t, bool, wchar_t, char,
// unsigned char, signed char, short, unsigned short, int, unsigned int,
// long, unsigned long, long long, unsigned long long, float, double,
// long double, char16_t, char32_t, and the IEEE 754r decimal and
// half-precision floating point types.
switch (Ty->getKind()) {
case BuiltinType::Void:
case BuiltinType::NullPtr:
case BuiltinType::Bool:
case BuiltinType::WChar_S:
case BuiltinType::WChar_U:
case BuiltinType::Char_U:
case BuiltinType::Char_S:
case BuiltinType::UChar:
case BuiltinType::SChar:
case BuiltinType::Short:
case BuiltinType::UShort:
case BuiltinType::Int:
case BuiltinType::UInt:
case BuiltinType::Long:
case BuiltinType::ULong:
case BuiltinType::LongLong:
case BuiltinType::ULongLong:
case BuiltinType::Float:
case BuiltinType::Double:
case BuiltinType::LongDouble:
case BuiltinType::Char16:
case BuiltinType::Char32:
case BuiltinType::Int128:
case BuiltinType::UInt128:
return true;
case BuiltinType::Overload:
case BuiltinType::Dependent:
case BuiltinType::BoundMember:
case BuiltinType::UnknownAny:
llvm_unreachable("asking for RRTI for a placeholder type!");
case BuiltinType::ObjCId:
case BuiltinType::ObjCClass:
case BuiltinType::ObjCSel:
assert(false && "FIXME: Objective-C types are unsupported!");
}
// Silent gcc.
return false;
}
static bool TypeInfoIsInStandardLibrary(const PointerType *PointerTy) {
QualType PointeeTy = PointerTy->getPointeeType();
const BuiltinType *BuiltinTy = dyn_cast<BuiltinType>(PointeeTy);
if (!BuiltinTy)
return false;
// Check the qualifiers.
Qualifiers Quals = PointeeTy.getQualifiers();
Quals.removeConst();
if (!Quals.empty())
return false;
return TypeInfoIsInStandardLibrary(BuiltinTy);
}
/// IsStandardLibraryRTTIDescriptor - Returns whether the type
/// information for the given type exists in the standard library.
static bool IsStandardLibraryRTTIDescriptor(QualType Ty) {
// Type info for builtin types is defined in the standard library.
if (const BuiltinType *BuiltinTy = dyn_cast<BuiltinType>(Ty))
return TypeInfoIsInStandardLibrary(BuiltinTy);
// Type info for some pointer types to builtin types is defined in the
// standard library.
if (const PointerType *PointerTy = dyn_cast<PointerType>(Ty))
return TypeInfoIsInStandardLibrary(PointerTy);
return false;
}
/// ShouldUseExternalRTTIDescriptor - Returns whether the type information for
/// the given type exists somewhere else, and that we should not emit the type
/// information in this translation unit. Assumes that it is not a
/// standard-library type.
static bool ShouldUseExternalRTTIDescriptor(CodeGenModule &CGM, QualType Ty) {
ASTContext &Context = CGM.getContext();
// If RTTI is disabled, don't consider key functions.
if (!Context.getLangOptions().RTTI) return false;
if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
const CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
if (!RD->hasDefinition())
return false;
if (!RD->isDynamicClass())
return false;
return !CGM.getVTables().ShouldEmitVTableInThisTU(RD);
}
return false;
}
/// IsIncompleteClassType - Returns whether the given record type is incomplete.
static bool IsIncompleteClassType(const RecordType *RecordTy) {
return !RecordTy->getDecl()->isDefinition();
}
/// ContainsIncompleteClassType - Returns whether the given type contains an
/// incomplete class type. This is true if
///
/// * The given type is an incomplete class type.
/// * The given type is a pointer type whose pointee type contains an
/// incomplete class type.
/// * The given type is a member pointer type whose class is an incomplete
/// class type.
/// * The given type is a member pointer type whoise pointee type contains an
/// incomplete class type.
