aboutsummaryrefslogtreecommitdiff
path: root/include/clang/Sema/ScopeInfo.h
blob: feda9c96b8574ed4fb3484631e7cf4e8c2cfc02d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
//===--- ScopeInfo.h - Information about a semantic context -----*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines FunctionScopeInfo and its subclasses, which contain
// information about a single function, block, lambda, or method body.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CLANG_SEMA_SCOPE_INFO_H
#define LLVM_CLANG_SEMA_SCOPE_INFO_H

#include "clang/AST/Type.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"

namespace clang {

class Decl;
class BlockDecl;
class CXXMethodDecl;
class ObjCPropertyDecl;
class IdentifierInfo;
class LabelDecl;
class ReturnStmt;
class Scope;
class SwitchStmt;
class VarDecl;
class DeclRefExpr;
class ObjCIvarRefExpr;
class ObjCPropertyRefExpr;
class ObjCMessageExpr;

namespace sema {

/// \brief Contains information about the compound statement currently being
/// parsed.
class CompoundScopeInfo {
public:
  CompoundScopeInfo()
    : HasEmptyLoopBodies(false) { }

  /// \brief Whether this compound stamement contains `for' or `while' loops
  /// with empty bodies.
  bool HasEmptyLoopBodies;

  void setHasEmptyLoopBodies() {
    HasEmptyLoopBodies = true;
  }
};

class PossiblyUnreachableDiag {
public:
  PartialDiagnostic PD;
  SourceLocation Loc;
  const Stmt *stmt;
  
  PossiblyUnreachableDiag(const PartialDiagnostic &PD, SourceLocation Loc,
                          const Stmt *stmt)
    : PD(PD), Loc(Loc), stmt(stmt) {}
};
    
/// \brief Retains information about a function, method, or block that is
/// currently being parsed.
class FunctionScopeInfo {
protected:
  enum ScopeKind {
    SK_Function,
    SK_Block,
    SK_Lambda
  };
  
public:
  /// \brief What kind of scope we are describing.
  ///
  ScopeKind Kind;

  /// \brief Whether this function contains a VLA, \@try, try, C++
  /// initializer, or anything else that can't be jumped past.
  bool HasBranchProtectedScope;

  /// \brief Whether this function contains any switches or direct gotos.
  bool HasBranchIntoScope;

  /// \brief Whether this function contains any indirect gotos.
  bool HasIndirectGoto;

  /// A flag that is set when parsing a method that must call super's
  /// implementation, such as \c -dealloc, \c -finalize, or any method marked
  /// with \c __attribute__((objc_requires_super)).
  bool ObjCShouldCallSuper;

  /// \brief Used to determine if errors occurred in this function or block.
  DiagnosticErrorTrap ErrorTrap;

  /// SwitchStack - This is the current set of active switch statements in the
  /// block.
  SmallVector<SwitchStmt*, 8> SwitchStack;

  /// \brief The list of return statements that occur within the function or
  /// block, if there is any chance of applying the named return value
  /// optimization, or if we need to infer a return type.
  SmallVector<ReturnStmt*, 4> Returns;

  /// \brief The stack of currently active compound stamement scopes in the
  /// function.
  SmallVector<CompoundScopeInfo, 4> CompoundScopes;

  /// \brief A list of PartialDiagnostics created but delayed within the
  /// current function scope.  These diagnostics are vetted for reachability
  /// prior to being emitted.
  SmallVector<PossiblyUnreachableDiag, 4> PossiblyUnreachableDiags;

