diff options
author | Argyrios Kyrtzidis <akyrtzi@gmail.com> | 2011-02-08 22:30:36 +0000 |
---|---|---|
committer | Argyrios Kyrtzidis <akyrtzi@gmail.com> | 2011-02-08 22:30:36 +0000 |
commit | 811d75ee35b8b061a9b10a4e7b81e0c0eaf739c3 (patch) | |
tree | 76064238268b854e8698c225b3eb44eefedd6559 /lib/StaticAnalyzer/Core/RegionStore.cpp | |
parent | a12a51701794a5ce96d47513ed186922e41eadd5 (diff) |
[analyzer] Move the files in lib/StaticAnalyzer to lib/StaticAnalyzer/Core.
Eventually there will also be a lib/StaticAnalyzer/Frontend that will handle initialization and checker registration.
Yet another library to avoid cyclic dependencies between Core and Checkers.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@125124 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/StaticAnalyzer/Core/RegionStore.cpp')
-rw-r--r-- | lib/StaticAnalyzer/Core/RegionStore.cpp | 1917 |
1 files changed, 1917 insertions, 0 deletions
diff --git a/lib/StaticAnalyzer/Core/RegionStore.cpp b/lib/StaticAnalyzer/Core/RegionStore.cpp new file mode 100644 index 0000000000..d5af1c2747 --- /dev/null +++ b/lib/StaticAnalyzer/Core/RegionStore.cpp @@ -0,0 +1,1917 @@ +//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines a basic region store model. In this model, we do have field +// sensitivity. But we assume nothing about the heap shape. So recursive data +// structures are largely ignored. Basically we do 1-limiting analysis. +// Parameter pointers are assumed with no aliasing. Pointee objects of +// parameters are created lazily. +// +//===----------------------------------------------------------------------===// +#include "clang/AST/CharUnits.h" +#include "clang/AST/DeclCXX.h" +#include "clang/AST/ExprCXX.h" +#include "clang/Analysis/Analyses/LiveVariables.h" +#include "clang/Analysis/AnalysisContext.h" +#include "clang/Basic/TargetInfo.h" +#include "clang/StaticAnalyzer/PathSensitive/GRState.h" +#include "clang/StaticAnalyzer/PathSensitive/GRStateTrait.h" +#include "clang/StaticAnalyzer/PathSensitive/MemRegion.h" +#include "llvm/ADT/ImmutableList.h" +#include "llvm/ADT/ImmutableMap.h" +#include "llvm/ADT/Optional.h" +#include "llvm/Support/raw_ostream.h" + +using namespace clang; +using namespace ento; +using llvm::Optional; + +//===----------------------------------------------------------------------===// +// Representation of binding keys. +//===----------------------------------------------------------------------===// + +namespace { +class BindingKey { +public: + enum Kind { Direct = 0x0, Default = 0x1 }; +private: + llvm ::PointerIntPair<const MemRegion*, 1> P; + uint64_t Offset; + + explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k) + : P(r, (unsigned) k), Offset(offset) {} +public: + + bool isDirect() const { return P.getInt() == Direct; } + + const MemRegion *getRegion() const { return P.getPointer(); } + uint64_t getOffset() const { return Offset; } + + void Profile(llvm::FoldingSetNodeID& ID) const { + ID.AddPointer(P.getOpaqueValue()); + ID.AddInteger(Offset); + } + + static BindingKey Make(const MemRegion *R, Kind k); + + bool operator<(const BindingKey &X) const { + if (P.getOpaqueValue() < X.P.getOpaqueValue()) + return true; + if (P.getOpaqueValue() > X.P.getOpaqueValue()) + return false; + return Offset < X.Offset; + } + + bool operator==(const BindingKey &X) const { + return P.getOpaqueValue() == X.P.getOpaqueValue() && + Offset == X.Offset; + } + + bool isValid() const { + return getRegion() != NULL; + } +}; +} // end anonymous namespace + +BindingKey BindingKey::Make(const MemRegion *R, Kind k) { + if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) { + const RegionRawOffset &O = ER->getAsArrayOffset(); + + // FIXME: There are some ElementRegions for which we cannot compute + // raw offsets yet, including regions with symbolic offsets. These will be + // ignored by the store. + return BindingKey(O.getRegion(), O.getOffset().getQuantity(), k); + } + + return BindingKey(R, 0, k); +} + +namespace llvm { + static inline + llvm::raw_ostream& operator<<(llvm::raw_ostream& os, BindingKey