1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
|
//===-- DeclCXX.h - Classes for representing C++ declarations -*- C++ -*-=====//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the C++ Decl subclasses, other than those for
// templates (in DeclTemplate.h) and friends (in DeclFriend.h).
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_DECLCXX_H
#define LLVM_CLANG_AST_DECLCXX_H
#include "clang/AST/ASTUnresolvedSet.h"
#include "clang/AST/Decl.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/TypeLoc.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Compiler.h"
namespace clang {
class ClassTemplateDecl;
class ClassTemplateSpecializationDecl;
class CXXBasePath;
class CXXBasePaths;
class CXXConstructorDecl;
class CXXConversionDecl;
class CXXDestructorDecl;
class CXXMethodDecl;
class CXXRecordDecl;
class CXXMemberLookupCriteria;
class CXXFinalOverriderMap;
class CXXIndirectPrimaryBaseSet;
class FriendDecl;
class LambdaExpr;
class UsingDecl;
/// \brief Represents any kind of function declaration, whether it is a
/// concrete function or a function template.
class AnyFunctionDecl {
NamedDecl *Function;
AnyFunctionDecl(NamedDecl *ND) : Function(ND) { }
public:
AnyFunctionDecl(FunctionDecl *FD) : Function(FD) { }
AnyFunctionDecl(FunctionTemplateDecl *FTD);
/// \brief Implicily converts any function or function template into a
/// named declaration.
operator NamedDecl *() const { return Function; }
/// \brief Retrieve the underlying function or function template.
NamedDecl *get() const { return Function; }
static AnyFunctionDecl getFromNamedDecl(NamedDecl *ND) {
return AnyFunctionDecl(ND);
}
};
} // end namespace clang
namespace llvm {
// Provide PointerLikeTypeTraits for non-cvr pointers.
template<>
class PointerLikeTypeTraits< ::clang::AnyFunctionDecl> {
public:
static inline void *getAsVoidPointer(::clang::AnyFunctionDecl F) {
return F.get();
}
static inline ::clang::AnyFunctionDecl getFromVoidPointer(void *P) {
return ::clang::AnyFunctionDecl::getFromNamedDecl(
static_cast< ::clang::NamedDecl*>(P));
}
enum { NumLowBitsAvailable = 2 };
};
} // end namespace llvm
namespace clang {
/// @brief Represents an access specifier followed by colon ':'.
///
/// An objects of this class represents sugar for the syntactic occurrence
/// of an access specifier followed by a colon in the list of member
/// specifiers of a C++ class definition.
///
/// Note that they do not represent other uses of access specifiers,
/// such as those occurring in a list of base specifiers.
/// Also note that this class has nothing to do with so-called
/// "access declarations" (C++98 11.3 [class.access.dcl]).
class AccessSpecDecl : public Decl {
virtual void anchor();
/// \brief The location of the ':'.
SourceLocation ColonLoc;
AccessSpecDecl(AccessSpecifier AS, DeclContext *DC,
SourceLocation ASLoc, SourceLocation ColonLoc)
: Decl(AccessSpec, DC, ASLoc), ColonLoc(ColonLoc) {
setAccess(AS);
}
AccessSpecDecl(EmptyShell Empty)
: Decl(AccessSpec, Empty) { }
public:
/// \brief The location of the access specifier.
SourceLocation getAccessSpecifierLoc() const { return getLocation(); }
/// \brief Sets the location of the access specifier.
void setAccessSpecifierLoc(SourceLocation ASLoc) { setLocation(ASLoc); }
/// \brief The location of the colon following the access specifier.
SourceLocation getColonLoc() const { return ColonLoc; }
/// \brief Sets the location of the colon.
void setColonLoc(SourceLocation CLoc) { ColonLoc = CLoc; }
SourceRange getSourceRange() const LLVM_READONLY {
return SourceRange(getAccessSpecifierLoc(), getColonLoc());
}
static AccessSpecDecl *Create(ASTContext &C, AccessSpecifier AS,
DeclContext *DC, SourceLocation ASLoc,
SourceLocation ColonLoc) {
return new (C) AccessSpecDecl(AS, DC, ASLoc, ColonLoc);
}
static AccessSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID);
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == AccessSpec; }
};
/// \brief Represents a base class of a C++ class.
///
/// Each CXXBaseSpecifier represents a single, direct base class (or
/// struct) of a C++ class (or struct). It specifies the type of that
/// base class, whether it is a virtual or non-virtual base, and what
/// level of access (public, protected, private) is used for the
/// derivation. For example:
///
/// @code
/// class A { };
/// class B { };
/// class C : public virtual A, protected B { };
/// @endcode
///
/// In this code, C will have two CXXBaseSpecifiers, one for "public
/// virtual A" and the other for "protected B".
class CXXBaseSpecifier {
/// Range - The source code range that covers the full base
/// specifier, including the "virtual" (if present) and access
/// specifier (if present).
SourceRange Range;
/// \brief The source location of the ellipsis, if this is a pack
/// expansion.
SourceLocation EllipsisLoc;
/// \brief Whether this is a virtual base class or not.
bool Virtual : 1;
/// BaseOfClass - Whether this is the base of a class (true) or of a
/// struct (false). This determines the mapping from the access
/// specifier as written in the source code to the access specifier
/// used for semantic analysis.
bool BaseOfClass : 1;
/// Access - Access specifier as written in the source code (which
/// may be AS_none). The actual type of data stored here is an
/// AccessSpecifier, but we use "unsigned" here to work around a
/// VC++ bug.
unsigned Access : 2;
/// InheritConstructors - Whether the class contains a using declaration
/// to inherit the named class's constructors.
bool InheritConstructors : 1;
/// BaseTypeInfo - The type of the base class. This will be a class or struct
/// (or a typedef of such). The source code range does not include the
/// "virtual" or access specifier.
TypeSourceInfo *BaseTypeInfo;
public:
CXXBaseSpecifier() { }
CXXBaseSpecifier(SourceRange R, bool V, bool BC, AccessSpecifier A,
TypeSourceInfo *TInfo, SourceLocation EllipsisLoc)
: Range(R), EllipsisLoc(EllipsisLoc), Virtual(V), BaseOfClass(BC),
Access(A), InheritConstructors(false), BaseTypeInfo(TInfo) { }
/// getSourceRange - Retrieves the source range that contains the
/// entire base specifier.
SourceRange getSourceRange() const LLVM_READONLY { return Range; }
SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
/// isVirtual - Determines whether the base class is a virtual base
/// class (or not).
bool isVirtual() const { return Virtual; }
/// \brief Determine whether this base class is a base of a class declared
/// with the 'class' keyword (vs. one declared with the 'struct' keyword).
bool isBaseOfClass() const { return BaseOfClass; }
/// \brief Determine whether this base specifier is a pack expansion.
bool isPackExpansion() const { return EllipsisLoc.isValid(); }
/// \brief Determine whether this base class's constructors get inherited.
bool getInheritConstructors() const { return InheritConstructors; }
/// \brief Set that this base class's constructors should be inherited.
void setInheritConstructors(bool Inherit = true) {
InheritConstructors = Inherit;
}
/// \brief For a pack expansion, determine the location of the ellipsis.
SourceLocation getEllipsisLoc() const {
return EllipsisLoc;
}
/// getAccessSpecifier - Returns the access specifier for this base
/// specifier. This is the actual base specifier as used for
/// semantic analysis, so the result can never be AS_none. To
/// retrieve the access specifier as written in the source code, use
/// getAccessSpecifierAsWritten().
AccessSpecifier getAccessSpecifier() const {
if ((AccessSpecifier)Access == AS_none)
return BaseOfClass? AS_private : AS_public;
else
return (AccessSpecifier)Access;
}
/// getAccessSpecifierAsWritten - Retrieves the access specifier as
/// written in the source code (which may mean that no access
/// specifier was explicitly written). Use getAccessSpecifier() to
/// retrieve the access specifier for use in semantic analysis.
AccessSpecifier getAccessSpecifierAsWritten() const {
return (AccessSpecifier)Access;
}
/// getType - Retrieves the type of the base class. This type will
/// always be an unqualified class type.
QualType getType() const { return BaseTypeInfo->getType(); }
/// getTypeLoc - Retrieves the type and source location of the base class.
TypeSourceInfo *getTypeSourceInfo() const { return BaseTypeInfo; }
};
/// CXXRecordDecl - Represents a C++ struct/union/class.
/// FIXME: This class will disappear once we've properly taught RecordDecl
/// to deal with C++-specific things.
class CXXRecordDecl : public RecordDecl {
friend void TagDecl::startDefinition();
/// Values used in DefinitionData fields to represent special members.
enum SpecialMemberFlags {
SMF_DefaultConstructor = 0x1,
SMF_CopyConstructor = 0x2,
SMF_MoveConstructor = 0x4,
SMF_CopyAssignment = 0x8,
SMF_MoveAssignment = 0x10,
SMF_Destructor = 0x20,
SMF_All = 0x3f
};
struct DefinitionData {
DefinitionData(CXXRecordDecl *D);
/// \brief True if this class has any user-declared constructors.
bool UserDeclaredConstructor : 1;
/// The user-declared special members which this class has.
unsigned UserDeclaredSpecialMembers : 6;
/// Aggregate - True when this class is an aggregate.
bool Aggregate : 1;
/// PlainOldData - True when this class is a POD-type.
bool PlainOldData : 1;
/// Empty - true when this class is empty for traits purposes,
/// i.e. has no data members other than 0-width bit-fields, has no
/// virtual function/base, and doesn't inherit from a non-empty
/// class. Doesn't take union-ness into account.
bool Empty : 1;
/// Polymorphic - True when this class is polymorphic, i.e. has at
/// least one virtual member or derives from a polymorphic class.
bool Polymorphic : 1;
/// Abstract - True when this class is abstract, i.e. has at least
/// one pure virtual function, (that can come from a base class).
bool Abstract : 1;
/// IsStandardLayout - True when this class has standard layout.
///
/// C++0x [class]p7. A standard-layout class is a class that:
/// * has no non-static data members of type non-standard-layout class (or
/// array of such types) or reference,
/// * has no virtual functions (10.3) and no virtual base classes (10.1),
/// * has the same access control (Clause 11) for all non-static data
/// members
/// * has no non-standard-layout base classes,
/// * either has no non-static data members in the most derived class and at
/// most one base class with non-static data members, or has no base
/// classes with non-static data members, and
/// * has no base classes of the same type as the first non-static data
/// member.
bool IsStandardLayout : 1;
/// HasNoNonEmptyBases - True when there are no non-empty base classes.
///
/// This is a helper bit of state used to implement IsStandardLayout more
/// efficiently.
bool HasNoNonEmptyBases : 1;
/// HasPrivateFields - True when there are private non-static data members.
bool HasPrivateFields : 1;
/// HasProtectedFields - True when there are protected non-static data
/// members.
bool HasProtectedFields : 1;
/// HasPublicFields - True when there are private non-static data members.
bool HasPublicFields : 1;
/// \brief True if this class (or any subobject) has mutable fields.
bool HasMutableFields : 1;
/// \brief True if there no non-field members declared by the user.
bool HasOnlyCMembers : 1;
/// \brief True if any field has an in-class initializer.
bool HasInClassInitializer : 1;
/// \brief True if any field is of reference type, and does not have an
/// in-class initializer. In this case, value-initialization of this class
/// is illegal in C++98 even if the class has a trivial default constructor.
bool HasUninitializedReferenceMember : 1;
/// \brief These flags are \c true if a defaulted corresponding special
/// member can't be fully analyzed without performing overload resolution.
/// @{
bool NeedOverloadResolutionForMoveConstructor : 1;
bool NeedOverloadResolutionForMoveAssignment : 1;
bool NeedOverloadResolutionForDestructor : 1;
/// @}
/// \brief These flags are \c true if an implicit defaulted corresponding
/// special member would be defined as deleted.
/// @{
bool DefaultedMoveConstructorIsDeleted : 1;
bool DefaultedMoveAssignmentIsDeleted : 1;
bool DefaultedDestructorIsDeleted : 1;
/// @}
/// \brief The trivial special members which this class has, per
/// C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25,
/// C++11 [class.dtor]p5, or would have if the member were not suppressed.
///
/// This excludes any user-declared but not user-provided special members
/// which have been declared but not yet defined.
unsigned HasTrivialSpecialMembers : 6;
/// \brief The declared special members of this class which are known to be
/// non-trivial.