/// is an indirect or direct pointer to an incomplete class type.
static bool ContainsIncompleteClassType(QualType Ty) {
if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
if (IsIncompleteClassType(RecordTy))
return true;
}
if (const PointerType *PointerTy = dyn_cast<PointerType>(Ty))
return ContainsIncompleteClassType(PointerTy->getPointeeType());
if (const MemberPointerType *MemberPointerTy =
dyn_cast<MemberPointerType>(Ty)) {
// Check if the class type is incomplete.
const RecordType *ClassType = cast<RecordType>(MemberPointerTy->getClass());
if (IsIncompleteClassType(ClassType))
return true;
return ContainsIncompleteClassType(MemberPointerTy->getPointeeType());
}
return false;
}
/// getTypeInfoLinkage - Return the linkage that the type info and type info
/// name constants should have for the given type.
static llvm::GlobalVariable::LinkageTypes
getTypeInfoLinkage(CodeGenModule &CGM, QualType Ty) {
// Itanium C++ ABI 2.9.5p7:
// In addition, it and all of the intermediate abi::__pointer_type_info
// structs in the chain down to the abi::__class_type_info for the
// incomplete class type must be prevented from resolving to the
// corresponding type_info structs for the complete class type, possibly
// by making them local static objects. Finally, a dummy class RTTI is
// generated for the incomplete type that will not resolve to the final
// complete class RTTI (because the latter need not exist), possibly by
// making it a local static object.
if (ContainsIncompleteClassType(Ty))
return llvm::GlobalValue::InternalLinkage;
switch (Ty->getLinkage()) {
case NoLinkage:
case InternalLinkage:
case UniqueExternalLinkage:
return llvm::GlobalValue::InternalLinkage;
case ExternalLinkage:
if (!CGM.getLangOptions().RTTI) {
// RTTI is not enabled, which means that this type info struct is going
// to be used for exception handling. Give it linkonce_odr linkage.
return llvm::GlobalValue::LinkOnceODRLinkage;
}
if (const RecordType *Record = dyn_cast<RecordType>(Ty)) {
const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
if (RD->isDynamicClass())
return CGM.getVTableLinkage(RD);
}
return llvm::GlobalValue::LinkOnceODRLinkage;
}
return llvm::GlobalValue::LinkOnceODRLinkage;
}
// CanUseSingleInheritance - Return whether the given record decl has a "single,
// public, non-virtual base at offset zero (i.e. the derived class is dynamic
// iff the base is)", according to Itanium C++ ABI, 2.95p6b.
static bool CanUseSingleInheritance(const CXXRecordDecl *RD) {
// Check the number of bases.
if (RD->getNumBases() != 1)
return false;
// Get the base.
CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin();
// Check that the base is not virtual.
if (Base->isVirtual())
return false;
// Check that the base is public.
if (Base->getAccessSpecifier() != AS_public)
return false;
// Check that the class is dynamic iff the base is.
const CXXRecordDecl *BaseDecl =
cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
if (!BaseDecl->isEmpty() &&
BaseDecl->isDynamicClass() != RD->isDynamicClass())
return false;
return true;
}
void RTTIBuilder::BuildVTablePointer(const Type *Ty) {
// abi::__class_type_info.
static const char * const ClassTypeInfo =
"_ZTVN10__cxxabiv117__class_type_infoE";
// abi::__si_class_type_info.
static const char * const SIClassTypeInfo =
"_ZTVN10__cxxabiv120__si_class_type_infoE";
// abi::__vmi_class_type_info.
static const char * const VMIClassTypeInfo =
"_ZTVN10__cxxabiv121__vmi_class_type_infoE";
const char *VTableName = 0;
switch (Ty->getTypeClass()) {
#define TYPE(Class, Base)
#define ABSTRACT_TYPE(Class, Base)
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
#include "clang/AST/TypeNodes.def"
assert(false && "Non-canonical and dependent types shouldn't get here");
case Type::LValueReference:
case Type::RValueReference:
assert(false && "References shouldn't get here");
case Type::Builtin:
// GCC treats vector and complex types as fundamental types.
case Type::Vector:
case Type::ExtVector:
case Type::Complex:
// FIXME: GCC treats block pointers as fundamental types?!
case Type::BlockPointer:
// abi::__fundamental_type_info.
VTableName = "_ZTVN10__cxxabiv123__fundamental_type_infoE";
break;
case Type::ConstantArray:
case Type::IncompleteArray:
case Type::VariableArray:
// abi::__array_type_info.
