aboutsummaryrefslogtreecommitdiff
path: root/lib/StaticAnalyzer/Core/CallEvent.cpp
diff options
context:
space:
mode:
authorJordan Rose <jordan_rose@apple.com>2012-07-26 21:39:41 +0000
committerJordan Rose <jordan_rose@apple.com>2012-07-26 21:39:41 +0000
commitf540c54701e3eeb34cb619a3a4eb18f1ac70ef2d (patch)
treec8c6ef71339687d86987bd0eae54996ec67b3a5e /lib/StaticAnalyzer/Core/CallEvent.cpp
parent1d3ca251f9891623fac0dbe70eece42564e274ed (diff)
[analyzer] Rename Calls.{h,cpp} to CallEvent.{h,cpp}. No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@160815 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/StaticAnalyzer/Core/CallEvent.cpp')
-rw-r--r--lib/StaticAnalyzer/Core/CallEvent.cpp620
1 files changed, 620 insertions, 0 deletions
diff --git a/lib/StaticAnalyzer/Core/CallEvent.cpp b/lib/StaticAnalyzer/Core/CallEvent.cpp
new file mode 100644
index 0000000000..778d86ee2b
--- /dev/null
+++ b/lib/StaticAnalyzer/Core/CallEvent.cpp
@@ -0,0 +1,620 @@
+//===- Calls.cpp - Wrapper for all function and method calls ------*- C++ -*--//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file This file defines CallEvent and its subclasses, which represent path-
+/// sensitive instances of different kinds of function and method calls
+/// (C, C++, and Objective-C).
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
+#include "clang/Analysis/ProgramPoint.h"
+#include "clang/AST/ParentMap.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/StringExtras.h"
+
+using namespace clang;
+using namespace ento;
+
+QualType CallEvent::getResultType() const {
+ QualType ResultTy = getDeclaredResultType();
+
+ if (ResultTy.isNull())
+ ResultTy = getOriginExpr()->getType();
+
+ return ResultTy;
+}
+
+static bool isCallbackArg(SVal V, QualType T) {
+ // If the parameter is 0, it's harmless.
+ if (V.isZeroConstant())
+ return false;
+
+ // If a parameter is a block or a callback, assume it can modify pointer.
+ if (T->isBlockPointerType() ||
+ T->isFunctionPointerType() ||
+ T->isObjCSelType())
+ return true;
+
+ // Check if a callback is passed inside a struct (for both, struct passed by
+ // reference and by value). Dig just one level into the struct for now.
+
+ if (isa<PointerType>(T) || isa<ReferenceType>(T))
+ T = T->getPointeeType();
+
+ if (const RecordType *RT = T->getAsStructureType()) {
+ const RecordDecl *RD = RT->getDecl();
+ for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
+ I != E; ++I) {
+ QualType FieldT = I->getType();
+ if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool CallEvent::hasNonZeroCallbackArg() const {
+ unsigned NumOfArgs = getNumArgs();
+
+ // If calling using a function pointer, assume the function does not
+ // have a callback. TODO: We could check the types of the arguments here.
+ if (!getDecl())
+ return false;
+
+ unsigned Idx = 0;
+ for (CallEvent::param_type_iterator I = param_type_begin(),
+ E = param_type_end();
+ I != E && Idx < NumOfArgs; ++I, ++Idx) {
+ if (NumOfArgs <= Idx)
+ break;
+
+ if (isCallbackArg(getArgSVal(Idx), *I))
+ return true;
+ }
+
+ return false;
+}
+
+/// \brief Returns true if a type is a pointer-to-const or reference-to-const
+/// with no further indirection.
+static bool isPointerToConst(QualType Ty) {
+ QualType PointeeTy = Ty->getPointeeType();
+ if (PointeeTy == QualType())
+ return false;
+ if (!PointeeTy.isConstQualified())
+ return false;
+ if (PointeeTy->isAnyPointerType())
+ return false;
+ return true;
+}
+
+// Try to retrieve the function declaration and find the function parameter
+// types which are pointers/references to a non-pointer const.
+// We will not invalidate the corresponding argument regions.
