diff options
Diffstat (limited to 'lib/Sema/SemaExpr.cpp')
-rw-r--r-- | lib/Sema/SemaExpr.cpp | 2286 |
1 files changed, 2286 insertions, 0 deletions
diff --git a/lib/Sema/SemaExpr.cpp b/lib/Sema/SemaExpr.cpp new file mode 100644 index 0000000000..d756345c1a --- /dev/null +++ b/lib/Sema/SemaExpr.cpp @@ -0,0 +1,2286 @@ +//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements semantic analysis for expressions. +// +//===----------------------------------------------------------------------===// + +#include "Sema.h" +#include "SemaUtil.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/Expr.h" +#include "clang/Parse/DeclSpec.h" +#include "clang/Lex/Preprocessor.h" +#include "clang/Lex/LiteralSupport.h" +#include "clang/Basic/SourceManager.h" +#include "clang/Basic/TargetInfo.h" +#include "llvm/ADT/OwningPtr.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/ADT/StringExtras.h" +using namespace clang; + +/// ActOnStringLiteral - The specified tokens were lexed as pasted string +/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string +/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from +/// multiple tokens. However, the common case is that StringToks points to one +/// string. +/// +Action::ExprResult +Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) { + assert(NumStringToks && "Must have at least one string!"); + + StringLiteralParser Literal(StringToks, NumStringToks, PP, Context.Target); + if (Literal.hadError) + return ExprResult(true); + + llvm::SmallVector<SourceLocation, 4> StringTokLocs; + for (unsigned i = 0; i != NumStringToks; ++i) + StringTokLocs.push_back(StringToks[i].getLocation()); + + // Verify that pascal strings aren't too large. + if (Literal.Pascal && Literal.GetStringLength() > 256) + return Diag(StringToks[0].getLocation(), diag::err_pascal_string_too_long, + SourceRange(StringToks[0].getLocation(), + StringToks[NumStringToks-1].getLocation())); + + QualType StrTy = Context.CharTy; + // FIXME: handle wchar_t + if (Literal.Pascal) StrTy = Context.UnsignedCharTy; + + // Get an array type for the string, according to C99 6.4.5. This includes + // the nul terminator character as well as the string length for pascal + // strings. + StrTy = Context.getConstantArrayType(StrTy, + llvm::APInt(32, Literal.GetStringLength()+1), + ArrayType::Normal, 0); + + // Pass &StringTokLocs[0], StringTokLocs.size() to factory! + return new StringLiteral(Literal.GetString(), Literal.GetStringLength(), + Literal.AnyWide, StrTy, + StringToks[0].getLocation(), + StringToks[NumStringToks-1].getLocation()); +} + + +/// ActOnIdentifierExpr - The parser read an identifier in expression context, +/// validate it per-C99 6.5.1. HasTrailingLParen indicates whether this +/// identifier is used in an function call context. +Sema::ExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc, + IdentifierInfo &II, + bool HasTrailingLParen) { + // Could be enum-constant or decl. + ScopedDecl *D = LookupScopedDecl(&II, Decl::IDNS_Ordinary, Loc, S); + if (D == 0) { + // Otherwise, this could be an implicitly declared function reference (legal + // in C90, extension in C99). + if (HasTrailingLParen && + // Not in C++. + !getLangOptions().CPlusPlus) + D = ImplicitlyDefineFunction(Loc, II, S); + else { + if (CurMethodDecl) { + ObjCInterfaceDecl *IFace = CurMethodDecl->getClassInterface(); + ObjCInterfaceDecl *clsDeclared; + if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(&II, clsDeclared)) { + IdentifierInfo &II = Context.Idents.get("self"); + ExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false); + return new ObjCIvarRefExpr(IV, IV->getType(), Loc, + static_cast<Expr*>(SelfExpr.Val), true, true); + } + } + // If this name wasn't predeclared and if this is not a function call, + // diagnose the problem. + return Diag(Loc, diag::err_undeclared_var_use, II.getName()); + } + } + if (ValueDecl *VD = dyn_cast<ValueDecl>(D)) { + // check if referencing an identifier with __attribute__((deprecated)). + if (VD->getAttr<DeprecatedAttr>()) + Diag(Loc, diag::warn_deprecated, VD->getName()); + + // Only create DeclRefExpr's for valid Decl's. + if (VD->isInvalidDecl()) + return true; + return new DeclRefExpr(VD, VD->getType(), Loc); + } + if (isa<TypedefDecl>(D)) + return