K) { + os << '(' << K.getRegion() << ',' << K.getOffset() + << ',' << (K.isDirect() ? "direct" : "default") + << ')'; + return os; + } +} // end llvm namespace + +//===----------------------------------------------------------------------===// +// Actual Store type. +//===----------------------------------------------------------------------===// + +typedef llvm::ImmutableMap<BindingKey, SVal> RegionBindings; + +//===----------------------------------------------------------------------===// +// Fine-grained control of RegionStoreManager. +//===----------------------------------------------------------------------===// + +namespace { +struct minimal_features_tag {}; +struct maximal_features_tag {}; + +class RegionStoreFeatures { + bool SupportsFields; +public: + RegionStoreFeatures(minimal_features_tag) : + SupportsFields(false) {} + + RegionStoreFeatures(maximal_features_tag) : + SupportsFields(true) {} + + void enableFields(bool t) { SupportsFields = t; } + + bool supportsFields() const { return SupportsFields; } +}; +} + +//===----------------------------------------------------------------------===// +// Main RegionStore logic. +//===----------------------------------------------------------------------===// + +namespace { + +class RegionStoreSubRegionMap : public SubRegionMap { +public: + typedef llvm::ImmutableSet<const MemRegion*> Set; + typedef llvm::DenseMap<const MemRegion*, Set> Map; +private: + Set::Factory F; + Map M; +public: + bool add(const MemRegion* Parent, const MemRegion* SubRegion) { + Map::iterator I = M.find(Parent); + + if (I == M.end()) { + M.insert(std::make_pair(Parent, F.add(F.getEmptySet(), SubRegion))); + return true; + } + + I->second = F.add(I->second, SubRegion); + return false; + } + + void process(llvm::SmallVectorImpl<const SubRegion*> &WL, const SubRegion *R); + + ~RegionStoreSubRegionMap() {} + + const Set *getSubRegions(const MemRegion *Parent) const { + Map::const_iterator I = M.find(Parent); + return I == M.end() ? NULL : &I->second; + } + + bool iterSubRegions(const MemRegion* Parent, Visitor& V) const { + Map::const_iterator I = M.find(Parent); + + if (I == M.end()) + return true; + + Set S = I->second; + for (Set::iterator SI=S.begin(),SE=S.end(); SI != SE; ++SI) { + if (!V.Visit(Parent, *SI)) + return false; + } + + return true; + } +}; + +void +RegionStoreSubRegionMap::process(llvm::SmallVectorImpl<const SubRegion*> &WL, + const SubRegion *R) { + const MemRegion *superR = R->getSuperRegion(); + if (add(superR, R)) + if (const SubRegion *sr = dyn_cast<SubRegion>(superR)) + WL.push_back(sr); +} + +class RegionStoreManager : public StoreManager { + const RegionStoreFeatures Features; + RegionBindings::Factory RBFactory; + +public: + RegionStoreManager(GRStateManager& mgr, const RegionStoreFeatures &f) + : StoreManager(mgr), + Features(f), + RBFactory(mgr.getAllocator()) {} + + SubRegionMap *getSubRegionMap(Store store) { + return getRegionStoreSubRegionMap(store); + } + + RegionStoreSubRegionMap *getRegionStoreSubRegionMap(Store store); + + Optional<SVal> getDirectBinding(RegionBindings B, const MemRegion *R); + /// getDefaultBinding - Returns an SVal* representing an optional default + /// binding associated with a region and its subregions. + Optional<SVal> getDefaultBinding(RegionBindings B, const MemRegion *R); + + /// setImplicitDefaultValue - Set the default binding for the provided + /// MemRegion to the value implicitly defined for compound literals when + /// the value is not specified. + Store setImplicitDefaultValue(Store store, const MemRegion *R, QualType T); + + /// ArrayToPointer - Emulates the "decay" of an array to a pointer + /// type. 