///
/// This excludes any user-declared but not user-provided special members
/// which have been declared but not yet defined, and any implicit special
/// members which have not yet been declared.
unsigned DeclaredNonTrivialSpecialMembers : 6;
/// HasIrrelevantDestructor - True when this class has a destructor with no
/// semantic effect.
bool HasIrrelevantDestructor : 1;
/// HasConstexprNonCopyMoveConstructor - True when this class has at least
/// one user-declared constexpr constructor which is neither the copy nor
/// move constructor.
bool HasConstexprNonCopyMoveConstructor : 1;
/// DefaultedDefaultConstructorIsConstexpr - True if a defaulted default
/// constructor for this class would be constexpr.
bool DefaultedDefaultConstructorIsConstexpr : 1;
/// HasConstexprDefaultConstructor - True if this class has a constexpr
/// default constructor (either user-declared or implicitly declared).
bool HasConstexprDefaultConstructor : 1;
/// HasNonLiteralTypeFieldsOrBases - True when this class contains at least
/// one non-static data member or base class of non-literal or volatile
/// type.
bool HasNonLiteralTypeFieldsOrBases : 1;
/// ComputedVisibleConversions - True when visible conversion functions are
/// already computed and are available.
bool ComputedVisibleConversions : 1;
/// \brief Whether we have a C++11 user-provided default constructor (not
/// explicitly deleted or defaulted).
bool UserProvidedDefaultConstructor : 1;
/// \brief The special members which have been declared for this class,
/// either by the user or implicitly.
unsigned DeclaredSpecialMembers : 6;
/// \brief Whether an implicit copy constructor would have a const-qualified
/// parameter.
bool ImplicitCopyConstructorHasConstParam : 1;
/// \brief Whether an implicit copy assignment operator would have a
/// const-qualified parameter.
bool ImplicitCopyAssignmentHasConstParam : 1;
/// \brief Whether any declared copy constructor has a const-qualified
/// parameter.
bool HasDeclaredCopyConstructorWithConstParam : 1;
/// \brief Whether any declared copy assignment operator has either a
/// const-qualified reference parameter or a non-reference parameter.
bool HasDeclaredCopyAssignmentWithConstParam : 1;
/// \brief Whether an implicit move constructor was attempted to be declared
/// but would have been deleted.
bool FailedImplicitMoveConstructor : 1;
/// \brief Whether an implicit move assignment operator was attempted to be
/// declared but would have been deleted.
bool FailedImplicitMoveAssignment : 1;
/// \brief Whether this class describes a C++ lambda.
bool IsLambda : 1;
/// NumBases - The number of base class specifiers in Bases.
unsigned NumBases;
/// NumVBases - The number of virtual base class specifiers in VBases.
unsigned NumVBases;
/// Bases - Base classes of this class.
/// FIXME: This is wasted space for a union.
LazyCXXBaseSpecifiersPtr Bases;
/// VBases - direct and indirect virtual base classes of this class.
LazyCXXBaseSpecifiersPtr VBases;
/// Conversions - Overload set containing the conversion functions
/// of this C++ class (but not its inherited conversion
/// functions). Each of the entries in this overload set is a
/// CXXConversionDecl.
ASTUnresolvedSet Conversions;
/// VisibleConversions - Overload set containing the conversion
/// functions of this C++ class and all those inherited conversion
/// functions that are visible in this class. Each of the entries
/// in this overload set is a CXXConversionDecl or a
/// FunctionTemplateDecl.
ASTUnresolvedSet VisibleConversions;
/// Definition - The declaration which defines this record.
CXXRecordDecl *Definition;
/// FirstFriend - The first friend declaration in this class, or
/// null if there aren't any. This is actually currently stored
/// in reverse order.
FriendDecl *FirstFriend;
/// \brief Retrieve the set of direct base classes.
CXXBaseSpecifier *getBases() const {
if (!Bases.isOffset())
return Bases.get(0);
return getBasesSlowCase();
}
/// \brief Retrieve the set of virtual base classes.
CXXBaseSpecifier *getVBases() const {
if (!VBases.isOffset())
return VBases.get(0);
return getVBasesSlowCase();
}
private:
CXXBaseSpecifier *getBasesSlowCase() const;
CXXBaseSpecifier *getVBasesSlowCase() const;
} *DefinitionData;
/// \brief Describes a C++ closure type (generated by a lambda expression).
struct LambdaDefinitionData : public DefinitionData {
typedef LambdaExpr::Capture Capture;
LambdaDefinitionData(CXXRecordDecl *D, TypeSourceInfo *Info, bool Dependent)
: DefinitionData(D), Dependent(Dependent), NumCaptures(0),
NumExplicitCaptures(0), ManglingNumber(0), ContextDecl(0), Captures(0),
MethodTyInfo(Info)
{
IsLambda = true;
}
/// \brief Whether this lambda is known to be dependent, even if its
/// context isn't dependent.
///
/// A lambda with a non-dependent context can be dependent if it occurs
/// within the default argument of a function template, because the
/// lambda will have been created with the enclosing context as its
/// declaration context, rather than function. This is an unfortunate
/// artifact of having to parse the default arguments before
unsigned Dependent : 1;
/// \brief The number of captures in this lambda.
unsigned NumCaptures : 16;
/// \brief The number of explicit captures in this lambda.
unsigned NumExplicitCaptures : 15;
/// \brief The number used to indicate this lambda expression for name
/// mangling in the Itanium C++ ABI.
unsigned ManglingNumber;
/// \brief The declaration that provides context for this lambda, if the
/// actual DeclContext does not suffice. This is used for lambdas that
/// occur within default arguments of function parameters within the class
/// or within a data member initializer.
Decl *ContextDecl;
/// \brief The list of captures, both explicit and implicit, for this
/// lambda.
Capture *Captures;
/// \brief The type of the call method.
TypeSourceInfo *MethodTyInfo;
};
struct DefinitionData &data() {
assert(DefinitionData && "queried property of class with no definition");
return *DefinitionData;
}
const struct DefinitionData &data() const {
assert(DefinitionData && "queried property of class with no definition");
return *DefinitionData;
}
struct LambdaDefinitionData &getLambdaData() const {
assert(DefinitionData && "queried property of lambda with no definition");
assert(DefinitionData->IsLambda &&
"queried lambda property of non-lambda class");
return static_cast<LambdaDefinitionData &>(*DefinitionData);
}
/// \brief The template or declaration that this declaration
/// describes or was instantiated from, respectively.
///
/// For non-templates, this value will be NULL. For record
/// declarations that describe a class template, this will be a
/// pointer to a ClassTemplateDecl. For member
/// classes of class template specializations, this will be the
/// MemberSpecializationInfo referring to the member class that was
/// instantiated or specialized.
llvm::PointerUnion<ClassTemplateDecl*, MemberSpecializationInfo*>
TemplateOrInstantiation;
friend class DeclContext;
friend class LambdaExpr;
/// \brief Called from setBases and addedMember to notify the class that a
/// direct or virtual base class or a member of class type has been added.
void addedClassSubobject(CXXRecordDecl *Base);
/// \brief Notify the class that member has been added.
///
/// This routine helps maintain information about the class based on which
/// members have been added. It will be invoked by DeclContext::addDecl()
/// whenever a member is added to this record.
void addedMember(Decl *D);
void markedVirtualFunctionPure();
friend void FunctionDecl::setPure(bool);
friend class ASTNodeImporter;
protected:
CXXRecordDecl(Kind K, TagKind TK, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, CXXRecordDecl *PrevDecl);
public:
/// base_class_iterator - Iterator that traverses the base classes
/// of a class.
typedef CXXBaseSpecifier* base_class_iterator;
/// base_class_const_iterator - Iterator that traverses the base
/// classes of a class.
typedef const CXXBaseSpecifier* base_class_const_iterator;
/// reverse_base_class_iterator = Iterator that traverses the base classes
/// of a class in reverse order.
typedef std::reverse_iterator<base_class_iterator>
reverse_base_class_iterator;
/// reverse_base_class_iterator = Iterator that traverses the base classes
/// of a class in reverse order.
typedef std::reverse_iterator<base_class_const_iterator>
reverse_base_class_const_iterator;
virtual CXXRecordDecl *getCanonicalDecl() {
return cast<CXXRecordDecl>(RecordDecl::getCanonicalDecl());
}
virtual const CXXRecordDecl *getCanonicalDecl() const {
return cast<CXXRecordDecl>(RecordDecl::getCanonicalDecl());
}
const CXXRecordDecl *getPreviousDecl() const {
return cast_or_null<CXXRecordDecl>(RecordDecl::getPreviousDecl());
}
CXXRecordDecl *getPreviousDecl() {
return cast_or_null<CXXRecordDecl>(RecordDecl::getPreviousDecl());
}
const CXXRecordDecl *getMostRecentDecl() const {
return cast_or_null<CXXRecordDecl>(RecordDecl::getMostRecentDecl());
}
CXXRecordDecl *getMostRecentDecl() {
return cast_or_null<CXXRecordDecl>(RecordDecl::getMostRecentDecl());
}
CXXRecordDecl *getDefinition() const {
if (!DefinitionData) return 0;
return data().Definition;
}
bool hasDefinition() const { return DefinitionData != 0; }
static CXXRecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, CXXRecordDecl* PrevDecl=0,
bool DelayTypeCreation = false);
static CXXRecordDecl *CreateLambda(const ASTContext &C, DeclContext *DC,
TypeSourceInfo *Info, SourceLocation Loc,
bool DependentLambda);
static CXXRecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID);
bool isDynamicClass() const {
return data().Polymorphic || data().NumVBases != 0;
}
/// setBases - Sets the base classes of this struct or class.
void setBases(CXXBaseSpecifier const * const *Bases, unsigned NumBases);
/// getNumBases - Retrieves the number of base classes of this
/// class.
unsigned getNumBases() const { return data().NumBases; }
base_class_iterator bases_begin() { return data().getBases(); }
base_class_const_iterator bases_begin() const { return data().getBases(); }
base_class_iterator bases_end() { return bases_begin() + data().NumBases; }
base_class_const_iterator bases_end() const {
return bases_begin() + data().NumBases;
}
reverse_base_class_iterator bases_rbegin() {
return reverse_base_class_iterator(bases_end());
}
reverse_base_class_const_iterator bases_rbegin() const {
return reverse_base_class_const_iterator(bases_end());
}
reverse_base_class_iterator bases_rend() {
return reverse_base_class_iterator(bases_begin());
}
reverse_base_class_const_iterator bases_rend() const {
return reverse_base_class_const_iterator(bases_begin());
}
/// getNumVBases - Retrieves the number of virtual base classes of this
/// class.
unsigned getNumVBases() const { return data().NumVBases; }
base_class_iterator vbases_begin() { return data().getVBases(); }
base_class_const_iterator vbases_begin() const { return data().getVBases(); }
base_class_iterator vbases_end() { return vbases_begin() + data().NumVBases; }
base_class_const_iterator vbases_end() const {
return vbases_begin() + data().NumVBases;
}
reverse_base_class_iterator vbases_rbegin() {
return reverse_base_class_iterator(vbases_end());
}
reverse_base_class_const_iterator vbases_rbegin() const {
return reverse_base_class_const_iterator(vbases_end());
}
reverse_base_class_iterator vbases_rend() {
return reverse_base_class_iterator(vbases_begin());
}
reverse_base_class_const_iterator vbases_rend() const {
return reverse_base_class_const_iterator(vbases_begin());
}
/// \brief Determine whether this class has any dependent base classes which
/// are not the current instantiation.
bool hasAnyDependentBases() const;
/// Iterator access to method members. The method iterator visits
/// all method members of the class, including non-instance methods,
/// special methods, etc.
typedef specific_decl_iterator<CXXMethodDecl> method_iterator;
/// method_begin - Method begin iterator. Iterates in the order the methods
/// were declared.
method_iterator method_begin() const {
return method_iterator(decls_begin());
}
/// method_end - Method end iterator.
method_iterator method_end() const {
return method_iterator(decls_end());
}
/// Iterator access to constructor members.
typedef specific_decl_iterator<CXXConstructorDecl> ctor_iterator;
ctor_iterator ctor_begin() const {
return ctor_iterator(decls_begin());
}
ctor_iterator ctor_end() const {
return ctor_iterator(decls_end());
}
/// An iterator over friend declarations. All of these are defined
/// in DeclFriend.h.
class friend_iterator;
friend_iterator friend_begin() const;
friend_iterator friend_end() const;
void pushFriendDecl(FriendDecl *FD);
/// Determines whether this record has any friends.
bool hasFriends() const {
return data().FirstFriend != 0;
}
/// \brief \c true if we know for sure that this class has a single,
/// accessible, unambiguous move constructor that is not deleted.
bool hasSimpleMoveConstructor() const {
return !hasUserDeclaredMoveConstructor() && hasMoveConstructor();
}
/// \brief \c true if we know for sure that this class has a single,
/// accessible, unambiguous move assignment operator that is not deleted.
bool hasSimpleMoveAssignment() const {
return !hasUserDeclaredMoveAssignment() && hasMoveAssignment();
}
/// \brief \c true if we know for sure that this class has an accessible
/// destructor that is not deleted.
bool hasSimpleDestructor() const {
return !hasUserDeclaredDestructor() &&
!data().DefaultedDestructorIsDeleted;
}
/// \brief Determine whether this class has any default constructors.
bool hasDefaultConstructor() const {
return (data().DeclaredSpecialMembers & SMF_DefaultConstructor) ||
needsImplicitDefaultConstructor();
}
/// \brief Determine if we need to declare a default constructor for
/// this class.