Diag(Loc, diag::err_unexpected_typedef, II.getName()); + if (isa<ObjCInterfaceDecl>(D)) + return Diag(Loc, diag::err_unexpected_interface, II.getName()); + + assert(0 && "Invalid decl"); + abort(); +} + +Sema::ExprResult Sema::ActOnPreDefinedExpr(SourceLocation Loc, + tok::TokenKind Kind) { + PreDefinedExpr::IdentType IT; + + switch (Kind) { + default: assert(0 && "Unknown simple primary expr!"); + case tok::kw___func__: IT = PreDefinedExpr::Func; break; // [C99 6.4.2.2] + case tok::kw___FUNCTION__: IT = PreDefinedExpr::Function; break; + case tok::kw___PRETTY_FUNCTION__: IT = PreDefinedExpr::PrettyFunction; break; + } + + // Verify that this is in a function context. + if (CurFunctionDecl == 0 && CurMethodDecl == 0) + return Diag(Loc, diag::err_predef_outside_function); + + // Pre-defined identifiers are of type char[x], where x is the length of the + // string. + unsigned Length; + if (CurFunctionDecl) + Length = CurFunctionDecl->getIdentifier()->getLength(); + else + Length = CurMethodDecl->getSynthesizedMethodSize(); + + llvm::APInt LengthI(32, Length + 1); + QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const); + ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0); + return new PreDefinedExpr(Loc, ResTy, IT); +} + +Sema::ExprResult Sema::ActOnCharacterConstant(const Token &Tok) { + llvm::SmallString<16> CharBuffer; + CharBuffer.resize(Tok.getLength()); + const char *ThisTokBegin = &CharBuffer[0]; + unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin); + + CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength, + Tok.getLocation(), PP); + if (Literal.hadError()) + return ExprResult(true); + + QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy; + + return new CharacterLiteral(Literal.getValue(), type, Tok.getLocation()); +} + +Action::ExprResult Sema::ActOnNumericConstant(const Token &Tok) { + // fast path for a single digit (which is quite common). A single digit + // cannot have a trigraph, escaped newline, radix prefix, or type suffix. + if (Tok.getLength() == 1) { + const char *t = PP.getSourceManager().getCharacterData(Tok.getLocation()); + + unsigned IntSize =static_cast<unsigned>(Context.getTypeSize(Context.IntTy)); + return ExprResult(new IntegerLiteral(llvm::APInt(IntSize, *t-'0'), + Context.IntTy, + Tok.getLocation())); + } + llvm::SmallString<512> IntegerBuffer; + IntegerBuffer.resize(Tok.getLength()); + const char *ThisTokBegin = &IntegerBuffer[0]; + + // Get the spelling of the token, which eliminates trigraphs, etc. + unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin); + NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength, + Tok.getLocation(), PP); + if (Literal.hadError) + return ExprResult(true); + + Expr *Res; + + if (Literal.isFloatingLiteral()) { + QualType Ty; + const llvm::fltSemantics *Format; + + if (Literal.isFloat) { + Ty = Context.FloatTy; + Format = Context.Target.getFloatFormat(); + } else if (!Literal.isLong) { + Ty = Context.DoubleTy; + Format = Context.Target.getDoubleFormat(); + } else { + Ty = Context.LongDoubleTy; + Format = Context.Target.getLongDoubleFormat(); + } + + // isExact will be set by GetFloatValue(). + bool isExact = false; + + Res = new FloatingLiteral(Literal.GetFloatValue(*Format,&isExact), &isExact, + Ty, Tok.getLocation()); + + } else if (!Literal.isIntegerLiteral()) { + return ExprResult(true); + } else { + QualType t; + + // long long is a C99 feature. + if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x && + Literal.isLongLong) + Diag(Tok.getLocation(), diag::ext_longlong); + + // Get the value in the widest-possible width. + llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0); + + if (Literal.GetIntegerValue(ResultVal)) { + // If this value didn't fit into uintmax_t, warn and force to ull. + Diag(Tok.getLocation(), diag::warn_integer_too_large); + t = Context.UnsignedLongLongTy; + assert(Context.getTypeSize(t) == ResultVal.getBitWidth() && + "long long is not intmax_t?"); + } else { + // If this value fits into a ULL, try to figure out what else it fits into + // according to the rules of C99 6.4.4.1p5. + + // Octal, Hexadecimal, and integers with a U suffix are allowed to + // be an unsigned int. + bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10; + + // Check