aboutsummaryrefslogtreecommitdiff
path: root/lib/StaticAnalyzer/SimpleSValBuilder.cpp
diff options
context:
space:
mode:
authorArgyrios Kyrtzidis <akyrtzi@gmail.com>2011-02-08 22:30:36 +0000
committerArgyrios Kyrtzidis <akyrtzi@gmail.com>2011-02-08 22:30:36 +0000
commit811d75ee35b8b061a9b10a4e7b81e0c0eaf739c3 (patch)
tree76064238268b854e8698c225b3eb44eefedd6559 /lib/StaticAnalyzer/SimpleSValBuilder.cpp
parenta12a51701794a5ce96d47513ed186922e41eadd5 (diff)
[analyzer] Move the files in lib/StaticAnalyzer to lib/StaticAnalyzer/Core.
Eventually there will also be a lib/StaticAnalyzer/Frontend that will handle initialization and checker registration. Yet another library to avoid cyclic dependencies between Core and Checkers. git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@125124 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/StaticAnalyzer/SimpleSValBuilder.cpp')
-rw-r--r--lib/StaticAnalyzer/SimpleSValBuilder.cpp917
1 files changed, 0 insertions, 917 deletions
diff --git a/lib/StaticAnalyzer/SimpleSValBuilder.cpp b/lib/StaticAnalyzer/SimpleSValBuilder.cpp
deleted file mode 100644
index 6c65da4635..0000000000
--- a/lib/StaticAnalyzer/SimpleSValBuilder.cpp
+++ /dev/null
@@ -1,917 +0,0 @@
-// SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*-
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines SimpleSValBuilder, a basic implementation of SValBuilder.
-//
-//===----------------------------------------------------------------------===//
-
-#include "clang/StaticAnalyzer/PathSensitive/SValBuilder.h"
-#include "clang/StaticAnalyzer/PathSensitive/GRState.h"
-
-using namespace clang;
-using namespace ento;
-
-namespace {
-class SimpleSValBuilder : public SValBuilder {
-protected:
- virtual SVal evalCastNL(NonLoc val, QualType castTy);
- virtual SVal evalCastL(Loc val, QualType castTy);
-
-public:
- SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
- GRStateManager &stateMgr)
- : SValBuilder(alloc, context, stateMgr) {}
- virtual ~SimpleSValBuilder() {}
-
- virtual SVal evalMinus(NonLoc val);
- virtual SVal evalComplement(NonLoc val);
- virtual SVal evalBinOpNN(const GRState *state, BinaryOperator::Opcode op,
- NonLoc lhs, NonLoc rhs, QualType resultTy);
- virtual SVal evalBinOpLL(const GRState *state, BinaryOperator::Opcode op,
- Loc lhs, Loc rhs, QualType resultTy);
- virtual SVal evalBinOpLN(const GRState *state, BinaryOperator::Opcode op,
- Loc lhs, NonLoc rhs, QualType resultTy);
-
- /// getKnownValue - evaluates a given SVal. If the SVal has only one possible
- /// (integer) value, that value is returned. Otherwise, returns NULL.
- virtual const llvm::APSInt *getKnownValue(const GRState *state, SVal V);
-
- SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op,
- const llvm::APSInt &RHS, QualType resultTy);
-};
-} // end anonymous namespace
-
-SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
- ASTContext &context,
- GRStateManager &stateMgr) {
- return new SimpleSValBuilder(alloc, context, stateMgr);
-}
-
-//===----------------------------------------------------------------------===//
-// Transfer function for Casts.
-//===----------------------------------------------------------------------===//
-
-SVal SimpleSValBuilder::evalCastNL(NonLoc val, QualType castTy) {
-
- bool isLocType = Loc::IsLocType(castTy);
-
- if (nonloc::LocAsInteger *LI = dyn_cast<nonloc::LocAsInteger>(&val)) {
- if (isLocType)
- return LI->getLoc();
-
- // FIXME: Correctly support promotions/truncations.
- unsigned castSize = Context.getTypeSize(castTy);
- if (castSize == LI->getNumBits())
- return val;
- return makeLocAsInteger(LI->getLoc(), castSize);
- }
-
- if (const SymExpr *se = val.getAsSymbolicExpression()) {
- QualType T = Context.getCanonicalType(se->getType(Context));
- if (T == Context.getCanonicalType(castTy))
- return val;
-
- // FIXME: Remove this hack when we support symbolic truncation/extension.
