diff options
Diffstat (limited to 'CodeGen/CGExpr.cpp')
-rw-r--r-- | CodeGen/CGExpr.cpp | 1211 |
1 files changed, 1211 insertions, 0 deletions
diff --git a/CodeGen/CGExpr.cpp b/CodeGen/CGExpr.cpp new file mode 100644 index 0000000000..936770e42d --- /dev/null +++ b/CodeGen/CGExpr.cpp @@ -0,0 +1,1211 @@ +//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by Chris Lattner and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This contains code to emit Expr nodes as LLVM code. +// +//===----------------------------------------------------------------------===// + +#include "CodeGenFunction.h" +#include "CodeGenModule.h" +#include "clang/AST/AST.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Function.h" +#include "llvm/GlobalVariable.h" +using namespace clang; +using namespace CodeGen; + +//===--------------------------------------------------------------------===// +// Miscellaneous Helper Methods +//===--------------------------------------------------------------------===// + +/// CreateTempAlloca - This creates a alloca and inserts it into the entry +/// block. +llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(const llvm::Type *Ty, + const char *Name) { + return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt); +} + +/// EvaluateExprAsBool - Perform the usual unary conversions on the specified +/// expression and compare the result against zero, returning an Int1Ty value. +llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { + QualType Ty; + RValue Val = EmitExprWithUsualUnaryConversions(E, Ty); + return ConvertScalarValueToBool(Val, Ty); +} + +/// EmitLoadOfComplex - Given an RValue reference for a complex, emit code to +/// load the real and imaginary pieces, returning them as Real/Imag. +void CodeGenFunction::EmitLoadOfComplex(RValue V, + llvm::Value *&Real, llvm::Value *&Imag){ + llvm::Value *Ptr = V.getAggregateAddr(); + + llvm::Constant *Zero = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0); + llvm::Constant *One = llvm::ConstantInt::get(llvm::Type::Int32Ty, 1); + llvm::Value *RealPtr = Builder.CreateGEP(Ptr, Zero, Zero, "realp"); + llvm::Value *ImagPtr = Builder.CreateGEP(Ptr, Zero, One, "imagp"); + + // FIXME: Handle volatility. + Real = Builder.CreateLoad(RealPtr, "real"); + Imag = Builder.CreateLoad(ImagPtr, "imag"); +} + +/// EmitStoreOfComplex - Store the specified real/imag parts into the +/// specified value pointer. +void CodeGenFunction::EmitStoreOfComplex(llvm::Value *Real, llvm::Value *Imag, + llvm::Value *ResPtr) { + llvm::Constant *Zero = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0); + llvm::Constant *One = llvm::ConstantInt::get(llvm::Type::Int32Ty, 1); + llvm::Value *RealPtr = Builder.CreateGEP(ResPtr, Zero, Zero, "real"); + llvm::Value *ImagPtr = Builder.CreateGEP(ResPtr, Zero, One, "imag"); + + // FIXME: Handle volatility. + Builder.CreateStore(Real, RealPtr); + Builder.CreateStore(Imag, ImagPtr); +} + +//===--------------------------------------------------------------------===// +// Conversions +//===--------------------------------------------------------------------===// + +/// EmitConversion - Convert the value specied by Val, whose type is ValTy, to +/// the type specified by DstTy, following the rules of C99 6.3. +RValue CodeGenFunction::EmitConversion(RValue Val, QualType ValTy, + QualType DstTy) { + ValTy = ValTy.getCanonicalType(); + DstTy = DstTy.getCanonicalType(); + if (ValTy == DstTy) return Val; + + // Handle conversions to bool first, they are special: comparisons against 0. + if (const BuiltinType *DestBT = dyn_cast<BuiltinType>(DstTy)) + if (DestBT->getKind() == BuiltinType::Bool) + return RValue::get(ConvertScalarValueToBool(Val, ValTy)); + + // Handle pointer conversions next: pointers can only be converted to/from + // other pointers and integers. + if (isa<PointerType>(DstTy)) { + const llvm::Type *DestTy = ConvertType(DstTy); + + // The source value may be an integer, or a pointer. + assert(Val.isScalar() && "Can only convert from integer or pointer"); + if (isa<llvm::PointerType>(Val.getVal()->getType())) + return RValue::get(Builder.CreateBitCast(Val.getVal(), DestTy, "conv")); + assert(ValTy->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); + return RValue::get(Builder.CreatePtrToInt(Val.getVal(), DestTy, "conv")); + } + + if (isa<PointerType>(ValTy)) { + // Must be an ptr to int cast. + const llvm::Type *DestTy = ConvertType(DstTy); + assert(isa<llvm::IntegerType>(DestTy) && "not ptr->int?"); + return RValue::get(Builder.CreateIntToPtr(Val.getVal(), DestTy, "conv")); + } + + // Finally, we have the arithmetic types: real int/float and complex + // int/float. Handle real->real conversions first, they are the most + // common. + if (Val.isScalar() && DstTy->isRealType()) { + // We know that these are representable as scalars in LLVM, convert to LLVM + // types since they are easier to reason about. + llvm::Value *SrcVal = Val.getVal(); + const llvm::Type *DestTy = ConvertType(DstTy); + if (SrcVal->getType() == DestTy) return Val; + + llvm::Value *Result; + if (isa<llvm::IntegerType>(SrcVal->getType())) { + bool InputSigned = ValTy->isSignedIntegerType(); + if (isa<llvm::IntegerType>(DestTy)) + Result = Builder.CreateIntCast(SrcVal, DestTy, InputSigned, "conv"); + else if (InputSigned) + Result = Builder.CreateSIToFP(SrcVal, DestTy, "conv"); + else + Result = Builder.CreateUIToFP(SrcVal, DestTy, "conv"); + } else { + assert(SrcVal->getType()->isFloatingPoint() && "Unknown real conversion"); + if (isa<llvm::IntegerType>(DestTy)) { + if (DstTy->isSignedIntegerType()) + Result = Builder.CreateFPToSI(SrcVal, DestTy, "conv"); + else + Result = Builder.CreateFPToUI(SrcVal, DestTy, "conv"); + } else { + assert(DestTy->isFloatingPoint() && "Unknown real conversion"); + if (DestTy->getTypeID() < SrcVal->getType()->getTypeID()) + Result = Builder.CreateFPTrunc(SrcVal, DestTy, "conv"); + else + Result = Builder.CreateFPExt(SrcVal, DestTy, "conv"); + } + } + return RValue::get(Result); + } + + assert(0 && "FIXME: We don't support complex conversions yet!"); +} + + +/// ConvertScalarValueToBool - Convert the specified expression value to a +/// boolean (i1) truth value. This is equivalent to "Val == 0". +llvm::Value *CodeGenFunction::ConvertScalarValueToBool(RValue Val, QualType Ty){ + Ty = Ty.getCanonicalType(); + llvm::Value *Result; + if (const BuiltinType *BT = dyn_cast<BuiltinType>(Ty)) { + switch (BT->getKind()) { + default: assert(0 && "Unknown scalar value"); + case BuiltinType::Bool: + Result = Val.getVal(); + // Bool is already evaluated right. + assert(Result->getType() == llvm::Type::Int1Ty && + "Unexpected bool value type!"); + return Result; + case BuiltinType::Char_S: + case BuiltinType::Char_U: + case BuiltinType::SChar: + case BuiltinType::UChar: + case BuiltinType::Short: + case BuiltinType::UShort: + case BuiltinType::Int: + case BuiltinType::UInt: + case BuiltinType::Long: + case BuiltinType::ULong: + case BuiltinType::LongLong: + case BuiltinType::ULongLong: + // Code below handles simple integers. + break; + case BuiltinType::Float: + case BuiltinType::Double: + case BuiltinType::LongDouble: { + // Compare against 0.0 for fp scalars. + Result = Val.getVal(); + llvm::Value *Zero = llvm::Constant::getNullValue(Result->getType()); + // FIXME: llvm-gcc produces a une comparison: validate this is right. + Result = Builder.CreateFCmpUNE(Result, Zero, "tobool"); + return Result; + } + } + } else if (isa<PointerType>(Ty) || + cast<TagType>(Ty)->getDecl()->getKind() == Decl::Enum) { + // Code below handles this fine. + } else { + assert(isa<ComplexType>(Ty) && "Unknwon type!"); + assert(0 && "FIXME: comparisons against complex not implemented yet"); + } + + // Usual case for integers, pointers, and enums: compare against zero. + Result = Val.getVal(); + + // Because of the type rules of C, we often end up computing a logical value, + // then zero extending it to int, then wanting it as a logical value again. + // Optimize this common case. + if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Result)) { + if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) { + Result = ZI->getOperand(0); + ZI->eraseFromParent(); + return Result; + } + } + + llvm::Value *Zero = llvm::Constant::getNullValue(Result->getType()); + return Builder.CreateICmpNE(Result, Zero, "tobool"); +} + +//===----------------------------------------------------------------------===// +// LValue Expression Emission +//===----------------------------------------------------------------------===// + +/// EmitLValue - Emit code to compute a designator that specifies the location +/// of the expression. +/// +/// This can return one of two things: a simple address or a bitfield +/// reference. In either case, the LLVM Value* in the LValue structure is +/// guaranteed to be an LLVM pointer type. +/// +/// If this returns a bitfield reference, nothing about the pointee type of +/// the LLVM value is known: For example, it may not be a pointer to an +/// integer. +/// +/// If this returns a normal address, and if the lvalue's C type is fixed +/// size, this method guarantees that the returned pointer type will point to +/// an LLVM type of the same size of the lvalue's type. If the lvalue has a +/// variable length type, this is not possible. +/// +LValue CodeGenFunction::EmitLValue(const Expr *E) { + switch (E->getStmtClass()) { + default: + fprintf(stderr, "Unimplemented lvalue expr!\n"); + E->dump(); + return LValue::MakeAddr(llvm::UndefValue::get( + llvm::PointerType::get(llvm::Type::Int32Ty))); + + case Expr::DeclRefExprClass: return EmitDeclRefLValue(cast<DeclRefExpr>(E)); + case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); + case Expr::StringLiteralClass: + return EmitStringLiteralLValue(cast<StringLiteral>(E)); + + case Expr::UnaryOperatorClass: + return EmitUnaryOpLValue(cast<UnaryOperator>(E)); + case Expr::ArraySubscriptExprClass: + return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); + } +} + +/// EmitLoadOfLValue - Given an expression that represents a value lvalue, +/// this method emits the address of the lvalue, then loads the result as an +/// rvalue, returning the rvalue. +RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, QualType ExprType) { + ExprType = ExprType.getCanonicalType(); + + if (LV.isSimple()) { + llvm::Value *Ptr = LV.getAddress(); + const llvm::Type *EltTy = + cast<llvm::PointerType>(Ptr->getType())->getElementType(); + + // Simple scalar l-value. + if (EltTy->isFirstClassType()) + return RValue::get(Builder.CreateLoad(Ptr, "tmp")); + + // Otherwise, we have an aggregate lvalue. + return RValue::getAggregate(Ptr); + } + + if (LV.isVectorElt()) { + llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(), "tmp"); + return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(), + "vecext")); + } + + assert(0 && "Bitfield ref not impl!"); +} + +RValue CodeGenFunction::EmitLoadOfLValue(const Expr *E) { + return EmitLoadOfLValue(EmitLValue(E), E->getType()); +} + + +/// EmitStoreThroughLValue - Store the specified rvalue into the specified +/// lvalue, where both are guaranteed to the have the same type, and that type +/// is 