aboutsummaryrefslogtreecommitdiff
path: root/lib/ASTMatchers/ASTMatchFinder.cpp
blob: 6ebd736e3ce466da12f378d1673e0243467e414d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
//===--- ASTMatchFinder.cpp - Structural query framework ------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  Implements an algorithm to efficiently search for matches on AST nodes.
//  Uses memoization to support recursive matches like HasDescendant.
//
//  The general idea is to visit all AST nodes with a RecursiveASTVisitor,
//  calling the Matches(...) method of each matcher we are running on each
//  AST node. The matcher can recurse via the ASTMatchFinder interface.
//
//===----------------------------------------------------------------------===//

#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include <deque>
#include <set>

namespace clang {
namespace ast_matchers {
namespace internal {
namespace {

typedef MatchFinder::MatchCallback MatchCallback;

// We use memoization to avoid running the same matcher on the same
// AST node twice.  This pair is the key for looking up match
// result.  It consists of an ID of the MatcherInterface (for
// identifying the matcher) and a pointer to the AST node.
//
// We currently only memoize on nodes whose pointers identify the
// nodes (\c Stmt and \c Decl, but not \c QualType or \c TypeLoc).
// For \c QualType and \c TypeLoc it is possible to implement
// generation of keys for each type.
// FIXME: Benchmark whether memoization of non-pointer typed nodes
// provides enough benefit for the additional amount of code.
typedef std::pair<uint64_t, const void*> UntypedMatchInput;

// Used to store the result of a match and possibly bound nodes.
struct MemoizedMatchResult {
  bool ResultOfMatch;
  BoundNodesTree Nodes;
};

// A RecursiveASTVisitor that traverses all children or all descendants of
// a node.
class MatchChildASTVisitor
    : public RecursiveASTVisitor<MatchChildASTVisitor> {
public:
  typedef RecursiveASTVisitor<MatchChildASTVisitor> VisitorBase;

  // Creates an AST visitor that matches 'matcher' on all children or
  // descendants of a traversed node. max_depth is the maximum depth
  // to traverse: use 1 for matching the children and INT_MAX for
  // matching the descendants.
  MatchChildASTVisitor(const DynTypedMatcher *Matcher,
                       ASTMatchFinder *Finder,
                       BoundNodesTreeBuilder *Builder,
                       int MaxDepth,
                       ASTMatchFinder::TraversalKind Traversal,
                       ASTMatchFinder::BindKind Bind)
      : Matcher(Matcher),
        Finder(Finder),
        Builder(Builder),
        CurrentDepth(0),
        MaxDepth(MaxDepth),
        Traversal(Traversal),
        Bind(Bind),
        Matches(false) {}

  // Returns true if a match is found in the subtree rooted at the
  // given AST node. This is done via a set of mutually recursive
  // functions. Here's how the recursion is done (the  *wildcard can
  // actually be Decl, Stmt, or Type):
  //
  //   - Traverse(node) calls BaseTraverse(node) when it needs
  //     to visit the descendants of node.
  //   - BaseTraverse(node) then calls (via VisitorBase::Traverse*(node))
  //     Traverse*(c) for each child c of 'node'.
  //   - Traverse*(c) in turn calls Traverse(c), completing the
  //     recursion.
  bool findMatch(const ast_type_traits::DynTypedNode &DynNode) {
    reset();
    if (const Decl *D = DynNode.get<Decl>())
      traverse(*D);
    else if (const Stmt *S = DynNode.get<Stmt>())
      traverse(*S);
    else if (const NestedNameSpecifier *NNS =
             DynNode.get<NestedNameSpecifier>())
      traverse(*NNS);
    else if (const NestedNameSpecifierLoc *NNSLoc =
             DynNode.get<NestedNameSpecifierLoc>())
      traverse(*NNSLoc);
    else if (const QualType *Q = DynNode.get<QualType>())
      traverse(*Q);
    else if (const TypeLoc *T = DynNode.get<TypeLoc>())
      traverse(*T);
    // FIXME: Add other base types after adding tests.
    return Matches;
  }