public:
  /// Represents a simple identification of a weak object.
  ///
  /// Part of the implementation of -Wrepeated-use-of-weak.
  ///
  /// This is used to determine if two weak accesses refer to the same object.
  /// Here are some examples of how various accesses are "profiled":
  ///
  /// Access Expression |     "Base" Decl     |          "Property" Decl
  /// :---------------: | :-----------------: | :------------------------------:
  /// self.property     | self (VarDecl)      | property (ObjCPropertyDecl)
  /// self.implicitProp | self (VarDecl)      | -implicitProp (ObjCMethodDecl)
  /// self->ivar.prop   | ivar (ObjCIvarDecl) | prop (ObjCPropertyDecl)
  /// cxxObj.obj.prop   | obj (FieldDecl)     | prop (ObjCPropertyDecl)
  /// [self foo].prop   | 0 (unknown)         | prop (ObjCPropertyDecl)
  /// self.prop1.prop2  | prop1 (ObjCPropertyDecl)    | prop2 (ObjCPropertyDecl)
  /// MyClass.prop      | MyClass (ObjCInterfaceDecl) | -prop (ObjCMethodDecl)
  /// weakVar           | 0 (known)           | weakVar (VarDecl)
  /// self->weakIvar    | self (VarDecl)      | weakIvar (ObjCIvarDecl)
  ///
  /// Objects are identified with only two Decls to make it reasonably fast to
  /// compare them.
  class WeakObjectProfileTy {
    /// The base object decl, as described in the class documentation.
    ///
    /// The extra flag is "true" if the Base and Property are enough to uniquely
    /// identify the object in memory.
    ///
    /// \sa isExactProfile()
    typedef llvm::PointerIntPair<const NamedDecl *, 1, bool> BaseInfoTy;
    BaseInfoTy Base;

    /// The "property" decl, as described in the class documentation.
    ///
    /// Note that this may not actually be an ObjCPropertyDecl, e.g. in the
    /// case of "implicit" properties (regular methods accessed via dot syntax).
    const NamedDecl *Property;

    /// Used to find the proper base profile for a given base expression.
    static BaseInfoTy getBaseInfo(const Expr *BaseE);

    // For use in DenseMap.
    friend class DenseMapInfo;
    inline WeakObjectProfileTy();
    static inline WeakObjectProfileTy getSentinel();

  public:
    WeakObjectProfileTy(const ObjCPropertyRefExpr *RE);
    WeakObjectProfileTy(const Expr *Base, const ObjCPropertyDecl *Property);
    WeakObjectProfileTy(const DeclRefExpr *RE);
    WeakObjectProfileTy(const ObjCIvarRefExpr *RE);

    const NamedDecl *getBase() const { return Base.getPointer(); }
    const NamedDecl *getProperty() const { return Property; }

    /// Returns true if the object base specifies a known object in memory,
    /// rather than, say, an instance variable or property of another object.
    ///
    /// Note that this ignores the effects of aliasing; that is, \c foo.bar is
    /// considered an exact profile if \c foo is a local variable, even if
    /// another variable \c foo2 refers to the same object as \c foo.
    ///
    /// For increased precision, accesses with base variables that are
    /// properties or ivars of 'self' (e.g. self.prop1.prop2) are considered to
    /// be exact, though this is not true for arbitrary variables
    /// (foo.prop1.prop2).
    bool isExactProfile() const {
      return Base.getInt();
    }

    bool operator==(const WeakObjectProfileTy &Other) const {
      return Base == Other.Base && Property == Other.Property;
    }

    // For use in DenseMap.
    // We can't specialize the usual llvm::DenseMapInfo at the end of the file
    // because by that point the DenseMap in FunctionScopeInfo has already been
    // instantiated.
    class DenseMapInfo {
    public:
      static inline WeakObjectProfileTy getEmptyKey() {
        return WeakObjectProfileTy();
      }
      static inline WeakObjectProfileTy getTombstoneKey() {
        return WeakObjectProfileTy::getSentinel();
      }

      static unsigned getHashValue(const WeakObjectProfileTy &Val) {
        typedef std::pair<BaseInfoTy, const NamedDecl *> Pair;
        return llvm::DenseMapInfo<Pair>::getHashValue(Pair(Val.Base,
                                                           Val.Property));
      }

      static bool isEqual(const WeakObjectProfileTy &LHS,
                          const WeakObjectProfileTy &RHS) {
        return LHS == RHS;
      }
    };
  };

  /// Represents a single use of a weak object.
  ///
  /// Stores both the expression and whether the access is potentially unsafe
  /// (i.e. it could potentially be warned about).
  ///
  /// Part of the implementation of -Wrepeated-use-of-weak.
  class WeakUseTy {
    llvm::PointerIntPair<const Expr *, 1, bool> Rep;
  public:
    WeakUseTy(const Expr *Use, bool IsRead) : Rep(Use, IsRead) {}

    const Expr *getUseExpr() const { return Rep.getPointer(); }
    bool isUnsafe() const { return Rep.getInt(); }
    void markSafe() { Rep.setInt(false); }

    bool operator==(const WeakUseTy &Other) const {
      return Rep == Other.Rep;
    }
  };