- // HACK: If both castTy and T are integers, ignore the cast. This is
- // not a permanent solution. Eventually we want to precisely handle
- // extension/truncation of symbolic integers. This prevents us from losing
- // precision when we assign 'x = y' and 'y' is symbolic and x and y are
- // different integer types.
- if (T->isIntegerType() && castTy->isIntegerType())
- return val;
-
- return UnknownVal();
- }
-
- if (!isa<nonloc::ConcreteInt>(val))
- return UnknownVal();
-
- // Only handle casts from integers to integers.
- if (!isLocType && !castTy->isIntegerType())
- return UnknownVal();
-
- llvm::APSInt i = cast<nonloc::ConcreteInt>(val).getValue();
- i.setIsUnsigned(castTy->isUnsignedIntegerType() || Loc::IsLocType(castTy));
- i = i.extOrTrunc(Context.getTypeSize(castTy));
-
- if (isLocType)
- return makeIntLocVal(i);
- else
- return makeIntVal(i);
-}
-
-SVal SimpleSValBuilder::evalCastL(Loc val, QualType castTy) {
-
- // Casts from pointers -> pointers, just return the lval.
- //
- // Casts from pointers -> references, just return the lval. These
- // can be introduced by the frontend for corner cases, e.g
- // casting from va_list* to __builtin_va_list&.
- //
- if (Loc::IsLocType(castTy) || castTy->isReferenceType())
- return val;
-
- // FIXME: Handle transparent unions where a value can be "transparently"
- // lifted into a union type.
- if (castTy->isUnionType())
- return UnknownVal();
-
- if (castTy->isIntegerType()) {
- unsigned BitWidth = Context.getTypeSize(castTy);
-
- if (!isa<loc::ConcreteInt>(val))
- return makeLocAsInteger(val, BitWidth);
-
- llvm::APSInt i = cast<loc::ConcreteInt>(val).getValue();
- i.setIsUnsigned(castTy->isUnsignedIntegerType() || Loc::IsLocType(castTy));
- i = i.extOrTrunc(BitWidth);
- return makeIntVal(i);
- }
-
- // All other cases: return 'UnknownVal'. This includes casting pointers
- // to floats, which is probably badness it itself, but this is a good
- // intermediate solution until we do something better.
- return UnknownVal();
-}
-
-//===----------------------------------------------------------------------===//
-// Transfer function for unary operators.
-//===----------------------------------------------------------------------===//
-
-SVal SimpleSValBuilder::evalMinus(NonLoc val) {
- switch (val.getSubKind()) {
- case nonloc::ConcreteIntKind:
- return cast<nonloc::ConcreteInt>(val).evalMinus(*this);
- default:
- return UnknownVal();
- }
-}
-
-SVal SimpleSValBuilder::evalComplement(NonLoc X) {
- switch (X.getSubKind()) {
- case nonloc::ConcreteIntKind:
- return cast<nonloc::ConcreteInt>(X).evalComplement(*this);
- default:
- return UnknownVal();
- }
-}
-
-//===----------------------------------------------------------------------===//
-// Transfer function for binary operators.
-//===----------------------------------------------------------------------===//
-
-static BinaryOperator::Opcode NegateComparison(BinaryOperator::Opcode op) {
- switch (op) {
- default:
- assert(false && "Invalid opcode.");
- case BO_LT: return BO_GE;
- case BO_GT: return BO_LE;
- case BO_LE: return BO_GT;
- case BO_GE: return BO_LT;
- case BO_EQ: return BO_NE;
- case BO_NE: return BO_EQ;
- }
-}
-
-static BinaryOperator::Opcode ReverseComparison(BinaryOperator::Opcode op) {
- switch (op) {
- default:
- assert(false && "Invalid opcode.");
- case BO_LT: return BO_GT;
- case BO_GT: return BO_LT;
- case BO_LE: return BO_GE;
- case BO_GE: return BO_LE;
- case BO_EQ:
- case BO_NE:
- return op;
- }
-}
-
-SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS,
- BinaryOperator::Opcode op,
- const llvm::APSInt &RHS,
- QualType resultTy) {
- bool isIdempotent = false;
-
- // Check for a few special cases with known reductions first.
