diff options
author | Argyrios Kyrtzidis <akyrtzi@gmail.com> | 2011-02-08 22:30:36 +0000 |
---|---|---|
committer | Argyrios Kyrtzidis <akyrtzi@gmail.com> | 2011-02-08 22:30:36 +0000 |
commit | 811d75ee35b8b061a9b10a4e7b81e0c0eaf739c3 (patch) | |
tree | 76064238268b854e8698c225b3eb44eefedd6559 /lib/StaticAnalyzer/SimpleSValBuilder.cpp | |
parent | a12a51701794a5ce96d47513ed186922e41eadd5 (diff) |
[analyzer] Move the files in lib/StaticAnalyzer to lib/StaticAnalyzer/Core.
Eventually there will also be a lib/StaticAnalyzer/Frontend that will handle initialization and checker registration.
Yet another library to avoid cyclic dependencies between Core and Checkers.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@125124 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/StaticAnalyzer/SimpleSValBuilder.cpp')
-rw-r--r-- | lib/StaticAnalyzer/SimpleSValBuilder.cpp | 917 |
1 files changed, 0 insertions, 917 deletions
diff --git a/lib/StaticAnalyzer/SimpleSValBuilder.cpp b/lib/StaticAnalyzer/SimpleSValBuilder.cpp deleted file mode 100644 index 6c65da4635..0000000000 --- a/lib/StaticAnalyzer/SimpleSValBuilder.cpp +++ /dev/null @@ -1,917 +0,0 @@ -// SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*- -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file defines SimpleSValBuilder, a basic implementation of SValBuilder. -// -//===----------------------------------------------------------------------===// - -#include "clang/StaticAnalyzer/PathSensitive/SValBuilder.h" -#include "clang/StaticAnalyzer/PathSensitive/GRState.h" - -using namespace clang; -using namespace ento; - -namespace { -class SimpleSValBuilder : public SValBuilder { -protected: - virtual SVal evalCastNL(NonLoc val, QualType castTy); - virtual SVal evalCastL(Loc val, QualType castTy); - -public: - SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context, - GRStateManager &stateMgr) - : SValBuilder(alloc, context, stateMgr) {} - virtual ~SimpleSValBuilder() {} - - virtual SVal evalMinus(NonLoc val); - virtual SVal evalComplement(NonLoc val); - virtual SVal evalBinOpNN(const GRState *state, BinaryOperator::Opcode op, - NonLoc lhs, NonLoc rhs, QualType resultTy); - virtual SVal evalBinOpLL(const GRState *state, BinaryOperator::Opcode op, - Loc lhs, Loc rhs, QualType resultTy); - virtual SVal evalBinOpLN(const GRState *state, BinaryOperator::Opcode op, - Loc lhs, NonLoc rhs, QualType resultTy); - - /// getKnownValue - evaluates a given SVal. If the SVal has only one possible - /// (integer) value, that value is returned. Otherwise, returns NULL. - virtual const llvm::APSInt *getKnownValue(const GRState *state, SVal V); - - SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op, - const llvm::APSInt &RHS, QualType resultTy); -}; -} // end anonymous namespace - -SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc, - ASTContext &context, - GRStateManager &stateMgr) { - return new SimpleSValBuilder(alloc, context, stateMgr); -} - -//===----------------------------------------------------------------------===// -// Transfer function for Casts. -//===----------------------------------------------------------------------===// - -SVal SimpleSValBuilder::evalCastNL(NonLoc val, QualType castTy) { - - bool isLocType = Loc::IsLocType(castTy); - - if (nonloc::LocAsInteger *LI = dyn_cast<nonloc::LocAsInteger>(&val)) { - if (isLocType) - return LI->getLoc(); - - // FIXME: Correctly support promotions/truncations. - unsigned castSize = Context.getTypeSize(castTy); - if (castSize == LI->getNumBits()) - return val; - return makeLocAsInteger(LI->getLoc(), castSize); - } - - if (const SymExpr *se = val.getAsSymbolicExpression()) { - QualType T = Context.getCanonicalType(se->getType(Context)); - if (T == Context.getCanonicalType(castTy)) - return val; - - // FIXME: Remove this hack when we support symbolic truncation/extension. - // HACK: If both castTy and T are integers, ignore the cast. This is - // not a permanent solution. Eventually we want to precisely handle - // extension/truncation of symbolic integers. This prevents us from losing - // precision when we assign 'x = y' and 'y' is symbolic and x and y are - // different integer types. - if (T->isIntegerType() && castTy->isIntegerType()) - return val; - - return UnknownVal(); - } - - if (!isa<nonloc::ConcreteInt>(val)) - return UnknownVal(); - - // Only handle casts from integers to integers. - if (!isLocType && !castTy->isIntegerType()) - return UnknownVal(); - - llvm::APSInt i = cast<nonloc::ConcreteInt>(val).getValue(); - i.setIsUnsigned(castTy->isUnsignedIntegerType() || Loc::IsLocType(castTy)); - i = i.extOrTrunc(Context.getTypeSize(castTy)); - - if (isLocType) - return makeIntLocVal(i); - else - return makeIntVal(i); -} - -SVal SimpleSValBuilder::evalCastL(Loc val, QualType castTy) { - - // Casts from pointers -> pointers, just return the lval. - // - // Casts from pointers -> references, just return the lval. These - // can be introduced by the frontend for corner cases, e.g - // casting from va_list* to __builtin_va_list&. - // - if (Loc::IsLocType(castTy) || castTy->isReferenceType()) - return val; - - // FIXME: Handle transparent unions where a value can be "transparently" - // lifted into a union type. - if (castTy->isUnionType()) - return UnknownVal(); - - if (castTy->isIntegerType()) { - unsigned BitWidth = Context.getTypeSize(castTy); - - if (!isa<loc::ConcreteInt>(val)) - return makeLocAsInteger(val, BitWidth); - - llvm::APSInt i = cast<loc::ConcreteInt>(val).getValue(); - i.setIsUnsigned(castTy->isUnsignedIntegerType() || Loc::IsLocType(castTy)); - i = i.extOrTrunc(BitWidth); - return makeIntVal(i); - } - - // All other cases: return 'UnknownVal'. This includes casting pointers - // to floats, which is probably badness it itself, but this is a good - // intermediate solution until we do something better. - return UnknownVal(); -} - -//===----------------------------------------------------------------------===// -// Transfer function for unary operators. -//===----------------------------------------------------------------------===// - -SVal SimpleSValBuilder::evalMinus(NonLoc val) { - switch (val.getSubKind()) { - case nonloc::ConcreteIntKind: - return cast<nonloc::ConcreteInt>(val).evalMinus(*this); - default: - return UnknownVal(); - } -} - -SVal SimpleSValBuilder::evalComplement(NonLoc X) { - switch (X.getSubKind()) { - case nonloc::ConcreteIntKind: - return cast<nonloc::ConcreteInt>(X).evalComplement(*this); - default: - return UnknownVal(); - } -} - -//===----------------------------------------------------------------------===// -// Transfer function for binary operators. -//===----------------------------------------------------------------------===// - -static BinaryOperator::Opcode NegateComparison(BinaryOperator::Opcode op) { - switch (op) { - default: - assert(false && "Invalid opcode."); - case BO_LT: return BO_GE; - case BO_GT: return BO_LE; - case BO_LE: return BO_GT; - case BO_GE: return BO_LT; - case BO_EQ: return BO_NE; - case BO_NE: return BO_EQ; - } -} - -static BinaryOperator::Opcode ReverseComparison(BinaryOperator::Opcode op) { - switch (op) { - default: - assert(false && "Invalid opcode."); - case BO_LT: return BO_GT; - case BO_GT: return BO_LT; - case BO_LE: return BO_GE; - case BO_GE: return BO_LE; - case BO_EQ: - case BO_NE: - return op; - } -} - -SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS, - BinaryOperator::Opcode