+static void findPtrToConstParams(llvm::SmallSet<unsigned, 1> &PreserveArgs,
+ const CallEvent &Call) {
+ unsigned Idx = 0;
+ for (CallEvent::param_type_iterator I = Call.param_type_begin(),
+ E = Call.param_type_end();
+ I != E; ++I, ++Idx) {
+ if (isPointerToConst(*I))
+ PreserveArgs.insert(Idx);
+ }
+}
+
+ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
+ ProgramStateRef Orig) const {
+ ProgramStateRef Result = (Orig ? Orig : getState());
+
+ SmallVector<const MemRegion *, 8> RegionsToInvalidate;
+ getExtraInvalidatedRegions(RegionsToInvalidate);
+
+ // Indexes of arguments whose values will be preserved by the call.
+ llvm::SmallSet<unsigned, 1> PreserveArgs;
+ if (!argumentsMayEscape())
+ findPtrToConstParams(PreserveArgs, *this);
+
+ for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
+ if (PreserveArgs.count(Idx))
+ continue;
+
+ SVal V = getArgSVal(Idx);
+
+ // If we are passing a location wrapped as an integer, unwrap it and
+ // invalidate the values referred by the location.
+ if (nonloc::LocAsInteger *Wrapped = dyn_cast<nonloc::LocAsInteger>(&V))
+ V = Wrapped->getLoc();
+ else if (!isa<Loc>(V))
+ continue;
+
+ if (const MemRegion *R = V.getAsRegion()) {
+ // Invalidate the value of the variable passed by reference.
+
+ // Are we dealing with an ElementRegion? If the element type is
+ // a basic integer type (e.g., char, int) and the underlying region
+ // is a variable region then strip off the ElementRegion.
+ // FIXME: We really need to think about this for the general case
+ // as sometimes we are reasoning about arrays and other times
+ // about (char*), etc., is just a form of passing raw bytes.
+ // e.g., void *p = alloca(); foo((char*)p);
+ if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
+ // Checking for 'integral type' is probably too promiscuous, but
+ // we'll leave it in for now until we have a systematic way of
+ // handling all of these cases. Eventually we need to come up
+ // with an interface to StoreManager so that this logic can be
+ // appropriately delegated to the respective StoreManagers while
+ // still allowing us to do checker-specific logic (e.g.,
+ // invalidating reference counts), probably via callbacks.
+ if (ER->getElementType()->isIntegralOrEnumerationType()) {
+ const MemRegion *superReg = ER->getSuperRegion();
+ if (isa<VarRegion>(superReg) || isa<FieldRegion>(superReg) ||
+ isa<ObjCIvarRegion>(superReg))
+ R = cast<TypedRegion>(superReg);
+ }
+ // FIXME: What about layers of ElementRegions?
+ }
+
+ // Mark this region for invalidation. We batch invalidate regions
+ // below for efficiency.
+ RegionsToInvalidate.push_back(R);
+ }
+ }
+
+ // Invalidate designated regions using the batch invalidation API.
+ // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
+ // global variables.
+ return Result->invalidateRegions(RegionsToInvalidate, getOriginExpr(),
+ BlockCount, getLocationContext(),
+ /*Symbols=*/0, this);
+}
+
+ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
+ const ProgramPointTag *Tag) const {
+ if (const Expr *E = getOriginExpr()) {
+ if (IsPreVisit)
+ return PreStmt(E, getLocationContext(), Tag);
+ return PostStmt(E, getLocationContext(), Tag);
+ }
+
+ const Decl *D = getDecl();
+ assert(D && "Cannot get a program point without a statement or decl");
+
+ SourceLocation Loc = getSourceRange().getBegin();
+ if (IsPreVisit)
+ return PreImplicitCall(D, Loc, getLocationContext(), Tag);
+ return PostImplicitCall(D, Loc, getLocationContext(), Tag);
+}
+
+
+bool CallEvent::mayBeInlined(const Stmt *S) {
+ return isa<CallExpr>(S);
+}
+
+
+CallEvent::param_iterator
+AnyFunctionCall::param_begin(bool UseDefinitionParams) const {
+ const Decl *D = UseDefinitionParams ? getRuntimeDefinition()
+ : getDecl();
+ if (!D)
+ return 0;
+
+ return cast<FunctionDecl>(D)->param_begin();
+}
+
+CallEvent::param_iterator
+AnyFunctionCall::param_end(bool UseDefinitionParams) const {
+ const Decl *D = UseDefinitionParams ? getRuntimeDefinition()
+ : getDecl();
+ if (!D)
+ return 0;
+
+ return cast<FunctionDecl>(D)->param_end();
+}
+
+QualType AnyFunctionCall::getDeclaredResultType() const {
+ const FunctionDecl *D = getDecl();
+ if (!D)
+ return QualType();
+
+ return D->getResultType();
+}
+
+bool AnyFunctionCall::argumentsMayEscape() const {
+ if (hasNonZeroCallbackArg())
+ return true;
+
+ const FunctionDecl *D = getDecl();
+ if (!D)
+ return true;
+
+ const IdentifierInfo *II = D->getIdentifier();
+ if (!II)
+ return true;
+
+ // This set of "escaping" APIs is
+
+ // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
+ // value into thread local storage. The value can later be retrieved with
+ // 'void *ptheread_getspecific(pthread_key)'. So even thought the
+ // parameter is 'const void *', the region escapes through the call.
