aboutsummaryrefslogtreecommitdiff
path: root/lib/AST/ExprConstant.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/AST/ExprConstant.cpp')
-rw-r--r--lib/AST/ExprConstant.cpp582
1 files changed, 401 insertions, 181 deletions
diff --git a/lib/AST/ExprConstant.cpp b/lib/AST/ExprConstant.cpp
index 6023a678e2..331c757c12 100644
--- a/lib/AST/ExprConstant.cpp
+++ b/lib/AST/ExprConstant.cpp
@@ -2427,6 +2427,13 @@ protected:
return Info.CCEDiag(E, D);
}
+ RetTy ZeroInitialization(const Expr *E) { return Error(E); }
+
+public:
+ ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
+
+ EvalInfo &getEvalInfo() { return Info; }
+
/// Report an evaluation error. This should only be called when an error is
/// first discovered. When propagating an error, just return false.
bool Error(const Expr *E, diag::kind D) {
@@ -2437,11 +2444,6 @@ protected:
return Error(E, diag::note_invalid_subexpr_in_const_expr);
}
- RetTy ZeroInitialization(const Expr *E) { return Error(E); }
-
-public:
- ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
-
RetTy VisitStmt(const Stmt *) {
llvm_unreachable("Expression evaluator should not be called on stmts");
}
@@ -3958,7 +3960,7 @@ public:
IntExprEvaluator(EvalInfo &info, APValue &result)
: ExprEvaluatorBaseTy(info), Result(result) {}
- bool Success(const llvm::APSInt &SI, const Expr *E) {
+ bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
assert(E->getType()->isIntegralOrEnumerationType() &&
"Invalid evaluation result.");
assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
@@ -3968,8 +3970,11 @@ public:
Result = APValue(SI);
return true;
}
+ bool Success(const llvm::APSInt &SI, const Expr *E) {
+ return Success(SI, E, Result);
+ }
- bool Success(const llvm::APInt &I, const Expr *E) {
+ bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
assert(E->getType()->isIntegralOrEnumerationType() &&
"Invalid evaluation result.");
assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
@@ -3979,13 +3984,19 @@ public:
E->getType()->isUnsignedIntegerOrEnumerationType());
return true;
}
+ bool Success(const llvm::APInt &I, const Expr *E) {
+ return Success(I, E, Result);
+ }
- bool Success(uint64_t Value, const Expr *E) {
+ bool Success(uint64_t Value, const Expr *E, APValue &Result) {
assert(E->getType()->isIntegralOrEnumerationType() &&
"Invalid evaluation result.");
Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
return true;
}
+ bool Success(uint64_t Value, const Expr *E) {
+ return Success(Value, E, Result);
+ }
bool Success(CharUnits Size, const Expr *E) {
return Success(Size.getQuantity(), E);
@@ -4433,49 +4444,402 @@ static APSInt CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
return Result;
}
-bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
- if (E->isAssignmentOp())
- return Error(E);
+namespace {
- if (E->getOpcode() == BO_Comma) {
- VisitIgnoredValue(E->getLHS());
- return Visit(E->getRHS());
+/// \brief Data recursive integer evaluator of certain binary operators.
+///
+/// We use a data recursive algorithm for binary operators so that we are able
+/// to handle extreme cases of chained binary operators without causing stack
+/// overflow.
+class DataRecursiveIntBinOpEvaluator {
+ struct EvalResult {
+ APValue Val;
+ bool Failed;
+
+ EvalResult() : Failed(false) { }
+
+ void swap(EvalResult &RHS) {
+ Val.swap(RHS.Val);
+ Failed = RHS.Failed;
+ RHS.Failed = false;
+ }
+ };
+
+ struct Job {
+ const Expr *E;
+ EvalResult LHSResult; // meaningful only for binary operator expression.
+ enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
+
+ Job() : StoredInfo(0) { }
+ void startSpeculativeEval(EvalInfo &Info) {
+ OldEvalStatus = Info.EvalStatus;
+ Info.EvalStatus.Diag = 0;
+ StoredInfo = &Info;
+ }
+ ~Job() {
+ if (StoredInfo) {
+ StoredInfo->EvalStatus = OldEvalStatus;
+ }
+ }
+ private:
+ EvalInfo *StoredInfo; // non-null if status changed.
+ Expr::EvalStatus OldEvalStatus;
+ };
+
+ SmallVector<Job, 16> Queue;
+
+ IntExprEvaluator &IntEval;
+ EvalInfo &Info;
+ APValue &FinalResult;
+
+public:
+ DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
+ : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
+
+ /// \brief True if \param E is a binary operator that we are going to handle
+ /// data recursively.