from smallest to largest, picking the smallest type we can. + if (!Literal.isLong && !Literal.isLongLong) { + // Are int/unsigned possibilities? + unsigned IntSize = + static_cast<unsigned>(Context.getTypeSize(Context.IntTy)); + // Does it fit in a unsigned int? + if (ResultVal.isIntN(IntSize)) { + // Does it fit in a signed int? + if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0) + t = Context.IntTy; + else if (AllowUnsigned) + t = Context.UnsignedIntTy; + } + + if (!t.isNull()) + ResultVal.trunc(IntSize); + } + + // Are long/unsigned long possibilities? + if (t.isNull() && !Literal.isLongLong) { + unsigned LongSize = + static_cast<unsigned>(Context.getTypeSize(Context.LongTy)); + + // Does it fit in a unsigned long? + if (ResultVal.isIntN(LongSize)) { + // Does it fit in a signed long? + if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0) + t = Context.LongTy; + else if (AllowUnsigned) + t = Context.UnsignedLongTy; + } + if (!t.isNull()) + ResultVal.trunc(LongSize); + } + + // Finally, check long long if needed. + if (t.isNull()) { + unsigned LongLongSize = + static_cast<unsigned>(Context.getTypeSize(Context.LongLongTy)); + + // Does it fit in a unsigned long long? + if (ResultVal.isIntN(LongLongSize)) { + // Does it fit in a signed long long? + if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0) + t = Context.LongLongTy; + else if (AllowUnsigned) + t = Context.UnsignedLongLongTy; + } + } + + // If we still couldn't decide a type, we probably have something that + // does not fit in a signed long long, but has no U suffix. + if (t.isNull()) { + Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed); + t = Context.UnsignedLongLongTy; + } + } + + Res = new IntegerLiteral(ResultVal, t, Tok.getLocation()); + } + + // If this is an imaginary literal, create the ImaginaryLiteral wrapper. + if (Literal.isImaginary) + Res = new ImaginaryLiteral(Res, Context.getComplexType(Res->getType())); + + return Res; +} + +Action::ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, + ExprTy *Val) { + Expr *e = (Expr *)Val; + assert((e != 0) && "ActOnParenExpr() missing expr"); + return new ParenExpr(L, R, e); +} + +/// The UsualUnaryConversions() function is *not* called by this routine. +/// See C99 6.3.2.1p[2-4] for more details. +QualType Sema::CheckSizeOfAlignOfOperand(QualType exprType, + SourceLocation OpLoc, bool isSizeof) { + // C99 6.5.3.4p1: + if (isa<FunctionType>(exprType) && isSizeof) + // alignof(function) is allowed. + Diag(OpLoc, diag::ext_sizeof_function_type); + else if (exprType->isVoidType()) + Diag(OpLoc, diag::ext_sizeof_void_type, isSizeof ? "sizeof" : "__alignof"); + else if (exprType->isIncompleteType()) { + Diag(OpLoc, isSizeof ? diag::err_sizeof_incomplete_type : + diag::err_alignof_incomplete_type, + exprType.getAsString()); + return QualType(); // error + } + // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t. + return Context.getSizeType(); +} + +Action::ExprResult Sema:: +ActOnSizeOfAlignOfTypeExpr(SourceLocation OpLoc, bool isSizeof, + SourceLocation LPLoc, TypeTy *Ty, + SourceLocation RPLoc) { + // If error parsing type, ignore. + if (Ty == 0) return true; + + // Verify that this is a valid expression. + QualType ArgTy = QualType::getFromOpaquePtr(Ty); + + QualType resultType = CheckSizeOfAlignOfOperand(ArgTy, OpLoc, isSizeof); + + if (resultType.isNull()) + return true; + return new SizeOfAlignOfTypeExpr(isSizeof, ArgTy, resultType, OpLoc, RPLoc); +} + +QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc) { + DefaultFunctionArrayConversion(V); + + // These operators return the element type of a complex type. + if (const ComplexType *CT = V->getType()->getAsComplexType()) + return CT->getElementType(); + + // Otherwise they pass through real integer and floating point types here. + if (V->getType()->isArithmeticType()) + return V->getType(); + + // Reject anything else. + Diag(Loc, diag::err_realimag_invalid_type, V->getType().getAsString()); + return QualType(); +} + + + +Action::ExprResult Sema::ActOnPostfixUnaryOp(SourceLocation OpLoc, + tok::TokenKind Kind, + ExprTy *Input) { + UnaryOperator::Opcode Opc; + switch (Kind) { + default: assert(0 && "Unknown unary op!"); + case tok::plusplus: Opc = UnaryOperator::PostInc; break; + case