- switch (op) {
- default:
- // We can't reduce this case; just treat it normally.
- break;
- case BO_Mul:
- // a*0 and a*1
- if (RHS == 0)
- return makeIntVal(0, resultTy);
- else if (RHS == 1)
- isIdempotent = true;
- break;
- case BO_Div:
- // a/0 and a/1
- if (RHS == 0)
- // This is also handled elsewhere.
- return UndefinedVal();
- else if (RHS == 1)
- isIdempotent = true;
- break;
- case BO_Rem:
- // a%0 and a%1
- if (RHS == 0)
- // This is also handled elsewhere.
- return UndefinedVal();
- else if (RHS == 1)
- return makeIntVal(0, resultTy);
- break;
- case BO_Add:
- case BO_Sub:
- case BO_Shl:
- case BO_Shr:
- case BO_Xor:
- // a+0, a-0, a<<0, a>>0, a^0
- if (RHS == 0)
- isIdempotent = true;
- break;
- case BO_And:
- // a&0 and a&(~0)
- if (RHS == 0)
- return makeIntVal(0, resultTy);
- else if (RHS.isAllOnesValue())
- isIdempotent = true;
- break;
- case BO_Or:
- // a|0 and a|(~0)
- if (RHS == 0)
- isIdempotent = true;
- else if (RHS.isAllOnesValue()) {
- const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS);
- return nonloc::ConcreteInt(Result);
- }
- break;
- }
-
- // Idempotent ops (like a*1) can still change the type of an expression.
- // Wrap the LHS up in a NonLoc again and let evalCastNL do the dirty work.
- if (isIdempotent) {
- if (SymbolRef LHSSym = dyn_cast<SymbolData>(LHS))
- return evalCastNL(nonloc::SymbolVal(LHSSym), resultTy);
- return evalCastNL(nonloc::SymExprVal(LHS), resultTy);
- }
-
- // If we reach this point, the expression cannot be simplified.
- // Make a SymExprVal for the entire thing.
- return makeNonLoc(LHS, op, RHS, resultTy);
-}
-
-SVal SimpleSValBuilder::evalBinOpNN(const GRState *state,
- BinaryOperator::Opcode op,
- NonLoc lhs, NonLoc rhs,
- QualType resultTy) {
- // Handle trivial case where left-side and right-side are the same.
- if (lhs == rhs)
- switch (op) {
- default:
- break;
- case BO_EQ:
- case BO_LE:
- case BO_GE:
- return makeTruthVal(true, resultTy);
- case BO_LT:
- case BO_GT:
- case BO_NE:
- return makeTruthVal(false, resultTy);
- case BO_Xor:
- case BO_Sub:
- return makeIntVal(0, resultTy);
- case BO_Or:
- case BO_And:
- return evalCastNL(lhs, resultTy);
- }
-
- while (1) {
- switch (lhs.getSubKind()) {
- default:
- return UnknownVal();
- case nonloc::LocAsIntegerKind: {
- Loc lhsL = cast<nonloc::LocAsInteger>(lhs).getLoc();
- switch (rhs.getSubKind()) {
- case nonloc::LocAsIntegerKind:
- return evalBinOpLL(state, op, lhsL,
- cast<nonloc::LocAsInteger>(rhs).getLoc(),
- resultTy);
- case nonloc::ConcreteIntKind: {
- // Transform the integer into a location and compare.
- llvm::APSInt i = cast<nonloc::ConcreteInt>(rhs).getValue();
- i.setIsUnsigned(true);
- i = i.extOrTrunc(Context.getTypeSize(Context.VoidPtrTy));
- return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy);
- }
- default:
- switch (op) {
- case BO_EQ:
- return makeTruthVal(false, resultTy);
- case BO_NE:
- return makeTruthVal(true, resultTy);
- default:
- // This case also handles pointer arithmetic.
- return UnknownVal();
- }
- }
- }
- case nonloc::SymExprValKind: {
- nonloc::SymExprVal *selhs = cast<nonloc::SymExprVal>(&lhs);
-
- // Only handle LHS of the form "$sym op constant", at least for now.