'Array' represents the lvalue of the array being decayed + /// to a pointer, and the returned SVal represents the decayed + /// version of that lvalue (i.e., a pointer to the first element of + /// the array). This is called by ExprEngine when evaluating + /// casts from arrays to pointers. + SVal ArrayToPointer(Loc Array); + + /// For DerivedToBase casts, create a CXXBaseObjectRegion and return it. + virtual SVal evalDerivedToBase(SVal derived, QualType basePtrType); + + SVal evalBinOp(BinaryOperator::Opcode Op,Loc L, NonLoc R, QualType resultTy); + + Store getInitialStore(const LocationContext *InitLoc) { + return RBFactory.getEmptyMap().getRoot(); + } + + //===-------------------------------------------------------------------===// + // Binding values to regions. + //===-------------------------------------------------------------------===// + + Store InvalidateRegions(Store store, + const MemRegion * const *Begin, + const MemRegion * const *End, + const Expr *E, unsigned Count, + InvalidatedSymbols *IS, + bool invalidateGlobals, + InvalidatedRegions *Regions); + +public: // Made public for helper classes. + + void RemoveSubRegionBindings(RegionBindings &B, const MemRegion *R, + RegionStoreSubRegionMap &M); + + RegionBindings addBinding(RegionBindings B, BindingKey K, SVal V); + + RegionBindings addBinding(RegionBindings B, const MemRegion *R, + BindingKey::Kind k, SVal V); + + const SVal *lookup(RegionBindings B, BindingKey K); + const SVal *lookup(RegionBindings B, const MemRegion *R, BindingKey::Kind k); + + RegionBindings removeBinding(RegionBindings B, BindingKey K); + RegionBindings removeBinding(RegionBindings B, const MemRegion *R, + BindingKey::Kind k); + + RegionBindings removeBinding(RegionBindings B, const MemRegion *R) { + return removeBinding(removeBinding(B, R, BindingKey::Direct), R, + BindingKey::Default); + } + +public: // Part of public interface to class. + + Store Bind(Store store, Loc LV, SVal V); + + // BindDefault is only used to initialize a region with a default value. + Store BindDefault(Store store, const MemRegion *R, SVal V) { + RegionBindings B = GetRegionBindings(store); + assert(!lookup(B, R, BindingKey::Default)); + assert(!lookup(B, R, BindingKey::Direct)); + return addBinding(B, R, BindingKey::Default, V).getRoot(); + } + + Store BindCompoundLiteral(Store store, const CompoundLiteralExpr* CL, + const LocationContext *LC, SVal V); + + Store BindDecl(Store store, const VarRegion *VR, SVal InitVal); + + Store BindDeclWithNoInit(Store store, const VarRegion *) { + return store; + } + + /// BindStruct - Bind a compound value to a structure. + Store BindStruct(Store store, const TypedRegion* R, SVal V); + + Store BindArray(Store store, const TypedRegion* R, SVal V); + + /// KillStruct - Set the entire struct to unknown. + Store KillStruct(Store store, const TypedRegion* R, SVal DefaultVal); + + Store Remove(Store store, Loc LV); + + + //===------------------------------------------------------------------===// + // Loading values from regions. + //===------------------------------------------------------------------===// + + /// The high level logic for this method is this: + /// Retrieve (L) + /// if L has binding + /// return L's binding + /// else if L is in killset + /// return unknown + /// else + /// if L is on stack or heap + /// return undefined + /// else + /// return symbolic + SVal Retrieve(Store store, Loc L, QualType T = QualType()); + + SVal RetrieveElement(Store store, const ElementRegion *R); + + SVal RetrieveField(Store store, const FieldRegion *R); + + SVal RetrieveObjCIvar(Store store, const ObjCIvarRegion *R); + + SVal RetrieveVar(Store store, const VarRegion *R); + + SVal RetrieveLazySymbol(const TypedRegion *R); + + SVal RetrieveFieldOrElementCommon(Store store, const TypedRegion *R, + QualType Ty, const MemRegion *superR); + + /// Retrieve the values in a struct and return a CompoundVal, used when doing + /// struct copy: + /// struct s x, y; + /// x = y; + /// y's value is retrieved by this method. + SVal RetrieveStruct(Store store, const TypedRegion* R); + + SVal RetrieveArray(Store store, const TypedRegion* R); + + /// Used to lazily generate derived symbols for bindings that are defined + /// implicitly by default bindings in a super region. + Optional<SVal> RetrieveDerivedDefaultValue(RegionBindings B, + const MemRegion *superR, + const TypedRegion *R, QualType Ty); + + /// Get the state and region whose binding this region R corresponds