  // The following are overriding methods from the base visitor class.
  // They are public only to allow CRTP to work. They are *not *part
  // of the public API of this class.
  bool TraverseDecl(Decl *DeclNode) {
    ScopedIncrement ScopedDepth(&CurrentDepth);
    return (DeclNode == NULL) || traverse(*DeclNode);
  }
  bool TraverseStmt(Stmt *StmtNode) {
    ScopedIncrement ScopedDepth(&CurrentDepth);
    const Stmt *StmtToTraverse = StmtNode;
    if (Traversal ==
        ASTMatchFinder::TK_IgnoreImplicitCastsAndParentheses) {
      const Expr *ExprNode = dyn_cast_or_null<Expr>(StmtNode);
      if (ExprNode != NULL) {
        StmtToTraverse = ExprNode->IgnoreParenImpCasts();
      }
    }
    return (StmtToTraverse == NULL) || traverse(*StmtToTraverse);
  }
  // We assume that the QualType and the contained type are on the same
  // hierarchy level. Thus, we try to match either of them.
  bool TraverseType(QualType TypeNode) {
    if (TypeNode.isNull())
      return true;
    ScopedIncrement ScopedDepth(&CurrentDepth);
    // Match the Type.
    if (!match(*TypeNode))
      return false;
    // The QualType is matched inside traverse.
    return traverse(TypeNode);
  }
  // We assume that the TypeLoc, contained QualType and contained Type all are
  // on the same hierarchy level. Thus, we try to match all of them.
  bool TraverseTypeLoc(TypeLoc TypeLocNode) {
    if (TypeLocNode.isNull())
      return true;
    ScopedIncrement ScopedDepth(&CurrentDepth);
    // Match the Type.
    if (!match(*TypeLocNode.getType()))
      return false;
    // Match the QualType.
    if (!match(TypeLocNode.getType()))
      return false;
    // The TypeLoc is matched inside traverse.
    return traverse(TypeLocNode);
  }
  bool TraverseNestedNameSpecifier(NestedNameSpecifier *NNS) {
    ScopedIncrement ScopedDepth(&CurrentDepth);
    return (NNS == NULL) || traverse(*NNS);
  }
  bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS) {
    if (!NNS)
      return true;
    ScopedIncrement ScopedDepth(&CurrentDepth);
    if (!match(*NNS.getNestedNameSpecifier()))
      return false;
    return traverse(NNS);
  }

  bool shouldVisitTemplateInstantiations() const { return true; }
  bool shouldVisitImplicitCode() const { return true; }
  // Disables data recursion. We intercept Traverse* methods in the RAV, which
  // are not triggered during data recursion.
  bool shouldUseDataRecursionFor(clang::Stmt *S) const { return false; }

private:
  // Used for updating the depth during traversal.
  struct ScopedIncrement {
    explicit ScopedIncrement(int *Depth) : Depth(Depth) { ++(*Depth); }
    ~ScopedIncrement() { --(*Depth); }

   private:
    int *Depth;
  };

  // Resets the state of this object.
  void reset() {
    Matches = false;
    CurrentDepth = 0;
  }

  // Forwards the call to the corresponding Traverse*() method in the
  // base visitor class.
  bool baseTraverse(const Decl &DeclNode) {
    return VisitorBase::TraverseDecl(const_cast<Decl*>(&DeclNode));
  }
  bool baseTraverse(const Stmt &StmtNode) {
    return VisitorBase::TraverseStmt(const_cast<Stmt*>(&StmtNode));
  }
  bool baseTraverse(QualType TypeNode) {
    return VisitorBase::TraverseType(TypeNode);
  }
  bool baseTraverse(TypeLoc TypeLocNode) {
    return VisitorBase::TraverseTypeLoc(TypeLocNode);
  }
  bool baseTraverse(const NestedNameSpecifier &NNS) {
    return VisitorBase::TraverseNestedNameSpecifier(
        const_cast<NestedNameSpecifier*>(&NNS));
  }
  bool baseTraverse(NestedNameSpecifierLoc NNS) {
    return VisitorBase::TraverseNestedNameSpecifierLoc(NNS);
  }