op, - const llvm::APSInt &RHS, - QualType resultTy) { - bool isIdempotent = false; - - // Check for a few special cases with known reductions first. - switch (op) { - default: - // We can't reduce this case; just treat it normally. - break; - case BO_Mul: - // a*0 and a*1 - if (RHS == 0) - return makeIntVal(0, resultTy); - else if (RHS == 1) - isIdempotent = true; - break; - case BO_Div: - // a/0 and a/1 - if (RHS == 0) - // This is also handled elsewhere. - return UndefinedVal(); - else if (RHS == 1) - isIdempotent = true; - break; - case BO_Rem: - // a%0 and a%1 - if (RHS == 0) - // This is also handled elsewhere. - return UndefinedVal(); - else if (RHS == 1) - return makeIntVal(0, resultTy); - break; - case BO_Add: - case BO_Sub: - case BO_Shl: - case BO_Shr: - case BO_Xor: - // a+0, a-0, a<<0, a>>0, a^0 - if (RHS == 0) - isIdempotent = true; - break; - case BO_And: - // a&0 and a&(~0) - if (RHS == 0) - return makeIntVal(0, resultTy); - else if (RHS.isAllOnesValue()) - isIdempotent = true; - break; - case BO_Or: - // a|0 and a|(~0) - if (RHS == 0) - isIdempotent = true; - else if (RHS.isAllOnesValue()) { - const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS); - return nonloc::ConcreteInt(Result); - } - break; - } - - // Idempotent ops (like a*1) can still change the type of an expression. - // Wrap the LHS up in a NonLoc again and let evalCastNL do the dirty work. - if (isIdempotent) { - if (SymbolRef LHSSym = dyn_cast<SymbolData>(LHS)) - return evalCastNL(nonloc::SymbolVal(LHSSym), resultTy); - return evalCastNL(nonloc::SymExprVal(LHS), resultTy); - } - - // If we reach this point, the expression cannot be simplified. - // Make a SymExprVal for the entire thing. - return makeNonLoc(LHS, op, RHS, resultTy); -} - -SVal SimpleSValBuilder::evalBinOpNN(const GRState *state, - BinaryOperator::Opcode op, - NonLoc lhs, NonLoc rhs, - QualType resultTy) { - // Handle trivial case where left-side and right-side are the same. - if (lhs == rhs) - switch (op) { - default: - break; - case BO_EQ: - case BO_LE: - case BO_GE: - return makeTruthVal(true, resultTy); - case BO_LT: - case BO_GT: - case BO_NE: - return makeTruthVal(false, resultTy); - case BO_Xor: - case BO_Sub: - return makeIntVal(0, resultTy); - case BO_Or: - case BO_And: - return evalCastNL(lhs, resultTy); - } - - while (1) { - switch (lhs.getSubKind()) { - default: - return UnknownVal(); - case nonloc::LocAsIntegerKind: { - Loc lhsL = cast<nonloc::LocAsInteger>(lhs).getLoc(); - switch (rhs.getSubKind()) { - case nonloc::LocAsIntegerKind: - return evalBinOpLL(state, op, lhsL, - cast<nonloc::LocAsInteger>(rhs).getLoc(), - resultTy); - case nonloc::ConcreteIntKind: { - // Transform the integer into a location and compare. - llvm::APSInt i = cast<nonloc::ConcreteInt>(rhs).getValue(); - i.setIsUnsigned(true); - i = i.extOrTrunc(Context.getTypeSize(Context.VoidPtrTy)); - return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy); - } - default: - switch (op) { - case BO_EQ: - return makeTruthVal(false, resultTy); - case BO_NE: - return makeTruthVal(true, resultTy); - default: - // This case also handles pointer arithmetic. - return UnknownVal(); - } - } - } - case nonloc::SymExprValKind: { - nonloc::SymExprVal *selhs = cast<nonloc::SymExprVal>(&lhs); - - // Only handle LHS of the form "$sym op constant", at least for now. - const SymIntExpr *symIntExpr = - dyn_cast<SymIntExpr>(selhs->getSymbolicExpression()); - - if (!symIntExpr) - return UnknownVal(); - - // Is this a logical not? (!x is represented as x == 0.) - if (op == BO_EQ && rhs.isZeroConstant()) { - // We know how to negate certain expressions. Simplify them here. - - BinaryOperator::Opcode opc = symIntExpr->getOpcode(); - switch (opc) { - default: - // We don't know how to negate this operation. - // Just handle it as if it were a normal comparison to 0. - break; - case BO_LAnd: - case BO_LOr: - assert(false && "Logical operators handled by branching logic."); - return UnknownVal(); - case BO_Assign: - case BO_MulAssign: - case BO_DivAssign: - case BO_RemAssign: - case BO_AddAssign: - case BO_SubAssign: - case BO_ShlAssign: - case BO_ShrAssign: - case BO_AndAssign: - case BO_XorAssign: - case BO_OrAssign: - case BO_Comma: - assert(false && "'=' and ',' operators handled by ExprEngine."); - return UnknownVal(); - case BO_PtrMemD: - case BO_PtrMemI: - assert(false && "Pointer arithmetic not handled here."); - return UnknownVal(); - case BO_LT: - case BO_GT: - case BO_LE: - case BO_GE: - case BO_EQ: - case BO_NE: - // Negate the comparison and make a value. - opc = NegateComparison(opc); - assert(symIntExpr->getType(Context) == resultTy); - return makeNonLoc(symIntExpr->getLHS(), opc, - symIntExpr->getRHS(), resultTy); - } - } - - // For now, only handle expressions whose RHS is a constant. - const nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs); - if (!rhsInt) - return UnknownVal(); - - // If both the LHS and the current expression are additive, - // fold their constants. - if (BinaryOperator::isAdditiveOp(op)) { - BinaryOperator::Opcode lop = symIntExpr->getOpcode(); - if (BinaryOperator::isAdditiveOp(lop)) { - // resultTy may not be the best type to convert to, but it's - // probably the best choice in expressions with mixed type - // (such as x+1U+2LL). The rules for implicit conversions should - // choose a reasonable type to preserve the expression, and will - // at least match how the value is going to be used. - const llvm::APSInt &first = - BasicVals.Convert(resultTy, symIntExpr->getRHS()); - const llvm::APSInt &second = - BasicVals.Convert(resultTy, rhsInt->getValue()); - const llvm::APSInt *newRHS; - if (lop == op) - newRHS = BasicVals.evalAPSInt(BO_Add, first, second); - else - newRHS = BasicVals.evalAPSInt(BO_Sub, first, second); - return MakeSymIntVal(symIntExpr->getLHS(), lop, *newRHS, resultTy); - } - } - - // Otherwise, make a SymExprVal out of the expression. - return MakeSymIntVal(symIntExpr, op, rhsInt->getValue(), resultTy); - } - case nonloc::ConcreteIntKind: { - const nonloc::ConcreteInt& lhsInt = cast<nonloc::ConcreteInt>(lhs); - - if (isa<nonloc::ConcreteInt>(rhs)) { - return lhsInt.evalBinOp(*this, op, cast<nonloc::ConcreteInt>(rhs)); - } else { - const llvm::APSInt& lhsValue = lhsInt.getValue(); - - // Swap the left and right sides and flip the operator if doing so - // allows us to better reason about the expression (this is a form - // of expression canonicalization). - // While we're at it, catch some special cases for non-commutative ops. - NonLoc tmp = rhs; - rhs = lhs; - lhs = tmp; - - switch (op) { - case BO_LT: - case BO_GT: - case BO_LE: - case BO_GE: - op = ReverseComparison(op); - continue; - case BO_EQ: - case BO_NE: - case BO_Add: - case BO_Mul: - case BO_And: - case BO_Xor: - case BO_Or: - continue; - case BO_Shr: - if (lhsValue.isAllOnesValue() && lhsValue.isSigned()) - // At this point lhs and rhs have been swapped. - return rhs; - // FALL-THROUGH - case BO_Shl: - if (lhsValue == 0) - // At this point lhs and rhs have been swapped. - return rhs; - return UnknownVal(); - default: - return UnknownVal(); - } - } - } - case nonloc::SymbolValKind: { - nonloc::SymbolVal *slhs = cast<nonloc::SymbolVal>(&lhs); - SymbolRef Sym = slhs->getSymbol(); - // Does the symbol simplify to a constant? If so, "fold" the constant - // by setting 'lhs' to a ConcreteInt and try again. - if (Sym->getType(Context)->isIntegerType()) - if (const llvm::APSInt *Constant = state->getSymVal(Sym)) { - // The symbol evaluates to a constant. If necessary, promote the - // folded constant (LHS) to the result type. - const llvm::APSInt &lhs_I = BasicVals.Convert(resultTy, *Constant); - lhs = nonloc::ConcreteInt(lhs_I); - - // Also promote the RHS (if necessary). - - // For shifts, it is not necessary to promote the RHS. - if (BinaryOperator::isShiftOp(op)) - continue; - - // Other operators: do an implicit conversion. This shouldn't be - // necessary once we support truncation/extension of symbolic values. - if (nonloc::ConcreteInt *rhs_I = dyn_cast<nonloc::ConcreteInt>(&rhs)){ - rhs = nonloc::ConcreteInt(BasicVals.Convert(resultTy, - rhs_I->getValue())); - } - - continue; - } - - // Is the RHS a symbol we can simplify? - if (const nonloc::SymbolVal *srhs = dyn_cast<nonloc::SymbolVal>(&rhs)) { - SymbolRef RSym = srhs->getSymbol(); - if (RSym->getType(Context)->isIntegerType()) { - if (const llvm::APSInt *Constant = state->getSymVal(RSym)) { - // The symbol evaluates to a constant. - const llvm::APSInt &rhs_I = BasicVals.Convert(resultTy, *Constant); - rhs = nonloc::ConcreteInt(rhs_I); - } - } - } - - if (isa<nonloc::ConcreteInt>(rhs)) { - return MakeSymIntVal(slhs->getSymbol(), op, - cast<nonloc::ConcreteInt>(rhs).getValue(), - resultTy); - } - - return UnknownVal(); - } - } - } -} - -// FIXME: all this logic will change if/when we have MemRegion::getLocation(). -SVal SimpleSValBuilder::evalBinOpLL(const GRState *state, - BinaryOperator::Opcode op, - Loc lhs, Loc rhs, - QualType resultTy) { - // Only comparisons and subtractions are valid operations on two pointers. - // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15]. - // However, if a pointer is casted to an integer, evalBinOpNN may end up - // calling this function with another operation (PR7527). We don't attempt to - // model this for now, but it could be useful, particularly when the - // "location" is actually an integer value that's been passed through a void*. - if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub)) - return UnknownVal(); - - // Special cases for when both sides are identical. - if (lhs == rhs) { - switch (op) { - default: - assert(false && "Unimplemented operation for two identical values"); - return UnknownVal(); - case BO_Sub: - return makeZeroVal(resultTy); - case BO_EQ: - case BO_LE: - case BO_GE: - return makeTruthVal(true, resultTy); - case BO_NE: - case BO_LT: - case BO_GT: - return makeTruthVal(false, resultTy); - } - } - - switch (lhs.getSubKind()) { - default: - assert(false && "Ordering not implemented for this Loc."); - return UnknownVal(); - - case loc::GotoLabelKind: - // The only thing we know about labels is that they're non-null. - if (rhs.isZeroConstant()) { - switch (op) { - default: - break; - case BO_Sub: - return evalCastL(lhs, resultTy); - case BO_EQ: - case BO_LE: - case BO_LT: - return makeTruthVal(false, resultTy); - case BO_NE: - case BO_GT: - case BO_GE: - return makeTruthVal(true, resultTy); - } - } - // There may be two labels for the same location, and a function region may - // have the same address as a label at the start of the function (depending - // on the ABI). - // FIXME: we can probably do a comparison against other MemRegions, though. - // FIXME: is there a way to tell if two labels refer to the same location? - return UnknownVal(); - - case loc::ConcreteIntKind: { - // If one of the operands is a symbol and the other is a constant, - // build an expression for use by the constraint manager. - if (SymbolRef rSym = rhs.getAsLocSymbol()) { - // We can only build expressions with symbols on the left, - // so we need a reversible operator. - if (!BinaryOperator::isComparisonOp(op)) - return UnknownVal(); - - const llvm::APSInt &lVal = cast<loc::ConcreteInt>(lhs).getValue(); - return makeNonLoc(rSym, ReverseComparison(op), lVal, resultTy); - } - - // If both operands are constants, just perform the operation. - if (loc::ConcreteInt *rInt = dyn_cast<loc::ConcreteInt>(&rhs)) { - SVal ResultVal = cast<loc::ConcreteInt>(lhs).evalBinOp(BasicVals, op, - *rInt); - if (Loc *Result = dyn_cast<Loc>(&ResultVal)) - return evalCastL(*Result, resultTy); - else - return UnknownVal(); - } - - // Special case comparisons against NULL. - // This must come after the test if the RHS is a symbol, which is used to - // build constraints. The address of any non-symbolic region is guaranteed - // to be non-NULL, as is any label. - assert(isa<loc::MemRegionVal>(rhs) || isa<loc::GotoLabel>(rhs)); - if (lhs.isZeroConstant()) { - switch (op) { - default: - break; - case BO_EQ: - case BO_GT: - case BO_GE: - return makeTruthVal(false, resultTy); - case BO_NE: - case BO_LT: - case BO_LE: - return makeTruthVal(true, resultTy); - } - } - - // Comparing an arbitrary integer to a region or label address is - // completely unknowable. - return UnknownVal(); - } - case loc::MemRegionKind: { - if (loc::ConcreteInt *rInt = dyn_cast<loc::ConcreteInt>(&rhs)) { - // If one of the operands is a symbol and the other is a constant, - // build an expression for use by the constraint manager. - if (SymbolRef lSym = lhs.getAsLocSymbol()) - return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy); - - // Special case comparisons to NULL. - // This must come after the test if the LHS is a symbol, which is used to - // build constraints. The address of any non-symbolic region is guaranteed - // to be non-NULL. - if (rInt->isZeroConstant()) { - switch (op) { - default: - break; - case BO_Sub: - return evalCastL(lhs, resultTy); - case BO_EQ: - case BO_LT: - case BO_LE: - return makeTruthVal(false, resultTy); - case BO_NE: - case BO_GT: - case BO_GE: - return makeTruthVal(true, resultTy); - } - } - - // Comparing a region to an arbitrary integer is completely unknowable. - return UnknownVal(); - } - - // Get both values as regions, if possible. - const MemRegion *LeftMR = lhs.getAsRegion(); - assert(LeftMR && "MemRegionKind SVal doesn't have a region!"); - - const MemRegion *RightMR = rhs.getAsRegion(); - if (!RightMR) - // The RHS is probably a label, which in theory could address a region. - // FIXME: we can probably make a more useful statement about non-code - // regions, though. - return UnknownVal(); - - // If both values wrap regions, see if they're from different base regions. - const MemRegion *LeftBase = LeftMR->getBaseRegion(); - const MemRegion *RightBase = RightMR->getBaseRegion(); - if (LeftBase != RightBase && - !isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) { - switch (op) { - default: - return UnknownVal(); - case BO_EQ: - return makeTruthVal(false, resultTy); - case BO_NE: - return makeTruthVal(true, resultTy); - } - } - - // The two regions are from the same base region. See if they're both a - // type of region we know how to compare. - - // FIXME: If/when there is a getAsRawOffset() for FieldRegions, this - // ElementRegion path and the FieldRegion path below should be unified. - if (const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR)) { - // First see if the right region is also an ElementRegion. - const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR); - if (!RightER) - return UnknownVal(); - - // Next, see if the two ERs have the same super-region and matching types. - // FIXME: This should do something useful even if the types don't match, - // though if both indexes are constant the