- const SymIntExpr *symIntExpr =
- dyn_cast<SymIntExpr>(selhs->getSymbolicExpression());
-
- if (!symIntExpr)
- return UnknownVal();
-
- // Is this a logical not? (!x is represented as x == 0.)
- if (op == BO_EQ && rhs.isZeroConstant()) {
- // We know how to negate certain expressions. Simplify them here.
-
- BinaryOperator::Opcode opc = symIntExpr->getOpcode();
- switch (opc) {
- default:
- // We don't know how to negate this operation.
- // Just handle it as if it were a normal comparison to 0.
- break;
- case BO_LAnd:
- case BO_LOr:
- assert(false && "Logical operators handled by branching logic.");
- return UnknownVal();
- case BO_Assign:
- case BO_MulAssign:
- case BO_DivAssign:
- case BO_RemAssign:
- case BO_AddAssign:
- case BO_SubAssign:
- case BO_ShlAssign:
- case BO_ShrAssign:
- case BO_AndAssign:
- case BO_XorAssign:
- case BO_OrAssign:
- case BO_Comma:
- assert(false && "'=' and ',' operators handled by ExprEngine.");
- return UnknownVal();
- case BO_PtrMemD:
- case BO_PtrMemI:
- assert(false && "Pointer arithmetic not handled here.");
- return UnknownVal();
- case BO_LT:
- case BO_GT:
- case BO_LE:
- case BO_GE:
- case BO_EQ:
- case BO_NE:
- // Negate the comparison and make a value.
- opc = NegateComparison(opc);
- assert(symIntExpr->getType(Context) == resultTy);
- return makeNonLoc(symIntExpr->getLHS(), opc,
- symIntExpr->getRHS(), resultTy);
- }
- }
-
- // For now, only handle expressions whose RHS is a constant.
- const nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs);
- if (!rhsInt)
- return UnknownVal();
-
- // If both the LHS and the current expression are additive,
- // fold their constants.
- if (BinaryOperator::isAdditiveOp(op)) {
- BinaryOperator::Opcode lop = symIntExpr->getOpcode();
- if (BinaryOperator::isAdditiveOp(lop)) {
- // resultTy may not be the best type to convert to, but it's
- // probably the best choice in expressions with mixed type
- // (such as x+1U+2LL). The rules for implicit conversions should
- // choose a reasonable type to preserve the expression, and will
- // at least match how the value is going to be used.
- const llvm::APSInt &first =
- BasicVals.Convert(resultTy, symIntExpr->getRHS());
- const llvm::APSInt &second =
- BasicVals.Convert(resultTy, rhsInt->getValue());
- const llvm::APSInt *newRHS;
- if (lop == op)
- newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
- else
- newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);
- return MakeSymIntVal(symIntExpr->getLHS(), lop, *newRHS, resultTy);
- }
- }
-
- // Otherwise, make a SymExprVal out of the expression.
- return MakeSymIntVal(symIntExpr, op, rhsInt->getValue(), resultTy);
- }
- case nonloc::ConcreteIntKind: {
- const nonloc::ConcreteInt& lhsInt = cast<nonloc::ConcreteInt>(lhs);
-
- if (isa<nonloc::ConcreteInt>(rhs)) {
- return lhsInt.evalBinOp(*this, op, cast<nonloc::ConcreteInt>(rhs));
- } else {
- const llvm::APSInt& lhsValue = lhsInt.getValue();
-
- // Swap the left and right sides and flip the operator if doing so
- // allows us to better reason about the expression (this is a form
- // of expression canonicalization).
- // While we're at it, catch some special cases for non-commutative ops.
- NonLoc tmp = rhs;
- rhs = lhs;
- lhs = tmp;
-
- switch (op) {
- case BO_LT:
- case BO_GT:
- case BO_LE:
- case BO_GE:
- op = ReverseComparison(op);
- continue;
- case BO_EQ:
- case BO_NE:
- case BO_Add:
- case BO_Mul:
- case BO_And:
- case BO_Xor:
- case BO_Or:
- continue;
- case BO_Shr:
- if (lhsValue.isAllOnesValue() && lhsValue.isSigned())
- // At this point lhs and rhs have been swapped.