  // Sets 'Matched' to true if 'Matcher' matches 'Node' and:
  //   0 < CurrentDepth <= MaxDepth.
  //
  // Returns 'true' if traversal should continue after this function
  // returns, i.e. if no match is found or 'Bind' is 'BK_All'.
  template <typename T>
  bool match(const T &Node) {
    if (CurrentDepth == 0 || CurrentDepth > MaxDepth) {
      return true;
    }
    if (Bind != ASTMatchFinder::BK_All) {
      if (Matcher->matches(ast_type_traits::DynTypedNode::create(Node),
                           Finder, Builder)) {
        Matches = true;
        return false;  // Abort as soon as a match is found.
      }
    } else {
      BoundNodesTreeBuilder RecursiveBuilder;
      if (Matcher->matches(ast_type_traits::DynTypedNode::create(Node),
                           Finder, &RecursiveBuilder)) {
        // After the first match the matcher succeeds.
        Matches = true;
        Builder->addMatch(RecursiveBuilder.build());
      }
    }
    return true;
  }

  // Traverses the subtree rooted at 'Node'; returns true if the
  // traversal should continue after this function returns.
  template <typename T>
  bool traverse(const T &Node) {
    TOOLING_COMPILE_ASSERT(IsBaseType<T>::value,
                           traverse_can_only_be_instantiated_with_base_type);
    if (!match(Node))
      return false;
    return baseTraverse(Node);
  }

  const DynTypedMatcher *const Matcher;
  ASTMatchFinder *const Finder;
  BoundNodesTreeBuilder *const Builder;
  int CurrentDepth;
  const int MaxDepth;
  const ASTMatchFinder::TraversalKind Traversal;
  const ASTMatchFinder::BindKind Bind;
  bool Matches;
};

// Controls the outermost traversal of the AST and allows to match multiple
// matchers.
class MatchASTVisitor : public RecursiveASTVisitor<MatchASTVisitor>,
                        public ASTMatchFinder {
public:
  MatchASTVisitor(std::vector<std::pair<const internal::DynTypedMatcher*,
                                        MatchCallback*> > *MatcherCallbackPairs)
     : MatcherCallbackPairs(MatcherCallbackPairs),
       ActiveASTContext(NULL) {
  }

  void onStartOfTranslationUnit() {
    for (std::vector<std::pair<const internal::DynTypedMatcher*,
                               MatchCallback*> >::const_iterator
             I = MatcherCallbackPairs->begin(), E = MatcherCallbackPairs->end();
         I != E; ++I) {
      I->second->onStartOfTranslationUnit();
    }
  }

  void set_active_ast_context(ASTContext *NewActiveASTContext) {
    ActiveASTContext = NewActiveASTContext;
  }

  // The following Visit*() and Traverse*() functions "override"
  // methods in RecursiveASTVisitor.

  bool VisitTypedefDecl(TypedefDecl *DeclNode) {
    // When we see 'typedef A B', we add name 'B' to the set of names
    // A's canonical type maps to.  This is necessary for implementing
    // isDerivedFrom(x) properly, where x can be the name of the base
    // class or any of its aliases.
    //
    // In general, the is-alias-of (as defined by typedefs) relation
    // is tree-shaped, as you can typedef a type more than once.  For
    // example,
    //
    //   typedef A B;
    //   typedef A C;
    //   typedef C D;
    //   typedef C E;
    //
    // gives you
    //
    //   A
    //   |- B
    //   `- C
    //      |- D
    //      `- E
    //
    // It is wrong to assume that the relation is a chain.  A correct
    // implementation of isDerivedFrom() needs to recognize that B and
    // E are aliases, even though neither is a typedef of the other.
    // Therefore, we cannot simply walk through one typedef chain to
    // find out whether the type name matches.
    const Type *TypeNode = DeclNode->getUnderlyingType().getTypePtr();
    const Type *CanonicalType =  // root of the typedef tree
        ActiveASTContext->getCanonicalType(TypeNode);
    TypeAliases[CanonicalType].insert(DeclNode);
    return true;
  }