///
/// This value is used for lazy creation of default constructors.
bool needsImplicitDefaultConstructor() const {
return !data().UserDeclaredConstructor &&
!(data().DeclaredSpecialMembers & SMF_DefaultConstructor);
}
/// hasUserDeclaredConstructor - Whether this class has any
/// user-declared constructors. When true, a default constructor
/// will not be implicitly declared.
bool hasUserDeclaredConstructor() const {
return data().UserDeclaredConstructor;
}
/// hasUserProvidedDefaultconstructor - Whether this class has a
/// user-provided default constructor per C++0x.
bool hasUserProvidedDefaultConstructor() const {
return data().UserProvidedDefaultConstructor;
}
/// hasUserDeclaredCopyConstructor - Whether this class has a
/// user-declared copy constructor. When false, a copy constructor
/// will be implicitly declared.
bool hasUserDeclaredCopyConstructor() const {
return data().UserDeclaredSpecialMembers & SMF_CopyConstructor;
}
/// \brief Determine whether this class needs an implicit copy
/// constructor to be lazily declared.
bool needsImplicitCopyConstructor() const {
return !(data().DeclaredSpecialMembers & SMF_CopyConstructor);
}
/// \brief Determine whether we need to eagerly declare a defaulted copy
/// constructor for this class.
bool needsOverloadResolutionForCopyConstructor() const {
return data().HasMutableFields;
}
/// \brief Determine whether an implicit copy constructor for this type
/// would have a parameter with a const-qualified reference type.
bool implicitCopyConstructorHasConstParam() const {
return data().ImplicitCopyConstructorHasConstParam;
}
/// \brief Determine whether this class has a copy constructor with
/// a parameter type which is a reference to a const-qualified type.
bool hasCopyConstructorWithConstParam() const {
return data().HasDeclaredCopyConstructorWithConstParam ||
(needsImplicitCopyConstructor() &&
implicitCopyConstructorHasConstParam());
}
/// hasUserDeclaredMoveOperation - Whether this class has a user-
/// declared move constructor or assignment operator. When false, a
/// move constructor and assignment operator may be implicitly declared.
bool hasUserDeclaredMoveOperation() const {
return data().UserDeclaredSpecialMembers &
(SMF_MoveConstructor | SMF_MoveAssignment);
}
/// \brief Determine whether this class has had a move constructor
/// declared by the user.
bool hasUserDeclaredMoveConstructor() const {
return data().UserDeclaredSpecialMembers & SMF_MoveConstructor;
}
/// \brief Determine whether this class has a move constructor.
bool hasMoveConstructor() const {
return (data().DeclaredSpecialMembers & SMF_MoveConstructor) ||
needsImplicitMoveConstructor();
}
/// \brief Determine whether implicit move constructor generation for this
/// class has failed before.
bool hasFailedImplicitMoveConstructor() const {
return data().FailedImplicitMoveConstructor;
}
/// \brief Set whether implicit move constructor generation for this class
/// has failed before.
void setFailedImplicitMoveConstructor(bool Failed = true) {
data().FailedImplicitMoveConstructor = Failed;
}
/// \brief Determine whether this class should get an implicit move
/// constructor or if any existing special member function inhibits this.
bool needsImplicitMoveConstructor() const {
return !hasFailedImplicitMoveConstructor() &&
!(data().DeclaredSpecialMembers & SMF_MoveConstructor) &&
!hasUserDeclaredCopyConstructor() &&
!hasUserDeclaredCopyAssignment() &&
!hasUserDeclaredMoveAssignment() &&
!hasUserDeclaredDestructor() &&
!data().DefaultedMoveConstructorIsDeleted;
}
/// \brief Determine whether we need to eagerly declare a defaulted move
/// constructor for this class.
bool needsOverloadResolutionForMoveConstructor() const {
return data().NeedOverloadResolutionForMoveConstructor;
}
/// hasUserDeclaredCopyAssignment - Whether this class has a
/// user-declared copy assignment operator. When false, a copy
/// assigment operator will be implicitly declared.
bool hasUserDeclaredCopyAssignment() const {
return data().UserDeclaredSpecialMembers & SMF_CopyAssignment;
}
/// \brief Determine whether this class needs an implicit copy
/// assignment operator to be lazily declared.
bool needsImplicitCopyAssignment() const {
return !(data().DeclaredSpecialMembers & SMF_CopyAssignment);
}
/// \brief Determine whether we need to eagerly declare a defaulted copy
/// assignment operator for this class.
bool needsOverloadResolutionForCopyAssignment() const {
return data().HasMutableFields;
}
/// \brief Determine whether an implicit copy assignment operator for this
/// type would have a parameter with a const-qualified reference type.
bool implicitCopyAssignmentHasConstParam() const {
return data().ImplicitCopyAssignmentHasConstParam;
}
/// \brief Determine whether this class has a copy assignment operator with
/// a parameter type which is a reference to a const-qualified type or is not
/// a reference..
bool hasCopyAssignmentWithConstParam() const {
return data().HasDeclaredCopyAssignmentWithConstParam ||
(needsImplicitCopyAssignment() &&
implicitCopyAssignmentHasConstParam());
}
/// \brief Determine whether this class has had a move assignment
/// declared by the user.
bool hasUserDeclaredMoveAssignment() const {
return data().UserDeclaredSpecialMembers & SMF_MoveAssignment;
}
/// \brief Determine whether this class has a move assignment operator.
bool hasMoveAssignment() const {
return (data().DeclaredSpecialMembers & SMF_MoveAssignment) ||
needsImplicitMoveAssignment();
}
/// \brief Determine whether implicit move assignment generation for this
/// class has failed before.
bool hasFailedImplicitMoveAssignment() const {
return data().FailedImplicitMoveAssignment;
}
/// \brief Set whether implicit move assignment generation for this class
/// has failed before.
void setFailedImplicitMoveAssignment(bool Failed = true) {
data().FailedImplicitMoveAssignment = Failed;
}
/// \brief Determine whether this class should get an implicit move
/// assignment operator or if any existing special member function inhibits
/// this.
bool needsImplicitMoveAssignment() const {
return !hasFailedImplicitMoveAssignment() &&
!(data().DeclaredSpecialMembers & SMF_MoveAssignment) &&
!hasUserDeclaredCopyConstructor() &&
!hasUserDeclaredCopyAssignment() &&
!hasUserDeclaredMoveConstructor() &&
!hasUserDeclaredDestructor() &&
!data().DefaultedMoveAssignmentIsDeleted;
}
/// \brief Determine whether we need to eagerly declare a move assignment
/// operator for this class.
bool needsOverloadResolutionForMoveAssignment() const {
return data().NeedOverloadResolutionForMoveAssignment;
}
/// hasUserDeclaredDestructor - Whether this class has a
/// user-declared destructor. When false, a destructor will be
/// implicitly declared.
bool hasUserDeclaredDestructor() const {
return data().UserDeclaredSpecialMembers & SMF_Destructor;
}
/// \brief Determine whether this class needs an implicit destructor to
/// be lazily declared.
bool needsImplicitDestructor() const {
return !(data().DeclaredSpecialMembers & SMF_Destructor);
}
/// \brief Determine whether we need to eagerly declare a destructor for this
/// class.
bool needsOverloadResolutionForDestructor() const {
return data().NeedOverloadResolutionForDestructor;
}
/// \brief Determine whether this class describes a lambda function object.
bool isLambda() const { return hasDefinition() && data().IsLambda; }
/// \brief For a closure type, retrieve the mapping from captured
/// variables and this to the non-static data members that store the
/// values or references of the captures.
///
/// \param Captures Will be populated with the mapping from captured
/// variables to the corresponding fields.
///
/// \param ThisCapture Will be set to the field declaration for the
/// 'this' capture.
void getCaptureFields(llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
FieldDecl *&ThisCapture) const;
typedef const LambdaExpr::Capture* capture_const_iterator;
capture_const_iterator captures_begin() const {
return isLambda() ? getLambdaData().Captures : NULL;
}
capture_const_iterator captures_end() const {
return isLambda() ? captures_begin() + getLambdaData().NumCaptures : NULL;
}
typedef UnresolvedSetIterator conversion_iterator;
conversion_iterator conversion_begin() const {
return data().Conversions.begin();
}
conversion_iterator conversion_end() const {
return data().Conversions.end();
}
/// Removes a conversion function from this class. The conversion
/// function must currently be a member of this class. Furthermore,
/// this class must currently be in the process of being defined.
void removeConversion(const NamedDecl *Old);
/// getVisibleConversionFunctions - get all conversion functions visible
/// in current class; including conversion function templates.
std::pair<conversion_iterator, conversion_iterator>
getVisibleConversionFunctions();
/// isAggregate - Whether this class is an aggregate (C++
/// [dcl.init.aggr]), which is a class with no user-declared
/// constructors, no private or protected non-static data members,
/// no base classes, and no virtual functions (C++ [dcl.init.aggr]p1).
bool isAggregate() const { return data().Aggregate; }
/// hasInClassInitializer - Whether this class has any in-class initializers
/// for non-static data members.
bool hasInClassInitializer() const { return data().HasInClassInitializer; }
/// \brief Whether this class or any of its subobjects has any members of
/// reference type which would make value-initialization ill-formed, per
/// C++03 [dcl.init]p5:
/// -- if T is a non-union class type without a user-declared constructor,
/// then every non-static data member and base-class component of T is
/// value-initialized
/// [...]
/// A program that calls for [...] value-initialization of an entity of
/// reference type is ill-formed.
bool hasUninitializedReferenceMember() const {
return !isUnion() && !hasUserDeclaredConstructor() &&
data().HasUninitializedReferenceMember;
}
/// isPOD - Whether this class is a POD-type (C++ [class]p4), which is a class
/// that is an aggregate that has no non-static non-POD data members, no
/// reference data members, no user-defined copy assignment operator and no
/// user-defined destructor.
///
/// Note that this is the C++ TR1 definition of POD.
bool isPOD() const { return data().PlainOldData; }
/// \brief True if this class is C-like, without C++-specific features, e.g.
/// it contains only public fields, no bases, tag kind is not 'class', etc.
bool isCLike() const;
/// isEmpty - Whether this class is empty (C++0x [meta.unary.prop]), which
/// means it has a virtual function, virtual base, data member (other than
/// 0-width bit-field) or inherits from a non-empty class. Does NOT include
/// a check for union-ness.
bool isEmpty() const { return data().Empty; }
/// isPolymorphic - Whether this class is polymorphic (C++ [class.virtual]),
/// which means that the class contains or inherits a virtual function.
bool isPolymorphic() const { return data().Polymorphic; }
/// isAbstract - Whether this class is abstract (C++ [class.abstract]),
/// which means that the class contains or inherits a pure virtual function.
bool isAbstract() const { return data().Abstract; }
/// isStandardLayout - Whether this class has standard layout
/// (C++ [class]p7)
bool isStandardLayout() const { return data().IsStandardLayout; }
/// \brief Whether this class, or any of its class subobjects, contains a
/// mutable field.
bool hasMutableFields() const { return data().HasMutableFields; }
/// \brief Determine whether this class has a trivial default constructor
/// (C++11 [class.ctor]p5).
bool hasTrivialDefaultConstructor() const {
return hasDefaultConstructor() &&
(data().HasTrivialSpecialMembers & SMF_DefaultConstructor);
}
/// \brief Determine whether this class has a non-trivial default constructor
/// (C++11 [class.ctor]p5).
bool hasNonTrivialDefaultConstructor() const {
return (data().DeclaredNonTrivialSpecialMembers & SMF_DefaultConstructor) ||
(needsImplicitDefaultConstructor() &&
!(data().HasTrivialSpecialMembers & SMF_DefaultConstructor));
}
/// \brief Determine whether this class has at least one constexpr constructor
/// other than the copy or move constructors.
bool hasConstexprNonCopyMoveConstructor() const {
return data().HasConstexprNonCopyMoveConstructor ||
(needsImplicitDefaultConstructor() &&
defaultedDefaultConstructorIsConstexpr());
}
/// \brief Determine whether a defaulted default constructor for this class
/// would be constexpr.
bool defaultedDefaultConstructorIsConstexpr() const {
return data().DefaultedDefaultConstructorIsConstexpr &&
(!isUnion() || hasInClassInitializer());
}
/// \brief Determine whether this class has a constexpr default constructor.