  /// Used to collect uses of a particular weak object in a function body.
  ///
  /// Part of the implementation of -Wrepeated-use-of-weak.
  typedef SmallVector<WeakUseTy, 4> WeakUseVector;

  /// Used to collect all uses of weak objects in a function body.
  ///
  /// Part of the implementation of -Wrepeated-use-of-weak.
  typedef llvm::SmallDenseMap<WeakObjectProfileTy, WeakUseVector, 8,
                              WeakObjectProfileTy::DenseMapInfo>
          WeakObjectUseMap;

private:
  /// Used to collect all uses of weak objects in this function body.
  ///
  /// Part of the implementation of -Wrepeated-use-of-weak.
  WeakObjectUseMap WeakObjectUses;

public:
  /// Record that a weak object was accessed.
  ///
  /// Part of the implementation of -Wrepeated-use-of-weak.
  template <typename ExprT>
  inline void recordUseOfWeak(const ExprT *E, bool IsRead = true);

  void recordUseOfWeak(const ObjCMessageExpr *Msg,
                       const ObjCPropertyDecl *Prop);

  /// Record that a given expression is a "safe" access of a weak object (e.g.
  /// assigning it to a strong variable.)
  ///
  /// Part of the implementation of -Wrepeated-use-of-weak.
  void markSafeWeakUse(const Expr *E);

  const WeakObjectUseMap &getWeakObjectUses() const {
    return WeakObjectUses;
  }

  void setHasBranchIntoScope() {
    HasBranchIntoScope = true;
  }

  void setHasBranchProtectedScope() {
    HasBranchProtectedScope = true;
  }

  void setHasIndirectGoto() {
    HasIndirectGoto = true;
  }

  bool NeedsScopeChecking() const {
    return HasIndirectGoto ||
          (HasBranchProtectedScope && HasBranchIntoScope);
  }
  
  FunctionScopeInfo(DiagnosticsEngine &Diag)
    : Kind(SK_Function),
      HasBranchProtectedScope(false),
      HasBranchIntoScope(false),
      HasIndirectGoto(false),
      ObjCShouldCallSuper(false),
      ErrorTrap(Diag) { }

  virtual ~FunctionScopeInfo();

  /// \brief Clear out the information in this function scope, making it
  /// suitable for reuse.
  void Clear();
};

class CapturingScopeInfo : public FunctionScopeInfo {
public:
  enum ImplicitCaptureStyle {
    ImpCap_None, ImpCap_LambdaByval, ImpCap_LambdaByref, ImpCap_Block
  };

  ImplicitCaptureStyle ImpCaptureStyle;

  class Capture {
    // There are two categories of capture: capturing 'this', and capturing
    // local variables.  There are three ways to capture a local variable:
    // capture by copy in the C++11 sense, capture by reference
    // in the C++11 sense, and __block capture.  Lambdas explicitly specify
    // capture by copy or capture by reference.  For blocks, __block capture
    // applies to variables with that annotation, variables of reference type
    // are captured by reference, and other variables are captured by copy.
    enum CaptureKind {
      Cap_This, Cap_ByCopy, Cap_ByRef, Cap_Block
    };

    // The variable being captured (if we are not capturing 'this'),
    // and misc bits descibing the capture.
    llvm::PointerIntPair<VarDecl*, 2, CaptureKind> VarAndKind;

    // Expression to initialize a field of the given type, and whether this
    // is a nested capture; the expression is only required if we are
    // capturing ByVal and the variable's type has a non-trivial
    // copy constructor.
    llvm::PointerIntPair<Expr*, 1, bool> CopyExprAndNested;

    /// \brief The source location at which the first capture occurred..
    SourceLocation Loc;
    
    /// \brief The location of the ellipsis that expands a parameter pack.
    SourceLocation EllipsisLoc;
    