tok::minusminus: Opc = UnaryOperator::PostDec; break; + } + QualType result = CheckIncrementDecrementOperand((Expr *)Input, OpLoc); + if (result.isNull()) + return true; + return new UnaryOperator((Expr *)Input, Opc, result, OpLoc); +} + +Action::ExprResult Sema:: +ActOnArraySubscriptExpr(ExprTy *Base, SourceLocation LLoc, + ExprTy *Idx, SourceLocation RLoc) { + Expr *LHSExp = static_cast<Expr*>(Base), *RHSExp = static_cast<Expr*>(Idx); + + // Perform default conversions. + DefaultFunctionArrayConversion(LHSExp); + DefaultFunctionArrayConversion(RHSExp); + + QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType(); + + // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent + // to the expression *((e1)+(e2)). This means the array "Base" may actually be + // in the subscript position. As a result, we need to derive the array base + // and index from the expression types. + Expr *BaseExpr, *IndexExpr; + QualType ResultType; + if (const PointerType *PTy = LHSTy->getAsPointerType()) { + BaseExpr = LHSExp; + IndexExpr = RHSExp; + // FIXME: need to deal with const... + ResultType = PTy->getPointeeType(); + } else if (const PointerType *PTy = RHSTy->getAsPointerType()) { + // Handle the uncommon case of "123[Ptr]". + BaseExpr = RHSExp; + IndexExpr = LHSExp; + // FIXME: need to deal with const... + ResultType = PTy->getPointeeType(); + } else if (const VectorType *VTy = LHSTy->getAsVectorType()) { + BaseExpr = LHSExp; // vectors: V[123] + IndexExpr = RHSExp; + + // Component access limited to variables (reject vec4.rg[1]). + if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr)) + return Diag(LLoc, diag::err_ocuvector_component_access, + SourceRange(LLoc, RLoc)); + // FIXME: need to deal with const... + ResultType = VTy->getElementType(); + } else { + return Diag(LHSExp->getLocStart(), diag::err_typecheck_subscript_value, + RHSExp->getSourceRange()); + } + // C99 6.5.2.1p1 + if (!IndexExpr->getType()->isIntegerType()) + return Diag(IndexExpr->getLocStart(), diag::err_typecheck_subscript, + IndexExpr->getSourceRange()); + + // C99 6.5.2.1p1: "shall have type "pointer to *object* type". In practice, + // the following check catches trying to index a pointer to a function (e.g. + // void (*)(int)). Functions are not objects in C99. + if (!ResultType->isObjectType()) + return Diag(BaseExpr->getLocStart(), + diag::err_typecheck_subscript_not_object, + BaseExpr->getType().getAsString(), BaseExpr->getSourceRange()); + + return new ArraySubscriptExpr(LHSExp, RHSExp, ResultType, RLoc); +} + +QualType Sema:: +CheckOCUVectorComponent(QualType baseType, SourceLocation OpLoc, + IdentifierInfo &CompName, SourceLocation CompLoc) { + const OCUVectorType *vecType = baseType->getAsOCUVectorType(); + + // The vector accessor can't exceed the number of elements. + const char *compStr = CompName.getName(); + if (strlen(compStr) > vecType->getNumElements()) { + Diag(OpLoc, diag::err_ocuvector_component_exceeds_length, + baseType.getAsString(), SourceRange(CompLoc)); + return QualType(); + } + // The component names must come from the same set. + if (vecType->getPointAccessorIdx(*compStr) != -1) { + do + compStr++; + while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1); + } else if (vecType->getColorAccessorIdx(*compStr) != -1) { + do + compStr++; + while (*compStr && vecType->getColorAccessorIdx(*compStr) != -1); + } else if (vecType->getTextureAccessorIdx(*compStr) != -1) { + do + compStr++; + while (*compStr && vecType->getTextureAccessorIdx(*compStr) != -1); + } + + if (*compStr) { + // We didn't get to the end of the string. This means the component names + // didn't come from the same set *or* we encountered an illegal name. + Diag(OpLoc, diag::err_ocuvector_component_name_illegal, + std::string(compStr,compStr+1), SourceRange(CompLoc)); + return QualType(); + } + // Each component accessor can't exceed the vector type. + compStr = CompName.getName(); + while (*compStr) { + if (vecType->isAccessorWithinNumElements(*compStr)) + compStr++; + else + break; + } + if (*compStr) { + // We didn't get to the end of the string. This means a component accessor + // exceeds the number of elements in the vector. + Diag(OpLoc, diag::err_ocuvector_component_exceeds_length, + baseType.getAsString(), SourceRange(CompLoc)); + return