bool hasConstexprDefaultConstructor() const {
return data().HasConstexprDefaultConstructor ||
(needsImplicitDefaultConstructor() &&
defaultedDefaultConstructorIsConstexpr());
}
/// \brief Determine whether this class has a trivial copy constructor
/// (C++ [class.copy]p6, C++11 [class.copy]p12)
bool hasTrivialCopyConstructor() const {
return data().HasTrivialSpecialMembers & SMF_CopyConstructor;
}
/// \brief Determine whether this class has a non-trivial copy constructor
/// (C++ [class.copy]p6, C++11 [class.copy]p12)
bool hasNonTrivialCopyConstructor() const {
return data().DeclaredNonTrivialSpecialMembers & SMF_CopyConstructor ||
!hasTrivialCopyConstructor();
}
/// \brief Determine whether this class has a trivial move constructor
/// (C++11 [class.copy]p12)
bool hasTrivialMoveConstructor() const {
return hasMoveConstructor() &&
(data().HasTrivialSpecialMembers & SMF_MoveConstructor);
}
/// \brief Determine whether this class has a non-trivial move constructor
/// (C++11 [class.copy]p12)
bool hasNonTrivialMoveConstructor() const {
return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveConstructor) ||
(needsImplicitMoveConstructor() &&
!(data().HasTrivialSpecialMembers & SMF_MoveConstructor));
}
/// \brief Determine whether this class has a trivial copy assignment operator
/// (C++ [class.copy]p11, C++11 [class.copy]p25)
bool hasTrivialCopyAssignment() const {
return data().HasTrivialSpecialMembers & SMF_CopyAssignment;
}
/// \brief Determine whether this class has a non-trivial copy assignment
/// operator (C++ [class.copy]p11, C++11 [class.copy]p25)
bool hasNonTrivialCopyAssignment() const {
return data().DeclaredNonTrivialSpecialMembers & SMF_CopyAssignment ||
!hasTrivialCopyAssignment();
}
/// \brief Determine whether this class has a trivial move assignment operator
/// (C++11 [class.copy]p25)
bool hasTrivialMoveAssignment() const {
return hasMoveAssignment() &&
(data().HasTrivialSpecialMembers & SMF_MoveAssignment);
}
/// \brief Determine whether this class has a non-trivial move assignment
/// operator (C++11 [class.copy]p25)
bool hasNonTrivialMoveAssignment() const {
return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveAssignment) ||
(needsImplicitMoveAssignment() &&
!(data().HasTrivialSpecialMembers & SMF_MoveAssignment));
}
/// \brief Determine whether this class has a trivial destructor
/// (C++ [class.dtor]p3)
bool hasTrivialDestructor() const {
return data().HasTrivialSpecialMembers & SMF_Destructor;
}
/// \brief Determine whether this class has a non-trivial destructor
/// (C++ [class.dtor]p3)
bool hasNonTrivialDestructor() const {
return !(data().HasTrivialSpecialMembers & SMF_Destructor);
}
// hasIrrelevantDestructor - Whether this class has a destructor which has no
// semantic effect. Any such destructor will be trivial, public, defaulted
// and not deleted, and will call only irrelevant destructors.
bool hasIrrelevantDestructor() const {
return data().HasIrrelevantDestructor;
}
// hasNonLiteralTypeFieldsOrBases - Whether this class has a non-literal or
// volatile type non-static data member or base class.
bool hasNonLiteralTypeFieldsOrBases() const {
return data().HasNonLiteralTypeFieldsOrBases;
}
// isTriviallyCopyable - Whether this class is considered trivially copyable
// (C++0x [class]p6).
bool isTriviallyCopyable() const;
// isTrivial - Whether this class is considered trivial
//
// C++0x [class]p6
// A trivial class is a class that has a trivial default constructor and
// is trivially copiable.
bool isTrivial() const {
return isTriviallyCopyable() && hasTrivialDefaultConstructor();
}
// isLiteral - Whether this class is a literal type.
//
// C++11 [basic.types]p10
// A class type that has all the following properties:
// -- it has a trivial destructor
// -- every constructor call and full-expression in the
// brace-or-equal-intializers for non-static data members (if any) is
// a constant expression.
// -- it is an aggregate type or has at least one constexpr constructor or
// constructor template that is not a copy or move constructor, and
// -- all of its non-static data members and base classes are of literal
// types
//
// We resolve DR1361 by ignoring the second bullet. We resolve DR1452 by
// treating types with trivial default constructors as literal types.
bool isLiteral() const {
return hasTrivialDestructor() &&
(isAggregate() || hasConstexprNonCopyMoveConstructor() ||
hasTrivialDefaultConstructor()) &&
!hasNonLiteralTypeFieldsOrBases();
}
/// \brief If this record is an instantiation of a member class,
/// retrieves the member class from which it was instantiated.
///
/// This routine will return non-NULL for (non-templated) member
/// classes of class templates. For example, given:
///
/// @code
/// template<typename T>
/// struct X {
/// struct A { };
/// };
/// @endcode
///
/// The declaration for X<int>::A is a (non-templated) CXXRecordDecl
/// whose parent is the class template specialization X<int>. For
/// this declaration, getInstantiatedFromMemberClass() will return
/// the CXXRecordDecl X<T>::A. When a complete definition of
/// X<int>::A is required, it will be instantiated from the
/// declaration returned by getInstantiatedFromMemberClass().
CXXRecordDecl *getInstantiatedFromMemberClass() const;
/// \brief If this class is an instantiation of a member class of a
/// class template specialization, retrieves the member specialization
/// information.
MemberSpecializationInfo *getMemberSpecializationInfo() const {
return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>();
}
/// \brief Specify that this record is an instantiation of the
/// member class RD.
void setInstantiationOfMemberClass(CXXRecordDecl *RD,
TemplateSpecializationKind TSK);
/// \brief Retrieves the class template that is described by this
/// class declaration.
///
/// Every class template is represented as a ClassTemplateDecl and a
/// CXXRecordDecl. The former contains template properties (such as
/// the template parameter lists) while the latter contains the
/// actual description of the template's
/// contents. ClassTemplateDecl::getTemplatedDecl() retrieves the
/// CXXRecordDecl that from a ClassTemplateDecl, while
/// getDescribedClassTemplate() retrieves the ClassTemplateDecl from
/// a CXXRecordDecl.
ClassTemplateDecl *getDescribedClassTemplate() const {
return TemplateOrInstantiation.dyn_cast<ClassTemplateDecl*>();
}
void setDescribedClassTemplate(ClassTemplateDecl *Template) {
TemplateOrInstantiation = Template;
}
/// \brief Determine whether this particular class is a specialization or
/// instantiation of a class template or member class of a class template,
/// and how it was instantiated or specialized.
TemplateSpecializationKind getTemplateSpecializationKind() const;
/// \brief Set the kind of specialization or template instantiation this is.
void setTemplateSpecializationKind(TemplateSpecializationKind TSK);
/// getDestructor - Returns the destructor decl for this class.
CXXDestructorDecl *getDestructor() const;
/// isLocalClass - If the class is a local class [class.local], returns
/// the enclosing function declaration.
const FunctionDecl *isLocalClass() const {
if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(getDeclContext()))
return RD->isLocalClass();
return dyn_cast<FunctionDecl>(getDeclContext());
}
/// \brief Determine whether this dependent class is a current instantiation,
/// when viewed from within the given context.
bool isCurrentInstantiation(const DeclContext *CurContext) const;
/// \brief Determine whether this class is derived from the class \p Base.
///
/// This routine only determines whether this class is derived from \p Base,
/// but does not account for factors that may make a Derived -> Base class
/// ill-formed, such as private/protected inheritance or multiple, ambiguous
/// base class subobjects.
///
/// \param Base the base class we are searching for.
///
/// \returns true if this class is derived from Base, false otherwise.
bool isDerivedFrom(const CXXRecordDecl *Base) const;
/// \brief Determine whether this class is derived from the type \p Base.
///
/// This routine only determines whether this class is derived from \p Base,
/// but does not account for factors that may make a Derived -> Base class
/// ill-formed, such as private/protected inheritance or multiple, ambiguous
/// base class subobjects.
///
/// \param Base the base class we are searching for.
///
/// \param Paths will contain the paths taken from the current class to the
/// given \p Base class.
///
/// \returns true if this class is derived from Base, false otherwise.
///
/// \todo add a separate paramaeter to configure IsDerivedFrom, rather than
/// tangling input and output in \p Paths
bool isDerivedFrom(const CXXRecordDecl *Base, CXXBasePaths &Paths) const;
/// \brief Determine whether this class is virtually derived from
/// the class \p Base.
///
/// This routine only determines whether this class is virtually
/// derived from \p Base, but does not account for factors that may
/// make a Derived -> Base class ill-formed, such as
/// private/protected inheritance or multiple, ambiguous base class
/// subobjects.
///
/// \param Base the base class we are searching for.
///
/// \returns true if this class is virtually derived from Base,
/// false otherwise.
bool isVirtuallyDerivedFrom(const CXXRecordDecl *Base) const;
/// \brief Determine whether this class is provably not derived from
/// the type \p Base.
bool isProvablyNotDerivedFrom(const CXXRecordDecl *Base) const;
/// \brief Function type used by forallBases() as a callback.
///
/// \param BaseDefinition the definition of the base class
///
/// \returns true if this base matched the search criteria
typedef bool ForallBasesCallback(const CXXRecordDecl *BaseDefinition,
void *UserData);
/// \brief Determines if the given callback holds for all the direct
/// or indirect base classes of this type.
///
/// The class itself does not count as a base class. This routine
/// returns false if the class has non-computable base classes.
///
/// \param AllowShortCircuit if false, forces the callback to be called
/// for every base class, even if a dependent or non-matching base was
/// found.
bool forallBases(ForallBasesCallback *BaseMatches, void *UserData,
bool AllowShortCircuit = true) const;
/// \brief Function type used by lookupInBases() to determine whether a
/// specific base class subobject matches the lookup criteria.
///
/// \param Specifier the base-class specifier that describes the inheritance
/// from the base class we are trying to match.
///
/// \param Path the current path, from the most-derived class down to the
/// base named by the \p Specifier.
///
/// \param UserData a single pointer to user-specified data, provided to
/// lookupInBases().
///
/// \returns true if this base matched the search criteria, false otherwise.
typedef bool BaseMatchesCallback(const CXXBaseSpecifier *Specifier,
CXXBasePath &Path,
void *UserData);
/// \brief Look for entities within the base classes of this C++ class,
/// transitively searching all base class subobjects.
///
/// This routine uses the callback function \p BaseMatches to find base
/// classes meeting some search criteria, walking all base class subobjects
/// and populating the given \p Paths structure with the paths through the
/// inheritance hierarchy that resulted in a match. On a successful search,
/// the \p Paths structure can be queried to retrieve the matching paths and
/// to determine if there were any ambiguities.
///
/// \param BaseMatches callback function used to determine whether a given
/// base matches the user-defined search criteria.
///
/// \param UserData user data pointer that will be provided to \p BaseMatches.
///
/// \param Paths used to record the paths from this class to its base class
/// subobjects that match the search criteria.
///
/// \returns true if there exists any path from this class to a base class
/// subobject that matches the search criteria.
bool lookupInBases(BaseMatchesCallback *BaseMatches, void *UserData,
CXXBasePaths &Paths) const;
/// \brief Base-class lookup callback that determines whether the given
/// base class specifier refers to a specific class declaration.
///
/// This callback can be used with \c lookupInBases() to determine whether
/// a given derived class has is a base class subobject of a particular type.
/// The user data pointer should refer to the canonical CXXRecordDecl of the
/// base class that we are searching for.
static bool FindBaseClass(const CXXBaseSpecifier *Specifier,
CXXBasePath &Path, void *BaseRecord);
/// \brief Base-class lookup callback that determines whether the
/// given base class specifier refers to a specific class
/// declaration and describes virtual derivation.
///
/// This callback can be used with \c lookupInBases() to determine
/// whether a given derived class has is a virtual base class
/// subobject of a particular type. The user data pointer should
/// refer to the canonical CXXRecordDecl of the base class that we
/// are searching for.
static bool FindVirtualBaseClass(const CXXBaseSpecifier *Specifier,
CXXBasePath &Path, void *BaseRecord);
/// \brief Base-class lookup callback that determines whether there exists
/// a tag with the given name.
///
/// This callback can be used with \c lookupInBases() to find tag members
/// of the given name within a C++ class hierarchy. The user data pointer
/// is an opaque \c DeclarationName pointer.
static bool FindTagMember(const CXXBaseSpecifier *Specifier,
CXXBasePath &Path, void *Name);
/// \brief Base-class lookup callback that determines whether there exists
/// a member with the given name.
///
/// This callback can be used with \c lookupInBases() to find members
/// of the given name within a C++ class hierarchy. The user data pointer
/// is an opaque \c DeclarationName pointer.
static bool FindOrdinaryMember(const CXXBaseSpecifier *Specifier,
CXXBasePath &Path, void *Name);
/// \brief Base-class lookup callback that determines whether there exists
/// a member with the given name that can be used in a nested-name-specifier.