  bool TraverseDecl(Decl *DeclNode);
  bool TraverseStmt(Stmt *StmtNode);
  bool TraverseType(QualType TypeNode);
  bool TraverseTypeLoc(TypeLoc TypeNode);
  bool TraverseNestedNameSpecifier(NestedNameSpecifier *NNS);
  bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS);

  // Matches children or descendants of 'Node' with 'BaseMatcher'.
  bool memoizedMatchesRecursively(const ast_type_traits::DynTypedNode &Node,
                                  const DynTypedMatcher &Matcher,
                                  BoundNodesTreeBuilder *Builder, int MaxDepth,
                                  TraversalKind Traversal, BindKind Bind) {
    const UntypedMatchInput input(Matcher.getID(), Node.getMemoizationData());

    // For AST-nodes that don't have an identity, we can't memoize.
    if (!input.second)
      return matchesRecursively(Node, Matcher, Builder, MaxDepth, Traversal,
                                Bind);

    std::pair<MemoizationMap::iterator, bool> InsertResult
      = ResultCache.insert(std::make_pair(input, MemoizedMatchResult()));
    if (InsertResult.second) {
      BoundNodesTreeBuilder DescendantBoundNodesBuilder;
      InsertResult.first->second.ResultOfMatch =
        matchesRecursively(Node, Matcher, &DescendantBoundNodesBuilder,
                           MaxDepth, Traversal, Bind);
      InsertResult.first->second.Nodes =
        DescendantBoundNodesBuilder.build();
    }
    InsertResult.first->second.Nodes.copyTo(Builder);
    return InsertResult.first->second.ResultOfMatch;
  }

  // Matches children or descendants of 'Node' with 'BaseMatcher'.
  bool matchesRecursively(const ast_type_traits::DynTypedNode &Node,
                          const DynTypedMatcher &Matcher,
                          BoundNodesTreeBuilder *Builder, int MaxDepth,
                          TraversalKind Traversal, BindKind Bind) {
    MatchChildASTVisitor Visitor(
      &Matcher, this, Builder, MaxDepth, Traversal, Bind);
    return Visitor.findMatch(Node);
  }

  virtual bool classIsDerivedFrom(const CXXRecordDecl *Declaration,
                                  const Matcher<NamedDecl> &Base,
                                  BoundNodesTreeBuilder *Builder);

  // Implements ASTMatchFinder::matchesChildOf.
  virtual bool matchesChildOf(const ast_type_traits::DynTypedNode &Node,
                              const DynTypedMatcher &Matcher,
                              BoundNodesTreeBuilder *Builder,
                              TraversalKind Traversal,
                              BindKind Bind) {
    return matchesRecursively(Node, Matcher, Builder, 1, Traversal,
                              Bind);
  }
  // Implements ASTMatchFinder::matchesDescendantOf.
  virtual bool matchesDescendantOf(const ast_type_traits::DynTypedNode &Node,
                                   const DynTypedMatcher &Matcher,
                                   BoundNodesTreeBuilder *Builder,
                                   BindKind Bind) {
    return memoizedMatchesRecursively(Node, Matcher, Builder, INT_MAX,
                                      TK_AsIs, Bind);
  }
  // Implements ASTMatchFinder::matchesAncestorOf.
  virtual bool matchesAncestorOf(const ast_type_traits::DynTypedNode &Node,
                                 const DynTypedMatcher &Matcher,
                                 BoundNodesTreeBuilder *Builder,
                                 AncestorMatchMode MatchMode) {
    return memoizedMatchesAncestorOfRecursively(Node, Matcher, Builder,
                                                MatchMode);
  }