VTableName = "_ZTVN10__cxxabiv117__array_type_infoE";
break;
case Type::FunctionNoProto:
case Type::FunctionProto:
// abi::__function_type_info.
VTableName = "_ZTVN10__cxxabiv120__function_type_infoE";
break;
case Type::Enum:
// abi::__enum_type_info.
VTableName = "_ZTVN10__cxxabiv116__enum_type_infoE";
break;
case Type::Record: {
const CXXRecordDecl *RD =
cast<CXXRecordDecl>(cast<RecordType>(Ty)->getDecl());
if (!RD->hasDefinition() || !RD->getNumBases()) {
VTableName = ClassTypeInfo;
} else if (CanUseSingleInheritance(RD)) {
VTableName = SIClassTypeInfo;
} else {
VTableName = VMIClassTypeInfo;
}
break;
}
case Type::ObjCObject:
// Ignore protocol qualifiers.
Ty = cast<ObjCObjectType>(Ty)->getBaseType().getTypePtr();
// Handle id and Class.
if (isa<BuiltinType>(Ty)) {
VTableName = ClassTypeInfo;
break;
}
assert(isa<ObjCInterfaceType>(Ty));
// Fall through.
case Type::ObjCInterface:
if (cast<ObjCInterfaceType>(Ty)->getDecl()->getSuperClass()) {
VTableName = SIClassTypeInfo;
} else {
VTableName = ClassTypeInfo;
}
break;
case Type::ObjCObjectPointer:
case Type::Pointer:
// abi::__pointer_type_info.
VTableName = "_ZTVN10__cxxabiv119__pointer_type_infoE";
break;
case Type::MemberPointer:
// abi::__pointer_to_member_type_info.
VTableName = "_ZTVN10__cxxabiv129__pointer_to_member_type_infoE";
break;
}
llvm::Constant *VTable =
CGM.getModule().getOrInsertGlobal(VTableName, Int8PtrTy);
const llvm::Type *PtrDiffTy =
CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType());
// The vtable address point is 2.
llvm::Constant *Two = llvm::ConstantInt::get(PtrDiffTy, 2);
VTable = llvm::ConstantExpr::getInBoundsGetElementPtr(VTable, &Two, 1);
VTable = llvm::ConstantExpr::getBitCast(VTable, Int8PtrTy);
Fields.push_back(VTable);
}
// maybeUpdateRTTILinkage - Will update the linkage of the RTTI data structures
// from available_externally to the correct linkage if necessary. An example of
// this is:
//
// struct A {
// virtual void f();
// };
//
// const std::type_info &g() {
// return typeid(A);
// }
//
// void A::f() { }
//
// When we're generating the typeid(A) expression, we do not yet know that
// A's key function is defined in this translation unit, so we will give the
// typeinfo and typename structures available_externally linkage. When A::f
// forces the vtable to be generated, we need to change the linkage of the
// typeinfo and typename structs, otherwise we'll end up with undefined
// externals when linking.
static void
maybeUpdateRTTILinkage(CodeGenModule &CGM, llvm::GlobalVariable *GV,
QualType Ty) {
// We're only interested in globals with available_externally linkage.
if (!GV->hasAvailableExternallyLinkage())
return;
// Get the real linkage for the type.
llvm::GlobalVariable::LinkageTypes Linkage = getTypeInfoLinkage(CGM, Ty);
// If variable is supposed to have available_externally linkage, we don't
// need to do anything.
if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage)
return;
// Update the typeinfo linkage.
GV->setLinkage(Linkage);
// Get the typename global.
llvm::SmallString<256> OutName;
llvm::raw_svector_ostream Out(OutName);
CGM.getCXXABI().getMangleContext().mangleCXXRTTIName(Ty, Out);
Out.flush();
llvm::StringRef Name = OutName.str();
llvm::GlobalVariable *TypeNameGV = CGM.getModule().getNamedGlobal(Name);
assert(TypeNameGV->hasAvailableExternallyLinkage() &&
"Type name has different linkage from type info!");
// And update its linkage.
TypeNameGV->setLinkage(Linkage);
}
llvm::Constant *RTTIBuilder::BuildTypeInfo(QualType Ty, bool Force) {
// We want to operate on the canonical type.