to. + std::pair<Store, const MemRegion*> + GetLazyBinding(RegionBindings B, const MemRegion *R); + + Store CopyLazyBindings(nonloc::LazyCompoundVal V, Store store, + const TypedRegion *R); + + //===------------------------------------------------------------------===// + // State pruning. + //===------------------------------------------------------------------===// + + /// removeDeadBindings - Scans the RegionStore of 'state' for dead values. + /// It returns a new Store with these values removed. + Store removeDeadBindings(Store store, const StackFrameContext *LCtx, + SymbolReaper& SymReaper, + llvm::SmallVectorImpl<const MemRegion*>& RegionRoots); + + Store enterStackFrame(const GRState *state, const StackFrameContext *frame); + + //===------------------------------------------------------------------===// + // Region "extents". + //===------------------------------------------------------------------===// + + // FIXME: This method will soon be eliminated; see the note in Store.h. + DefinedOrUnknownSVal getSizeInElements(const GRState *state, + const MemRegion* R, QualType EleTy); + + //===------------------------------------------------------------------===// + // Utility methods. + //===------------------------------------------------------------------===// + + static inline RegionBindings GetRegionBindings(Store store) { + return RegionBindings(static_cast<const RegionBindings::TreeTy*>(store)); + } + + void print(Store store, llvm::raw_ostream& Out, const char* nl, + const char *sep); + + void iterBindings(Store store, BindingsHandler& f) { + RegionBindings B = GetRegionBindings(store); + for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I) { + const BindingKey &K = I.getKey(); + if (!K.isDirect()) + continue; + if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion())) { + // FIXME: Possibly incorporate the offset? + if (!f.HandleBinding(*this, store, R, I.getData())) + return; + } + } + } +}; + +} // end anonymous namespace + +//===----------------------------------------------------------------------===// +// RegionStore creation. +//===----------------------------------------------------------------------===// + +StoreManager *ento::CreateRegionStoreManager(GRStateManager& StMgr) { + RegionStoreFeatures F = maximal_features_tag(); + return new RegionStoreManager(StMgr, F); +} + +StoreManager *ento::CreateFieldsOnlyRegionStoreManager(GRStateManager &StMgr) { + RegionStoreFeatures F = minimal_features_tag(); + F.enableFields(true); + return new RegionStoreManager(StMgr, F); +} + + +RegionStoreSubRegionMap* +RegionStoreManager::getRegionStoreSubRegionMap(Store store) { + RegionBindings B = GetRegionBindings(store); + RegionStoreSubRegionMap *M = new RegionStoreSubRegionMap(); + + llvm::SmallVector<const SubRegion*, 10> WL; + + for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I) + if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion())) + M->process(WL, R); + + // We also need to record in the subregion map "intermediate" regions that + // don't have direct bindings but are super regions of those that do. + while (!WL.empty()) { + const SubRegion *R = WL.back(); + WL.pop_back(); + M->process(WL, R); + } + + return M; +} + +//===----------------------------------------------------------------------===// +// Region Cluster analysis. +//===----------------------------------------------------------------------===// + +namespace { +template <typename DERIVED> +class ClusterAnalysis { +protected: + typedef BumpVector<BindingKey> RegionCluster; + typedef llvm::DenseMap<const MemRegion *, RegionCluster *> ClusterMap; + llvm::DenseMap<const RegionCluster*, unsigned> Visited; + typedef llvm::SmallVector<std::pair<const MemRegion *, RegionCluster*>, 10> + WorkList; + + BumpVectorContext BVC; + ClusterMap ClusterM; + WorkList WL; + + RegionStoreManager &RM; + ASTContext &Ctx; + SValBuilder &svalBuilder; + + RegionBindings B; + + const bool includeGlobals; + +public: + ClusterAnalysis(RegionStoreManager &rm, GRStateManager &StateMgr, + RegionBindings b, const bool