  // Matches all registered matchers on the given node and calls the
  // result callback for every node that matches.
  void match(const ast_type_traits::DynTypedNode& Node) {
    for (std::vector<std::pair<const internal::DynTypedMatcher*,
                               MatchCallback*> >::const_iterator
             I = MatcherCallbackPairs->begin(), E = MatcherCallbackPairs->end();
         I != E; ++I) {
      BoundNodesTreeBuilder Builder;
      if (I->first->matches(Node, this, &Builder)) {
        BoundNodesTree BoundNodes = Builder.build();
        MatchVisitor Visitor(ActiveASTContext, I->second);
        BoundNodes.visitMatches(&Visitor);
      }
    }
  }

  template <typename T> void match(const T &Node) {
    match(ast_type_traits::DynTypedNode::create(Node));
  }

  // Implements ASTMatchFinder::getASTContext.
  virtual ASTContext &getASTContext() const { return *ActiveASTContext; }

  bool shouldVisitTemplateInstantiations() const { return true; }
  bool shouldVisitImplicitCode() const { return true; }
  // Disables data recursion. We intercept Traverse* methods in the RAV, which
  // are not triggered during data recursion.
  bool shouldUseDataRecursionFor(clang::Stmt *S) const { return false; }

private:
  // Returns whether an ancestor of \p Node matches \p Matcher.
  //
  // The order of matching ((which can lead to different nodes being bound in
  // case there are multiple matches) is breadth first search.
  //
  // To allow memoization in the very common case of having deeply nested
  // expressions inside a template function, we first walk up the AST, memoizing
  // the result of the match along the way, as long as there is only a single
  // parent.
  //
  // Once there are multiple parents, the breadth first search order does not
  // allow simple memoization on the ancestors. Thus, we only memoize as long
  // as there is a single parent.
  bool memoizedMatchesAncestorOfRecursively(
      const ast_type_traits::DynTypedNode &Node, const DynTypedMatcher &Matcher,
      BoundNodesTreeBuilder *Builder, AncestorMatchMode MatchMode) {
    if (Node.get<TranslationUnitDecl>() ==
        ActiveASTContext->getTranslationUnitDecl())
      return false;
    assert(Node.getMemoizationData() &&
           "Invariant broken: only nodes that support memoization may be "
           "used in the parent map.");
    ASTContext::ParentVector Parents = ActiveASTContext->getParents(Node);
    if (Parents.empty()) {
      assert(false && "Found node that is not in the parent map.");
      return false;
    }
    const UntypedMatchInput input(Matcher.getID(), Node.getMemoizationData());
    MemoizationMap::iterator I = ResultCache.find(input);
    if (I == ResultCache.end()) {
      BoundNodesTreeBuilder AncestorBoundNodesBuilder;
      bool Matches = false;
      if (Parents.size() == 1) {
        // Only one parent - do recursive memoization.
        const ast_type_traits::DynTypedNode Parent = Parents[0];
        if (Matcher.matches(Parent, this, &AncestorBoundNodesBuilder)) {
          Matches = true;
        } else if (MatchMode != ASTMatchFinder::AMM_ParentOnly) {
          Matches = memoizedMatchesAncestorOfRecursively(
              Parent, Matcher, &AncestorBoundNodesBuilder, MatchMode);
        }
      } else {
        // Multiple parents - BFS over the rest of the nodes.
        llvm::DenseSet<const void *> Visited;
        std::deque<ast_type_traits::DynTypedNode> Queue(Parents.begin(),
                                                        Parents.end());
        while (!Queue.empty()) {
          if (Matcher.matches(Queue.front(), this,
                              &AncestorBoundNodesBuilder)) {
            Matches = true;
            break;
          }
          if (MatchMode != ASTMatchFinder::AMM_ParentOnly) {
            ASTContext::ParentVector Ancestors =
                ActiveASTContext->getParents(Queue.front());
            for (ASTContext::ParentVector::const_iterator I = Ancestors.begin(),
                                                          E = Ancestors.end();
                 I != E; ++I) {
              // Make sure we do not visit the same node twice.
              // Otherwise, we'll visit the common ancestors as often as there
              // are splits on the way down.
              if (Visited.insert(I->getMemoizationData()).second)
                Queue.push_back(*I);
            }
          }
          Queue.pop_front();
        }
      }