QualType(); + } + // The component accessor looks fine - now we need to compute the actual type. + // The vector type is implied by the component accessor. For example, + // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc. + unsigned CompSize = strlen(CompName.getName()); + if (CompSize == 1) + return vecType->getElementType(); + + QualType VT = Context.getOCUVectorType(vecType->getElementType(), CompSize); + // Now look up the TypeDefDecl from the vector type. Without this, + // diagostics look bad. We want OCU vector types to appear built-in. + for (unsigned i = 0, e = OCUVectorDecls.size(); i != e; ++i) { + if (OCUVectorDecls[i]->getUnderlyingType() == VT) + return Context.getTypedefType(OCUVectorDecls[i]); + } + return VT; // should never get here (a typedef type should always be found). +} + +Action::ExprResult Sema:: +ActOnMemberReferenceExpr(ExprTy *Base, SourceLocation OpLoc, + tok::TokenKind OpKind, SourceLocation MemberLoc, + IdentifierInfo &Member) { + Expr *BaseExpr = static_cast<Expr *>(Base); + assert(BaseExpr && "no record expression"); + + // Perform default conversions. + DefaultFunctionArrayConversion(BaseExpr); + + QualType BaseType = BaseExpr->getType(); + assert(!BaseType.isNull() && "no type for member expression"); + + if (OpKind == tok::arrow) { + if (const PointerType *PT = BaseType->getAsPointerType()) + BaseType = PT->getPointeeType(); + else + return Diag(OpLoc, diag::err_typecheck_member_reference_arrow, + SourceRange(MemberLoc)); + } + // The base type is either a record or an OCUVectorType. + if (const RecordType *RTy = BaseType->getAsRecordType()) { + RecordDecl *RDecl = RTy->getDecl(); + if (RTy->isIncompleteType()) + return Diag(OpLoc, diag::err_typecheck_incomplete_tag, RDecl->getName(), + BaseExpr->getSourceRange()); + // The record definition is complete, now make sure the member is valid. + FieldDecl *MemberDecl = RDecl->getMember(&Member); + if (!MemberDecl) + return Diag(OpLoc, diag::err_typecheck_no_member, Member.getName(), + SourceRange(MemberLoc)); + + // Figure out the type of the member; see C99 6.5.2.3p3 + // FIXME: Handle address space modifiers + QualType MemberType = MemberDecl->getType(); + unsigned combinedQualifiers = + MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers(); + MemberType = MemberType.getQualifiedType(combinedQualifiers); + + return new MemberExpr(BaseExpr, OpKind==tok::arrow, MemberDecl, + MemberLoc, MemberType); + } else if (BaseType->isOCUVectorType() && OpKind == tok::period) { + // Component access limited to variables (reject vec4.rg.g). + if (!isa<DeclRefExpr>(BaseExpr)) + return Diag(OpLoc, diag::err_ocuvector_component_access, + SourceRange(MemberLoc)); + QualType ret = CheckOCUVectorComponent(BaseType, OpLoc, Member, MemberLoc); + if (ret.isNull()) + return true; + return new OCUVectorElementExpr(ret, BaseExpr, Member, MemberLoc); + } else if (BaseType->isObjCInterfaceType()) { + ObjCInterfaceDecl *IFace; + if (isa<ObjCInterfaceType>(BaseType.getCanonicalType())) + IFace = dyn_cast<ObjCInterfaceType>(BaseType)->getDecl(); + else + IFace = dyn_cast<ObjCQualifiedInterfaceType>(BaseType)->getDecl(); + ObjCInterfaceDecl *clsDeclared; + if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(&Member, clsDeclared)) + return new ObjCIvarRefExpr(IV, IV->getType(), MemberLoc, BaseExpr, + OpKind==tok::arrow); + } + return Diag(OpLoc, diag::err_typecheck_member_reference_structUnion, + SourceRange(MemberLoc)); +} + +/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments. +/// This provides the location of the left/right parens and a list of comma +/// locations. +Action::ExprResult Sema:: +ActOnCallExpr(ExprTy *fn, SourceLocation LParenLoc, + ExprTy **args, unsigned NumArgs, + SourceLocation *CommaLocs, SourceLocation RParenLoc) { + Expr *Fn = static_cast<Expr *>(fn); + Expr **Args = reinterpret_cast<Expr**>(args); + assert(Fn && "no function call expression"); + + // Make the call expr early, before semantic checks. This guarantees cleanup + // of arguments and function on error. + llvm::OwningPtr<CallExpr> TheCall(new CallExpr(Fn, Args, NumArgs, + Context.BoolTy, RParenLoc)); + + // Promote the function