- return rhs;
- // FALL-THROUGH
- case BO_Shl:
- if (lhsValue == 0)
- // At this point lhs and rhs have been swapped.
- return rhs;
- return UnknownVal();
- default:
- return UnknownVal();
- }
- }
- }
- case nonloc::SymbolValKind: {
- nonloc::SymbolVal *slhs = cast<nonloc::SymbolVal>(&lhs);
- SymbolRef Sym = slhs->getSymbol();
- // Does the symbol simplify to a constant? If so, "fold" the constant
- // by setting 'lhs' to a ConcreteInt and try again.
- if (Sym->getType(Context)->isIntegerType())
- if (const llvm::APSInt *Constant = state->getSymVal(Sym)) {
- // The symbol evaluates to a constant. If necessary, promote the
- // folded constant (LHS) to the result type.
- const llvm::APSInt &lhs_I = BasicVals.Convert(resultTy, *Constant);
- lhs = nonloc::ConcreteInt(lhs_I);
-
- // Also promote the RHS (if necessary).
-
- // For shifts, it is not necessary to promote the RHS.
- if (BinaryOperator::isShiftOp(op))
- continue;
-
- // Other operators: do an implicit conversion. This shouldn't be
- // necessary once we support truncation/extension of symbolic values.
- if (nonloc::ConcreteInt *rhs_I = dyn_cast<nonloc::ConcreteInt>(&rhs)){
- rhs = nonloc::ConcreteInt(BasicVals.Convert(resultTy,
- rhs_I->getValue()));
- }
-
- continue;
- }
-
- // Is the RHS a symbol we can simplify?
- if (const nonloc::SymbolVal *srhs = dyn_cast<nonloc::SymbolVal>(&rhs)) {
- SymbolRef RSym = srhs->getSymbol();
- if (RSym->getType(Context)->isIntegerType()) {
- if (const llvm::APSInt *Constant = state->getSymVal(RSym)) {
- // The symbol evaluates to a constant.
- const llvm::APSInt &rhs_I = BasicVals.Convert(resultTy, *Constant);
- rhs = nonloc::ConcreteInt(rhs_I);
- }
- }
- }
-
- if (isa<nonloc::ConcreteInt>(rhs)) {
- return MakeSymIntVal(slhs->getSymbol(), op,
- cast<nonloc::ConcreteInt>(rhs).getValue(),
- resultTy);
- }
-
- return UnknownVal();
- }
- }
- }
-}
-
-// FIXME: all this logic will change if/when we have MemRegion::getLocation().
-SVal SimpleSValBuilder::evalBinOpLL(const GRState *state,
- BinaryOperator::Opcode op,
- Loc lhs, Loc rhs,
- QualType resultTy) {
- // Only comparisons and subtractions are valid operations on two pointers.
- // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15].
- // However, if a pointer is casted to an integer, evalBinOpNN may end up
- // calling this function with another operation (PR7527). We don't attempt to
- // model this for now, but it could be useful, particularly when the
- // "location" is actually an integer value that's been passed through a void*.
- if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub))
- return UnknownVal();
-
- // Special cases for when both sides are identical.
- if (lhs == rhs) {
- switch (op) {
- default:
- assert(false && "Unimplemented operation for two identical values");
- return UnknownVal();
- case BO_Sub:
- return makeZeroVal(resultTy);
- case BO_EQ:
- case BO_LE:
- case BO_GE:
- return makeTruthVal(true, resultTy);
- case BO_NE:
- case BO_LT:
- case BO_GT:
- return makeTruthVal(false, resultTy);
- }
- }
-
- switch (lhs.getSubKind()) {
- default:
- assert(false && "Ordering not implemented for this Loc.");
- return UnknownVal();
-
- case loc::GotoLabelKind:
- // The only thing we know about labels is that they're non-null.
- if (rhs.isZeroConstant()) {
- switch (op) {
- default:
- break;
- case BO_Sub:
- return evalCastL(lhs, resultTy);
- case BO_EQ:
- case BO_LE:
- case BO_LT:
- return makeTruthVal(false, resultTy);
- case BO_NE:
- case BO_GT:
- case BO_GE:
- return makeTruthVal(true, resultTy);
- }
- }
- // There may be two labels for the same location, and a function region may
- // have the same address as a label at the start of the function (depending
- // on the ABI).