      I = ResultCache.insert(std::make_pair(input, MemoizedMatchResult()))
          .first;
      I->second.Nodes = AncestorBoundNodesBuilder.build();
      I->second.ResultOfMatch = Matches;
    }
    I->second.Nodes.copyTo(Builder);
    return I->second.ResultOfMatch;
  }

  // Implements a BoundNodesTree::Visitor that calls a MatchCallback with
  // the aggregated bound nodes for each match.
  class MatchVisitor : public BoundNodesTree::Visitor {
  public:
    MatchVisitor(ASTContext* Context,
                 MatchFinder::MatchCallback* Callback)
      : Context(Context),
        Callback(Callback) {}

    virtual void visitMatch(const BoundNodes& BoundNodesView) {
      Callback->run(MatchFinder::MatchResult(BoundNodesView, Context));
    }

  private:
    ASTContext* Context;
    MatchFinder::MatchCallback* Callback;
  };

  // Returns true if 'TypeNode' has an alias that matches the given matcher.
  bool typeHasMatchingAlias(const Type *TypeNode,
                            const Matcher<NamedDecl> Matcher,
                            BoundNodesTreeBuilder *Builder) {
    const Type *const CanonicalType =
      ActiveASTContext->getCanonicalType(TypeNode);
    const std::set<const TypedefDecl*> &Aliases = TypeAliases[CanonicalType];
    for (std::set<const TypedefDecl*>::const_iterator
           It = Aliases.begin(), End = Aliases.end();
         It != End; ++It) {
      if (Matcher.matches(**It, this, Builder))
        return true;
    }
    return false;
  }

  std::vector<std::pair<const internal::DynTypedMatcher*,
                        MatchCallback*> > *const MatcherCallbackPairs;
  ASTContext *ActiveASTContext;

  // Maps a canonical type to its TypedefDecls.
  llvm::DenseMap<const Type*, std::set<const TypedefDecl*> > TypeAliases;

  // Maps (matcher, node) -> the match result for memoization.
  typedef llvm::DenseMap<UntypedMatchInput, MemoizedMatchResult> MemoizationMap;
  MemoizationMap ResultCache;
};

// Returns true if the given class is directly or indirectly derived
// from a base type with the given name.  A class is not considered to be
// derived from itself.
bool MatchASTVisitor::classIsDerivedFrom(const CXXRecordDecl *Declaration,
                                         const Matcher<NamedDecl> &Base,
                                         BoundNodesTreeBuilder *Builder) {
  if (!Declaration->hasDefinition())
    return false;
  typedef CXXRecordDecl::base_class_const_iterator BaseIterator;
  for (BaseIterator It = Declaration->bases_begin(),
                    End = Declaration->bases_end(); It != End; ++It) {
    const Type *TypeNode = It->getType().getTypePtr();

    if (typeHasMatchingAlias(TypeNode, Base, Builder))
      return true;