+ if (II->isStr("pthread_setspecific"))
+ return true;
+
+ // - xpc_connection_set_context stores a value which can be retrieved later
+ // with xpc_connection_get_context.
+ if (II->isStr("xpc_connection_set_context"))
+ return true;
+
+ // - funopen - sets a buffer for future IO calls.
+ if (II->isStr("funopen"))
+ return true;
+
+ StringRef FName = II->getName();
+
+ // - CoreFoundation functions that end with "NoCopy" can free a passed-in
+ // buffer even if it is const.
+ if (FName.endswith("NoCopy"))
+ return true;
+
+ // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
+ // be deallocated by NSMapRemove.
+ if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
+ return true;
+
+ // - Many CF containers allow objects to escape through custom
+ // allocators/deallocators upon container construction. (PR12101)
+ if (FName.startswith("CF") || FName.startswith("CG")) {
+ return StrInStrNoCase(FName, "InsertValue") != StringRef::npos ||
+ StrInStrNoCase(FName, "AddValue") != StringRef::npos ||
+ StrInStrNoCase(FName, "SetValue") != StringRef::npos ||
+ StrInStrNoCase(FName, "WithData") != StringRef::npos ||
+ StrInStrNoCase(FName, "AppendValue") != StringRef::npos ||
+ StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
+ }
+
+ return false;
+}
+
+SVal AnyFunctionCall::getArgSVal(unsigned Index) const {
+ const Expr *ArgE = getArgExpr(Index);
+ if (!ArgE)
+ return UnknownVal();
+ return getSVal(ArgE);
+}
+
+SourceRange AnyFunctionCall::getArgSourceRange(unsigned Index) const {
+ const Expr *ArgE = getArgExpr(Index);
+ if (!ArgE)
+ return SourceRange();
+ return ArgE->getSourceRange();
+}
+
+
+const FunctionDecl *SimpleCall::getDecl() const {
+ const FunctionDecl *D = getOriginExpr()->getDirectCallee();
+ if (D)
+ return D;
+
+ return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
+}
+
+void CallEvent::dump(raw_ostream &Out) const {
+ ASTContext &Ctx = getState()->getStateManager().getContext();
+ if (const Expr *E = getOriginExpr()) {
+ E->printPretty(Out, Ctx, 0, Ctx.getLangOpts());
+ Out << "\n";
+ return;
+ }
+
+ if (const Decl *D = getDecl()) {
+ Out << "Call to ";
+ D->print(Out, Ctx.getLangOpts());
+ return;
+ }
+
+ // FIXME: a string representation of the kind would be nice.
+ Out << "Unknown call (type " << getKind() << ")";
+}
+
+
+void CXXInstanceCall::getExtraInvalidatedRegions(RegionList &Regions) const {
+ if (const MemRegion *R = getCXXThisVal().getAsRegion())
+ Regions.push_back(R);
+}
+
+static const CXXMethodDecl *devirtualize(const CXXMethodDecl *MD, SVal ThisVal){
+ const MemRegion *R = ThisVal.getAsRegion();
+ if (!R)
+ return 0;
+
+ const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R->StripCasts());
+ if (!TR)
+ return 0;
+
+ const CXXRecordDecl *RD = TR->getValueType()->getAsCXXRecordDecl();
+ if (!RD)
+ return 0;
+
+ const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD);
+ const FunctionDecl *Definition;
+ if (!Result->hasBody(Definition))
+ return 0;
+
+ return cast<CXXMethodDecl>(Definition);
+}
+
+
+const Decl *CXXInstanceCall::getRuntimeDefinition() const {
+ const Decl *D = SimpleCall::getRuntimeDefinition();
+ if (!D)
+ return 0;
+
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
+ if (!MD->isVirtual())
+ return MD;
+
+ // If the method is virtual, see if we can find the actual implementation
+ // based on context-sensitivity.