'Ty'. +void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, + QualType Ty) { + if (Dst.isVectorElt()) { + // Read/modify/write the vector, inserting the new element. + // FIXME: Volatility. + llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(), "tmp"); + Vec = Builder.CreateInsertElement(Vec, Src.getVal(), + Dst.getVectorIdx(), "vecins"); + Builder.CreateStore(Vec, Dst.getVectorAddr()); + return; + } + + assert(Dst.isSimple() && "FIXME: Don't support store to bitfield yet"); + + llvm::Value *DstAddr = Dst.getAddress(); + if (Src.isScalar()) { + // FIXME: Handle volatility etc. + const llvm::Type *SrcTy = Src.getVal()->getType(); + const llvm::Type *AddrTy = + cast<llvm::PointerType>(DstAddr->getType())->getElementType(); + + if (AddrTy != SrcTy) + DstAddr = Builder.CreateBitCast(DstAddr, llvm::PointerType::get(SrcTy), + "storetmp"); + Builder.CreateStore(Src.getVal(), DstAddr); + return; + } + + // Don't use memcpy for complex numbers. + if (Ty->isComplexType()) { + llvm::Value *Real, *Imag; + EmitLoadOfComplex(Src, Real, Imag); + EmitStoreOfComplex(Real, Imag, Dst.getAddress()); + return; + } + + // Aggregate assignment turns into llvm.memcpy. + const llvm::Type *SBP = llvm::PointerType::get(llvm::Type::Int8Ty); + llvm::Value *SrcAddr = Src.getAggregateAddr(); + + if (DstAddr->getType() != SBP) + DstAddr = Builder.CreateBitCast(DstAddr, SBP, "tmp"); + if (SrcAddr->getType() != SBP) + SrcAddr = Builder.CreateBitCast(SrcAddr, SBP, "tmp"); + + unsigned Align = 1; // FIXME: Compute type alignments. + unsigned Size = 1234; // FIXME: Compute type sizes. + + // FIXME: Handle variable sized types. + const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth); + llvm::Value *SizeVal = llvm::ConstantInt::get(IntPtr, Size); + + llvm::Value *MemCpyOps[4] = { + DstAddr, SrcAddr, SizeVal,llvm::ConstantInt::get(llvm::Type::Int32Ty, Align) + }; + + Builder.CreateCall(CGM.getMemCpyFn(), MemCpyOps, 4); +} + + +LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { + const Decl *D = E->getDecl(); + if (isa<BlockVarDecl>(D) || isa<ParmVarDecl>(D)) { + llvm::Value *V = LocalDeclMap[D]; + assert(V && "BlockVarDecl not entered in LocalDeclMap?"); + return LValue::MakeAddr(V); + } else if (isa<FunctionDecl>(D) || isa<FileVarDecl>(D)) { + return LValue::MakeAddr(CGM.GetAddrOfGlobalDecl(D)); + } + assert(0 && "Unimp declref"); +} + +LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { + // __extension__ doesn't affect lvalue-ness. + if (E->getOpcode() == UnaryOperator::Extension) + return EmitLValue(E->getSubExpr()); + + assert(E->getOpcode() == UnaryOperator::Deref && + "'*' is the only unary operator that produces an lvalue"); + return LValue::MakeAddr(EmitExpr(E->getSubExpr()).getVal()); +} + +LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { + assert(!E->isWide() && "FIXME: Wide strings not supported yet!"); + const char *StrData = E->getStrData(); + unsigned Len = E->getByteLength(); + + // FIXME: Can cache/reuse these within the module. + llvm::Constant *C=llvm::ConstantArray::get(std::string(StrData, StrData+Len)); + + // Create a global variable for this. + C = new llvm::GlobalVariable(C->getType(), true, + llvm::GlobalValue::InternalLinkage, + C, ".str", CurFn->getParent()); + llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); + llvm::Constant *Zeros[] = { Zero, Zero }; + C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2); + return LValue::MakeAddr(C); +} + +LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) { + // The index must always be a pointer or integer, neither of which is an + // aggregate. Emit it. + QualType IdxTy; + llvm::Value *Idx = + EmitExprWithUsualUnaryConversions(E->getIdx(), IdxTy).getVal(); + + // If the base is a vector type, then we are forming a vector element lvalue + // with this subscript. + if (E->getBase()->getType()->isVectorType()) { + // Emit the vector as an lvalue to get its address. + LValue Base = EmitLValue(E->getBase()); + assert(Base.isSimple() && "Can only subscript lvalue vectors here!"); + // FIXME: This should properly sign/zero/extend or truncate Idx to i32. + return LValue::MakeVectorElt(Base.getAddress(), Idx); + } + + // At this point, the base must be a pointer or integer, neither of which are + // aggregates. Emit it. + QualType BaseTy; + llvm::Value *Base = + EmitExprWithUsualUnaryConversions(E->getBase(), BaseTy).getVal(); + + // Usually the base is the pointer type, but sometimes it is the index. + // Canonicalize to have the pointer as the base. + if (isa<llvm::PointerType>(Idx->getType())) { + std::swap(Base, Idx); + std::swap(BaseTy, IdxTy); + } + + // The pointer is now the base. Extend or truncate the index type to 32 or + // 64-bits. + bool IdxSigned = IdxTy->isSignedIntegerType(); + unsigned IdxBitwidth = cast<llvm::IntegerType>(Idx->getType())->getBitWidth(); + if (IdxBitwidth != LLVMPointerWidth) + Idx = Builder.CreateIntCast(Idx, llvm::IntegerType::get(LLVMPointerWidth), + IdxSigned, "idxprom"); + + // We know that the pointer points to a type of the correct size, unless the + // size is a VLA. + if (!E->getType()->isConstantSizeType()) + assert(0 && "VLA idx not implemented"); + return LValue::MakeAddr(Builder.CreateGEP(Base, Idx, "arrayidx")); +} + +//===--------------------------------------------------------------------===// +// Expression Emission +//===--------------------------------------------------------------------===// + +RValue CodeGenFunction::EmitExpr(const Expr *E) { + assert(E && "Null expression?"); + + switch (E->getStmtClass()) { + default: + fprintf(stderr, "Unimplemented expr!