    /// \brief The type as it was captured, which is in effect the type of the
    /// non-static data member that would hold the capture.
    QualType CaptureType;
    
  public:
    Capture(VarDecl *Var, bool block, bool byRef, bool isNested, 
            SourceLocation Loc, SourceLocation EllipsisLoc, 
            QualType CaptureType, Expr *Cpy)
      : VarAndKind(Var, block ? Cap_Block : byRef ? Cap_ByRef : Cap_ByCopy),
        CopyExprAndNested(Cpy, isNested), Loc(Loc), EllipsisLoc(EllipsisLoc),
        CaptureType(CaptureType){}

    enum IsThisCapture { ThisCapture };
    Capture(IsThisCapture, bool isNested, SourceLocation Loc, 
            QualType CaptureType, Expr *Cpy)
      : VarAndKind(0, Cap_This), CopyExprAndNested(Cpy, isNested), Loc(Loc),
        EllipsisLoc(), CaptureType(CaptureType) { }

    bool isThisCapture() const { return VarAndKind.getInt() == Cap_This; }
    bool isVariableCapture() const { return !isThisCapture(); }
    bool isCopyCapture() const { return VarAndKind.getInt() == Cap_ByCopy; }
    bool isReferenceCapture() const { return VarAndKind.getInt() == Cap_ByRef; }
    bool isBlockCapture() const { return VarAndKind.getInt() == Cap_Block; }
    bool isNested() { return CopyExprAndNested.getInt(); }

    VarDecl *getVariable() const {
      return VarAndKind.getPointer();
    }
    
    /// \brief Retrieve the location at which this variable was captured.
    SourceLocation getLocation() const { return Loc; }
    
    /// \brief Retrieve the source location of the ellipsis, whose presence
    /// indicates that the capture is a pack expansion.
    SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
    
    /// \brief Retrieve the capture type for this capture, which is effectively
    /// the type of the non-static data member in the lambda/block structure
    /// that would store this capture.
    QualType getCaptureType() const { return CaptureType; }
    
    Expr *getCopyExpr() const {
      return CopyExprAndNested.getPointer();
    }
  };

  CapturingScopeInfo(DiagnosticsEngine &Diag, ImplicitCaptureStyle Style)
    : FunctionScopeInfo(Diag), ImpCaptureStyle(Style), CXXThisCaptureIndex(0),
      HasImplicitReturnType(false)
     {}

  /// CaptureMap - A map of captured variables to (index+1) into Captures.
  llvm::DenseMap<VarDecl*, unsigned> CaptureMap;

  /// CXXThisCaptureIndex - The (index+1) of the capture of 'this';
  /// zero if 'this' is not captured.
  unsigned CXXThisCaptureIndex;

  /// Captures - The captures.
  SmallVector<Capture, 4> Captures;

  /// \brief - Whether the target type of return statements in this context
  /// is deduced (e.g. a lambda or block with omitted return type).
  bool HasImplicitReturnType;

  /// ReturnType - The target type of return statements in this context,
  /// or null if unknown.
  QualType ReturnType;

  void addCapture(VarDecl *Var, bool isBlock, bool isByref, bool isNested,
                  SourceLocation Loc, SourceLocation EllipsisLoc, 
                  QualType CaptureType, Expr *Cpy) {
    Captures.push_back(Capture(Var, isBlock, isByref, isNested, Loc, 
                               EllipsisLoc, CaptureType, Cpy));
    CaptureMap[Var] = Captures.size();
  }

  void addThisCapture(bool isNested, SourceLocation Loc, QualType CaptureType,
                      Expr *Cpy);

  /// \brief Determine whether the C++ 'this' is captured.
  bool isCXXThisCaptured() const { return CXXThisCaptureIndex != 0; }
  
  /// \brief Retrieve the capture of C++ 'this', if it has been captured.
  Capture &getCXXThisCapture() {
    assert(isCXXThisCaptured() && "this has not been captured");
    return Captures[CXXThisCaptureIndex - 1];
  }
  
  /// \brief Determine whether the given variable has been captured.
  bool isCaptured(VarDecl *Var) const {
    return CaptureMap.count(Var);
  }
  
  /// \brief Retrieve the capture of the given variable, if it has been
  /// captured already.
  Capture &getCapture(VarDecl *Var) {
    assert(isCaptured(Var) && "Variable has not been captured");
    return Captures[CaptureMap[Var] - 1];
  }

  const Capture &getCapture(VarDecl *Var) const {
    llvm::DenseMap<VarDecl*, unsigned>::const_iterator Known
      = CaptureMap.find(Var);
    assert(Known != CaptureMap.end() && "Variable has not been captured");
    return Captures[Known->second - 1];
  }

  static bool classof(const FunctionScopeInfo *FSI) { 
    return FSI->Kind == SK_Block || FSI->Kind == SK_Lambda; 
  }
};