includeGlobals) + : RM(rm), Ctx(StateMgr.getContext()), + svalBuilder(StateMgr.getSValBuilder()), + B(b), includeGlobals(includeGlobals) {} + + RegionBindings getRegionBindings() const { return B; } + + RegionCluster &AddToCluster(BindingKey K) { + const MemRegion *R = K.getRegion(); + const MemRegion *baseR = R->getBaseRegion(); + RegionCluster &C = getCluster(baseR); + C.push_back(K, BVC); + static_cast<DERIVED*>(this)->VisitAddedToCluster(baseR, C); + return C; + } + + bool isVisited(const MemRegion *R) { + return (bool) Visited[&getCluster(R->getBaseRegion())]; + } + + RegionCluster& getCluster(const MemRegion *R) { + RegionCluster *&CRef = ClusterM[R]; + if (!CRef) { + void *Mem = BVC.getAllocator().template Allocate<RegionCluster>(); + CRef = new (Mem) RegionCluster(BVC, 10); + } + return *CRef; + } + + void GenerateClusters() { + // Scan the entire set of bindings and make the region clusters. + for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){ + RegionCluster &C = AddToCluster(RI.getKey()); + if (const MemRegion *R = RI.getData().getAsRegion()) { + // Generate a cluster, but don't add the region to the cluster + // if there aren't any bindings. + getCluster(R->getBaseRegion()); + } + if (includeGlobals) { + const MemRegion *R = RI.getKey().getRegion(); + if (isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace())) + AddToWorkList(R, C); + } + } + } + + bool AddToWorkList(const MemRegion *R, RegionCluster &C) { + if (unsigned &visited = Visited[&C]) + return false; + else + visited = 1; + + WL.push_back(std::make_pair(R, &C)); + return true; + } + + bool AddToWorkList(BindingKey K) { + return AddToWorkList(K.getRegion()); + } + + bool AddToWorkList(const MemRegion *R) { + const MemRegion *baseR = R->getBaseRegion(); + return AddToWorkList(baseR, getCluster(baseR)); + } + + void RunWorkList() { + while (!WL.empty()) { + const MemRegion *baseR; + RegionCluster *C; + llvm::tie(baseR, C) = WL.back(); + WL.pop_back(); + + // First visit the cluster. + static_cast<DERIVED*>(this)->VisitCluster(baseR, C->begin(), C->end()); + + // Next, visit the base region. + static_cast<DERIVED*>(this)->VisitBaseRegion(baseR); + } + } + +public: + void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C) {} + void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E) {} + void VisitBaseRegion(const MemRegion *baseR) {} +}; +} + +//===----------------------------------------------------------------------===// +// Binding invalidation. +//===----------------------------------------------------------------------===// + +void RegionStoreManager::RemoveSubRegionBindings(RegionBindings &B, + const MemRegion *R, + RegionStoreSubRegionMap &M) { + + if (const RegionStoreSubRegionMap::Set *S = M.getSubRegions(R)) + for (RegionStoreSubRegionMap::Set::iterator I = S->begin(), E = S->end(); + I != E; ++I) + RemoveSubRegionBindings(B, *I, M); + + B = removeBinding(B, R); +} + +namespace { +class InvalidateRegionsWorker : public ClusterAnalysis<InvalidateRegionsWorker> +{ + const Expr *Ex; + unsigned Count; + StoreManager::InvalidatedSymbols *IS; + StoreManager::InvalidatedRegions *Regions; +public: + InvalidateRegionsWorker(RegionStoreManager &rm, + GRStateManager &stateMgr, + RegionBindings b, + const Expr *ex, unsigned count, + StoreManager::InvalidatedSymbols *is, + StoreManager::InvalidatedRegions *r, + bool includeGlobals) + : ClusterAnalysis<InvalidateRegionsWorker>(rm, stateMgr, b, includeGlobals), + Ex(ex), Count(count), IS(is), Regions(r) {} + + void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E); + void VisitBaseRegion(const MemRegion *baseR); + +private: + void VisitBinding(SVal V); +}; +} + +void InvalidateRegionsWorker::VisitBinding(SVal V) { + // A symbol? Mark it touched by the invalidation. + if (IS) + if (SymbolRef Sym = V.getAsSymbol()) + IS->insert(Sym); + + if (const MemRegion *R = V.getAsRegion()) { + AddToWorkList(R); + return; + } + + // Is it a LazyCompoundVal? All references get invalidated as well. + if (const nonloc::LazyCompoundVal *LCS = + dyn_cast<nonloc::LazyCompoundVal>(&V)) { + + const