- // FIXME: we can probably do a comparison against other MemRegions, though.
- // FIXME: is there a way to tell if two labels refer to the same location?
- return UnknownVal();
-
- case loc::ConcreteIntKind: {
- // If one of the operands is a symbol and the other is a constant,
- // build an expression for use by the constraint manager.
- if (SymbolRef rSym = rhs.getAsLocSymbol()) {
- // We can only build expressions with symbols on the left,
- // so we need a reversible operator.
- if (!BinaryOperator::isComparisonOp(op))
- return UnknownVal();
-
- const llvm::APSInt &lVal = cast<loc::ConcreteInt>(lhs).getValue();
- return makeNonLoc(rSym, ReverseComparison(op), lVal, resultTy);
- }
-
- // If both operands are constants, just perform the operation.
- if (loc::ConcreteInt *rInt = dyn_cast<loc::ConcreteInt>(&rhs)) {
- SVal ResultVal = cast<loc::ConcreteInt>(lhs).evalBinOp(BasicVals, op,
- *rInt);
- if (Loc *Result = dyn_cast<Loc>(&ResultVal))
- return evalCastL(*Result, resultTy);
- else
- return UnknownVal();
- }
-
- // Special case comparisons against NULL.
- // This must come after the test if the RHS is a symbol, which is used to
- // build constraints. The address of any non-symbolic region is guaranteed
- // to be non-NULL, as is any label.
- assert(isa<loc::MemRegionVal>(rhs) || isa<loc::GotoLabel>(rhs));
- if (lhs.isZeroConstant()) {
- switch (op) {
- default:
- break;
- case BO_EQ:
- case BO_GT:
- case BO_GE:
- return makeTruthVal(false, resultTy);
- case BO_NE:
- case BO_LT:
- case BO_LE:
- return makeTruthVal(true, resultTy);
- }
- }
-
- // Comparing an arbitrary integer to a region or label address is
- // completely unknowable.
- return UnknownVal();
- }
- case loc::MemRegionKind: {
- if (loc::ConcreteInt *rInt = dyn_cast<loc::ConcreteInt>(&rhs)) {
- // If one of the operands is a symbol and the other is a constant,
- // build an expression for use by the constraint manager.
- if (SymbolRef lSym = lhs.getAsLocSymbol())
- return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy);
-
- // Special case comparisons to NULL.
- // This must come after the test if the LHS is a symbol, which is used to
- // build constraints. The address of any non-symbolic region is guaranteed
- // to be non-NULL.
- if (rInt->isZeroConstant()) {
- switch (op) {
- default:
- break;
- case BO_Sub:
- return evalCastL(lhs, resultTy);
- case BO_EQ:
- case BO_LT:
- case BO_LE:
- return makeTruthVal(false, resultTy);
- case BO_NE:
- case BO_GT:
- case BO_GE:
- return makeTruthVal(true, resultTy);
- }
- }
-
- // Comparing a region to an arbitrary integer is completely unknowable.
- return UnknownVal();
- }
-
- // Get both values as regions, if possible.
- const MemRegion *LeftMR = lhs.getAsRegion();
- assert(LeftMR && "MemRegionKind SVal doesn't have a region!");
-
- const MemRegion *RightMR = rhs.getAsRegion();
- if (!RightMR)
- // The RHS is probably a label, which in theory could address a region.
- // FIXME: we can probably make a more useful statement about non-code
- // regions, though.
- return UnknownVal();
-
- // If both values wrap regions, see if they're from different base regions.
- const MemRegion *LeftBase = LeftMR->getBaseRegion();
- const MemRegion *RightBase = RightMR->getBaseRegion();
- if (LeftBase != RightBase &&
- !isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) {
- switch (op) {
- default:
- return UnknownVal();
- case BO_EQ:
- return makeTruthVal(false, resultTy);
- case BO_NE:
- return makeTruthVal(true, resultTy);
- }
- }
-
- // The two regions are from the same base region. See if they're both a
- // type of region we know how to compare.
-
- // FIXME: If/when there is a getAsRawOffset() for FieldRegions, this
- // ElementRegion path and the FieldRegion path below should be unified.
- if (const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR)) {
- // First see if the right region is also an ElementRegion.