operand. + TheCall->setCallee(UsualUnaryConversions(Fn)); + + // C99 6.5.2.2p1 - "The expression that denotes the called function shall have + // type pointer to function". + const PointerType *PT = Fn->getType()->getAsPointerType(); + if (PT == 0) + return Diag(Fn->getLocStart(), diag::err_typecheck_call_not_function, + SourceRange(Fn->getLocStart(), RParenLoc)); + const FunctionType *FuncT = PT->getPointeeType()->getAsFunctionType(); + if (FuncT == 0) + return Diag(Fn->getLocStart(), diag::err_typecheck_call_not_function, + SourceRange(Fn->getLocStart(), RParenLoc)); + + // We know the result type of the call, set it. + TheCall->setType(FuncT->getResultType()); + + if (const FunctionTypeProto *Proto = dyn_cast<FunctionTypeProto>(FuncT)) { + // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by + // assignment, to the types of the corresponding parameter, ... + unsigned NumArgsInProto = Proto->getNumArgs(); + unsigned NumArgsToCheck = NumArgs; + + // If too few arguments are available, don't make the call. + if (NumArgs < NumArgsInProto) + return Diag(RParenLoc, diag::err_typecheck_call_too_few_args, + Fn->getSourceRange()); + + // If too many are passed and not variadic, error on the extras and drop + // them. + if (NumArgs > NumArgsInProto) { + if (!Proto->isVariadic()) { + Diag(Args[NumArgsInProto]->getLocStart(), + diag::err_typecheck_call_too_many_args, Fn->getSourceRange(), + SourceRange(Args[NumArgsInProto]->getLocStart(), + Args[NumArgs-1]->getLocEnd())); + // This deletes the extra arguments. + TheCall->setNumArgs(NumArgsInProto); + } + NumArgsToCheck = NumArgsInProto; + } + + // Continue to check argument types (even if we have too few/many args). + for (unsigned i = 0; i != NumArgsToCheck; i++) { + Expr *Arg = Args[i]; + QualType ProtoArgType = Proto->getArgType(i); + QualType ArgType = Arg->getType(); + + // Compute implicit casts from the operand to the formal argument type. + AssignConvertType ConvTy = + CheckSingleAssignmentConstraints(ProtoArgType, Arg); + TheCall->setArg(i, Arg); + + if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), ProtoArgType, + ArgType, Arg, "passing")) + return true; + } + + // If this is a variadic call, handle args passed through "...". + if (Proto->isVariadic()) { + // Promote the arguments (C99 6.5.2.2p7). + for (unsigned i = NumArgsInProto; i != NumArgs; i++) { + Expr *Arg = Args[i]; + DefaultArgumentPromotion(Arg); + TheCall->setArg(i, Arg); + } + } + } else { + assert(isa<FunctionTypeNoProto>(FuncT) && "Unknown FunctionType!"); + + // Promote the arguments (C99 6.5.2.2p6). + for (unsigned i = 0; i != NumArgs; i++) { + Expr *Arg = Args[i]; + DefaultArgumentPromotion(Arg); + TheCall->setArg(i, Arg); + } + } + + // Do special checking on direct calls to functions. + if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(Fn)) + if (DeclRefExpr *DRExpr = dyn_cast<DeclRefExpr>(IcExpr->getSubExpr())) + if (FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl())) + if (CheckFunctionCall(FDecl, TheCall.get())) + return true; + + return TheCall.take(); +} + +Action::ExprResult Sema:: +ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty, + SourceLocation RParenLoc, ExprTy *InitExpr) { + assert((Ty != 0) && "ActOnCompoundLiteral(): missing type"); + QualType literalType = QualType::getFromOpaquePtr(Ty); + // FIXME: put back this assert when initializers are worked out. + //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression"); + Expr *literalExpr = static_cast<Expr*>(InitExpr); + + // FIXME: add more semantic analysis (C99 6.5.2.5). + if (CheckInitializerTypes(literalExpr, literalType)) + return true; + + bool isFileScope = !CurFunctionDecl && !CurMethodDecl; + if (isFileScope) { // 6.5.2.5p3 + if (CheckForConstantInitializer(literalExpr, literalType)) + return true; + } + return new CompoundLiteralExpr(LParenLoc, literalType, literalExpr, isFileScope); +} + +Action::ExprResult Sema:: +ActOnInitList(SourceLocation LBraceLoc, ExprTy **initlist, unsigned NumInit, + SourceLocation RBraceLoc) { + Expr **InitList = reinterpret_cast<Expr**>(initlist); + + // Semantic analysis for initializers is done by ActOnDeclarator() and + // CheckInitializer() - it requires knowledge of the object being intialized. + + InitListExpr *e = new