MemRegion *LazyR = LCS->getRegion(); + RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore()); + + for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){ + const SubRegion *baseR = dyn_cast<SubRegion>(RI.getKey().getRegion()); + if (baseR && baseR->isSubRegionOf(LazyR)) + VisitBinding(RI.getData()); + } + + return; + } +} + +void InvalidateRegionsWorker::VisitCluster(const MemRegion *baseR, + BindingKey *I, BindingKey *E) { + for ( ; I != E; ++I) { + // Get the old binding. Is it a region? If so, add it to the worklist. + const BindingKey &K = *I; + if (const SVal *V = RM.lookup(B, K)) + VisitBinding(*V); + + B = RM.removeBinding(B, K); + } +} + +void InvalidateRegionsWorker::VisitBaseRegion(const MemRegion *baseR) { + if (IS) { + // Symbolic region? Mark that symbol touched by the invalidation. + if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) + IS->insert(SR->getSymbol()); + } + + // BlockDataRegion? If so, invalidate captured variables that are passed + // by reference. + if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) { + for (BlockDataRegion::referenced_vars_iterator + BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ; + BI != BE; ++BI) { + const VarRegion *VR = *BI; + const VarDecl *VD = VR->getDecl(); + if (VD->getAttr<BlocksAttr>() || !VD->hasLocalStorage()) + AddToWorkList(VR); + } + return; + } + + // Otherwise, we have a normal data region. Record that we touched the region. + if (Regions) + Regions->push_back(baseR); + + if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) { + // Invalidate the region by setting its default value to + // conjured symbol. The type of the symbol is irrelavant. + DefinedOrUnknownSVal V = + svalBuilder.getConjuredSymbolVal(baseR, Ex, Ctx.IntTy, Count); + B = RM.addBinding(B, baseR, BindingKey::Default, V); + return; + } + + if (!baseR->isBoundable()) + return; + + const TypedRegion *TR = cast<TypedRegion>(baseR); + QualType T = TR->getValueType(); + + // Invalidate the binding. + if (T->isStructureType()) { + // Invalidate the region by setting its default value to + // conjured symbol. The type of the symbol is irrelavant. + DefinedOrUnknownSVal V = svalBuilder.getConjuredSymbolVal(baseR, Ex, Ctx.IntTy, + Count); + B = RM.addBinding(B, baseR, BindingKey::Default, V); + return; + } + + if (const ArrayType *AT = Ctx.getAsArrayType(T)) { + // Set the default value of the array to conjured symbol. + DefinedOrUnknownSVal V = + svalBuilder.getConjuredSymbolVal(baseR, Ex, AT->getElementType(), Count); + B = RM.addBinding(B, baseR, BindingKey::Default, V); + return; + } + + if (includeGlobals && + isa<NonStaticGlobalSpaceRegion>(baseR->getMemorySpace())) { + // If the region is a global and we are invalidating all globals, + // just erase the entry. This causes all globals to be lazily + // symbolicated from the same base symbol. + B = RM.removeBinding(B, baseR); + return; + } + + + DefinedOrUnknownSVal V = svalBuilder.getConjuredSymbolVal(baseR, Ex, T, Count); + assert(SymbolManager::canSymbolicate(T) || V.isUnknown()); + B = RM.addBinding(B, baseR, BindingKey::Direct, V); +} + +Store RegionStoreManager::InvalidateRegions(Store store, + const MemRegion * const *I, + const MemRegion * const *E, + const Expr *Ex, unsigned Count, + InvalidatedSymbols *IS, + bool invalidateGlobals, + InvalidatedRegions *Regions) { + InvalidateRegionsWorker W(*this, StateMgr, + RegionStoreManager::GetRegionBindings(store), + Ex, Count, IS, Regions, invalidateGlobals); + + // Scan the bindings and generate the clusters. + W.GenerateClusters(); + + // Add I .. E to the worklist. + for ( ; I != E; ++I) + W.AddToWorkList(*I); + + W.RunWorkList(); + + // Return the new bindings. + RegionBindings B = W.getRegionBindings(); + + if (invalidateGlobals) { + // Bind the non-static globals memory space to a new symbol that we will + // use to derive the bindings for all non-static globals. + const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(); + SVal V = + svalBuilder.getConjuredSymbolVal(/* SymbolTag = */ (void*) GS, Ex, + /* symbol type, doesn't