RegionRawOffset path will - // give the correct answer. - if (LeftER->getSuperRegion() == RightER->getSuperRegion() && - LeftER->getElementType() == RightER->getElementType()) { - // Get the left index and cast it to the correct type. - // If the index is unknown or undefined, bail out here. - SVal LeftIndexVal = LeftER->getIndex(); - NonLoc *LeftIndex = dyn_cast<NonLoc>(&LeftIndexVal); - if (!LeftIndex) - return UnknownVal(); - LeftIndexVal = evalCastNL(*LeftIndex, resultTy); - LeftIndex = dyn_cast<NonLoc>(&LeftIndexVal); - if (!LeftIndex) - return UnknownVal(); - - // Do the same for the right index. - SVal RightIndexVal = RightER->getIndex(); - NonLoc *RightIndex = dyn_cast<NonLoc>(&RightIndexVal); - if (!RightIndex) - return UnknownVal(); - RightIndexVal = evalCastNL(*RightIndex, resultTy); - RightIndex = dyn_cast<NonLoc>(&RightIndexVal); - if (!RightIndex) - return UnknownVal(); - - // Actually perform the operation. - // evalBinOpNN expects the two indexes to already be the right type. - return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy); - } - - // If the element indexes aren't comparable, see if the raw offsets are. - RegionRawOffset LeftOffset = LeftER->getAsArrayOffset(); - RegionRawOffset RightOffset = RightER->getAsArrayOffset(); - - if (LeftOffset.getRegion() != NULL && - LeftOffset.getRegion() == RightOffset.getRegion()) { - CharUnits left = LeftOffset.getOffset(); - CharUnits right = RightOffset.getOffset(); - - switch (op) { - default: - return UnknownVal(); - case BO_LT: - return makeTruthVal(left < right, resultTy); - case BO_GT: - return makeTruthVal(left > right, resultTy); - case BO_LE: - return makeTruthVal(left <= right, resultTy); - case BO_GE: - return makeTruthVal(left >= right, resultTy); - case BO_EQ: - return makeTruthVal(left == right, resultTy); - case BO_NE: - return makeTruthVal(left != right, resultTy); - } - } - - // If we get here, we have no way of comparing the ElementRegions. - return UnknownVal(); - } - - // See if both regions are fields of the same structure. - // FIXME: This doesn't handle nesting, inheritance, or Objective-C ivars. - if (const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR)) { - // Only comparisons are meaningful here! - if (!BinaryOperator::isComparisonOp(op)) - return UnknownVal(); - - // First see if the right region is also a FieldRegion. - const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR); - if (!RightFR) - return UnknownVal(); - - // Next, see if the two FRs have the same super-region. - // FIXME: This doesn't handle casts yet, and simply stripping the casts - // doesn't help. - if (LeftFR->getSuperRegion() != RightFR->getSuperRegion()) - return UnknownVal(); - - const FieldDecl *LeftFD = LeftFR->getDecl(); - const FieldDecl *RightFD = RightFR->getDecl(); - const RecordDecl *RD = LeftFD->getParent(); - - // Make sure the two FRs are from the same kind of record. Just in case! - // FIXME: This is probably where inheritance would be a problem. - if (RD != RightFD->getParent()) - return UnknownVal(); - - // We know for sure that the two fields are not the same, since that - // would have given us the same SVal. - if (op == BO_EQ) - return makeTruthVal(false, resultTy); - if (op == BO_NE) - return makeTruthVal(true, resultTy); - - // Iterate through the fields and see which one comes first. - // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field - // members and the units in which bit-fields reside have addresses that - // increase in the order in which they are declared." - bool leftFirst = (op == BO_LT || op == BO_LE); - for (RecordDecl::field_iterator I = RD->field_begin(), - E = RD->field_end(); I!