\n"); + E->dump(); + return RValue::get(llvm::UndefValue::get(llvm::Type::Int32Ty)); + + // l-values. + case Expr::DeclRefExprClass: + // DeclRef's of EnumConstantDecl's are simple rvalues. + if (const EnumConstantDecl *EC = + dyn_cast<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl())) + return RValue::get(llvm::ConstantInt::get(EC->getInitVal())); + return EmitLoadOfLValue(E); + case Expr::ArraySubscriptExprClass: + return EmitArraySubscriptExprRV(cast<ArraySubscriptExpr>(E)); + case Expr::StringLiteralClass: + return RValue::get(EmitLValue(E).getAddress()); + + // Leaf expressions. + case Expr::IntegerLiteralClass: + return EmitIntegerLiteral(cast<IntegerLiteral>(E)); + case Expr::FloatingLiteralClass: + return EmitFloatingLiteral(cast<FloatingLiteral>(E)); + + // Operators. + case Expr::ParenExprClass: + return EmitExpr(cast<ParenExpr>(E)->getSubExpr()); + case Expr::UnaryOperatorClass: + return EmitUnaryOperator(cast<UnaryOperator>(E)); + case Expr::CastExprClass: + return EmitCastExpr(cast<CastExpr>(E)); + case Expr::CallExprClass: + return EmitCallExpr(cast<CallExpr>(E)); + case Expr::BinaryOperatorClass: + return EmitBinaryOperator(cast<BinaryOperator>(E)); + } + +} + +RValue CodeGenFunction::EmitIntegerLiteral(const IntegerLiteral *E) { + return RValue::get(llvm::ConstantInt::get(E->getValue())); +} +RValue CodeGenFunction::EmitFloatingLiteral(const FloatingLiteral *E) { + return RValue::get(llvm::ConstantFP::get(ConvertType(E->getType()), + E->getValue())); +} + + +RValue CodeGenFunction::EmitArraySubscriptExprRV(const ArraySubscriptExpr *E) { + // Emit subscript expressions in rvalue context's. For most cases, this just + // loads the lvalue formed by the subscript expr. However, we have to be + // careful, because the base of a vector subscript is occasionally an rvalue, + // so we can't get it as an lvalue. + if (!E->getBase()->getType()->isVectorType()) + return EmitLoadOfLValue(E); + + // Handle the vector case. The base must be a vector, the index must be an + // integer value. + QualType BaseTy, IdxTy; + llvm::Value *Base = + EmitExprWithUsualUnaryConversions(E->getBase(), BaseTy).getVal(); + llvm::Value *Idx = + EmitExprWithUsualUnaryConversions(E->getIdx(), IdxTy).getVal(); + + // FIXME: Convert Idx to i32 type. + + return RValue::get(Builder.CreateExtractElement(Base, Idx, "vecext")); +} + + +RValue CodeGenFunction::EmitCastExpr(const CastExpr *E) { + QualType SrcTy; + RValue Src = EmitExprWithUsualUnaryConversions(E->getSubExpr(), SrcTy); + + // If the destination is void, just evaluate the source. + if (E->getType()->isVoidType()) + return RValue::getAggregate(0); + + return EmitConversion(Src, SrcTy, E->getType()); +} + +RValue CodeGenFunction::EmitCallExpr(const CallExpr *E) { + QualType CalleeTy; + llvm::Value *Callee = + EmitExprWithUsualUnaryConversions(E->getCallee(), CalleeTy).getVal(); + + // The callee type will always be a pointer to function type, get the function + // type. + CalleeTy = cast<PointerType>(CalleeTy.getCanonicalType())->getPointeeType(); + + // Get information about the argument types. + FunctionTypeProto::arg_type_iterator ArgTyIt = 0, ArgTyEnd = 0; + + // Calling unprototyped functions provides no argument info. + if (const FunctionTypeProto *FTP = dyn_cast<FunctionTypeProto>(CalleeTy)) { + ArgTyIt = FTP->arg_type_begin(); + ArgTyEnd = FTP->arg_type_end(); + } + + llvm::SmallVector<llvm::Value*, 16> Args; + + // FIXME: Handle struct return. + for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) { + QualType ArgTy; + RValue ArgVal = EmitExprWithUsualUnaryConversions(E->getArg(i), ArgTy); + + // If this argument has prototype information, convert it. + if (ArgTyIt != ArgTyEnd) { + ArgVal = EmitConversion(ArgVal, ArgTy, *ArgTyIt++); + } else { + // Otherwise, if passing through "..." or to a function with no prototype, + // perform the "default argument promotions" (C99 6.5.2.2p6), which + // includes the usual unary conversions, but also promotes float to + // double. + if (const BuiltinType *BT = + dyn_cast<BuiltinType>(ArgTy.getCanonicalType())) { + if (BT->getKind() == BuiltinType::Float) + ArgVal = RValue::get(Builder.CreateFPExt(ArgVal.getVal(), + llvm::Type::DoubleTy,"tmp")); + } + } + + + if (ArgVal.isScalar()) + Args.push_back(ArgVal.getVal()); + else // Pass by-address. FIXME: Set attribute bit on call. + Args.push_back(ArgVal.getAggregateAddr()); + } + + llvm::Value *V = Builder.CreateCall(Callee, &Args[0], Args.size()); + if (V->getType() != llvm::Type::VoidTy) + V->setName("call"); + + // FIXME: Struct return; + return RValue::get(V); +} + + +//===----------------------------------------------------------------------===// +// Unary Operator Emission +//===----------------------------------------------------------------------===// + +RValue CodeGenFunction::EmitExprWithUsualUnaryConversions(const Expr *E, + QualType &ResTy) { + ResTy = E->getType().getCanonicalType(); + + if (isa<FunctionType>(ResTy)) { // C99 6.3.2.1p4 + // Functions are promoted to their address. + ResTy = getContext().getPointerType(ResTy); + return RValue::get(EmitLValue(E).getAddress()); + } else if (const ArrayType *ary = dyn_cast<ArrayType>(ResTy)) { + // C99 6.3.2.1p3 + ResTy = getContext().getPointerType(ary->getElementType()); + + // FIXME: For now we assume that all source arrays map to LLVM arrays. This + // will not true when we add support for VLAs. + llvm::Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays. + + assert(isa<llvm::PointerType>(V->getType()) && + isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType()) + ->getElementType()) && + "Doesn't