Ty = CGM.getContext().getCanonicalType(Ty);
// Check if we've already emitted an RTTI descriptor for this type.
llvm::SmallString<256> OutName;
llvm::raw_svector_ostream Out(OutName);
CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty, Out);
Out.flush();
llvm::StringRef Name = OutName.str();
llvm::GlobalVariable *OldGV = CGM.getModule().getNamedGlobal(Name);
if (OldGV && !OldGV->isDeclaration()) {
maybeUpdateRTTILinkage(CGM, OldGV, Ty);
return llvm::ConstantExpr::getBitCast(OldGV, Int8PtrTy);
}
// Check if there is already an external RTTI descriptor for this type.
bool IsStdLib = IsStandardLibraryRTTIDescriptor(Ty);
if (!Force && (IsStdLib || ShouldUseExternalRTTIDescriptor(CGM, Ty)))
return GetAddrOfExternalRTTIDescriptor(Ty);
// Emit the standard library with external linkage.
llvm::GlobalVariable::LinkageTypes Linkage;
if (IsStdLib)
Linkage = llvm::GlobalValue::ExternalLinkage;
else
Linkage = getTypeInfoLinkage(CGM, Ty);
// Add the vtable pointer.
BuildVTablePointer(cast<Type>(Ty));
// And the name.
llvm::GlobalVariable *TypeName = GetAddrOfTypeName(Ty, Linkage);
const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(VMContext);
Fields.push_back(llvm::ConstantExpr::getBitCast(TypeName, Int8PtrTy));
switch (Ty->getTypeClass()) {
#define TYPE(Class, Base)
#define ABSTRACT_TYPE(Class, Base)
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
#include "clang/AST/TypeNodes.def"
assert(false && "Non-canonical and dependent types shouldn't get here");
// GCC treats vector types as fundamental types.
case Type::Builtin:
case Type::Vector:
case Type::ExtVector:
case Type::Complex:
case Type::BlockPointer:
// Itanium C++ ABI 2.9.5p4:
// abi::__fundamental_type_info adds no data members to std::type_info.
break;
case Type::LValueReference:
case Type::RValueReference:
assert(false && "References shouldn't get here");
case Type::ConstantArray:
case Type::IncompleteArray:
case Type::VariableArray:
// Itanium C++ ABI 2.9.5p5:
// abi::__array_type_info adds no data members to std::type_info.
break;
case Type::FunctionNoProto:
case Type::FunctionProto:
// Itanium C++ ABI 2.9.5p5:
// abi::__function_type_info adds no data members to std::type_info.
break;
case Type::Enum:
// Itanium C++ ABI 2.9.5p5:
// abi::__enum_type_info adds no data members to std::type_info.
break;
case Type::Record: {
const CXXRecordDecl *RD =
cast<CXXRecordDecl>(cast<RecordType>(Ty)->getDecl());
if (!RD->hasDefinition() || !RD->getNumBases()) {
// We don't need to emit any fields.
break;
}
if (CanUseSingleInheritance(RD))
BuildSIClassTypeInfo(RD);
else
BuildVMIClassTypeInfo(RD);
break;
}
case Type::ObjCObject:
case Type::ObjCInterface:
BuildObjCObjectTypeInfo(cast<ObjCObjectType>(Ty));
break;
case Type::ObjCObjectPointer:
BuildPointerTypeInfo(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
break;
case Type::Pointer:
BuildPointerTypeInfo(cast<PointerType>(Ty)->getPointeeType());
break;
case Type::MemberPointer:
BuildPointerToMemberTypeInfo(cast<MemberPointerType>(Ty));
break;
}
llvm::Constant *Init = llvm::ConstantStruct::getAnon(Fields);
llvm::GlobalVariable *GV =
new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
/*Constant=*/true, Linkage, Init, Name);
// If there's already an old global variable, replace it with the new one.
if (OldGV) {
GV->takeName(OldGV);
llvm::Constant *NewPtr =
llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
OldGV->replaceAllUsesWith(NewPtr);
OldGV->eraseFromParent();
}
// GCC only relies on the uniqueness of the type names, not the
// type_infos themselves, so we can emit these as hidden symbols.