+ if (const CXXMethodDecl *Devirtualized = devirtualize(MD, getCXXThisVal()))
+ return Devirtualized;
+
+ return 0;
+}
+
+
+SVal CXXMemberCall::getCXXThisVal() const {
+ const Expr *Base = getOriginExpr()->getImplicitObjectArgument();
+
+ // FIXME: Will eventually need to cope with member pointers. This is
+ // a limitation in getImplicitObjectArgument().
+ if (!Base)
+ return UnknownVal();
+
+ return getSVal(Base);
+}
+
+
+SVal CXXMemberOperatorCall::getCXXThisVal() const {
+ const Expr *Base = getOriginExpr()->getArg(0);
+ return getSVal(Base);
+}
+
+
+const BlockDataRegion *BlockCall::getBlockRegion() const {
+ const Expr *Callee = getOriginExpr()->getCallee();
+ const MemRegion *DataReg = getSVal(Callee).getAsRegion();
+
+ return dyn_cast_or_null<BlockDataRegion>(DataReg);
+}
+
+CallEvent::param_iterator
+BlockCall::param_begin(bool UseDefinitionParams) const {
+ // Blocks don't have distinct declarations and definitions.
+ (void)UseDefinitionParams;
+
+ const BlockDecl *D = getBlockDecl();
+ if (!D)
+ return 0;
+ return D->param_begin();
+}
+
+CallEvent::param_iterator
+BlockCall::param_end(bool UseDefinitionParams) const {
+ // Blocks don't have distinct declarations and definitions.
+ (void)UseDefinitionParams;
+
+ const BlockDecl *D = getBlockDecl();
+ if (!D)
+ return 0;
+ return D->param_end();
+}
+
+void BlockCall::getExtraInvalidatedRegions(RegionList &Regions) const {
+ // FIXME: This also needs to invalidate captured globals.
+ if (const MemRegion *R = getBlockRegion())
+ Regions.push_back(R);
+}
+
+QualType BlockCall::getDeclaredResultType() const {
+ const BlockDataRegion *BR = getBlockRegion();
+ if (!BR)
+ return QualType();
+ QualType BlockTy = BR->getCodeRegion()->getLocationType();
+ return cast<FunctionType>(BlockTy->getPointeeType())->getResultType();
+}
+
+
+SVal CXXConstructorCall::getCXXThisVal() const {
+ if (Data)
+ return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
+ return UnknownVal();
+}
+
+void CXXConstructorCall::getExtraInvalidatedRegions(RegionList &Regions) const {
+ if (Data)
+ Regions.push_back(static_cast<const MemRegion *>(Data));
+}
+
+
+SVal CXXDestructorCall::getCXXThisVal() const {
+ if (Data)
+ return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
+ return UnknownVal();
+}
+
+void CXXDestructorCall::getExtraInvalidatedRegions(RegionList &Regions) const {
+ if (Data)
+ Regions.push_back(static_cast<const MemRegion *>(Data));
+}
+
+const Decl *CXXDestructorCall::getRuntimeDefinition() const {
+ const Decl *D = AnyFunctionCall::getRuntimeDefinition();
+ if (!D)
+ return 0;
+
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
+ if (!MD->isVirtual())
+ return MD;
+
+ // If the method is virtual, see if we can find the actual implementation
+ // based on context-sensitivity.
+ if (const CXXMethodDecl *Devirtualized = devirtualize(MD, getCXXThisVal()))
+ return Devirtualized;
+
+ return 0;
+}
+
+
+CallEvent::param_iterator
+ObjCMethodCall::param_begin(bool UseDefinitionParams) const {
+ const Decl *D = UseDefinitionParams ? getRuntimeDefinition()
+ : getDecl();
+ if (!D)
+ return 0;
+
+ return cast<ObjCMethodDecl>(D)->param_begin();
+}
+
+CallEvent::param_iterator
+ObjCMethodCall::param_end(bool UseDefinitionParams) const {
+ const Decl *D = UseDefinitionParams ? getRuntimeDefinition()
+ : getDecl();
+ if (!D)
+ return 0;
+
+ return cast<ObjCMethodDecl>(D)->param_end();
+}
+
+void
+ObjCMethodCall::getExtraInvalidatedRegions(RegionList &Regions) const {
+ if (const MemRegion *R = getReceiverSVal().getAsRegion())
+ Regions.push_back(R);
+}
+
+QualType ObjCMethodCall::getDeclaredResultType() const {
+ const ObjCMethodDecl *D = getDecl();
+ if (!D)
+ return QualType();
+
+ return D->getResultType();
+}
+
+SVal ObjCMethodCall::getReceiverSVal() const {
+ // FIXME: Is this the best way to handle class receivers?