+ /// We handle binary operators that are comma, logical, or that have operands
+ /// with integral or enumeration type.
+ static bool shouldEnqueue(const BinaryOperator *E) {
+ return E->getOpcode() == BO_Comma ||
+ E->isLogicalOp() ||
+ (E->getLHS()->getType()->isIntegralOrEnumerationType() &&
+ E->getRHS()->getType()->isIntegralOrEnumerationType());
+ }
+
+ bool Traverse(const BinaryOperator *E) {
+ enqueue(E);
+ EvalResult PrevResult;
+ while (!Queue.empty()) {
+ if (!process(PrevResult)) {
+ Queue.clear();
+ return false;
+ }
+ }
+
+ FinalResult.swap(PrevResult.Val);
+ return true;
}
- if (E->isLogicalOp()) {
- // These need to be handled specially because the operands aren't
- // necessarily integral nor evaluated.
- bool lhsResult, rhsResult;
+private:
+ bool Success(uint64_t Value, const Expr *E, APValue &Result) {
+ return IntEval.Success(Value, E, Result);
+ }
+ bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
+ return IntEval.Success(Value, E, Result);
+ }
+ bool Error(const Expr *E) {
+ return IntEval.Error(E);
+ }
+ bool Error(const Expr *E, diag::kind D) {
+ return IntEval.Error(E, D);
+ }
+
+ OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
+ return Info.CCEDiag(E, D);
+ }
+
+ bool VisitBinOpLHSOnly(const EvalResult &LHSResult, const BinaryOperator *E,
+ bool &IgnoreRHS, APValue &Result,
+ bool &SuppressRHSDiags);
+
+ bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
+ const BinaryOperator *E, APValue &Result);
+
+ void EvaluateExpr(const Expr *E, EvalResult &Result) {
+ Result.Failed = !Evaluate(Result.Val, Info, E);
+ if (Result.Failed)
+ Result.Val = APValue();
+ }
- if (EvaluateAsBooleanCondition(E->getLHS(), lhsResult, Info)) {
+ bool process(EvalResult &Result);
+
+ void enqueue(const Expr *E) {
+ E = E->IgnoreParens();
+ Queue.resize(Queue.size()+1);
+ Queue.back().E = E;
+ Queue.back().Kind = Job::AnyExprKind;
+ }
+};
+
+}
+
+bool DataRecursiveIntBinOpEvaluator::
+ VisitBinOpLHSOnly(const EvalResult &LHSResult, const BinaryOperator *E,
+ bool &IgnoreRHS, APValue &Result,
+ bool &SuppressRHSDiags) {
+ if (E->getOpcode() == BO_Comma) {
+ // Ignore LHS but note if we could not evaluate it.
+ if (LHSResult.Failed)
+ Info.EvalStatus.HasSideEffects = true;
+ return true;
+ }
+
+ if (E->isLogicalOp()) {
+ bool lhsResult;
+ if (HandleConversionToBool(LHSResult.Val, lhsResult)) {
// We were able to evaluate the LHS, see if we can get away with not
// evaluating the RHS: 0 && X -> 0, 1 || X -> 1
- if (lhsResult == (E->getOpcode() == BO_LOr))
- return Success(lhsResult, E);
-
- if (EvaluateAsBooleanCondition(E->getRHS(), rhsResult, Info)) {
- if (E->getOpcode() == BO_LOr)
- return Success(lhsResult || rhsResult, E);
- else
- return Success(lhsResult && rhsResult, E);
+ if (lhsResult == (E->getOpcode() == BO_LOr)) {
+ IgnoreRHS = true;
+ return Success(lhsResult, E, Result);
}
} else {
// Since we weren't able to evaluate the left hand side, it
// must have had side effects.
Info.EvalStatus.HasSideEffects = true;
+
+ // We can't evaluate the LHS; however, sometimes the result
+ // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
+ // Don't ignore RHS and suppress diagnostics from this arm.
+ SuppressRHSDiags = true;
+ }
+
+ return true;
+ }
+
+ assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
+ E->getRHS()->getType()->isIntegralOrEnumerationType());
+
+ if (LHSResult.Failed && !Info.keepEvaluatingAfterFailure())
+ return false;
+
+ return true;
+}
- // Suppress diagnostics from this arm.