// But don't do this if we're worried about strict visibility
// compatibility.
if (const RecordType *RT = dyn_cast<RecordType>(Ty)) {
const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
CGM.setTypeVisibility(GV, RD, CodeGenModule::TVK_ForRTTI);
CGM.setTypeVisibility(TypeName, RD, CodeGenModule::TVK_ForRTTIName);
} else {
Visibility TypeInfoVisibility = DefaultVisibility;
if (CGM.getCodeGenOpts().HiddenWeakVTables &&
Linkage == llvm::GlobalValue::LinkOnceODRLinkage)
TypeInfoVisibility = HiddenVisibility;
// The type name should have the same visibility as the type itself.
Visibility ExplicitVisibility = Ty->getVisibility();
TypeName->setVisibility(CodeGenModule::
GetLLVMVisibility(ExplicitVisibility));
TypeInfoVisibility = minVisibility(TypeInfoVisibility, Ty->getVisibility());
GV->setVisibility(CodeGenModule::GetLLVMVisibility(TypeInfoVisibility));
}
GV->setUnnamedAddr(true);
return llvm::ConstantExpr::getBitCast(GV, Int8PtrTy);
}
/// ComputeQualifierFlags - Compute the pointer type info flags from the
/// given qualifier.
static unsigned ComputeQualifierFlags(Qualifiers Quals) {
unsigned Flags = 0;
if (Quals.hasConst())
Flags |= RTTIBuilder::PTI_Const;
if (Quals.hasVolatile())
Flags |= RTTIBuilder::PTI_Volatile;
if (Quals.hasRestrict())
Flags |= RTTIBuilder::PTI_Restrict;
return Flags;
}
/// BuildObjCObjectTypeInfo - Build the appropriate kind of type_info
/// for the given Objective-C object type.
void RTTIBuilder::BuildObjCObjectTypeInfo(const ObjCObjectType *OT) {
// Drop qualifiers.
const Type *T = OT->getBaseType().getTypePtr();
assert(isa<BuiltinType>(T) || isa<ObjCInterfaceType>(T));
// The builtin types are abi::__class_type_infos and don't require
// extra fields.
if (isa<BuiltinType>(T)) return;
ObjCInterfaceDecl *Class = cast<ObjCInterfaceType>(T)->getDecl();
ObjCInterfaceDecl *Super = Class->getSuperClass();
// Root classes are also __class_type_info.
if (!Super) return;
QualType SuperTy = CGM.getContext().getObjCInterfaceType(Super);
// Everything else is single inheritance.
llvm::Constant *BaseTypeInfo = RTTIBuilder(CGM).BuildTypeInfo(SuperTy);
Fields.push_back(BaseTypeInfo);
}
/// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single
/// inheritance, according to the Itanium C++ ABI, 2.95p6b.
void RTTIBuilder::BuildSIClassTypeInfo(const CXXRecordDecl *RD) {
// Itanium C++ ABI 2.9.5p6b:
// It adds to abi::__class_type_info a single member pointing to the
// type_info structure for the base type,
llvm::Constant *BaseTypeInfo =
RTTIBuilder(CGM).BuildTypeInfo(RD->bases_begin()->getType());
Fields.push_back(BaseTypeInfo);
}
namespace {
/// SeenBases - Contains virtual and non-virtual bases seen when traversing
/// a class hierarchy.
struct SeenBases {
llvm::SmallPtrSet<const CXXRecordDecl *, 16> NonVirtualBases;
llvm::SmallPtrSet<const CXXRecordDecl *, 16> VirtualBases;
};
}
/// ComputeVMIClassTypeInfoFlags - Compute the value of the flags member in
/// abi::__vmi_class_type_info.
///
static unsigned ComputeVMIClassTypeInfoFlags(const CXXBaseSpecifier *Base,
SeenBases &Bases) {
unsigned Flags = 0;
const CXXRecordDecl *BaseDecl =
cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
if (Base->isVirtual()) {
if (Bases.VirtualBases.count(BaseDecl)) {
// If this virtual base has been seen before, then the class is diamond
// shaped.
Flags |= RTTIBuilder::VMI_DiamondShaped;
} else {
if (Bases.NonVirtualBases.count(BaseDecl))
Flags |= RTTIBuilder::VMI_NonDiamondRepeat;
// Mark the virtual base as seen.
Bases.VirtualBases.insert(BaseDecl);
}
} else {
if (Bases.NonVirtualBases.count(BaseDecl)) {
// If this non-virtual base has been seen before, then the class has non-
// diamond shaped repeated inheritance.