+ if (!isInstanceMessage())
+ return UnknownVal();
+
+ if (const Expr *Base = getOriginExpr()->getInstanceReceiver())
+ return getSVal(Base);
+
+ // An instance message with no expression means we are sending to super.
+ // In this case the object reference is the same as 'self'.
+ const LocationContext *LCtx = getLocationContext();
+ const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl();
+ assert(SelfDecl && "No message receiver Expr, but not in an ObjC method");
+ return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx));
+}
+
+SourceRange ObjCMethodCall::getSourceRange() const {
+ switch (getMessageKind()) {
+ case OCM_Message:
+ return getOriginExpr()->getSourceRange();
+ case OCM_PropertyAccess:
+ case OCM_Subscript:
+ return getContainingPseudoObjectExpr()->getSourceRange();
+ }
+ llvm_unreachable("unknown message kind");
+}
+
+typedef llvm::PointerIntPair<const PseudoObjectExpr *, 2> ObjCMessageDataTy;
+
+const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
+ assert(Data != 0 && "Lazy lookup not yet performed.");
+ assert(getMessageKind() != OCM_Message && "Explicit message send.");
+ return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
+}
+
+ObjCMessageKind ObjCMethodCall::getMessageKind() const {
+ if (Data == 0) {
+ ParentMap &PM = getLocationContext()->getParentMap();
+ const Stmt *S = PM.getParent(getOriginExpr());
+ if (const PseudoObjectExpr *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
+ const Expr *Syntactic = POE->getSyntacticForm();
+
+ // This handles the funny case of assigning to the result of a getter.
+ // This can happen if the getter returns a non-const reference.
+ if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Syntactic))
+ Syntactic = BO->getLHS();
+
+ ObjCMessageKind K;
+ switch (Syntactic->getStmtClass()) {
+ case Stmt::ObjCPropertyRefExprClass:
+ K = OCM_PropertyAccess;
+ break;
+ case Stmt::ObjCSubscriptRefExprClass:
+ K = OCM_Subscript;
+ break;
+ default:
+ // FIXME: Can this ever happen?
+ K = OCM_Message;
+ break;
+ }
+
+ if (K != OCM_Message) {
+ const_cast<ObjCMethodCall *>(this)->Data
+ = ObjCMessageDataTy(POE, K).getOpaqueValue();
+ assert(getMessageKind() == K);
+ return K;
+ }
+ }
+
+ const_cast<ObjCMethodCall *>(this)->Data
+ = ObjCMessageDataTy(0, 1).getOpaqueValue();
+ assert(getMessageKind() == OCM_Message);
+ return OCM_Message;
+ }
+
+ ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
+ if (!Info.getPointer())
+ return OCM_Message;
+ return static_cast<ObjCMessageKind>(Info.getInt());
+}
+
+// TODO: This implementation is copied from SemaExprObjC.cpp, needs to be
+// factored into the ObjCInterfaceDecl.
+ObjCMethodDecl *ObjCMethodCall::LookupClassMethodDefinition(Selector Sel,
+ ObjCInterfaceDecl *ClassDecl) const {
+ ObjCMethodDecl *Method = 0;
+ // Lookup in class and all superclasses.
+ while (ClassDecl && !Method) {
+ if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation())
+ Method = ImpDecl->getClassMethod(Sel);
+
+ // Look through local category implementations associated with the class.
+ if (!Method)
+ Method = ClassDecl->getCategoryClassMethod(Sel);
+
+ // Before we give up, check if the selector is an instance method.
+ // But only in the root. This matches gcc's behavior and what the
+ // runtime expects.
+ if (!Method && !ClassDecl->getSuperClass()) {
+ Method = ClassDecl->lookupInstanceMethod(Sel);
+ // Look through local category implementations associated
+ // with the root class.
+ //if (!Method)
+ // Method = LookupPrivateInstanceMethod(Sel, ClassDecl);
+ }
+
+ ClassDecl = ClassDecl->getSuperClass();
+ }
+ return Method;
+}
+