///
/// This callback can be used with \c lookupInBases() to find membes of
/// the given name within a C++ class hierarchy that can occur within
/// nested-name-specifiers.
static bool FindNestedNameSpecifierMember(const CXXBaseSpecifier *Specifier,
CXXBasePath &Path,
void *UserData);
/// \brief Retrieve the final overriders for each virtual member
/// function in the class hierarchy where this class is the
/// most-derived class in the class hierarchy.
void getFinalOverriders(CXXFinalOverriderMap &FinaOverriders) const;
/// \brief Get the indirect primary bases for this class.
void getIndirectPrimaryBases(CXXIndirectPrimaryBaseSet& Bases) const;
/// viewInheritance - Renders and displays an inheritance diagram
/// for this C++ class and all of its base classes (transitively) using
/// GraphViz.
void viewInheritance(ASTContext& Context) const;
/// MergeAccess - Calculates the access of a decl that is reached
/// along a path.
static AccessSpecifier MergeAccess(AccessSpecifier PathAccess,
AccessSpecifier DeclAccess) {
assert(DeclAccess != AS_none);
if (DeclAccess == AS_private) return AS_none;
return (PathAccess > DeclAccess ? PathAccess : DeclAccess);
}
/// \brief Indicates that the declaration of a defaulted or deleted special
/// member function is now complete.
void finishedDefaultedOrDeletedMember(CXXMethodDecl *MD);
/// \brief Indicates that the definition of this class is now complete.
virtual void completeDefinition();
/// \brief Indicates that the definition of this class is now complete,
/// and provides a final overrider map to help determine
///
/// \param FinalOverriders The final overrider map for this class, which can
/// be provided as an optimization for abstract-class checking. If NULL,
/// final overriders will be computed if they are needed to complete the
/// definition.
void completeDefinition(CXXFinalOverriderMap *FinalOverriders);
/// \brief Determine whether this class may end up being abstract, even though
/// it is not yet known to be abstract.
///
/// \returns true if this class is not known to be abstract but has any
/// base classes that are abstract. In this case, \c completeDefinition()
/// will need to compute final overriders to determine whether the class is
/// actually abstract.
bool mayBeAbstract() const;
/// \brief If this is the closure type of a lambda expression, retrieve the
/// number to be used for name mangling in the Itanium C++ ABI.
///
/// Zero indicates that this closure type has internal linkage, so the
/// mangling number does not matter, while a non-zero value indicates which
/// lambda expression this is in this particular context.
unsigned getLambdaManglingNumber() const {
assert(isLambda() && "Not a lambda closure type!");
return getLambdaData().ManglingNumber;
}
/// \brief Retrieve the declaration that provides additional context for a
/// lambda, when the normal declaration context is not specific enough.
///
/// Certain contexts (default arguments of in-class function parameters and
/// the initializers of data members) have separate name mangling rules for
/// lambdas within the Itanium C++ ABI. For these cases, this routine provides
/// the declaration in which the lambda occurs, e.g., the function parameter
/// or the non-static data member. Otherwise, it returns NULL to imply that
/// the declaration context suffices.
Decl *getLambdaContextDecl() const {
assert(isLambda() && "Not a lambda closure type!");
return getLambdaData().ContextDecl;
}
/// \brief Set the mangling number and context declaration for a lambda
/// class.
void setLambdaMangling(unsigned ManglingNumber, Decl *ContextDecl) {
getLambdaData().ManglingNumber = ManglingNumber;
getLambdaData().ContextDecl = ContextDecl;
}
/// \brief Returns the inheritance model used for this record.
MSInheritanceModel getMSInheritanceModel() const;
/// \brief Determine whether this lambda expression was known to be dependent
/// at the time it was created, even if its context does not appear to be
/// dependent.
///
/// This flag is a workaround for an issue with parsing, where default
/// arguments are parsed before their enclosing function declarations have
/// been created. This means that any lambda expressions within those
/// default arguments will have as their DeclContext the context enclosing
/// the function declaration, which may be non-dependent even when the
/// function declaration itself is dependent. This flag indicates when we
/// know that the lambda is dependent despite that.
bool isDependentLambda() const {
return isLambda() && getLambdaData().Dependent;
}
TypeSourceInfo *getLambdaTypeInfo() const {
return getLambdaData().MethodTyInfo;
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K >= firstCXXRecord && K <= lastCXXRecord;
}
friend class ASTDeclReader;
friend class ASTDeclWriter;
friend class ASTReader;
friend class ASTWriter;
};
/// CXXMethodDecl - Represents a static or instance method of a
/// struct/union/class.
class CXXMethodDecl : public FunctionDecl {
virtual void anchor();
protected:
CXXMethodDecl(Kind DK, CXXRecordDecl *RD, SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo,
QualType T, TypeSourceInfo *TInfo,
StorageClass SC, bool isInline,
bool isConstexpr, SourceLocation EndLocation)
: FunctionDecl(DK, RD, StartLoc, NameInfo, T, TInfo,
SC, isInline, isConstexpr) {
if (EndLocation.isValid())
setRangeEnd(EndLocation);
}
public:
static CXXMethodDecl *Create(ASTContext &C, CXXRecordDecl *RD,
SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo,
QualType T, TypeSourceInfo *TInfo,
StorageClass SC,
bool isInline,
bool isConstexpr,
SourceLocation EndLocation);
static CXXMethodDecl *CreateDeserialized(ASTContext &C, unsigned ID);
bool isStatic() const;
bool isInstance() const { return !isStatic(); }
bool isConst() const { return getType()->castAs<FunctionType>()->isConst(); }
bool isVolatile() const { return getType()->castAs<FunctionType>()->isVolatile(); }
bool isVirtual() const {
CXXMethodDecl *CD =
cast<CXXMethodDecl>(const_cast<CXXMethodDecl*>(this)->getCanonicalDecl());
// Methods declared in interfaces are automatically (pure) virtual.
if (CD->isVirtualAsWritten() ||
(CD->getParent()->isInterface() && CD->isUserProvided()))
return true;
return (CD->begin_overridden_methods() != CD->end_overridden_methods());
}
/// \brief Determine whether this is a usual deallocation function
/// (C++ [basic.stc.dynamic.deallocation]p2), which is an overloaded
/// delete or delete[] operator with a particular signature.
bool isUsualDeallocationFunction() const;
/// \brief Determine whether this is a copy-assignment operator, regardless
/// of whether it was declared implicitly or explicitly.
bool isCopyAssignmentOperator() const;
/// \brief Determine whether this is a move assignment operator.
bool isMoveAssignmentOperator() const;
const CXXMethodDecl *getCanonicalDecl() const {
return cast<CXXMethodDecl>(FunctionDecl::getCanonicalDecl());
}
CXXMethodDecl *getCanonicalDecl() {
return cast<CXXMethodDecl>(FunctionDecl::getCanonicalDecl());
}
/// isUserProvided - True if this method is user-declared and was not
/// deleted or defaulted on its first declaration.
bool isUserProvided() const {
return !(isDeleted() || getCanonicalDecl()->isDefaulted());
}
///
void addOverriddenMethod(const CXXMethodDecl *MD);
typedef const CXXMethodDecl *const* method_iterator;
method_iterator begin_overridden_methods() const;
method_iterator end_overridden_methods() const;
unsigned size_overridden_methods() const;
/// getParent - Returns the parent of this method declaration, which
/// is the class in which this method is defined.
const CXXRecordDecl *getParent() const {
return cast<CXXRecordDecl>(FunctionDecl::getParent());
}
/// getParent - Returns the parent of this method declaration, which
/// is the class in which this method is defined.
CXXRecordDecl *getParent() {
return const_cast<CXXRecordDecl *>(
cast<CXXRecordDecl>(FunctionDecl::getParent()));
}
/// getThisType - Returns the type of 'this' pointer.
/// Should only be called for instance methods.
QualType getThisType(ASTContext &C) const;
unsigned getTypeQualifiers() const {
return getType()->getAs<FunctionProtoType>()->getTypeQuals();
}
/// \brief Retrieve the ref-qualifier associated with this method.
///
/// In the following example, \c f() has an lvalue ref-qualifier, \c g()
/// has an rvalue ref-qualifier, and \c h() has no ref-qualifier.
/// @code
/// struct X {
/// void f() &;
/// void g() &&;
/// void h();
/// };
/// @endcode
RefQualifierKind getRefQualifier() const {
return getType()->getAs<FunctionProtoType>()->getRefQualifier();
}
bool hasInlineBody() const;
/// \brief Determine whether this is a lambda closure type's static member
/// function that is used for the result of the lambda's conversion to
/// function pointer (for a lambda with no captures).
///
/// The function itself, if used, will have a placeholder body that will be
/// supplied by IR generation to either forward to the function call operator
/// or clone the function call operator.
bool isLambdaStaticInvoker() const;
/// \brief Find the method in RD that corresponds to this one.
///
/// Find if RD or one of the classes it inherits from override this method.
/// If so, return it. RD is assumed to be a subclass of the class defining
/// this method (or be the class itself), unless MayBeBase is set to true.
CXXMethodDecl *
getCorrespondingMethodInClass(const CXXRecordDecl *RD,
bool MayBeBase = false);
const CXXMethodDecl *
getCorrespondingMethodInClass(const CXXRecordDecl *RD,
bool MayBeBase = false) const {
return const_cast<CXXMethodDecl *>(this)
->getCorrespondingMethodInClass(RD, MayBeBase);
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K >= firstCXXMethod && K <= lastCXXMethod;
}
};
/// CXXCtorInitializer - Represents a C++ base or member
/// initializer, which is part of a constructor initializer that
/// initializes one non-static member variable or one base class. For
/// example, in the following, both 'A(a)' and 'f(3.14159)' are member
/// initializers:
///
/// @code
/// class A { };
/// class B : public A {
/// float f;
/// public:
/// B(A& a) : A(a), f(3.14159) { }
/// };
/// @endcode
class CXXCtorInitializer {
/// \brief Either the base class name/delegating constructor type (stored as
/// a TypeSourceInfo*), an normal field (FieldDecl), or an anonymous field
/// (IndirectFieldDecl*) being initialized.
llvm::PointerUnion3<TypeSourceInfo *, FieldDecl *, IndirectFieldDecl *>
Initializee;
/// \brief The source location for the field name or, for a base initializer
/// pack expansion, the location of the ellipsis. In the case of a delegating
/// constructor, it will still include the type's source location as the
/// Initializee points to the CXXConstructorDecl (to allow loop detection).
SourceLocation MemberOrEllipsisLocation;
/// \brief The argument used to initialize the base or member, which may
/// end up constructing an object (when multiple arguments are involved).
/// If 0, this is a field initializer, and the in-class member initializer
/// will be used.
Stmt *Init;
/// LParenLoc - Location of the left paren of the ctor-initializer.
SourceLocation LParenLoc;
/// RParenLoc - Location of the right paren of the ctor-initializer.
SourceLocation RParenLoc;
/// \brief If the initializee is a type, whether that type makes this
/// a delegating initialization.
bool IsDelegating : 1;
/// IsVirtual - If the initializer is a base initializer, this keeps track
/// of whether the base is virtual or not.
bool IsVirtual : 1;
/// IsWritten - Whether or not the initializer is explicitly written
/// in the sources.
bool IsWritten : 1;
/// SourceOrderOrNumArrayIndices - If IsWritten is true, then this
/// number keeps track of the textual order of this initializer in the
/// original sources, counting from 0; otherwise, if IsWritten is false,
/// it stores the number of array index variables stored after this
/// object in memory.
unsigned SourceOrderOrNumArrayIndices : 13;
CXXCtorInitializer(ASTContext &Context, FieldDecl *Member,
SourceLocation MemberLoc, SourceLocation L, Expr *Init,
SourceLocation R, VarDecl **Indices, unsigned NumIndices);
public:
/// CXXCtorInitializer - Creates a new base-class initializer.
explicit
CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo, bool IsVirtual,
SourceLocation L, Expr *Init, SourceLocation R,
SourceLocation EllipsisLoc);
/// CXXCtorInitializer - Creates a new member initializer.
explicit
CXXCtorInitializer(ASTContext &Context, FieldDecl *Member,
SourceLocation MemberLoc, SourceLocation L, Expr *Init,
SourceLocation R);
/// CXXCtorInitializer - Creates a new anonymous field initializer.
explicit
CXXCtorInitializer(ASTContext &Context, IndirectFieldDecl *Member,
SourceLocation MemberLoc, SourceLocation L, Expr *Init,
SourceLocation R);
/// CXXCtorInitializer - Creates a new delegating Initializer.
explicit
CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo,
SourceLocation L, Expr *Init, SourceLocation R);
/// \brief Creates a new member initializer that optionally contains
/// array indices used to describe an elementwise initialization.
static CXXCtorInitializer *Create(ASTContext &Context, FieldDecl *Member,
SourceLocation MemberLoc, SourceLocation L,
Expr *Init, SourceLocation R,
VarDecl **Indices, unsigned NumIndices);
/// isBaseInitializer - Returns true when this initializer is
/// initializing a base class.
bool isBaseInitializer() const {
return Initializee.is<TypeSourceInfo*>() && !IsDelegating;
}
/// isMemberInitializer - Returns true when this initializer is
/// initializing a non-static data member.
bool isMemberInitializer() const { return Initializee.is<FieldDecl*>(); }
bool isAnyMemberInitializer() const {
return isMemberInitializer() || isIndirectMemberInitializer();
}
bool isIndirectMemberInitializer() const {
return Initializee.is<IndirectFieldDecl*>();
}
/// isInClassMemberInitializer - Returns true when this initializer is an
/// implicit ctor initializer generated for a field with an initializer
/// defined on the member declaration.
bool isInClassMemberInitializer() const {
return !Init;
}
/// isDelegatingInitializer - Returns true when this initializer is creating
/// a delegating constructor.
bool isDelegatingInitializer() const {
return Initializee.is<TypeSourceInfo*>() && IsDelegating;
}
/// \brief Determine whether this initializer is a pack expansion.
bool isPackExpansion() const {
return isBaseInitializer() && MemberOrEllipsisLocation.isValid();
}
// \brief For a pack expansion, returns the location of the ellipsis.