Flags |= RTTIBuilder::VMI_NonDiamondRepeat;
} else {
if (Bases.VirtualBases.count(BaseDecl))
Flags |= RTTIBuilder::VMI_NonDiamondRepeat;
// Mark the non-virtual base as seen.
Bases.NonVirtualBases.insert(BaseDecl);
}
}
// Walk all bases.
for (CXXRecordDecl::base_class_const_iterator I = BaseDecl->bases_begin(),
E = BaseDecl->bases_end(); I != E; ++I)
Flags |= ComputeVMIClassTypeInfoFlags(I, Bases);
return Flags;
}
static unsigned ComputeVMIClassTypeInfoFlags(const CXXRecordDecl *RD) {
unsigned Flags = 0;
SeenBases Bases;
// Walk all bases.
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
E = RD->bases_end(); I != E; ++I)
Flags |= ComputeVMIClassTypeInfoFlags(I, Bases);
return Flags;
}
/// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for
/// classes with bases that do not satisfy the abi::__si_class_type_info
/// constraints, according ti the Itanium C++ ABI, 2.9.5p5c.
void RTTIBuilder::BuildVMIClassTypeInfo(const CXXRecordDecl *RD) {
const llvm::Type *UnsignedIntLTy =
CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy);
// Itanium C++ ABI 2.9.5p6c:
// __flags is a word with flags describing details about the class
// structure, which may be referenced by using the __flags_masks
// enumeration. These flags refer to both direct and indirect bases.
unsigned Flags = ComputeVMIClassTypeInfoFlags(RD);
Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags));
// Itanium C++ ABI 2.9.5p6c:
// __base_count is a word with the number of direct proper base class
// descriptions that follow.
Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, RD->getNumBases()));
if (!RD->getNumBases())
return;
const llvm::Type *LongLTy =
CGM.getTypes().ConvertType(CGM.getContext().LongTy);
// Now add the base class descriptions.
// Itanium C++ ABI 2.9.5p6c:
// __base_info[] is an array of base class descriptions -- one for every
// direct proper base. Each description is of the type:
//
// struct abi::__base_class_type_info {
// public:
// const __class_type_info *__base_type;
// long __offset_flags;
//
// enum __offset_flags_masks {
// __virtual_mask = 0x1,
// __public_mask = 0x2,
// __offset_shift = 8
// };
// };
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
E = RD->bases_end(); I != E; ++I) {
const CXXBaseSpecifier *Base = I;
// The __base_type member points to the RTTI for the base type.
Fields.push_back(RTTIBuilder(CGM).BuildTypeInfo(Base->getType()));
const CXXRecordDecl *BaseDecl =
cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
int64_t OffsetFlags = 0;
// All but the lower 8 bits of __offset_flags are a signed offset.
// For a non-virtual base, this is the offset in the object of the base
// subobject. For a virtual base, this is the offset in the virtual table of
// the virtual base offset for the virtual base referenced (negative).
CharUnits Offset;
if (Base->isVirtual())
Offset =
CGM.getVTables().getVirtualBaseOffsetOffset(RD, BaseDecl);
else {
const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
Offset = Layout.getBaseClassOffset(BaseDecl);
};
OffsetFlags = Offset.getQuantity() << 8;
// The low-order byte of __offset_flags contains flags, as given by the
// masks from the enumeration __offset_flags_masks.
if (Base->isVirtual())
OffsetFlags |= BCTI_Virtual;
if (Base->getAccessSpecifier() == AS_public)
OffsetFlags |= BCTI_Public;
Fields.push_back(llvm::ConstantInt::get(LongLTy, OffsetFlags));
}
}
/// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct,
/// used for pointer types.
void RTTIBuilder::BuildPointerTypeInfo(QualType PointeeTy) {
Qualifiers Quals;
QualType UnqualifiedPointeeTy =
CGM.getContext().getUnqualifiedArrayType(PointeeTy, Quals);
// Itanium C++ ABI 2.9.5p7:
// __flags is a flag word describing the cv-qualification and other
// attributes of the type pointed to
unsigned Flags = ComputeQualifierFlags(Quals);
// Itanium C++ ABI 2.9.5p7:
// When the abi::__pbase_type_info is for a direct or indirect pointer to an
// incomplete class type, the incomplete target type flag is set.