- SpeculativeEvaluationRAII Speculative(Info);
- if (EvaluateAsBooleanCondition(E->getRHS(), rhsResult, Info)) {
+bool DataRecursiveIntBinOpEvaluator::
+ VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
+ const BinaryOperator *E, APValue &Result) {
+ if (E->getOpcode() == BO_Comma) {
+ if (RHSResult.Failed)
+ return false;
+ Result = RHSResult.Val;
+ return true;
+ }
+
+ if (E->isLogicalOp()) {
+ bool lhsResult, rhsResult;
+ bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
+ bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
+
+ if (LHSIsOK) {
+ if (RHSIsOK) {
+ if (E->getOpcode() == BO_LOr)
+ return Success(lhsResult || rhsResult, E, Result);
+ else
+ return Success(lhsResult && rhsResult, E, Result);
+ }
+ } else {
+ if (RHSIsOK) {
// We can't evaluate the LHS; however, sometimes the result
// is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
if (rhsResult == (E->getOpcode() == BO_LOr))
- return Success(rhsResult, E);
+ return Success(rhsResult, E, Result);
}
}
-
+
return false;
}
+
+ assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
+ E->getRHS()->getType()->isIntegralOrEnumerationType());
+
+ if (LHSResult.Failed || RHSResult.Failed)
+ return false;
+
+ const APValue &LHSVal = LHSResult.Val;
+ const APValue &RHSVal = RHSResult.Val;
+
+ // Handle cases like (unsigned long)&a + 4.
+ if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
+ Result = LHSVal;
+ CharUnits AdditionalOffset = CharUnits::fromQuantity(
+ RHSVal.getInt().getZExtValue());
+ if (E->getOpcode() == BO_Add)
+ Result.getLValueOffset() += AdditionalOffset;
+ else
+ Result.getLValueOffset() -= AdditionalOffset;
+ return true;
+ }
+
+ // Handle cases like 4 + (unsigned long)&a
+ if (E->getOpcode() == BO_Add &&
+ RHSVal.isLValue() && LHSVal.isInt()) {
+ Result = RHSVal;
+ Result.getLValueOffset() += CharUnits::fromQuantity(
+ LHSVal.getInt().getZExtValue());
+ return true;
+ }
+
+ if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
+ // Handle (intptr_t)&&A - (intptr_t)&&B.
+ if (!LHSVal.getLValueOffset().isZero() ||
+ !RHSVal.getLValueOffset().isZero())
+ return false;
+ const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
+ const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
+ if (!LHSExpr || !RHSExpr)
+ return false;
+ const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
+ const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
+ if (!LHSAddrExpr || !RHSAddrExpr)
+ return false;
+ // Make sure both labels come from the same function.
+ if (LHSAddrExpr->getLabel()->getDeclContext() !=
+ RHSAddrExpr->getLabel()->getDeclContext())
+ return false;
+ Result = APValue(LHSAddrExpr, RHSAddrExpr);
+ return true;
+ }
+
+ // All the following cases expect both operands to be an integer
+ if (!LHSVal.isInt() || !RHSVal.isInt())
+ return Error(E);
+
+ const APSInt &LHS = LHSVal.getInt();
+ APSInt RHS = RHSVal.getInt();
+
+ switch (E->getOpcode()) {
+ default:
+ return Error(E);
+ case BO_Mul:
+ return Success(CheckedIntArithmetic(Info, E, LHS, RHS,
+ LHS.getBitWidth() * 2,
+ std::multiplies<APSInt>()), E,
+ Result);
+ case BO_Add:
+ return Success(CheckedIntArithmetic(Info, E, LHS, RHS,
+ LHS.getBitWidth() + 1,
+ std::plus<APSInt>()), E, Result);
+ case BO_Sub:
+ return Success(CheckedIntArithmetic(Info, E, LHS, RHS,
+ LHS.getBitWidth() + 1,
+ std::minus<APSInt>()), E, Result);
+ case BO_And: return Success(LHS & RHS, E, Result);
+ case BO_Xor: return Success(LHS ^ RHS, E, Result);
+ case BO_Or: return Success(LHS | RHS, E, Result);
+ case BO_Div:
+ case BO_Rem:
+ if (RHS == 0)
+ return Error(E, diag::note_expr_divide_by_zero);
+ // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. The latter is
+ // not actually undefined behavior in C++11 due to a language defect.
+ if (RHS.isNegative() && RHS.isAllOnesValue() &&
+ LHS.isSigned() && LHS.isMinSignedValue())
+ HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1), E->getType());
+ return Success(E->getOpcode() == BO_Rem ? LHS % RHS : LHS / RHS, E,
+ Result);
+ case BO_Shl: {
+ // During constant-folding, a negative shift is an opposite shift. Such
+ // a shift is not a constant expression.
+ if (RHS.isSigned() && RHS.isNegative()) {
+ CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
+ RHS = -RHS;
+ goto shift_right;
+ }
+
+ shift_left:
+ // C++11 [expr.shift]p1: Shift width must be less than the bit width of
+ // the shifted type.
+ unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
+ if (SA != RHS) {
+ CCEDiag(E, diag::note_constexpr_large_shift)
+ << RHS << E->getType() << LHS.getBitWidth();
+ } else if (LHS.isSigned()) {
+ // C++11 [expr.shift]p2: A signed left shift must have a non-negative
+ // operand, and must not overflow the corresponding unsigned type.
+ if (LHS.isNegative())
+ CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
+ else if (LHS.countLeadingZeros() < SA)
+ CCEDiag(E, diag::note_constexpr_lshift_discards);
+ }
+
+ return Success(LHS << SA, E, Result);
+ }
+ case BO_Shr: {
+ // During constant-folding, a negative shift is an opposite shift. Such a
+ // shift is not a constant expression.
+ if (RHS.isSigned() && RHS.isNegative()) {
+ CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
+ RHS = -RHS;
+ goto shift_left;
+ }
+
+ shift_right:
+ // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
+ // shifted type.
+ unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
+ if (SA != RHS)
+ CCEDiag(E, diag::note_constexpr_large_shift)
+ << RHS << E->getType() << LHS.getBitWidth();
+
+ return Success(LHS >> SA, E, Result);
+ }
+
+ case BO_LT: return Success(LHS < RHS, E, Result);
+ case BO_GT: return Success(LHS > RHS, E, Result);
+ case BO_LE: return Success(LHS <= RHS, E, Result);
+ case BO_GE: return Success(LHS >= RHS, E, Result);
+ case BO_EQ: return Success(LHS == RHS, E, Result);
+ case BO_NE: return Success(LHS != RHS, E, Result);
+ }
+}
+
+bool DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
+ Job &job = Queue.back();
+
+ switch (job.Kind) {
+ case Job::AnyExprKind: {
+ if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
+ if (shouldEnqueue(Bop)) {
+ job.Kind = Job::BinOpKind;
+ enqueue(Bop->getLHS());
+ return true;
+ }
+ }
+
+ EvaluateExpr(job.E, Result);
+ Queue.pop_back();
+ return true;
+ }
+
+ case Job::BinOpKind: {
+ const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
+ job.LHSResult.swap(Result);
+ bool IgnoreRHS = false;
+ bool SuppressRHSDiags = false;
+ bool ret = VisitBinOpLHSOnly(job.LHSResult, Bop, IgnoreRHS, Result.Val,
+ SuppressRHSDiags);
+ if (IgnoreRHS) {
+ Queue.pop_back();
+ return ret;
+ }
+ if (SuppressRHSDiags)
+ job.startSpeculativeEval(Info);
+ job.Kind = Job::BinOpVisitedLHSKind;
+ enqueue(Bop->getRHS());
+ return ret;
+ }
+
+ case Job::BinOpVisitedLHSKind: {
+ const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
+ EvalResult RHS;
+ RHS.swap(Result);
+ bool ret = VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
+ Queue.pop_back();
+ return ret;
+ }
+ }
+
+ llvm_unreachable("Invalid Job::Kind!");
+}
+
+bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
+ if (E->isAssignmentOp())
+ return Error(E);
+
+ if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
+ return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
QualType LHSTy = E->getLHS()->getType();
QualType RHSTy = E->getRHS()->getType();
@@ -4776,155 +5140,11 @@ bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
return Success(Opcode == BO_EQ || Opcode == BO_LE || Opcode == BO_GE, E);
}
- if (!LHSTy->isIntegralOrEnumerationType() ||
- !RHSTy->isIntegralOrEnumerationType()) {
- // We can't continue from here for non-integral types.
- return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
- }
-
- // The LHS of a constant expr is always evaluated and needed.
- APValue LHSVal;
-
- bool LHSOK = EvaluateIntegerOrLValue(E->getLHS(), LHSVal, Info);
- if (!LHSOK && !Info.keepEvaluatingAfterFailure())
- return false;
-
- if (!Visit(E->getRHS()) || !LHSOK)
- return false;
-
- APValue &RHSVal = Result;
-
- // Handle cases like (unsigned long)&a + 4.
- if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
- CharUnits AdditionalOffset = CharUnits::fromQuantity(
- RHSVal.getInt().getZExtValue());
- if (E->getOpcode() == BO_Add)
- LHSVal.getLValueOffset() += AdditionalOffset;
- else
- LHSVal.getLValueOffset() -= AdditionalOffset;
- Result = LHSVal;
- return true;
- }
-
- // Handle cases like 4 + (unsigned long)&a
- if (E->getOpcode() == BO_Add &&
- RHSVal.isLValue() && LHSVal.isInt()) {
- RHSVal.getLValueOffset() += CharUnits::fromQuantity(
- LHSVal.getInt().getZExtValue());
- // Note that RHSVal is Result.