SourceLocation getEllipsisLoc() const {
assert(isPackExpansion() && "Initializer is not a pack expansion");
return MemberOrEllipsisLocation;
}
/// If this is a base class initializer, returns the type of the
/// base class with location information. Otherwise, returns an NULL
/// type location.
TypeLoc getBaseClassLoc() const;
/// If this is a base class initializer, returns the type of the base class.
/// Otherwise, returns NULL.
const Type *getBaseClass() const;
/// Returns whether the base is virtual or not.
bool isBaseVirtual() const {
assert(isBaseInitializer() && "Must call this on base initializer!");
return IsVirtual;
}
/// \brief Returns the declarator information for a base class or delegating
/// initializer.
TypeSourceInfo *getTypeSourceInfo() const {
return Initializee.dyn_cast<TypeSourceInfo *>();
}
/// getMember - If this is a member initializer, returns the
/// declaration of the non-static data member being
/// initialized. Otherwise, returns NULL.
FieldDecl *getMember() const {
if (isMemberInitializer())
return Initializee.get<FieldDecl*>();
return 0;
}
FieldDecl *getAnyMember() const {
if (isMemberInitializer())
return Initializee.get<FieldDecl*>();
if (isIndirectMemberInitializer())
return Initializee.get<IndirectFieldDecl*>()->getAnonField();
return 0;
}
IndirectFieldDecl *getIndirectMember() const {
if (isIndirectMemberInitializer())
return Initializee.get<IndirectFieldDecl*>();
return 0;
}
SourceLocation getMemberLocation() const {
return MemberOrEllipsisLocation;
}
/// \brief Determine the source location of the initializer.
SourceLocation getSourceLocation() const;
/// \brief Determine the source range covering the entire initializer.
SourceRange getSourceRange() const LLVM_READONLY;
/// isWritten - Returns true if this initializer is explicitly written
/// in the source code.
bool isWritten() const { return IsWritten; }
/// \brief Return the source position of the initializer, counting from 0.
/// If the initializer was implicit, -1 is returned.
int getSourceOrder() const {
return IsWritten ? static_cast<int>(SourceOrderOrNumArrayIndices) : -1;
}
/// \brief Set the source order of this initializer. This method can only
/// be called once for each initializer; it cannot be called on an
/// initializer having a positive number of (implicit) array indices.
void setSourceOrder(int pos) {
assert(!IsWritten &&
"calling twice setSourceOrder() on the same initializer");
assert(SourceOrderOrNumArrayIndices == 0 &&
"setSourceOrder() used when there are implicit array indices");
assert(pos >= 0 &&
"setSourceOrder() used to make an initializer implicit");
IsWritten = true;
SourceOrderOrNumArrayIndices = static_cast<unsigned>(pos);
}
SourceLocation getLParenLoc() const { return LParenLoc; }
SourceLocation getRParenLoc() const { return RParenLoc; }
/// \brief Determine the number of implicit array indices used while
/// described an array member initialization.
unsigned getNumArrayIndices() const {
return IsWritten ? 0 : SourceOrderOrNumArrayIndices;
}
/// \brief Retrieve a particular array index variable used to
/// describe an array member initialization.
VarDecl *getArrayIndex(unsigned I) {
assert(I < getNumArrayIndices() && "Out of bounds member array index");
return reinterpret_cast<VarDecl **>(this + 1)[I];
}
const VarDecl *getArrayIndex(unsigned I) const {
assert(I < getNumArrayIndices() && "Out of bounds member array index");
return reinterpret_cast<const VarDecl * const *>(this + 1)[I];
}
void setArrayIndex(unsigned I, VarDecl *Index) {
assert(I < getNumArrayIndices() && "Out of bounds member array index");
reinterpret_cast<VarDecl **>(this + 1)[I] = Index;
}
ArrayRef<VarDecl *> getArrayIndexes() {
assert(getNumArrayIndices() != 0 && "Getting indexes for non-array init");
return ArrayRef<VarDecl *>(reinterpret_cast<VarDecl **>(this + 1),
getNumArrayIndices());
}
/// \brief Get the initializer. This is 0 if this is an in-class initializer
/// for a non-static data member which has not yet been parsed.
Expr *getInit() const {
if (!Init)
return getAnyMember()->getInClassInitializer();
return static_cast<Expr*>(Init);
}
};
/// CXXConstructorDecl - Represents a C++ constructor within a
/// class. For example:
///
/// @code
/// class X {
/// public:
/// explicit X(int); // represented by a CXXConstructorDecl.
/// };
/// @endcode
class CXXConstructorDecl : public CXXMethodDecl {
virtual void anchor();
/// IsExplicitSpecified - Whether this constructor declaration has the
/// 'explicit' keyword specified.
bool IsExplicitSpecified : 1;
/// ImplicitlyDefined - Whether this constructor was implicitly
/// defined by the compiler. When false, the constructor was defined
/// by the user. In C++03, this flag will have the same value as
/// Implicit. In C++0x, however, a constructor that is
/// explicitly defaulted (i.e., defined with " = default") will have
/// @c !Implicit && ImplicitlyDefined.
bool ImplicitlyDefined : 1;
/// Support for base and member initializers.
/// CtorInitializers - The arguments used to initialize the base
/// or member.
CXXCtorInitializer **CtorInitializers;
unsigned NumCtorInitializers;
CXXConstructorDecl(CXXRecordDecl *RD, SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo,
QualType T, TypeSourceInfo *TInfo,
bool isExplicitSpecified, bool isInline,
bool isImplicitlyDeclared, bool isConstexpr)
: CXXMethodDecl(CXXConstructor, RD, StartLoc, NameInfo, T, TInfo,
SC_None, isInline, isConstexpr, SourceLocation()),
IsExplicitSpecified(isExplicitSpecified), ImplicitlyDefined(false),
CtorInitializers(0), NumCtorInitializers(0) {
setImplicit(isImplicitlyDeclared);
}
public:
static CXXConstructorDecl *CreateDeserialized(ASTContext &C, unsigned ID);
static CXXConstructorDecl *Create(ASTContext &C, CXXRecordDecl *RD,
SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo,
QualType T, TypeSourceInfo *TInfo,
bool isExplicit,
bool isInline, bool isImplicitlyDeclared,
bool isConstexpr);
/// isExplicitSpecified - Whether this constructor declaration has the
/// 'explicit' keyword specified.
bool isExplicitSpecified() const { return IsExplicitSpecified; }
/// isExplicit - Whether this constructor was marked "explicit" or not.
bool isExplicit() const {
return cast<CXXConstructorDecl>(getFirstDeclaration())
->isExplicitSpecified();
}
/// isImplicitlyDefined - Whether this constructor was implicitly
/// defined. If false, then this constructor was defined by the
/// user. This operation can only be invoked if the constructor has
/// already been defined.
bool isImplicitlyDefined() const {
assert(isThisDeclarationADefinition() &&
"Can only get the implicit-definition flag once the "
"constructor has been defined");
return ImplicitlyDefined;
}
/// setImplicitlyDefined - Set whether this constructor was
/// implicitly defined or not.
void setImplicitlyDefined(bool ID) {
assert(isThisDeclarationADefinition() &&
"Can only set the implicit-definition flag once the constructor "
"has been defined");
ImplicitlyDefined = ID;
}
/// init_iterator - Iterates through the member/base initializer list.
typedef CXXCtorInitializer **init_iterator;
/// init_const_iterator - Iterates through the memberbase initializer list.
typedef CXXCtorInitializer * const * init_const_iterator;
/// init_begin() - Retrieve an iterator to the first initializer.
init_iterator init_begin() { return CtorInitializers; }
/// begin() - Retrieve an iterator to the first initializer.
init_const_iterator init_begin() const { return CtorInitializers; }
/// init_end() - Retrieve an iterator past the last initializer.
init_iterator init_end() {
return CtorInitializers + NumCtorInitializers;
}
/// end() - Retrieve an iterator past the last initializer.
init_const_iterator init_end() const {
return CtorInitializers + NumCtorInitializers;
}
typedef std::reverse_iterator<init_iterator> init_reverse_iterator;
typedef std::reverse_iterator<init_const_iterator>
init_const_reverse_iterator;
init_reverse_iterator init_rbegin() {
return init_reverse_iterator(init_end());
}
init_const_reverse_iterator init_rbegin() const {
return init_const_reverse_iterator(init_end());
}
init_reverse_iterator init_rend() {
return init_reverse_iterator(init_begin());
}
init_const_reverse_iterator init_rend() const {
return init_const_reverse_iterator(init_begin());
}
/// getNumArgs - Determine the number of arguments used to
/// initialize the member or base.
unsigned getNumCtorInitializers() const {
return NumCtorInitializers;
}
void setNumCtorInitializers(unsigned numCtorInitializers) {
NumCtorInitializers = numCtorInitializers;
}
void setCtorInitializers(CXXCtorInitializer ** initializers) {
CtorInitializers = initializers;
}
/// isDelegatingConstructor - Whether this constructor is a
/// delegating constructor
bool isDelegatingConstructor() const {
return (getNumCtorInitializers() == 1) &&
CtorInitializers[0]->isDelegatingInitializer();
}
/// getTargetConstructor - When this constructor delegates to
/// another, retrieve the target
CXXConstructorDecl *getTargetConstructor() const;
/// isDefaultConstructor - Whether this constructor is a default
/// constructor (C++ [class.ctor]p5), which can be used to
/// default-initialize a class of this type.
bool isDefaultConstructor() const;
/// isCopyConstructor - Whether this constructor is a copy
/// constructor (C++ [class.copy]p2, which can be used to copy the
/// class. @p TypeQuals will be set to the qualifiers on the
/// argument type. For example, @p TypeQuals would be set to @c
/// Qualifiers::Const for the following copy constructor:
///
/// @code
/// class X {
/// public:
/// X(const X&);
/// };
/// @endcode
bool isCopyConstructor(unsigned &TypeQuals) const;
/// isCopyConstructor - Whether this constructor is a copy
/// constructor (C++ [class.copy]p2, which can be used to copy the
/// class.
bool isCopyConstructor() const {
unsigned TypeQuals = 0;
return isCopyConstructor(TypeQuals);
}
/// \brief Determine whether this constructor is a move constructor
/// (C++0x [class.copy]p3), which can be used to move values of the class.
///
/// \param TypeQuals If this constructor is a move constructor, will be set
/// to the type qualifiers on the referent of the first parameter's type.
bool isMoveConstructor(unsigned &TypeQuals) const;
/// \brief Determine whether this constructor is a move constructor
/// (C++0x [class.copy]p3), which can be used to move values of the class.
bool isMoveConstructor() const {
unsigned TypeQuals = 0;
return isMoveConstructor(TypeQuals);
}
/// \brief Determine whether this is a copy or move constructor.
///
/// \param TypeQuals Will be set to the type qualifiers on the reference
/// parameter, if in fact this is a copy or move constructor.
bool isCopyOrMoveConstructor(unsigned &TypeQuals) const;
/// \brief Determine whether this a copy or move constructor.
bool isCopyOrMoveConstructor() const {
unsigned Quals;
return isCopyOrMoveConstructor(Quals);
}
/// isConvertingConstructor - Whether this constructor is a
/// converting constructor (C++ [class.conv.ctor]), which can be
/// used for user-defined conversions.
bool isConvertingConstructor(bool AllowExplicit) const;
/// \brief Determine whether this is a member template specialization that
/// would copy the object to itself. Such constructors are never used to copy
/// an object.
bool isSpecializationCopyingObject() const;
/// \brief Get the constructor that this inheriting constructor is based on.
const CXXConstructorDecl *getInheritedConstructor() const;
/// \brief Set the constructor that this inheriting constructor is based on.
void setInheritedConstructor(const CXXConstructorDecl *BaseCtor);
const CXXConstructorDecl *getCanonicalDecl() const {
return cast<CXXConstructorDecl>(FunctionDecl::getCanonicalDecl());
}
CXXConstructorDecl *getCanonicalDecl() {
return cast<CXXConstructorDecl>(FunctionDecl::getCanonicalDecl());
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == CXXConstructor; }
friend class ASTDeclReader;
friend class ASTDeclWriter;
};
/// CXXDestructorDecl - Represents a C++ destructor within a
/// class. For example:
///
/// @code
/// class X {
/// public:
/// ~X(); // represented by a CXXDestructorDecl.