/// \brief Retains information about a block that is currently being parsed.
class BlockScopeInfo : public CapturingScopeInfo {
public:
  BlockDecl *TheDecl;
  
  /// TheScope - This is the scope for the block itself, which contains
  /// arguments etc.
  Scope *TheScope;

  /// BlockType - The function type of the block, if one was given.
  /// Its return type may be BuiltinType::Dependent.
  QualType FunctionType;

  BlockScopeInfo(DiagnosticsEngine &Diag, Scope *BlockScope, BlockDecl *Block)
    : CapturingScopeInfo(Diag, ImpCap_Block), TheDecl(Block),
      TheScope(BlockScope)
  {
    Kind = SK_Block;
  }

  virtual ~BlockScopeInfo();

  static bool classof(const FunctionScopeInfo *FSI) { 
    return FSI->Kind == SK_Block; 
  }
};

class LambdaScopeInfo : public CapturingScopeInfo {
public:
  /// \brief The class that describes the lambda.
  CXXRecordDecl *Lambda;

  /// \brief The class that describes the lambda.
  CXXMethodDecl *CallOperator;

  /// \brief Source range covering the lambda introducer [...].
  SourceRange IntroducerRange;

  /// \brief The number of captures in the \c Captures list that are 
  /// explicit captures.
  unsigned NumExplicitCaptures;

  /// \brief Whether this is a mutable lambda.
  bool Mutable;
  
  /// \brief Whether the (empty) parameter list is explicit.
  bool ExplicitParams;

  /// \brief Whether any of the capture expressions requires cleanups.
  bool ExprNeedsCleanups;

  /// \brief Whether the lambda contains an unexpanded parameter pack.
  bool ContainsUnexpandedParameterPack;

  /// \brief Variables used to index into by-copy array captures.
  llvm::SmallVector<VarDecl *, 4> ArrayIndexVars;

  /// \brief Offsets into the ArrayIndexVars array at which each capture starts
  /// its list of array index variables.
  llvm::SmallVector<unsigned, 4> ArrayIndexStarts;
  
  LambdaScopeInfo(DiagnosticsEngine &Diag, CXXRecordDecl *Lambda,
                  CXXMethodDecl *CallOperator)
    : CapturingScopeInfo(Diag, ImpCap_None), Lambda(Lambda),
      CallOperator(CallOperator), NumExplicitCaptures(0), Mutable(false),
      ExprNeedsCleanups(false), ContainsUnexpandedParameterPack(false)
  {
    Kind = SK_Lambda;
  }

  virtual ~LambdaScopeInfo();

  /// \brief Note when 
  void finishedExplicitCaptures() {
    NumExplicitCaptures = Captures.size();
  }

  static bool classof(const FunctionScopeInfo *FSI) {
    return FSI->Kind == SK_Lambda; 
  }
};


FunctionScopeInfo::WeakObjectProfileTy::WeakObjectProfileTy()
  : Base(0, false), Property(0) {}

FunctionScopeInfo::WeakObjectProfileTy
FunctionScopeInfo::WeakObjectProfileTy::getSentinel() {
  FunctionScopeInfo::WeakObjectProfileTy Result;
  Result.Base.setInt(true);
  return Result;
}

template <typename ExprT>
void FunctionScopeInfo::recordUseOfWeak(const ExprT *E, bool IsRead) {
  assert(E);
  WeakUseVector &Uses = WeakObjectUses[WeakObjectProfileTy(E)];
  Uses.push_back(WeakUseTy(E, IsRead));
}

inline void
CapturingScopeInfo::addThisCapture(bool isNested, SourceLocation Loc,
                                   QualType CaptureType, Expr *Cpy) {
  Captures.push_back(Capture(Capture::ThisCapture, isNested, Loc, CaptureType,
                             Cpy));
  CXXThisCaptureIndex = Captures.size();

  if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(this))
    LSI->ArrayIndexStarts.push_back(LSI->ArrayIndexVars.size());
}

} // end namespace sema
} // end namespace clang

#endif