- return true;
- }
-
- if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
- // Handle (intptr_t)&&A - (intptr_t)&&B.
- if (!LHSVal.getLValueOffset().isZero() ||
- !RHSVal.getLValueOffset().isZero())
- return false;
- const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
- const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
- if (!LHSExpr || !RHSExpr)
- return false;
- const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
- const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
- if (!LHSAddrExpr || !RHSAddrExpr)
- return false;
- // Make sure both labels come from the same function.
- if (LHSAddrExpr->getLabel()->getDeclContext() !=
- RHSAddrExpr->getLabel()->getDeclContext())
- return false;
- Result = APValue(LHSAddrExpr, RHSAddrExpr);
- return true;
- }
-
- // All the following cases expect both operands to be an integer
- if (!LHSVal.isInt() || !RHSVal.isInt())
- return Error(E);
-
- APSInt &LHS = LHSVal.getInt();
- APSInt &RHS = RHSVal.getInt();
-
- switch (E->getOpcode()) {
- default:
- return Error(E);
- case BO_Mul:
- return Success(CheckedIntArithmetic(Info, E, LHS, RHS,
- LHS.getBitWidth() * 2,
- std::multiplies<APSInt>()), E);
- case BO_Add:
- return Success(CheckedIntArithmetic(Info, E, LHS, RHS,
- LHS.getBitWidth() + 1,
- std::plus<APSInt>()), E);
- case BO_Sub:
- return Success(CheckedIntArithmetic(Info, E, LHS, RHS,
- LHS.getBitWidth() + 1,
- std::minus<APSInt>()), E);
- case BO_And: return Success(LHS & RHS, E);
- case BO_Xor: return Success(LHS ^ RHS, E);
- case BO_Or: return Success(LHS | RHS, E);
- case BO_Div:
- case BO_Rem:
- if (RHS == 0)
- return Error(E, diag::note_expr_divide_by_zero);
- // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. The latter is not
- // actually undefined behavior in C++11 due to a language defect.
- if (RHS.isNegative() && RHS.isAllOnesValue() &&
- LHS.isSigned() && LHS.isMinSignedValue())
- HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1), E->getType());
- return Success(E->getOpcode() == BO_Rem ? LHS % RHS : LHS / RHS, E);
- case BO_Shl: {
- // During constant-folding, a negative shift is an opposite shift. Such a
- // shift is not a constant expression.
- if (RHS.isSigned() && RHS.isNegative()) {
- CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
- RHS = -RHS;
- goto shift_right;
- }
-
- shift_left:
- // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
- // shifted type.
- unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
- if (SA != RHS) {
- CCEDiag(E, diag::note_constexpr_large_shift)
- << RHS << E->getType() << LHS.getBitWidth();
- } else if (LHS.isSigned()) {
- // C++11 [expr.shift]p2: A signed left shift must have a non-negative
- // operand, and must not overflow the corresponding unsigned type.
- if (LHS.isNegative())
- CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
- else if (LHS.countLeadingZeros() < SA)
- CCEDiag(E, diag::note_constexpr_lshift_discards);
- }
-
- return Success(LHS << SA, E);
- }
- case BO_Shr: {
- // During constant-folding, a negative shift is an opposite shift. Such a
- // shift is not a constant expression.
- if (RHS.isSigned() && RHS.isNegative()) {
- CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
- RHS = -RHS;
- goto shift_left;
- }
-
- shift_right:
- // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
- // shifted type.
- unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
- if (SA != RHS)
- CCEDiag(E, diag::note_constexpr_large_shift)
- << RHS << E->getType() << LHS.getBitWidth();
-
- return Success(LHS >> SA, E);
- }
-
- case BO_LT: return Success(LHS < RHS, E);
- case BO_GT: return Success(LHS > RHS, E);
- case BO_LE: return Success(LHS <= RHS, E);
- case BO_GE: return Success(LHS >= RHS, E);
- case BO_EQ: return Success(LHS == RHS, E);
- case BO_NE: return Success(LHS != RHS, E);
- }
+ assert((!LHSTy->isIntegralOrEnumerationType() ||
+ !RHSTy->isIntegralOrEnumerationType()) &&
+ "DataRecursiveIntBinOpEvaluator should have handled integral types");
+ // We can't continue from here for non-integral types.
+ return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
}
CharUnits IntExprEvaluator::GetAlignOfType(QualType T) {