- const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR);
- if (!RightER)
- return UnknownVal();
-
- // Next, see if the two ERs have the same super-region and matching types.
- // FIXME: This should do something useful even if the types don't match,
- // though if both indexes are constant the RegionRawOffset path will
- // give the correct answer.
- if (LeftER->getSuperRegion() == RightER->getSuperRegion() &&
- LeftER->getElementType() == RightER->getElementType()) {
- // Get the left index and cast it to the correct type.
- // If the index is unknown or undefined, bail out here.
- SVal LeftIndexVal = LeftER->getIndex();
- NonLoc *LeftIndex = dyn_cast<NonLoc>(&LeftIndexVal);
- if (!LeftIndex)
- return UnknownVal();
- LeftIndexVal = evalCastNL(*LeftIndex, resultTy);
- LeftIndex = dyn_cast<NonLoc>(&LeftIndexVal);
- if (!LeftIndex)
- return UnknownVal();
-
- // Do the same for the right index.
- SVal RightIndexVal = RightER->getIndex();
- NonLoc *RightIndex = dyn_cast<NonLoc>(&RightIndexVal);
- if (!RightIndex)
- return UnknownVal();
- RightIndexVal = evalCastNL(*RightIndex, resultTy);
- RightIndex = dyn_cast<NonLoc>(&RightIndexVal);
- if (!RightIndex)
- return UnknownVal();
-
- // Actually perform the operation.
- // evalBinOpNN expects the two indexes to already be the right type.
- return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy);
- }
-
- // If the element indexes aren't comparable, see if the raw offsets are.
- RegionRawOffset LeftOffset = LeftER->getAsArrayOffset();
- RegionRawOffset RightOffset = RightER->getAsArrayOffset();
-
- if (LeftOffset.getRegion() != NULL &&
- LeftOffset.getRegion() == RightOffset.getRegion()) {
- CharUnits left = LeftOffset.getOffset();
- CharUnits right = RightOffset.getOffset();
-
- switch (op) {
- default:
- return UnknownVal();
- case BO_LT:
- return makeTruthVal(left < right, resultTy);
- case BO_GT:
- return makeTruthVal(left > right, resultTy);
- case BO_LE:
- return makeTruthVal(left <= right, resultTy);
- case BO_GE:
- return makeTruthVal(left >= right, resultTy);
- case BO_EQ:
- return makeTruthVal(left == right, resultTy);
- case BO_NE:
- return makeTruthVal(left != right, resultTy);
- }
- }
-
- // If we get here, we have no way of comparing the ElementRegions.
- return UnknownVal();
- }
-
- // See if both regions are fields of the same structure.
- // FIXME: This doesn't handle nesting, inheritance, or Objective-C ivars.
- if (const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR)) {
- // Only comparisons are meaningful here!
- if (!BinaryOperator::isComparisonOp(op))
- return UnknownVal();
-
- // First see if the right region is also a FieldRegion.
- const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR);
- if (!RightFR)
- return UnknownVal();
-
- // Next, see if the two FRs have the same super-region.
- // FIXME: This doesn't handle casts yet, and simply stripping the casts
- // doesn't help.
- if (LeftFR->getSuperRegion() != RightFR->getSuperRegion())
- return UnknownVal();
-
- const FieldDecl *LeftFD = LeftFR->getDecl();
- const FieldDecl *RightFD = RightFR->getDecl();
- const RecordDecl *RD = LeftFD->getParent();
-
- // Make sure the two FRs are from the same kind of record. Just in case!
- // FIXME: This is probably where inheritance would be a problem.
- if (RD != RightFD->getParent())
- return UnknownVal();
-
- // We know for sure that the two fields are not the same, since that
- // would have given us the same SVal.
- if (op == BO_EQ)
- return makeTruthVal(false, resultTy);
- if (op == BO_NE)
- return makeTruthVal(true, resultTy);
-
- // Iterate through the fields and see which one comes first.
- // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field
- // members and the units in which bit-fields reside have addresses that
- // increase in the order in which they are declared."