    // Type::getAs<...>() drills through typedefs.
    if (TypeNode->getAs<DependentNameType>() != NULL ||
        TypeNode->getAs<DependentTemplateSpecializationType>() != NULL ||
        TypeNode->getAs<TemplateTypeParmType>() != NULL)
      // Dependent names and template TypeNode parameters will be matched when
      // the template is instantiated.
      continue;
    CXXRecordDecl *ClassDecl = NULL;
    TemplateSpecializationType const *TemplateType =
      TypeNode->getAs<TemplateSpecializationType>();
    if (TemplateType != NULL) {
      if (TemplateType->getTemplateName().isDependent())
        // Dependent template specializations will be matched when the
        // template is instantiated.
        continue;

      // For template specialization types which are specializing a template
      // declaration which is an explicit or partial specialization of another
      // template declaration, getAsCXXRecordDecl() returns the corresponding
      // ClassTemplateSpecializationDecl.
      //
      // For template specialization types which are specializing a template
      // declaration which is neither an explicit nor partial specialization of
      // another template declaration, getAsCXXRecordDecl() returns NULL and
      // we get the CXXRecordDecl of the templated declaration.
      CXXRecordDecl *SpecializationDecl =
        TemplateType->getAsCXXRecordDecl();
      if (SpecializationDecl != NULL) {
        ClassDecl = SpecializationDecl;
      } else {
        ClassDecl = dyn_cast<CXXRecordDecl>(
            TemplateType->getTemplateName()
                .getAsTemplateDecl()->getTemplatedDecl());
      }
    } else {
      ClassDecl = TypeNode->getAsCXXRecordDecl();
    }
    assert(ClassDecl != NULL);
    if (ClassDecl == Declaration) {
      // This can happen for recursive template definitions; if the
      // current declaration did not match, we can safely return false.
      assert(TemplateType);
      return false;
    }
    if (Base.matches(*ClassDecl, this, Builder))
      return true;
    if (classIsDerivedFrom(ClassDecl, Base, Builder))
      return true;
  }
  return false;
}

bool MatchASTVisitor::TraverseDecl(Decl *DeclNode) {
  if (DeclNode == NULL) {
    return true;
  }
  match(*DeclNode);
  return RecursiveASTVisitor<MatchASTVisitor>::TraverseDecl(DeclNode);
}

bool MatchASTVisitor::TraverseStmt(Stmt *StmtNode) {
  if (StmtNode == NULL) {
    return true;
  }
  match(*StmtNode);
  return RecursiveASTVisitor<MatchASTVisitor>::TraverseStmt(StmtNode);
}

bool MatchASTVisitor::TraverseType(QualType TypeNode) {
  match(TypeNode);
  return RecursiveASTVisitor<MatchASTVisitor>::TraverseType(TypeNode);
}

bool MatchASTVisitor::TraverseTypeLoc(TypeLoc TypeLocNode) {
  // The RecursiveASTVisitor only visits types if they're not within TypeLocs.
  // We still want to find those types via matchers, so we match them here. Note
  // that the TypeLocs are structurally a shadow-hierarchy to the expressed
  // type, so we visit all involved parts of a compound type when matching on
  // each TypeLoc.
  match(TypeLocNode);
  match(TypeLocNode.getType());
  return RecursiveASTVisitor<MatchASTVisitor>::TraverseTypeLoc(TypeLocNode);
}

bool MatchASTVisitor::TraverseNestedNameSpecifier(NestedNameSpecifier *NNS) {
  match(*NNS);
  return RecursiveASTVisitor<MatchASTVisitor>::TraverseNestedNameSpecifier(NNS);
}

bool MatchASTVisitor::TraverseNestedNameSpecifierLoc(
    NestedNameSpecifierLoc NNS) {
  match(NNS);
  // We only match the nested name specifier here (as opposed to traversing it)
  // because the traversal is already done in the parallel "Loc"-hierarchy.
  match(*NNS.getNestedNameSpecifier());
  return
      RecursiveASTVisitor<MatchASTVisitor>::TraverseNestedNameSpecifierLoc(NNS);
}