InitListExpr(LBraceLoc, InitList, NumInit, RBraceLoc); + e->setType(Context.VoidTy); // FIXME: just a place holder for now. + return e; +} + +bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) { + assert(VectorTy->isVectorType() && "Not a vector type!"); + + if (Ty->isVectorType() || Ty->isIntegerType()) { + if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty)) + return Diag(R.getBegin(), + Ty->isVectorType() ? + diag::err_invalid_conversion_between_vectors : + diag::err_invalid_conversion_between_vector_and_integer, + VectorTy.getAsString().c_str(), + Ty.getAsString().c_str(), R); + } else + return Diag(R.getBegin(), + diag::err_invalid_conversion_between_vector_and_scalar, + VectorTy.getAsString().c_str(), + Ty.getAsString().c_str(), R); + + return false; +} + +Action::ExprResult Sema:: +ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty, + SourceLocation RParenLoc, ExprTy *Op) { + assert((Ty != 0) && (Op != 0) && "ActOnCastExpr(): missing type or expr"); + + Expr *castExpr = static_cast<Expr*>(Op); + QualType castType = QualType::getFromOpaquePtr(Ty); + + UsualUnaryConversions(castExpr); + + // C99 6.5.4p2: the cast type needs to be void or scalar and the expression + // type needs to be scalar. + if (!castType->isVoidType()) { // Cast to void allows any expr type. + if (!castType->isScalarType() && !castType->isVectorType()) + return Diag(LParenLoc, diag::err_typecheck_cond_expect_scalar, + castType.getAsString(), SourceRange(LParenLoc, RParenLoc)); + if (!castExpr->getType()->isScalarType() && + !castExpr->getType()->isVectorType()) + return Diag(castExpr->getLocStart(), + diag::err_typecheck_expect_scalar_operand, + castExpr->getType().getAsString(),castExpr->getSourceRange()); + + if (castExpr->getType()->isVectorType()) { + if (CheckVectorCast(SourceRange(LParenLoc, RParenLoc), + castExpr->getType(), castType)) + return true; + } else if (castType->isVectorType()) { + if (CheckVectorCast(SourceRange(LParenLoc, RParenLoc), + castType, castExpr->getType())) + return true; + } + } + return new CastExpr(castType, castExpr, LParenLoc); +} + +/// Note that lex is not null here, even if this is the gnu "x ?: y" extension. +/// In that case, lex = cond. +inline QualType Sema::CheckConditionalOperands( // C99 6.5.15 + Expr *&cond, Expr *&lex, Expr *&rex, SourceLocation questionLoc) { + UsualUnaryConversions(cond); + UsualUnaryConversions(lex); + UsualUnaryConversions(rex); + QualType condT = cond->getType(); + QualType lexT = lex->getType(); + QualType rexT = rex->getType(); + + // first, check the condition. + if (!condT->isScalarType()) { // C99 6.5.15p2 + Diag(cond->getLocStart(), diag::err_typecheck_cond_expect_scalar, + condT.getAsString()); + return QualType(); + } + + // Now check the two expressions. + + // If both operands have arithmetic type, do the usual arithmetic conversions + // to find a common type: C99 6.5.15p3,5. + if (lexT->isArithmeticType() && rexT->isArithmeticType()) { + UsualArithmeticConversions(lex, rex); + return lex->getType(); + } + + // If both operands are the same structure or union type, the result is that + // type. + if (const RecordType *LHSRT = lexT->getAsRecordType()) { // C99 6.5.15p3 + if (const RecordType *RHSRT = rexT->getAsRecordType()) + if (LHSRT->getDecl() == RHSRT->getDecl()) + // "If both the operands have structure or union type, the result has + // that type." This implies that CV qualifiers are dropped. + return lexT.getUnqualifiedType(); + } + + // C99 6.5.15p5: "If both operands have void type, the result has void type." + if (lexT->isVoidType() && rexT->isVoidType()) + return lexT.getUnqualifiedType(); + + // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has + // the type of the other operand." + if (lexT->isPointerType() && rex->isNullPointerConstant(Context)) { + ImpCastExprToType(rex, lexT); // promote the null to a pointer. + return lexT; + } + if (rexT->isPointerType() && lex->isNullPointerConstant(Context)) { + ImpCastExprToType(lex, rexT); // promote the null to a pointer. + return rexT; + } + // Handle the case where both operands are pointers before we handle null + // pointer constants in case both operands are null pointer constants. + if (const PointerType *LHSPT = lexT->getAsPointerType()) { // C99 