/// };
/// @endcode
class CXXDestructorDecl : public CXXMethodDecl {
virtual void anchor();
/// ImplicitlyDefined - Whether this destructor was implicitly
/// defined by the compiler. When false, the destructor was defined
/// by the user. In C++03, this flag will have the same value as
/// Implicit. In C++0x, however, a destructor that is
/// explicitly defaulted (i.e., defined with " = default") will have
/// @c !Implicit && ImplicitlyDefined.
bool ImplicitlyDefined : 1;
FunctionDecl *OperatorDelete;
CXXDestructorDecl(CXXRecordDecl *RD, SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo,
QualType T, TypeSourceInfo *TInfo,
bool isInline, bool isImplicitlyDeclared)
: CXXMethodDecl(CXXDestructor, RD, StartLoc, NameInfo, T, TInfo,
SC_None, isInline, /*isConstexpr=*/false, SourceLocation()),
ImplicitlyDefined(false), OperatorDelete(0) {
setImplicit(isImplicitlyDeclared);
}
public:
static CXXDestructorDecl *Create(ASTContext &C, CXXRecordDecl *RD,
SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo,
QualType T, TypeSourceInfo* TInfo,
bool isInline,
bool isImplicitlyDeclared);
static CXXDestructorDecl *CreateDeserialized(ASTContext & C, unsigned ID);
/// isImplicitlyDefined - Whether this destructor was implicitly
/// defined. If false, then this destructor was defined by the
/// user. This operation can only be invoked if the destructor has
/// already been defined.
bool isImplicitlyDefined() const {
assert(isThisDeclarationADefinition() &&
"Can only get the implicit-definition flag once the destructor has "
"been defined");
return ImplicitlyDefined;
}
/// setImplicitlyDefined - Set whether this destructor was
/// implicitly defined or not.
void setImplicitlyDefined(bool ID) {
assert(isThisDeclarationADefinition() &&
"Can only set the implicit-definition flag once the destructor has "
"been defined");
ImplicitlyDefined = ID;
}
void setOperatorDelete(FunctionDecl *OD) { OperatorDelete = OD; }
const FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == CXXDestructor; }
friend class ASTDeclReader;
friend class ASTDeclWriter;
};
/// CXXConversionDecl - Represents a C++ conversion function within a
/// class. For example:
///
/// @code
/// class X {
/// public:
/// operator bool();
/// };
/// @endcode
class CXXConversionDecl : public CXXMethodDecl {
virtual void anchor();
/// IsExplicitSpecified - Whether this conversion function declaration is
/// marked "explicit", meaning that it can only be applied when the user
/// explicitly wrote a cast. This is a C++0x feature.
bool IsExplicitSpecified : 1;
CXXConversionDecl(CXXRecordDecl *RD, SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo,
QualType T, TypeSourceInfo *TInfo,
bool isInline, bool isExplicitSpecified,
bool isConstexpr, SourceLocation EndLocation)
: CXXMethodDecl(CXXConversion, RD, StartLoc, NameInfo, T, TInfo,
SC_None, isInline, isConstexpr, EndLocation),
IsExplicitSpecified(isExplicitSpecified) { }
public:
static CXXConversionDecl *Create(ASTContext &C, CXXRecordDecl *RD,
SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo,
QualType T, TypeSourceInfo *TInfo,
bool isInline, bool isExplicit,
bool isConstexpr,
SourceLocation EndLocation);
static CXXConversionDecl *CreateDeserialized(ASTContext &C, unsigned ID);
/// IsExplicitSpecified - Whether this conversion function declaration is
/// marked "explicit", meaning that it can only be applied when the user
/// explicitly wrote a cast. This is a C++0x feature.
bool isExplicitSpecified() const { return IsExplicitSpecified; }
/// isExplicit - Whether this is an explicit conversion operator
/// (C++0x only). Explicit conversion operators are only considered
/// when the user has explicitly written a cast.
bool isExplicit() const {
return cast<CXXConversionDecl>(getFirstDeclaration())
->isExplicitSpecified();
}
/// getConversionType - Returns the type that this conversion
/// function is converting to.
QualType getConversionType() const {
return getType()->getAs<FunctionType>()->getResultType();
}
/// \brief Determine whether this conversion function is a conversion from
/// a lambda closure type to a block pointer.
bool isLambdaToBlockPointerConversion() const;
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == CXXConversion; }
friend class ASTDeclReader;
friend class ASTDeclWriter;
};
/// LinkageSpecDecl - This represents a linkage specification. For example:
/// extern "C" void foo();
///
class LinkageSpecDecl : public Decl, public DeclContext {
virtual void anchor();
public:
/// LanguageIDs - Used to represent the language in a linkage
/// specification. The values are part of the serialization abi for
/// ASTs and cannot be changed without altering that abi. To help
/// ensure a stable abi for this, we choose the DW_LANG_ encodings
/// from the dwarf standard.
enum LanguageIDs {
lang_c = /* DW_LANG_C */ 0x0002,
lang_cxx = /* DW_LANG_C_plus_plus */ 0x0004
};
private:
/// Language - The language for this linkage specification.
LanguageIDs Language;
/// ExternLoc - The source location for the extern keyword.
SourceLocation ExternLoc;
/// RBraceLoc - The source location for the right brace (if valid).
SourceLocation RBraceLoc;
LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc,
SourceLocation LangLoc, LanguageIDs lang,
SourceLocation RBLoc)
: Decl(LinkageSpec, DC, LangLoc), DeclContext(LinkageSpec),
Language(lang), ExternLoc(ExternLoc), RBraceLoc(RBLoc) { }
public:
static LinkageSpecDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation ExternLoc,
SourceLocation LangLoc, LanguageIDs Lang,
SourceLocation RBraceLoc = SourceLocation());
static LinkageSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID);
/// \brief Return the language specified by this linkage specification.
LanguageIDs getLanguage() const { return Language; }
/// \brief Set the language specified by this linkage specification.
void setLanguage(LanguageIDs L) { Language = L; }
/// \brief Determines whether this linkage specification had braces in
/// its syntactic form.
bool hasBraces() const { return RBraceLoc.isValid(); }
SourceLocation getExternLoc() const { return ExternLoc; }
SourceLocation getRBraceLoc() const { return RBraceLoc; }
void setExternLoc(SourceLocation L) { ExternLoc = L; }
void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
SourceLocation getLocEnd() const LLVM_READONLY {
if (hasBraces())
return getRBraceLoc();
// No braces: get the end location of the (only) declaration in context
// (if present).
return decls_empty() ? getLocation() : decls_begin()->getLocEnd();
}
SourceRange getSourceRange() const LLVM_READONLY {
return SourceRange(ExternLoc, getLocEnd());
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == LinkageSpec; }
static DeclContext *castToDeclContext(const LinkageSpecDecl *D) {
return static_cast<DeclContext *>(const_cast<LinkageSpecDecl*>(D));
}
static LinkageSpecDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<LinkageSpecDecl *>(const_cast<DeclContext*>(DC));
}
};
/// UsingDirectiveDecl - Represents C++ using-directive. For example:
///
/// using namespace std;
///
// NB: UsingDirectiveDecl should be Decl not NamedDecl, but we provide
// artificial names for all using-directives in order to store
// them in DeclContext effectively.
class UsingDirectiveDecl : public NamedDecl {
virtual void anchor();
/// \brief The location of the "using" keyword.
SourceLocation UsingLoc;
/// SourceLocation - Location of 'namespace' token.
SourceLocation NamespaceLoc;
/// \brief The nested-name-specifier that precedes the namespace.
NestedNameSpecifierLoc QualifierLoc;
/// NominatedNamespace - Namespace nominated by using-directive.
NamedDecl *NominatedNamespace;
/// Enclosing context containing both using-directive and nominated
/// namespace.
DeclContext *CommonAncestor;
/// getUsingDirectiveName - Returns special DeclarationName used by
/// using-directives. This is only used by DeclContext for storing
/// UsingDirectiveDecls in its lookup structure.
static DeclarationName getName() {
return DeclarationName::getUsingDirectiveName();
}
UsingDirectiveDecl(DeclContext *DC, SourceLocation UsingLoc,
SourceLocation NamespcLoc,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation IdentLoc,
NamedDecl *Nominated,
DeclContext *CommonAncestor)
: NamedDecl(UsingDirective, DC, IdentLoc, getName()), UsingLoc(UsingLoc),
NamespaceLoc(NamespcLoc), QualifierLoc(QualifierLoc),
NominatedNamespace(Nominated), CommonAncestor(CommonAncestor) { }
public:
/// \brief Retrieve the nested-name-specifier that qualifies the
/// name of the namespace, with source-location information.
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
/// \brief Retrieve the nested-name-specifier that qualifies the
/// name of the namespace.
NestedNameSpecifier *getQualifier() const {
return QualifierLoc.getNestedNameSpecifier();
}
NamedDecl *getNominatedNamespaceAsWritten() { return NominatedNamespace; }
const NamedDecl *getNominatedNamespaceAsWritten() const {
return NominatedNamespace;
}
/// getNominatedNamespace - Returns namespace nominated by using-directive.
NamespaceDecl *getNominatedNamespace();
const NamespaceDecl *getNominatedNamespace() const {
return const_cast<UsingDirectiveDecl*>(this)->getNominatedNamespace();
}
/// \brief Returns the common ancestor context of this using-directive and
/// its nominated namespace.
DeclContext *getCommonAncestor() { return CommonAncestor; }
const DeclContext *getCommonAncestor() const { return CommonAncestor; }
/// \brief Return the location of the "using" keyword.
SourceLocation getUsingLoc() const { return UsingLoc; }
// FIXME: Could omit 'Key' in name.
/// getNamespaceKeyLocation - Returns location of namespace keyword.
SourceLocation getNamespaceKeyLocation() const { return NamespaceLoc; }
/// getIdentLocation - Returns location of identifier.
SourceLocation getIdentLocation() const { return getLocation(); }
static UsingDirectiveDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation UsingLoc,
SourceLocation NamespaceLoc,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation IdentLoc,
NamedDecl *Nominated,
DeclContext *CommonAncestor);
static UsingDirectiveDecl *CreateDeserialized(ASTContext &C, unsigned ID);
SourceRange getSourceRange() const LLVM_READONLY {
return SourceRange(UsingLoc, getLocation());
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == UsingDirective; }
// Friend for getUsingDirectiveName.
friend class DeclContext;
friend class ASTDeclReader;
};
/// \brief Represents a C++ namespace alias.
///
/// For example:
///
/// @code
/// namespace Foo = Bar;
/// @endcode
class NamespaceAliasDecl : public NamedDecl {
virtual void anchor();
/// \brief The location of the "namespace" keyword.
SourceLocation NamespaceLoc;
/// IdentLoc - Location of namespace identifier. Accessed by TargetNameLoc.
SourceLocation IdentLoc;
/// \brief The nested-name-specifier that precedes the namespace.
NestedNameSpecifierLoc QualifierLoc;
/// Namespace - The Decl that this alias points to. Can either be a
/// NamespaceDecl or a NamespaceAliasDecl.
NamedDecl *Namespace;
NamespaceAliasDecl(DeclContext *DC, SourceLocation NamespaceLoc,
SourceLocation AliasLoc, IdentifierInfo *Alias,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation IdentLoc, NamedDecl *Namespace)
: NamedDecl(NamespaceAlias, DC, AliasLoc, Alias),
NamespaceLoc(NamespaceLoc), IdentLoc(IdentLoc),
QualifierLoc(QualifierLoc), Namespace(Namespace) { }
friend class ASTDeclReader;
public:
/// \brief Retrieve the nested-name-specifier that qualifies the
/// name of the namespace, with source-location information.
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
/// \brief Retrieve the nested-name-specifier that qualifies the
/// name of the namespace.
NestedNameSpecifier *getQualifier() const {
return QualifierLoc.getNestedNameSpecifier();
}
/// \brief Retrieve the namespace declaration aliased by this directive.
NamespaceDecl *getNamespace() {
if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(Namespace))
return AD->getNamespace();
return cast<NamespaceDecl>(Namespace);
}
const NamespaceDecl *getNamespace() const {
return const_cast<NamespaceAliasDecl*>(this)->getNamespace();
}
/// Returns the location of the alias name, i.e. 'foo' in
/// "namespace foo = ns::bar;".
SourceLocation getAliasLoc() const { return getLocation(); }
/// Returns the location of the 'namespace' keyword.