matter */ Ctx.IntTy, + Count); + B = addBinding(B, BindingKey::Make(GS, BindingKey::Default), V); + + // Even if there are no bindings in the global scope, we still need to + // record that we touched it. + if (Regions) + Regions->push_back(GS); + } + + return B.getRoot(); +} + +//===----------------------------------------------------------------------===// +// Extents for regions. +//===----------------------------------------------------------------------===// + +DefinedOrUnknownSVal RegionStoreManager::getSizeInElements(const GRState *state, + const MemRegion *R, + QualType EleTy) { + SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder); + const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size); + if (!SizeInt) + return UnknownVal(); + + CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue()); + + if (Ctx.getAsVariableArrayType(EleTy)) { + // FIXME: We need to track extra state to properly record the size + // of VLAs. Returning UnknownVal here, however, is a stop-gap so that + // we don't have a divide-by-zero below. + return UnknownVal(); + } + + CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy); + + // If a variable is reinterpreted as a type that doesn't fit into a larger + // type evenly, round it down. + // This is a signed value, since it's used in arithmetic with signed indices. + return svalBuilder.makeIntVal(RegionSize / EleSize, false); +} + +//===----------------------------------------------------------------------===// +// Location and region casting. +//===----------------------------------------------------------------------===// + +/// ArrayToPointer - Emulates the "decay" of an array to a pointer +/// type. 'Array' represents the lvalue of the array being decayed +/// to a pointer, and the returned SVal represents the decayed +/// version of that lvalue (i.e., a pointer to the first element of +/// the array). This is called by ExprEngine when evaluating casts +/// from arrays to pointers. +SVal RegionStoreManager::ArrayToPointer(Loc Array) { + if (!isa<loc::MemRegionVal>(Array)) + return UnknownVal(); + + const MemRegion* R = cast<loc::MemRegionVal>(&Array)->getRegion(); + const TypedRegion* ArrayR = dyn_cast<TypedRegion>(R); + + if (!ArrayR) + return UnknownVal(); + + // Strip off typedefs from the ArrayRegion's ValueType. + QualType T = ArrayR->getValueType().getDesugaredType(Ctx); + const ArrayType *AT = cast<ArrayType>(T); + T = AT->getElementType(); + + NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex(); + return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, ArrayR, Ctx)); +} + +SVal RegionStoreManager::evalDerivedToBase(SVal derived, QualType baseType) { + const CXXRecordDecl *baseDecl; + if (baseType->isPointerType()) + baseDecl = baseType->getCXXRecordDeclForPointerType(); + else + baseDecl = baseType->getAsCXXRecordDecl(); + + assert(baseDecl && "not a CXXRecordDecl?"); + + loc::MemRegionVal *derivedRegVal = dyn_cast<loc::MemRegionVal>(&derived); + if (!derivedRegVal) + return derived; + + const MemRegion *baseReg = + MRMgr.getCXXBaseObjectRegion(baseDecl, derivedRegVal->getRegion()); + + return loc::MemRegionVal(baseReg); +} +//===----------------------------------------------------------------------===// +// Pointer arithmetic. +//===----------------------------------------------------------------------===// + +SVal RegionStoreManager::evalBinOp(BinaryOperator::Opcode Op, Loc L, NonLoc R, + QualType resultTy) { + // Assume the base location is MemRegionVal. + if (!isa<loc::MemRegionVal>(L)) + return UnknownVal(); + + // Special case for zero RHS. + if (R.isZeroConstant()) { + switch (Op) { + default: + // Handle it normally. + break; + case BO_Add: + case BO_Sub: + // FIXME: does this need to be casted to match resultTy? + return L; + } + } + + const MemRegion* MR = cast<loc::MemRegionVal>(L).getRegion(); + const ElementRegion *ER = 0; + + switch (MR->getKind()) { + case MemRegion::SymbolicRegionKind: { + const SymbolicRegion *SR = cast<SymbolicRegion>(MR); + SymbolRef Sym = SR->getSymbol(); + QualType T = Sym->getType(Ctx); + QualType EleTy; + + if (const PointerType *PT = T->getAs<PointerType>()) + EleTy = PT->getPointeeType(); + else + EleTy = T->getAs<ObjCObjectPointerType>()->getPointeeType(); + + const NonLoc &ZeroIdx = svalBuilder.makeZeroArrayIndex(); + ER = MRMgr.getElementRegion(EleTy, ZeroIdx, SR, Ctx); + break; + } + case MemRegion::AllocaRegionKind: { + const AllocaRegion *AR = cast<AllocaRegion>(MR); + QualType EleTy = Ctx.CharTy; // Create an ElementRegion of bytes. + NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex(); + ER = MRMgr.getElementRegion(EleTy, ZeroIdx, AR, Ctx); + break; + } + + case MemRegion::ElementRegionKind: { + ER = cast<ElementRegion>(MR); + break; + } + + // Not yet handled. + case MemRegion::VarRegionKind: + case MemRegion::StringRegionKind: { + + } + // Fall-through. + case MemRegion::CompoundLiteralRegionKind: + case MemRegion::FieldRegionKind: + case MemRegion::ObjCIvarRegionKind: + case MemRegion::CXXTempObjectRegionKind: + case MemRegion::CXXBaseObjectRegionKind: + return UnknownVal(); + + case MemRegion::FunctionTextRegionKind: + case MemRegion::BlockTextRegionKind: + case MemRegion::BlockDataRegionKind: + // Technically this can happen if people do funny things with casts. + return UnknownVal(); + + case MemRegion::CXXThisRegionKind: + assert(0 && + "Cannot perform pointer arithmetic on implicit argument 'this'"); + case MemRegion::GenericMemSpaceRegionKind: + case MemRegion::StackLocalsSpaceRegionKind: + case MemRegion::StackArgumentsSpaceRegionKind: + case MemRegion::HeapSpaceRegionKind: + case MemRegion::NonStaticGlobalSpaceRegionKind: + case MemRegion::StaticGlobalSpaceRegionKind: + case MemRegion::UnknownSpaceRegionKind: + assert(0 && "Cannot perform pointer arithmetic on a MemSpace"); + return UnknownVal(); + } + + SVal Idx = ER->getIndex(); + nonloc::ConcreteInt* Base = dyn_cast<nonloc::ConcreteInt>(&Idx); + + // For now, only support: + // (a) concrete integer indices that can easily be resolved + // (b) 0 + symbolic index + if (Base) { + if (nonloc::ConcreteInt *Offset = dyn_cast<nonloc::ConcreteInt>(&R)) { + // FIXME: Should use SValBuilder here. + SVal NewIdx = + Base->evalBinOp(svalBuilder, Op, + cast<nonloc::ConcreteInt>(svalBuilder.convertToArrayIndex(*Offset))); + + if (!isa<NonLoc>(NewIdx)) + return UnknownVal(); + + const MemRegion* NewER = + MRMgr.getElementRegion(ER->getElementType(), cast<NonLoc>(NewIdx), + ER->getSuperRegion(), Ctx); + return svalBuilder.makeLoc(NewER); + } + if (0 == Base->getValue()) { + const MemRegion* NewER = + MRMgr.getElementRegion(ER->getElementType(), R, + ER->getSuperRegion(), Ctx); + return svalBuilder.makeLoc(NewER); + } + } + + return UnknownVal(); +} + +//===----------------------------------------------------------------------===// +// Loading values from regions. +//===----------------------------------------------------------------------===// + +Optional<SVal> RegionStoreManager::getDirectBinding(RegionBindings B, + const MemRegion *R) { + + if (const SVal *V = lookup(B, R, BindingKey::Direct)) + return *V; + + return Optional<SVal>(); +} + +Optional<SVal> RegionStoreManager::getDefaultBinding(RegionBindings B, + const MemRegion *R) { + if (R->isBoundable()) + if (const TypedRegion *TR = dyn_cast<TypedRegion>(R)) + if (TR->getValueType()->isUnionType()) + return UnknownVal(); + + if (const SVal *V = lookup(B, R, BindingKey::Default)) + return *V; + + return Optional<SVal>(); +} + +SVal RegionStoreManager::Retrieve(Store store, Loc L, QualType T) { + assert(!isa<UnknownVal>(L) && "location unknown"); + assert(!isa<UndefinedVal>(L) && "location undefined"); + + // For access to concrete addresses, return UnknownVal. Checks + // for null dereferences (and similar errors) are done by checkers, not + // the Store. + // FIXME: We can consider lazily symbolicating such memory, but we really + // should defer this when we can reason easily about symbolicating arrays + // of bytes. + if (isa<loc::ConcreteInt>(L)) { + return UnknownVal(); + } + if (!isa<loc::MemRegionVal>(L)) { + return UnknownVal(); + } + + con |