support VLAs yet!"); + llvm::Constant *Idx0 = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0); + return RValue::get(Builder.CreateGEP(V, Idx0, Idx0, "arraydecay")); + } else if (ResTy->isPromotableIntegerType()) { // C99 6.3.1.1p2 + // FIXME: this probably isn't right, pending clarification from Steve. + llvm::Value *Val = EmitExpr(E).getVal(); + + // If the input is a signed integer, sign extend to the destination. + if (ResTy->isSignedIntegerType()) { + Val = Builder.CreateSExt(Val, LLVMIntTy, "promote"); + } else { + // This handles unsigned types, including bool. + Val = Builder.CreateZExt(Val, LLVMIntTy, "promote"); + } + ResTy = getContext().IntTy; + + return RValue::get(Val); + } + + // Otherwise, this is a float, double, int, struct, etc. + return EmitExpr(E); +} + + +RValue CodeGenFunction::EmitUnaryOperator(const UnaryOperator *E) { + switch (E->getOpcode()) { + default: + printf("Unimplemented unary expr!\n"); + E->dump(); + return RValue::get(llvm::UndefValue::get(llvm::Type::Int32Ty)); + // FIXME: pre/post inc/dec + case UnaryOperator::AddrOf: return EmitUnaryAddrOf(E); + case UnaryOperator::Deref : return EmitLoadOfLValue(E); + case UnaryOperator::Plus : return EmitUnaryPlus(E); + case UnaryOperator::Minus : return EmitUnaryMinus(E); + case UnaryOperator::Not : return EmitUnaryNot(E); + case UnaryOperator::LNot : return EmitUnaryLNot(E); + // FIXME: SIZEOF/ALIGNOF(expr). + // FIXME: real/imag + case UnaryOperator::Extension: return EmitExpr(E->getSubExpr()); + } +} + +/// C99 6.5.3.2 +RValue CodeGenFunction::EmitUnaryAddrOf(const UnaryOperator *E) { + // The address of the operand is just its lvalue. It cannot be a bitfield. + return RValue::get(EmitLValue(E->getSubExpr()).getAddress()); +} + +RValue CodeGenFunction::EmitUnaryPlus(const UnaryOperator *E) { + // Unary plus just performs promotions on its arithmetic operand. + QualType Ty; + return EmitExprWithUsualUnaryConversions(E->getSubExpr(), Ty); +} + +RValue CodeGenFunction::EmitUnaryMinus(const UnaryOperator *E) { + // Unary minus performs promotions, then negates its arithmetic operand. + QualType Ty; + RValue V = EmitExprWithUsualUnaryConversions(E->getSubExpr(), Ty); + + if (V.isScalar()) + return RValue::get(Builder.CreateNeg(V.getVal(), "neg")); + + assert(0 && "FIXME: This doesn't handle complex operands yet"); +} + +RValue CodeGenFunction::EmitUnaryNot(const UnaryOperator *E) { + // Unary not performs promotions, then complements its integer operand. + QualType Ty; + RValue V = EmitExprWithUsualUnaryConversions(E->getSubExpr(), Ty); + + if (V.isScalar()) + return RValue::get(Builder.CreateNot(V.getVal(), "neg")); + + assert(0 && "FIXME: This doesn't handle integer complex operands yet (GNU)"); +} + + +/// C99 6.5.3.3 +RValue CodeGenFunction::EmitUnaryLNot(const UnaryOperator *E) { + // Compare operand to zero. + llvm::Value *BoolVal = EvaluateExprAsBool(E->getSubExpr()); + + // Invert value. + // TODO: Could dynamically modify easy computations here. For example, if + // the operand is an icmp ne, turn into icmp eq. + BoolVal = Builder.CreateNot(BoolVal, "lnot"); + + // ZExt result to int. + return RValue::get(Builder.CreateZExt(BoolVal, LLVMIntTy, "lnot.ext")); +} + + +//===--------------------------------------------------------------------===// +// Binary Operator Emission +//===--------------------------------------------------------------------===// + +// FIXME describe. +QualType CodeGenFunction:: +EmitUsualArithmeticConversions(const BinaryOperator *E, RValue &LHS, + RValue &RHS) { + QualType LHSType, RHSType; + LHS = EmitExprWithUsualUnaryConversions(E->getLHS(), LHSType); + RHS = EmitExprWithUsualUnaryConversions(E->getRHS(), RHSType); + + // If both operands have the same source type, we're done already. + if (LHSType == RHSType) return LHSType; + + // If either side is a non-arithmetic type (e.g. a pointer), we are done. + // The caller can deal with this (e.g. pointer + int). + if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType()) + return LHSType; + + // At this point, we have two different arithmetic types. + + // Handle complex types first (C99 6.3.1.8p1). + if (LHSType->isComplexType() || RHSType->isComplexType()) { + assert(0 && "FIXME: complex types unimp"); +#if 0 + // if we have an integer operand, the result is the complex type. + if (rhs->isIntegerType()) + return lhs; + if (lhs->isIntegerType()) + return rhs; + return Context.maxComplexType(lhs, rhs); +#endif + } + + // If neither operand is complex, they must be scalars. + llvm::Value *LHSV = LHS.getVal(); + llvm::Value *RHSV = RHS.getVal(); + + // If the LLVM types are already equal, then they only differed in sign, or it + // was something like char/signed char or double/long double. + if (LHSV->getType() == RHSV->getType()) + return LHSType; + + // Now handle "real" floating types (i.e. float, double, long double). + if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType()) { + // if we have an integer operand, the result is the real floating type, and + // the integer converts to FP. + if (RHSType->isIntegerType()) { + // Promote the RHS to an FP type of the LHS, with the sign following the + // RHS. + if (RHSType->isSignedIntegerType()) + RHS = RValue::get(Builder.CreateSIToFP(RHSV,LHSV->getType(),"promote")); + else + RHS = RValue::get(Builder.CreateUIToFP(RHSV,LHSV->getType(),"promote")); + return LHSType; + } + + if (LHSType->isIntegerType()) { + // Promote the LHS to an FP type of the RHS, with the sign following the + // LHS. + if (LHSType->isSignedIntegerType()) + LHS = RValue::get(Builder.CreateSIToFP(LHSV,RHSV->getType(),"promote")); + else + LHS = RValue::get(Builder.CreateUIToFP(LHSV,RHSV->getType(),"promote")); + return RHSType; + } + + // Otherwise, they are two FP types. Promote the smaller operand to the + // bigger result. + QualType BiggerType = ASTContext::maxFloatingType(LHSType, RHSType); + + if (BiggerType == LHSType) + RHS = RValue::get(Builder.CreateFPExt(RHSV, LHSV->getType(), "promote")); + else + LHS = RValue::get(Builder.CreateFPExt(LHSV, RHSV->getType(), "promote")); + return BiggerType; + } + + // Finally, we have two integer types that are different according to C. Do + // a sign or zero extension if needed. + + // Otherwise, one type is smaller than the other. + QualType ResTy = ASTContext::maxIntegerType(LHSType, RHSType); + + if (LHSType == ResTy) { + if (RHSType->isSignedIntegerType()) + RHS = RValue::get(Builder.CreateSExt(RHSV, LHSV->getType(), "promote")); + else + RHS = RValue::get(Builder.CreateZExt(RHSV, LHSV->getType(), "promote")); + } else { + assert(RHSType == ResTy && "Unknown conversion"); + if (LHSType->isSignedIntegerType()) + LHS = RValue::get(Builder.CreateSExt(LHSV, RHSV->getType(), "promote")); + else + LHS = RValue::get(Builder.CreateZExt(LHSV, RHSV->getType(), "promote")); + } + return ResTy; +} + +/// EmitCompoundAssignmentOperands - Compound assignment operations (like +=) +/// are strange in that the result of the operation is not the same type as the +/// intermediate computation. This function emits the LHS and RHS operands of +/// the compound assignment, promoting them to their common computation type. +/// +/// Since the LHS is an lvalue, and the result is stored back through it, we +/// return the lvalue as well as the LHS/RHS rvalues. On return, the LHS and +/// RHS values are both in the computation type for the operator. +void CodeGenFunction:: +EmitCompoundAssignmentOperands(const CompoundAssignOperator *E, + LValue &LHSLV, RValue &LHS, RValue &RHS) { + LHSLV = EmitLValue(E->getLHS()); + + // Load the LHS and RHS operands. + QualType LHSTy = E->getLHS()->getType(); + LHS = EmitLoadOfLValue(LHSLV, LHSTy); + QualType RHSTy; + RHS = EmitExprWithUsualUnaryConversions(E->getRHS(), RHSTy); + + // Shift operands do the usual unary conversions, but do not do the binary + // conversions. + if (E->isShiftAssignOp()) { + // FIXME: This is broken. Implicit conversions should be made explicit, + // so that this goes away. This causes us to reload the LHS. + LHS = EmitExprWithUsualUnaryConversions(E->getLHS(), LHSTy); + } + + // Convert the LHS and RHS to the common evaluation type. + LHS = EmitConversion(LHS, LHSTy, E->getComputationType()); + RHS = EmitConversion(RHS, RHSTy, E->getComputationType()); +} + +/// EmitCompoundAssignmentResult - Given a result value in the computation type, +/// truncate it down to the actual result type, store it through the LHS lvalue, +/// and return it. +RValue CodeGenFunction:: +EmitCompoundAssignmentResult(const CompoundAssignOperator *E, + LValue LHSLV, RValue ResV) { + + // Truncate back to the destination type. + if (E->getComputationType() != E->getType()) + ResV = EmitConversion(ResV, E->getComputationType(), E->getType()); + + // Store the result value into the LHS. + EmitStoreThroughLValue(ResV, LHSLV, E->getType()); + + // Return the result. + return ResV; +} + + +RValue CodeGenFunction::EmitBinaryOperator(const BinaryOperator *E) { + RValue LHS, RHS; + switch (E->getOpcode()) { + default: + fprintf(stderr, "Unimplemented binary expr!\n"); + E->dump(); + return RValue::get(llvm::UndefValue::get(llvm::Type::Int32Ty)); + case BinaryOperator::Mul: + EmitUsualArithmeticConversions(E, LHS, RHS); + return EmitMul(LHS, RHS, E->getType()); + case BinaryOperator::Div: + EmitUsualArithmeticConversions(E, LHS, RHS); + return EmitDiv(LHS, RHS, E->getType()); + case BinaryOperator::Rem: + EmitUsualArithmeticConversions(E, LHS, RHS); + return EmitRem(LHS, RHS, E->getType()); + case BinaryOperator::Add: + // FIXME: This doesn't handle ptr+int etc yet. + EmitUsualArithmeticConversions(E, LHS, RHS); + return EmitAdd(LHS, RHS, E->getType()); + case BinaryOperator::Sub: + // FIXME: This doesn't handle ptr-int etc yet. + EmitUsualArithmeticConversions(E, LHS, RHS); + return EmitSub(LHS, RHS, E->getType()); + case BinaryOperator::Shl: + EmitShiftOperands(E, LHS, RHS); + return EmitShl(LHS, RHS, E->getType()); + case BinaryOperator::Shr: + EmitShiftOperands(E, LHS, RHS); + return EmitShr(LHS, RHS, E->getType()); + case BinaryOperator::And: + EmitUsualArithmeticConversions(E, LHS, RHS); + return EmitAnd(LHS, RHS, E->getType()); + case BinaryOperator::Xor: + EmitUsualArithmeticConversions(E, LHS, RHS); + return EmitXor(LHS, RHS, E->getType()); + case BinaryOperator::Or : + EmitUsualArithmeticConversions(E, LHS, RHS); + return EmitOr(LHS, RHS, E->getType()); + case BinaryOperator::LAnd: return EmitBinaryLAnd(E); + case BinaryOperator::LOr: return EmitBinaryLOr(E); + case BinaryOperator::LT: + return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_ULT, + llvm::ICmpInst::ICMP_SLT, + llvm::FCmpInst::FCMP_OLT); + case BinaryOperator::GT: + return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_UGT, + llvm::ICmpInst::ICMP_SGT, + llvm::FCmpInst::FCMP_OGT); + case BinaryOperator::LE: + return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_ULE, + llvm::ICmpInst::ICMP_SLE, + llvm::FCmpInst::FCMP_OLE); + case BinaryOperator::GE: + return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_UGE, + llvm::ICmpInst::ICMP_SGE, + llvm::FCmpInst::FCMP_OGE); + case BinaryOperator::EQ: + return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_EQ, + llvm::ICmpInst::ICMP_EQ, + llvm::FCmpInst::FCMP_OEQ); + case BinaryOperator::NE: + return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_NE, + llvm::ICmpInst::ICMP_NE, + llvm::FCmpInst::FCMP_UNE); + case BinaryOperator::Assign: + return EmitBinaryAssign(E); + + case BinaryOperator::MulAssign: { + const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E); + LValue LHSLV; + EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS); + LHS = EmitMul(LHS, RHS, CAO->getComputationType()); + return EmitCompoundAssignmentResult(CAO, LHSLV, LHS); + } + case BinaryOperator::DivAssign: { + const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E); + LValue LHSLV; + EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS); + LHS = EmitDiv(LHS, RHS, CAO->getComputationType()); + return EmitCompoundAssignmentResult(CAO, LHSLV, LHS); + } + case BinaryOperator::RemAssign: { + const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E); + LValue LHSLV; + EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS); + LHS = EmitRem(LHS, RHS, CAO->getComputationType()); + return EmitCompoundAssignmentResult(CAO, LHSLV, LHS); + } + case BinaryOperator::AddAssign: { + const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E); + LValue LHSLV; + EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS); + LHS = EmitAdd(LHS, RHS, CAO->getComputationType()); + return EmitCompoundAssignmentResult(CAO, LHSLV, LHS); + } + case BinaryOperator::SubAssign: { + const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E); + LValue LHSLV; + EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS); + LHS = EmitSub(LHS, RHS, CAO->getComputationType()); + return EmitCompoundAssignmentResult(CAO, LHSLV, LHS); + } + case BinaryOperator::ShlAssign: { + const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E); + LValue LHSLV; + EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS); + LHS = EmitShl(LHS, RHS, CAO->getComputationType()); + return EmitCompoundAssignmentResult(CAO, LHSLV, LHS); + } + case BinaryOperator::ShrAssign: { + const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E); + LValue LHSLV; + EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS); + LHS = EmitShr(LHS, RHS, CAO->getComputationType()); + return EmitCompoundAssignmentResult(CAO, LHSLV, LHS); + } + case BinaryOperator::AndAssign: { + const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E); + LValue LHSLV; + EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS); + LHS = EmitAnd(LHS, RHS, CAO->getComputationType()); + return EmitCompoundAssignmentResult(CAO, LHSLV, LHS); + } + case BinaryOperator::OrAssign: { + const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E); + LValue LHSLV; + EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS); + LHS = EmitOr(LHS, RHS, CAO->getComputationType()); + return EmitCompoundAssignmentResult(CAO, LHSLV, LHS); + } + case BinaryOperator::XorAssign: { + const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E); + LValue LHSLV; + EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS); + LHS = EmitXor(LHS, RHS, CAO->getComputationType()); + return EmitCompoundAssignmentResult(CAO, LHSLV, LHS); + } + case BinaryOperator::Comma: return EmitBinaryComma(E); + } +} + +RValue CodeGenFunction::EmitMul(RValue LHS, RValue RHS, QualType ResTy) { + if (LHS.isScalar()) + return RValue::get(Builder.CreateMul(LHS.getVal(), RHS.getVal(), "mul")); + + assert(0 && "FIXME: This doesn't handle complex operands yet"); +} + +RValue CodeGenFunction::EmitDiv(RValue LHS, RValue RHS, QualType ResTy) { + if (LHS.isScalar()) { + llvm::Value *RV; + if (LHS.getVal()->getType()->isFloatingPoint()) + RV = Builder.CreateFDiv(LHS.getVal(), RHS.getVal(), "div"); + else if (ResTy->isUnsignedIntegerType()) + RV = Builder.CreateUDiv(LHS.getVal(), RHS.getVal(), "div"); + else + RV = Builder.CreateSDiv(LHS.getVal(), RHS.getVal(), "div"); + return RValue::get(RV); + } + assert(0 && "FIXME: This doesn't handle complex operands yet"); +} + +RValue CodeGenFunction::EmitRem(RValue LHS, RValue RHS, QualType ResTy) { + if (LHS.isScalar()) { + llvm::Value *RV; + // Rem in C can't be a floating point type: C99 6.5.5p2. + if (ResTy->isUnsignedIntegerType()) + RV = Builder.CreateURem(LHS.getVal(), RHS.getVal(), "rem"); + else + RV = Builder.CreateSRem(LHS.getVal(), RHS.getVal(), "rem"); + return RValue::get(RV); + } + + assert(0 && "FIXME: This doesn't handle complex operands yet"); +} + +RValue CodeGenFunction::EmitAdd(RValue LHS, RValue RHS, QualType ResTy) { + if (LHS.isScalar()) + return RValue::get(Builder.CreateAdd(LHS.getVal(), RHS.getVal(), "add")); + + // Otherwise, this must be a complex number. + llvm::Value *LHSR, *LHSI, *RHSR, *RHSI; + + EmitLoadOfComplex(LHS, LHSR, LHSI); + EmitLoadOfComplex(RHS, RHSR, RHSI); + + llvm::Value *ResR = Builder.CreateAdd(LHSR, RHSR, "add.r"); + llvm::Value *ResI = Builder.CreateAdd(LHSI, RHSI, "add.i"); + + llvm::Value *Res = CreateTempAlloca(ConvertType(ResTy)); + EmitStoreOfComplex(ResR, ResI, Res); + return RValue::getAggregate(Res); +} + +RValue CodeGenFunction::EmitSub(RValue LHS, RValue RHS, QualType ResTy) { + if (LHS.isScalar()) + return RValue::get(Builder.CreateSub(LHS.getVal(), RHS.getVal(), "sub")); + + assert(0 && "FIXME: This doesn't handle complex operands yet"); +} + +void CodeGenFunction::EmitShiftOperands(const BinaryOperator *E, + RValue &LHS, RValue &RHS) { + // For shifts, integer promotions are performed, but the usual arithmetic + // conversions are not. The LHS and RHS need not