class MatchASTConsumer : public ASTConsumer {
public:
  MatchASTConsumer(
    std::vector<std::pair<const internal::DynTypedMatcher*,
                          MatchCallback*> > *MatcherCallbackPairs,
    MatchFinder::ParsingDoneTestCallback *ParsingDone)
    : Visitor(MatcherCallbackPairs),
      ParsingDone(ParsingDone) {}

private:
  virtual void HandleTranslationUnit(ASTContext &Context) {
    if (ParsingDone != NULL) {
      ParsingDone->run();
    }
    Visitor.set_active_ast_context(&Context);
    Visitor.onStartOfTranslationUnit();
    Visitor.TraverseDecl(Context.getTranslationUnitDecl());
    Visitor.set_active_ast_context(NULL);
  }

  MatchASTVisitor Visitor;
  MatchFinder::ParsingDoneTestCallback *ParsingDone;
};

} // end namespace
} // end namespace internal

MatchFinder::MatchResult::MatchResult(const BoundNodes &Nodes,
                                      ASTContext *Context)
  : Nodes(Nodes), Context(Context),
    SourceManager(&Context->getSourceManager()) {}

MatchFinder::MatchCallback::~MatchCallback() {}
MatchFinder::ParsingDoneTestCallback::~ParsingDoneTestCallback() {}

MatchFinder::MatchFinder() : ParsingDone(NULL) {}

MatchFinder::~MatchFinder() {
  for (std::vector<std::pair<const internal::DynTypedMatcher*,
                             MatchCallback*> >::const_iterator
           It = MatcherCallbackPairs.begin(), End = MatcherCallbackPairs.end();
       It != End; ++It) {
    delete It->first;
  }
}

void MatchFinder::addMatcher(const DeclarationMatcher &NodeMatch,
                             MatchCallback *Action) {
  MatcherCallbackPairs.push_back(std::make_pair(
    new internal::Matcher<Decl>(NodeMatch), Action));
}

void MatchFinder::addMatcher(const TypeMatcher &NodeMatch,
                             MatchCallback *Action) {
  MatcherCallbackPairs.push_back(std::make_pair(
    new internal::Matcher<QualType>(NodeMatch), Action));
}

void MatchFinder::addMatcher(const StatementMatcher &NodeMatch,
                             MatchCallback *Action) {
  MatcherCallbackPairs.push_back(std::make_pair(
    new internal::Matcher<Stmt>(NodeMatch), Action));
}

void MatchFinder::addMatcher(const NestedNameSpecifierMatcher &NodeMatch,
                             MatchCallback *Action) {
  MatcherCallbackPairs.push_back(std::make_pair(
    new NestedNameSpecifierMatcher(NodeMatch), Action));
}

void MatchFinder::addMatcher(const NestedNameSpecifierLocMatcher &NodeMatch,
                             MatchCallback *Action) {
  MatcherCallbackPairs.push_back(std::make_pair(
    new NestedNameSpecifierLocMatcher(NodeMatch), Action));
}

void MatchFinder::addMatcher(const TypeLocMatcher &NodeMatch,
                             MatchCallback *Action) {
  MatcherCallbackPairs.push_back(std::make_pair(
    new TypeLocMatcher(NodeMatch), Action));
}

ASTConsumer *MatchFinder::newASTConsumer() {
  return new internal::MatchASTConsumer(&MatcherCallbackPairs, ParsingDone);
}

void MatchFinder::match(const clang::ast_type_traits::DynTypedNode &Node,
                        ASTContext &Context) {
  internal::MatchASTVisitor Visitor(&MatcherCallbackPairs);
  Visitor.set_active_ast_context(&Context);
  Visitor.match(Node);
}

void MatchFinder::registerTestCallbackAfterParsing(
    MatchFinder::ParsingDoneTestCallback *NewParsingDone) {
  ParsingDone = NewParsingDone;
}

} // end namespace ast_matchers
} // end namespace clang