if (ContainsIncompleteClassType(UnqualifiedPointeeTy))
Flags |= PTI_Incomplete;
const llvm::Type *UnsignedIntLTy =
CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy);
Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags));
// Itanium C++ ABI 2.9.5p7:
// __pointee is a pointer to the std::type_info derivation for the
// unqualified type being pointed to.
llvm::Constant *PointeeTypeInfo =
RTTIBuilder(CGM).BuildTypeInfo(UnqualifiedPointeeTy);
Fields.push_back(PointeeTypeInfo);
}
/// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info
/// struct, used for member pointer types.
void RTTIBuilder::BuildPointerToMemberTypeInfo(const MemberPointerType *Ty) {
QualType PointeeTy = Ty->getPointeeType();
Qualifiers Quals;
QualType UnqualifiedPointeeTy =
CGM.getContext().getUnqualifiedArrayType(PointeeTy, Quals);
// Itanium C++ ABI 2.9.5p7:
// __flags is a flag word describing the cv-qualification and other
// attributes of the type pointed to.
unsigned Flags = ComputeQualifierFlags(Quals);
const RecordType *ClassType = cast<RecordType>(Ty->getClass());
// Itanium C++ ABI 2.9.5p7:
// When the abi::__pbase_type_info is for a direct or indirect pointer to an
// incomplete class type, the incomplete target type flag is set.
if (ContainsIncompleteClassType(UnqualifiedPointeeTy))
Flags |= PTI_Incomplete;
if (IsIncompleteClassType(ClassType))
Flags |= PTI_ContainingClassIncomplete;
const llvm::Type *UnsignedIntLTy =
CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy);
Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags));
// Itanium C++ ABI 2.9.5p7:
// __pointee is a pointer to the std::type_info derivation for the
// unqualified type being pointed to.
llvm::Constant *PointeeTypeInfo =
RTTIBuilder(CGM).BuildTypeInfo(UnqualifiedPointeeTy);
Fields.push_back(PointeeTypeInfo);
// Itanium C++ ABI 2.9.5p9:
// __context is a pointer to an abi::__class_type_info corresponding to the
// class type containing the member pointed to
// (e.g., the "A" in "int A::*").
Fields.push_back(RTTIBuilder(CGM).BuildTypeInfo(QualType(ClassType, 0)));
}
llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
bool ForEH) {
// Return a bogus pointer if RTTI is disabled, unless it's for EH.
// FIXME: should we even be calling this method if RTTI is disabled
// and it's not for EH?
if (!ForEH && !getContext().getLangOptions().RTTI) {
const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(VMContext);
return llvm::Constant::getNullValue(Int8PtrTy);
}
if (ForEH && Ty->isObjCObjectPointerType() && !Features.NeXTRuntime) {
return Runtime->GetEHType(Ty);
}
return RTTIBuilder(*this).BuildTypeInfo(Ty);
}
void CodeGenModule::EmitFundamentalRTTIDescriptor(QualType Type) {
QualType PointerType = Context.getPointerType(Type);
QualType PointerTypeConst = Context.getPointerType(Type.withConst());
RTTIBuilder(*this).BuildTypeInfo(Type, true);
RTTIBuilder(*this).BuildTypeInfo(PointerType, true);
RTTIBuilder(*this).BuildTypeInfo(PointerTypeConst, true);
}
void CodeGenModule::EmitFundamentalRTTIDescriptors() {
QualType FundamentalTypes[] = { Context.VoidTy, Context.NullPtrTy,
Context.BoolTy, Context.WCharTy,
Context.CharTy, Context.UnsignedCharTy,
Context.SignedCharTy, Context.ShortTy,
Context.UnsignedShortTy, Context.IntTy,
Context.UnsignedIntTy, Context.LongTy,
Context.UnsignedLongTy, Context.LongLongTy,
Context.UnsignedLongLongTy, Context.FloatTy,
Context.DoubleTy, Context.LongDoubleTy,
Context.Char16Ty, Context.Char32Ty };
for (unsigned i = 0; i < sizeof(FundamentalTypes)/sizeof(QualType); ++i)
EmitFundamentalRTTIDescriptor(FundamentalTypes[i]);
}
|