=E; ++I) { - if (*I == LeftFD) - return makeTruthVal(leftFirst, resultTy); - if (*I == RightFD) - return makeTruthVal(!leftFirst, resultTy); - } - - assert(false && "Fields not found in parent record's definition"); - } - - // If we get here, we have no way of comparing the regions. - return UnknownVal(); - } - } -} - -SVal SimpleSValBuilder::evalBinOpLN(const GRState *state, - BinaryOperator::Opcode op, - Loc lhs, NonLoc rhs, QualType resultTy) { - - // Special case: rhs is a zero constant. - if (rhs.isZeroConstant()) - return lhs; - - // Special case: 'rhs' is an integer that has the same width as a pointer and - // we are using the integer location in a comparison. Normally this cannot be - // triggered, but transfer functions like those for OSCommpareAndSwapBarrier32 - // can generate comparisons that trigger this code. - // FIXME: Are all locations guaranteed to have pointer width? - if (BinaryOperator::isComparisonOp(op)) { - if (nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs)) { - const llvm::APSInt *x = &rhsInt->getValue(); - ASTContext &ctx = Context; - if (ctx.getTypeSize(ctx.VoidPtrTy) == x->getBitWidth()) { - // Convert the signedness of the integer (if necessary). - if (x->isSigned()) - x = &getBasicValueFactory().getValue(*x, true); - - return evalBinOpLL(state, op, lhs, loc::ConcreteInt(*x), resultTy); - } - } - } - - // We are dealing with pointer arithmetic. - - // Handle pointer arithmetic on constant values. - if (nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs)) { - if (loc::ConcreteInt *lhsInt = dyn_cast<loc::ConcreteInt>(&lhs)) { - const llvm::APSInt &leftI = lhsInt->getValue(); - assert(leftI.isUnsigned()); - llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true); - - // Convert the bitwidth of rightI. This should deal with overflow - // since we are dealing with concrete values. - rightI = rightI.extOrTrunc(leftI.getBitWidth()); - - // Offset the increment by the pointer size. - llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true); - rightI *= Multiplicand; - - // Compute the adjusted pointer. - switch (op) { - case BO_Add: - rightI = leftI + rightI; - break; - case BO_Sub: - rightI = leftI - rightI; - break; - default: - llvm_unreachable("Invalid pointer arithmetic operation"); - } - return loc::ConcreteInt(getBasicValueFactory().getValue(rightI)); - } - } - - // Handle cases where 'lhs' is a region. - if (const MemRegion *region = lhs.getAsRegion()) { - rhs = cast<NonLoc>(convertToArrayIndex(rhs)); - SVal index = UnknownVal(); - const MemRegion *superR = 0; - QualType elementType; - - if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) { - index = evalBinOpNN(state, BO_Add, elemReg->getIndex(), rhs, - getArrayIndexType()); - superR = elemReg->getSuperRegion(); - elementType = elemReg->getElementType(); - } - else if (isa<SubRegion>(region)) { - superR = region; - index = rhs; - if (const PointerType *PT = resultTy->getAs<PointerType>()) { - elementType = PT->getPointeeType(); - } - else { - const ObjCObjectPointerType *OT = - resultTy->getAs<ObjCObjectPointerType>(); - elementType = OT->getPointeeType(); - } - } - - if (NonLoc *indexV = dyn_cast<NonLoc>(&index)) { - return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV, - superR, getContext())); - } - } - return UnknownVal(); -} - -const llvm::APSInt *SimpleSValBuilder::getKnownValue(const GRState *state, - SVal V) { - if (V.isUnknownOrUndef()) - return NULL; - - if (loc::ConcreteInt* X = dyn_cast<loc::ConcreteInt>(&V)) - return &X->getValue(); - - if (nonloc::ConcreteInt* X = dyn_cast<nonloc::ConcreteInt>(&V)) - return &X->getValue(); - - if (SymbolRef Sym = V.getAsSymbol()) - return state->getSymVal(Sym); - - // FIXME: Add support for SymExprs. - return NULL; -} |