have the same type. + QualType ResTy; + LHS = EmitExprWithUsualUnaryConversions(E->getLHS(), ResTy); + RHS = EmitExprWithUsualUnaryConversions(E->getRHS(), ResTy); +} + + +RValue CodeGenFunction::EmitShl(RValue LHSV, RValue RHSV, QualType ResTy) { + llvm::Value *LHS = LHSV.getVal(), *RHS = RHSV.getVal(); + + // LLVM requires the LHS and RHS to be the same type, promote or truncate the + // RHS to the same size as the LHS. + if (LHS->getType() != RHS->getType()) + RHS = Builder.CreateIntCast(RHS, LHS->getType(), false, "sh_prom"); + + return RValue::get(Builder.CreateShl(LHS, RHS, "shl")); +} + +RValue CodeGenFunction::EmitShr(RValue LHSV, RValue RHSV, QualType ResTy) { + llvm::Value *LHS = LHSV.getVal(), *RHS = RHSV.getVal(); + + // LLVM requires the LHS and RHS to be the same type, promote or truncate the + // RHS to the same size as the LHS. + if (LHS->getType() != RHS->getType()) + RHS = Builder.CreateIntCast(RHS, LHS->getType(), false, "sh_prom"); + + if (ResTy->isUnsignedIntegerType()) + return RValue::get(Builder.CreateLShr(LHS, RHS, "shr")); + else + return RValue::get(Builder.CreateAShr(LHS, RHS, "shr")); +} + +RValue CodeGenFunction::EmitBinaryCompare(const BinaryOperator *E, + unsigned UICmpOpc, unsigned SICmpOpc, + unsigned FCmpOpc) { + RValue LHS, RHS; + EmitUsualArithmeticConversions(E, LHS, RHS); + + llvm::Value *Result; + if (LHS.isScalar()) { + if (LHS.getVal()->getType()->isFloatingPoint()) { + Result = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, + LHS.getVal(), RHS.getVal(), "cmp"); + } else if (E->getLHS()->getType()->isUnsignedIntegerType()) { + // FIXME: This check isn't right for "unsigned short < int" where ushort + // promotes to int and does a signed compare. + Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, + LHS.getVal(), RHS.getVal(), "cmp"); + } else { + // Signed integers and pointers. + Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc, + LHS.getVal(), RHS.getVal(), "cmp"); + } + } else { + // Struct/union/complex + assert(0 && "Aggregate comparisons not implemented yet!"); + } + + // ZExt result to int. + return RValue::get(Builder.CreateZExt(Result, LLVMIntTy, "cmp.ext")); +} + +RValue CodeGenFunction::EmitAnd(RValue LHS, RValue RHS, QualType ResTy) { + if (LHS.isScalar()) + return RValue::get(Builder.CreateAnd(LHS.getVal(), RHS.getVal(), "and")); + + assert(0 && "FIXME: This doesn't handle complex integer operands yet (GNU)"); +} + +RValue CodeGenFunction::EmitXor(RValue LHS, RValue RHS, QualType ResTy) { + if (LHS.isScalar()) + return RValue::get(Builder.CreateXor(LHS.getVal(), RHS.getVal(), "xor")); + + assert(0 && "FIXME: This doesn't handle complex integer operands yet (GNU)"); +} + +RValue CodeGenFunction::EmitOr(RValue LHS, RValue RHS, QualType ResTy) { + if (LHS.isScalar()) + return RValue::get(Builder.CreateOr(LHS.getVal(), RHS.getVal(), "or")); + + assert(0 && "FIXME: This doesn't handle complex integer operands yet (GNU)"); +} + +RValue CodeGenFunction::EmitBinaryLAnd(const BinaryOperator *E) { + llvm::Value *LHSCond = EvaluateExprAsBool(E->getLHS()); + + llvm::BasicBlock *ContBlock = new llvm::BasicBlock("land_cont"); + llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("land_rhs"); + + llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock(); + Builder.CreateCondBr(LHSCond, RHSBlock, ContBlock); + + EmitBlock(RHSBlock); + llvm::Value *RHSCond = EvaluateExprAsBool(E->getRHS()); + + // Reaquire the RHS block, as there may be subblocks inserted. + RHSBlock = Builder.GetInsertBlock(); + EmitBlock(ContBlock); + + // Create a PHI node. If we just evaluted the LHS condition, the result is + // false. If we evaluated both, the result is the RHS condition. + llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "land"); + PN->reserveOperandSpace(2); + PN->addIncoming(llvm::ConstantInt::getFalse(), OrigBlock); + PN->addIncoming(RHSCond, RHSBlock); + + // ZExt result to int. + return RValue::get(Builder.CreateZExt(PN, LLVMIntTy, "land.ext")); +} + +RValue CodeGenFunction::EmitBinaryLOr(const BinaryOperator *E) { + llvm::Value *LHSCond = EvaluateExprAsBool(E->getLHS()); + + llvm::BasicBlock *ContBlock = new llvm::BasicBlock("lor_cont"); + llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("lor_rhs"); + + llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock(); + Builder.CreateCondBr(LHSCond, ContBlock, RHSBlock); + + EmitBlock(RHSBlock); + llvm::Value *RHSCond = EvaluateExprAsBool(E->getRHS()); + + // Reaquire the RHS block, as there may be subblocks inserted. + RHSBlock = Builder.GetInsertBlock(); + EmitBlock(ContBlock); + + // Create a PHI node. If we just evaluted the LHS condition, the result is + // true. If we evaluated both, the result is the RHS condition. + llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "lor"); + PN->reserveOperandSpace(2); + PN->addIncoming(llvm::ConstantInt::getTrue(), OrigBlock); + PN->addIncoming(RHSCond, RHSBlock); + + // ZExt result to int. + return RValue::get(Builder.CreateZExt(PN, LLVMIntTy, "lor.ext")); +} + +RValue CodeGenFunction::EmitBinaryAssign(const BinaryOperator *E) { + LValue LHS = EmitLValue(E->getLHS()); + + QualType RHSTy; + RValue RHS = EmitExprWithUsualUnaryConversions(E->getRHS(), RHSTy); + + // Convert the RHS to the type of the LHS. + RHS = EmitConversion(RHS, RHSTy, E->getType()); + + // Store the value into the LHS. + EmitStoreThroughLValue(RHS, LHS, E->getType()); + + // Return the converted RHS. + return RHS; +} + + +RValue CodeGenFunction::EmitBinaryComma(const BinaryOperator *E) { + EmitExpr(E->getLHS()); + return EmitExpr(E->getRHS()); +} |