SourceLocation getNamespaceLoc() const { return NamespaceLoc; }
/// Returns the location of the identifier in the named namespace.
SourceLocation getTargetNameLoc() const { return IdentLoc; }
/// \brief Retrieve the namespace that this alias refers to, which
/// may either be a NamespaceDecl or a NamespaceAliasDecl.
NamedDecl *getAliasedNamespace() const { return Namespace; }
static NamespaceAliasDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation NamespaceLoc,
SourceLocation AliasLoc,
IdentifierInfo *Alias,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation IdentLoc,
NamedDecl *Namespace);
static NamespaceAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID);
virtual SourceRange getSourceRange() const LLVM_READONLY {
return SourceRange(NamespaceLoc, IdentLoc);
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == NamespaceAlias; }
};
/// \brief Represents a shadow declaration introduced into a scope by a
/// (resolved) using declaration.
///
/// For example,
/// @code
/// namespace A {
/// void foo();
/// }
/// namespace B {
/// using A::foo; // <- a UsingDecl
/// // Also creates a UsingShadowDecl for A::foo() in B
/// }
/// @endcode
class UsingShadowDecl : public NamedDecl {
virtual void anchor();
/// The referenced declaration.
NamedDecl *Underlying;
/// \brief The using declaration which introduced this decl or the next using
/// shadow declaration contained in the aforementioned using declaration.
NamedDecl *UsingOrNextShadow;
friend class UsingDecl;
UsingShadowDecl(DeclContext *DC, SourceLocation Loc, UsingDecl *Using,
NamedDecl *Target)
: NamedDecl(UsingShadow, DC, Loc, DeclarationName()),
Underlying(Target),
UsingOrNextShadow(reinterpret_cast<NamedDecl *>(Using)) {
if (Target) {
setDeclName(Target->getDeclName());
IdentifierNamespace = Target->getIdentifierNamespace();
}
setImplicit();
}
public:
static UsingShadowDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation Loc, UsingDecl *Using,
NamedDecl *Target) {
return new (C) UsingShadowDecl(DC, Loc, Using, Target);
}
static UsingShadowDecl *CreateDeserialized(ASTContext &C, unsigned ID);
/// \brief Gets the underlying declaration which has been brought into the
/// local scope.
NamedDecl *getTargetDecl() const { return Underlying; }
/// \brief Sets the underlying declaration which has been brought into the
/// local scope.
void setTargetDecl(NamedDecl* ND) {
assert(ND && "Target decl is null!");
Underlying = ND;
IdentifierNamespace = ND->getIdentifierNamespace();
}
/// \brief Gets the using declaration to which this declaration is tied.
UsingDecl *getUsingDecl() const;
/// \brief The next using shadow declaration contained in the shadow decl
/// chain of the using declaration which introduced this decl.
UsingShadowDecl *getNextUsingShadowDecl() const {
return dyn_cast_or_null<UsingShadowDecl>(UsingOrNextShadow);
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Decl::UsingShadow; }
friend class ASTDeclReader;
friend class ASTDeclWriter;
};
/// \brief Represents a C++ using-declaration.
///
/// For example:
/// @code
/// using someNameSpace::someIdentifier;
/// @endcode
class UsingDecl : public NamedDecl {
virtual void anchor();
/// \brief The source location of the "using" location itself.
SourceLocation UsingLocation;
/// \brief The nested-name-specifier that precedes the name.
NestedNameSpecifierLoc QualifierLoc;
/// DNLoc - Provides source/type location info for the
/// declaration name embedded in the ValueDecl base class.
DeclarationNameLoc DNLoc;
/// \brief The first shadow declaration of the shadow decl chain associated
/// with this using declaration.
///
/// The bool member of the pair store whether this decl has the \c typename
/// keyword.
llvm::PointerIntPair<UsingShadowDecl *, 1, bool> FirstUsingShadow;
UsingDecl(DeclContext *DC, SourceLocation UL,
NestedNameSpecifierLoc QualifierLoc,
const DeclarationNameInfo &NameInfo, bool IsTypeNameArg)
: NamedDecl(Using, DC, NameInfo.getLoc(), NameInfo.getName()),
UsingLocation(UL), QualifierLoc(QualifierLoc),
DNLoc(NameInfo.getInfo()), FirstUsingShadow(0, IsTypeNameArg) {
}
public:
/// \brief Returns the source location of the "using" keyword.
SourceLocation getUsingLocation() const { return UsingLocation; }
/// \brief Set the source location of the 'using' keyword.
void setUsingLocation(SourceLocation L) { UsingLocation = L; }
/// \brief Retrieve the nested-name-specifier that qualifies the name,
/// with source-location information.
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
/// \brief Retrieve the nested-name-specifier that qualifies the name.
NestedNameSpecifier *getQualifier() const {
return QualifierLoc.getNestedNameSpecifier();
}
DeclarationNameInfo getNameInfo() const {
return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
}
/// \brief Return true if the using declaration has 'typename'.
bool isTypeName() const { return FirstUsingShadow.getInt(); }
/// \brief Sets whether the using declaration has 'typename'.
void setTypeName(bool TN) { FirstUsingShadow.setInt(TN); }
/// \brief Iterates through the using shadow declarations assosiated with
/// this using declaration.
class shadow_iterator {
/// \brief The current using shadow declaration.
UsingShadowDecl *Current;
public:
typedef UsingShadowDecl* value_type;
typedef UsingShadowDecl* reference;
typedef UsingShadowDecl* pointer;
typedef std::forward_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
shadow_iterator() : Current(0) { }
explicit shadow_iterator(UsingShadowDecl *C) : Current(C) { }
reference operator*() const { return Current; }
pointer operator->() const { return Current; }
shadow_iterator& operator++() {
Current = Current->getNextUsingShadowDecl();
return *this;
}
shadow_iterator operator++(int) {
shadow_iterator tmp(*this);
++(*this);
return tmp;
}
friend bool operator==(shadow_iterator x, shadow_iterator y) {
return x.Current == y.Current;
}
friend bool operator!=(shadow_iterator x, shadow_iterator y) {
return x.Current != y.Current;
}
};
shadow_iterator shadow_begin() const {
return shadow_iterator(FirstUsingShadow.getPointer());
}
shadow_iterator shadow_end() const { return shadow_iterator(); }
/// \brief Return the number of shadowed declarations associated with this
/// using declaration.
unsigned shadow_size() const {
return std::distance(shadow_begin(), shadow_end());
}
void addShadowDecl(UsingShadowDecl *S);
void removeShadowDecl(UsingShadowDecl *S);
static UsingDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation UsingL,
NestedNameSpecifierLoc QualifierLoc,
const DeclarationNameInfo &NameInfo,
bool IsTypeNameArg);
static UsingDecl *CreateDeserialized(ASTContext &C, unsigned ID);
SourceRange getSourceRange() const LLVM_READONLY {
return SourceRange(UsingLocation, getNameInfo().getEndLoc());
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Using; }
friend class ASTDeclReader;
friend class ASTDeclWriter;
};
/// \brief Represents a dependent using declaration which was not marked with
/// \c typename.
///
/// Unlike non-dependent using declarations, these *only* bring through
/// non-types; otherwise they would break two-phase lookup.
///
/// @code
/// template \<class T> class A : public Base<T> {
/// using Base<T>::foo;
/// };
/// @endcode
class UnresolvedUsingValueDecl : public ValueDecl {
virtual void anchor();
/// \brief The source location of the 'using' keyword
SourceLocation UsingLocation;
/// \brief The nested-name-specifier that precedes the name.
NestedNameSpecifierLoc QualifierLoc;
/// DNLoc - Provides source/type location info for the
/// declaration name embedded in the ValueDecl base class.
DeclarationNameLoc DNLoc;
UnresolvedUsingValueDecl(DeclContext *DC, QualType Ty,
SourceLocation UsingLoc,
NestedNameSpecifierLoc QualifierLoc,
const DeclarationNameInfo &NameInfo)
: ValueDecl(UnresolvedUsingValue, DC,
NameInfo.getLoc(), NameInfo.getName(), Ty),
UsingLocation(UsingLoc), QualifierLoc(QualifierLoc),
DNLoc(NameInfo.getInfo())
{ }
public:
/// \brief Returns the source location of the 'using' keyword.
SourceLocation getUsingLoc() const { return UsingLocation; }
/// \brief Set the source location of the 'using' keyword.
void setUsingLoc(SourceLocation L) { UsingLocation = L; }
/// \brief Retrieve the nested-name-specifier that qualifies the name,
/// with source-location information.
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
/// \brief Retrieve the nested-name-specifier that qualifies the name.
NestedNameSpecifier *getQualifier() const {
return QualifierLoc.getNestedNameSpecifier();
}
DeclarationNameInfo getNameInfo() const {
return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
}
static UnresolvedUsingValueDecl *
Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
NestedNameSpecifierLoc QualifierLoc,
const DeclarationNameInfo &NameInfo);
static UnresolvedUsingValueDecl *
CreateDeserialized(ASTContext &C, unsigned ID);
SourceRange getSourceRange() const LLVM_READONLY {
return SourceRange(UsingLocation, getNameInfo().getEndLoc());
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == UnresolvedUsingValue; }
friend class ASTDeclReader;
friend class ASTDeclWriter;
};
/// @brief Represents a dependent using declaration which was marked with
/// \c typename.
///
/// @code
/// template \<class T> class A : public Base<T> {
/// using typename Base<T>::foo;
/// };
/// @endcode
///
/// The type associated with an unresolved using typename decl is
/// currently always a typename type.
class UnresolvedUsingTypenameDecl : public TypeDecl {
virtual void anchor();
/// \brief The source location of the 'using' keyword
SourceLocation UsingLocation;
/// \brief The source location of the 'typename' keyword
SourceLocation TypenameLocation;
/// \brief The nested-name-specifier that precedes the name.
NestedNameSpecifierLoc QualifierLoc;
UnresolvedUsingTypenameDecl(DeclContext *DC, SourceLocation UsingLoc,
SourceLocation TypenameLoc,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TargetNameLoc,
IdentifierInfo *TargetName)
: TypeDecl(UnresolvedUsingTypename, DC, TargetNameLoc, TargetName,
UsingLoc),
TypenameLocation(TypenameLoc), QualifierLoc(QualifierLoc) { }
friend class ASTDeclReader;
public:
/// \brief Returns the source location of the 'using' keyword.
SourceLocation getUsingLoc() const { return getLocStart(); }
/// \brief Returns the source location of the 'typename' keyword.
SourceLocation getTypenameLoc() const { return TypenameLocation; }
/// \brief Retrieve the nested-name-specifier that qualifies the name,
/// with source-location information.
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
/// \brief Retrieve the nested-name-specifier that qualifies the name.
NestedNameSpecifier *getQualifier() const {
return QualifierLoc.getNestedNameSpecifier();
}
static UnresolvedUsingTypenameDecl *
Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
SourceLocation TypenameLoc, NestedNameSpecifierLoc QualifierLoc,
SourceLocation TargetNameLoc, DeclarationName TargetName);
static UnresolvedUsingTypenameDecl *
CreateDeserialized(ASTContext &C, unsigned ID);
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == UnresolvedUsingTypename; }
};
/// \brief Represents a C++11 static_assert declaration.
class StaticAssertDecl : public Decl {
virtual void anchor();
llvm::PointerIntPair<Expr *, 1, bool> AssertExprAndFailed;
StringLiteral *Message;
SourceLocation RParenLoc;
StaticAssertDecl(DeclContext *DC, SourceLocation StaticAssertLoc,
Expr *AssertExpr, StringLiteral *Message,
SourceLocation RParenLoc, bool Failed)
: Decl(StaticAssert, DC, StaticAssertLoc),
AssertExprAndFailed(AssertExpr, Failed), Message(Message),
RParenLoc(RParenLoc) { }
public:
static StaticAssertDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation StaticAssertLoc,
Expr *AssertExpr, StringLiteral *Message,
SourceLocation RParenLoc, bool Failed);
static StaticAssertDecl *CreateDeserialized(ASTContext &C, unsigned ID);
Expr *getAssertExpr() { return AssertExprAndFailed.getPointer(); }
const Expr *getAssertExpr() const { return AssertExprAndFailed.getPointer(); }
StringLiteral *getMessage() { return Message; }
const StringLiteral *getMessage() const { return Message; }
bool isFailed() const { return AssertExprAndFailed.getInt(); }
SourceLocation getRParenLoc() const { return RParenLoc; }
SourceRange getSourceRange() const LLVM_READONLY {
return SourceRange(getLocation(), getRParenLoc());
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == StaticAssert; }
friend class ASTDeclReader;
};
/// Insertion operator for diagnostics. This allows sending an AccessSpecifier
/// into a diagnostic with <<.
const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
AccessSpecifier AS);
const PartialDiagnostic &operator<<(const PartialDiagnostic &DB,
AccessSpecifier AS);
} // end namespace clang
#endif
|