- bool leftFirst = (op == BO_LT || op == BO_LE);
- for (RecordDecl::field_iterator I = RD->field_begin(),
- E = RD->field_end(); I!=E; ++I) {
- if (*I == LeftFD)
- return makeTruthVal(leftFirst, resultTy);
- if (*I == RightFD)
- return makeTruthVal(!leftFirst, resultTy);
- }
-
- assert(false && "Fields not found in parent record's definition");
- }
-
- // If we get here, we have no way of comparing the regions.
- return UnknownVal();
- }
- }
-}
-
-SVal SimpleSValBuilder::evalBinOpLN(const GRState *state,
- BinaryOperator::Opcode op,
- Loc lhs, NonLoc rhs, QualType resultTy) {
-
- // Special case: rhs is a zero constant.
- if (rhs.isZeroConstant())
- return lhs;
-
- // Special case: 'rhs' is an integer that has the same width as a pointer and
- // we are using the integer location in a comparison. Normally this cannot be
- // triggered, but transfer functions like those for OSCommpareAndSwapBarrier32
- // can generate comparisons that trigger this code.
- // FIXME: Are all locations guaranteed to have pointer width?
- if (BinaryOperator::isComparisonOp(op)) {
- if (nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs)) {
- const llvm::APSInt *x = &rhsInt->getValue();
- ASTContext &ctx = Context;
- if (ctx.getTypeSize(ctx.VoidPtrTy) == x->getBitWidth()) {
- // Convert the signedness of the integer (if necessary).
- if (x->isSigned())
- x = &getBasicValueFactory().getValue(*x, true);
-
- return evalBinOpLL(state, op, lhs, loc::ConcreteInt(*x), resultTy);
- }
- }
- }
-
- // We are dealing with pointer arithmetic.
-
- // Handle pointer arithmetic on constant values.
- if (nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs)) {
- if (loc::ConcreteInt *lhsInt = dyn_cast<loc::ConcreteInt>(&lhs)) {
- const llvm::APSInt &leftI = lhsInt->getValue();
- assert(leftI.isUnsigned());
- llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true);
-
- // Convert the bitwidth of rightI. This should deal with overflow
- // since we are dealing with concrete values.
- rightI = rightI.extOrTrunc(leftI.getBitWidth());
-
- // Offset the increment by the pointer size.
- llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true);
- rightI *= Multiplicand;
-
- // Compute the adjusted pointer.
- switch (op) {
- case BO_Add:
- rightI = leftI + rightI;
- break;
- case BO_Sub:
- rightI = leftI - rightI;
- break;
- default:
- llvm_unreachable("Invalid pointer arithmetic operation");
- }
- return loc::ConcreteInt(getBasicValueFactory().getValue(rightI));
- }
- }
-
- // Handle cases where 'lhs' is a region.
- if (const MemRegion *region = lhs.getAsRegion()) {
- rhs = cast<NonLoc>(convertToArrayIndex(rhs));
- SVal index = UnknownVal();
- const MemRegion *superR = 0;
- QualType elementType;
-
- if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) {
- index = evalBinOpNN(state, BO_Add, elemReg->getIndex(), rhs,
- getArrayIndexType());
- superR = elemReg->getSuperRegion();
- elementType = elemReg->getElementType();
- }
- else if (isa<SubRegion>(region)) {
- superR = region;
- index = rhs;
- if (const PointerType *PT = resultTy->getAs<PointerType>()) {
- elementType = PT->getPointeeType();
- }
- else {
- const ObjCObjectPointerType *OT =
- resultTy->getAs<ObjCObjectPointerType>();
- elementType = OT->getPointeeType();
- }
- }
-
- if (NonLoc *indexV = dyn_cast<NonLoc>(&index)) {
- return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV,
- superR, getContext()));
- }
- }
- return UnknownVal();
-}
-
-const llvm::APSInt *SimpleSValBuilder::getKnownValue(const GRState *state,
- SVal V) {
- if (V.isUnknownOrUndef())
- return NULL;
-
- if (loc::ConcreteInt* X = dyn_cast<loc::ConcreteInt>(&V))
- return &X->getValue();
-
- if (nonloc::ConcreteInt* X = dyn_cast<nonloc::ConcreteInt>(&V))
- return &X->getValue();
-
- if (SymbolRef Sym = V.getAsSymbol())
- return state->getSymVal(Sym);
-
- // FIXME: Add support for SymExprs.
- return NULL;
-}