6.5.15p3,6 + if (const PointerType *RHSPT = rexT->getAsPointerType()) { + // get the "pointed to" types + QualType lhptee = LHSPT->getPointeeType(); + QualType rhptee = RHSPT->getPointeeType(); + + // ignore qualifiers on void (C99 6.5.15p3, clause 6) + if (lhptee->isVoidType() && + (rhptee->isObjectType() || rhptee->isIncompleteType())) { + // Figure out necessary qualifiers (C99 6.5.15p6) + QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers()); + QualType destType = Context.getPointerType(destPointee); + ImpCastExprToType(lex, destType); // add qualifiers if necessary + ImpCastExprToType(rex, destType); // promote to void* + return destType; + } + if (rhptee->isVoidType() && + (lhptee->isObjectType() || lhptee->isIncompleteType())) { + QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers()); + QualType destType = Context.getPointerType(destPointee); + ImpCastExprToType(lex, destType); // add qualifiers if necessary + ImpCastExprToType(rex, destType); // promote to void* + return destType; + } + + if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(), + rhptee.getUnqualifiedType())) { + Diag(questionLoc, diag::warn_typecheck_cond_incompatible_pointers, + lexT.getAsString(), rexT.getAsString(), + lex->getSourceRange(), rex->getSourceRange()); + // In this situation, we assume void* type. No especially good + // reason, but this is what gcc does, and we do have to pick + // to get a consistent AST. + QualType voidPtrTy = Context.getPointerType(Context.VoidTy); + ImpCastExprToType(lex, voidPtrTy); + ImpCastExprToType(rex, voidPtrTy); + return voidPtrTy; + } + // The pointer types are compatible. + // C99 6.5.15p6: If both operands are pointers to compatible types *or* to + // differently qualified versions of compatible types, the result type is + // a pointer to an appropriately qualified version of the *composite* + // type. + // FIXME: Need to return the composite type. + // FIXME: Need to add qualifiers + return lexT; + } + } + + // Otherwise, the operands are not compatible. + Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands, + lexT.getAsString(), rexT.getAsString(), + lex->getSourceRange(), rex->getSourceRange()); + return QualType(); +} + +/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null +/// in the case of a the GNU conditional expr extension. +Action::ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc, + SourceLocation ColonLoc, + ExprTy *Cond, ExprTy *LHS, + ExprTy *RHS) { + Expr *CondExpr = (Expr *) Cond; + Expr *LHSExpr = (Expr *) LHS, *RHSExpr = (Expr *) RHS; + + // If this is the gnu "x ?: y" extension, analyze the types as though the LHS + // was the condition. + bool isLHSNull = LHSExpr == 0; + if (isLHSNull) + LHSExpr = CondExpr; + + QualType result = CheckConditionalOperands(CondExpr, LHSExpr, + RHSExpr, QuestionLoc); + if (result.isNull()) + return true; + return new ConditionalOperator(CondExpr, isLHSNull ? 0 : LHSExpr, + RHSExpr, result); +} + +/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that +/// do not have a prototype. Arguments that have type float are promoted to +/// double. All other argument types are converted by UsualUnaryConversions(). +void Sema::DefaultArgumentPromotion(Expr *&Expr) { + QualType Ty = Expr->getType(); + assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type"); + + if (Ty == Context.FloatTy) + ImpCastExprToType(Expr, Context.DoubleTy); + else + UsualUnaryConversions(Expr); +} + +/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4). +void Sema::DefaultFunctionArrayConversion(Expr *&e) { + QualType t = e->getType(); + assert(!t.isNull() && "DefaultFunctionArrayConversion - missing type"); + + if (const ReferenceType *ref = t->getAsReferenceType()) { + ImpCastExprToType(e, ref->getReferenceeType()); // C++ [expr] + t = e->getType(); + } + if (t->isFunctionType()) + ImpCastExprToType(e, Context.getPointerType(t)); + else if (const ArrayType *ary = t->getAsArrayType()) { + // Make sure we don't lose qualifiers when dealing with typedefs. Example: + // typedef int arr[10]; + // void test2() { + // const arr b; + // b[4] = 1; + // } + QualType ELT = ary->getElementType(); + // FIXME: Handle ASQualType + ELT = ELT.getQualifiedType(t.getCVRQualifiers()|ELT.getCVRQualifiers()); + |