diff options
author | Jeffrey Yasskin <jyasskin@google.com> | 2011-07-26 23:20:30 +0000 |
---|---|---|
committer | Jeffrey Yasskin <jyasskin@google.com> | 2011-07-26 23:20:30 +0000 |
commit | 191591336f639dad1504e863733fb831645c1644 (patch) | |
tree | 37cb1ccfc5b0a823b8e41faf0ef5ec91c3467b2a /lib/Sema/SemaInit.cpp | |
parent | 3e23d68e2e642db107b78aac2bb27585ed0ef337 (diff) |
This patch implements as much of the narrowing conversion error specified by
[dcl.init.list] as is possible without generalized initializer lists or full
constant expression support, and adds a c++0x-compat warning in C++98 mode.
The FixIt currently uses a typedef's basename without qualification, which is
likely to be incorrect on some code. If it's incorrect on too much code, we
should write a function to get the string that refers to a type from a
particular context.
The warning is currently off by default. I'll fix LLVM and clang before turning
it on.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@136181 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Sema/SemaInit.cpp')
-rw-r--r-- | lib/Sema/SemaInit.cpp | 221 |
1 files changed, 216 insertions, 5 deletions
diff --git a/lib/Sema/SemaInit.cpp b/lib/Sema/SemaInit.cpp index 78eb6d3e8d..adf88c62cc 100644 --- a/lib/Sema/SemaInit.cpp +++ b/lib/Sema/SemaInit.cpp @@ -24,6 +24,7 @@ #include "clang/AST/ExprObjC.h" #include "clang/AST/TypeLoc.h" #include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" #include <map> using namespace clang; @@ -778,7 +779,8 @@ void InitListChecker::CheckSubElementType(const InitializedEntity &Entity, // We cannot initialize this element, so let // PerformCopyInitialization produce the appropriate diagnostic. SemaRef.PerformCopyInitialization(Entity, SourceLocation(), - SemaRef.Owned(expr)); + SemaRef.Owned(expr), + /*TopLevelOfInitList=*/true); hadError = true; ++Index; ++StructuredIndex; @@ -820,7 +822,8 @@ void InitListChecker::CheckScalarType(const InitializedEntity &Entity, ExprResult Result = SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), - SemaRef.Owned(expr)); + SemaRef.Owned(expr), + /*TopLevelOfInitList=*/true); Expr *ResultExpr = 0; @@ -859,7 +862,8 @@ void InitListChecker::CheckReferenceType(const InitializedEntity &Entity, ExprResult Result = SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), - SemaRef.Owned(expr)); + SemaRef.Owned(expr), + /*TopLevelOfInitList=*/true); if (Result.isInvalid()) hadError = true; @@ -908,7 +912,8 @@ void InitListChecker::CheckVectorType(const InitializedEntity &Entity, if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) { ExprResult Result = SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(), - SemaRef.Owned(Init)); + SemaRef.Owned(Init), + /*TopLevelOfInitList=*/true); Expr *ResultExpr = 0; if (Result.isInvalid()) @@ -2197,6 +2202,158 @@ bool InitializationSequence::isConstructorInitialization() const { return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization; } +bool InitializationSequence::endsWithNarrowing(ASTContext &Ctx, + const Expr *Initializer, + bool *isInitializerConstant, + APValue *ConstantValue) const { + if (Steps.empty() || Initializer->isValueDependent()) + return false; + + const Step &LastStep = Steps.back(); + if (LastStep.Kind != SK_ConversionSequence) + return false; + + const ImplicitConversionSequence &ICS = *LastStep.ICS; + const StandardConversionSequence *SCS = NULL; + switch (ICS.getKind()) { + case ImplicitConversionSequence::StandardConversion: + SCS = &ICS.Standard; + break; + case ImplicitConversionSequence::UserDefinedConversion: + SCS = &ICS.UserDefined.After; + break; + case ImplicitConversionSequence::AmbiguousConversion: + case ImplicitConversionSequence::EllipsisConversion: + case ImplicitConversionSequence::BadConversion: + return false; + } + + // Check if SCS represents a narrowing conversion, according to C++0x + // [dcl.init.list]p7: + // + // A narrowing conversion is an implicit conversion ... + ImplicitConversionKind PossibleNarrowing = SCS->Second; + QualType FromType = SCS->getToType(0); + QualType ToType = SCS->getToType(1); + switch (PossibleNarrowing) { + // * from a floating-point type to an integer type, or + // + // * from an integer type or unscoped enumeration type to a floating-point + // type, except where the source is a constant expression and the actual + // value after conversion will fit into the target type and will produce + // the original value when converted back to the original type, or + case ICK_Floating_Integral: + if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) { + *isInitializerConstant = false; + return true; + } else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) { + llvm::APSInt IntConstantValue; + if (Initializer && + Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) { + // Convert the integer to the floating type. + llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType)); + Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(), + llvm::APFloat::rmNearestTiesToEven); + // And back. + llvm::APSInt ConvertedValue = IntConstantValue; + bool ignored; + Result.convertToInteger(ConvertedValue, + llvm::APFloat::rmTowardZero, &ignored); + // If the resulting value is different, this was a narrowing conversion. + if (IntConstantValue != ConvertedValue) { + *isInitializerConstant = true; + *ConstantValue = APValue(IntConstantValue); + return true; + } + } else { + // Variables are always narrowings. + *isInitializerConstant = false; + return true; + } + } + return false; + + // * from long double to double or float, or from double to float, except + // where the source is a constant expression and the actual value after + // conversion is within the range of values that can be represented (even + // if it cannot be represented exactly), or + case ICK_Floating_Conversion: + if (1 == Ctx.getFloatingTypeOrder(FromType, ToType)) { + // FromType is larger than ToType. + Expr::EvalResult InitializerValue; + // FIXME: Check whether Initializer is a constant expression according + // to C++0x [expr.const], rather than just whether it can be folded. + if (Initializer->Evaluate(InitializerValue, Ctx) && + !InitializerValue.HasSideEffects && InitializerValue.Val.isFloat()) { + // Constant! (Except for FIXME above.) + llvm::APFloat FloatVal = InitializerValue.Val.getFloat(); + // Convert the source value into the target type. + bool ignored; + llvm::APFloat::opStatus ConvertStatus = FloatVal.convert( + Ctx.getFloatTypeSemantics(ToType), + llvm::APFloat::rmNearestTiesToEven, &ignored); + // If there was no overflow, the source value is within the range of + // values that can be represented. + if (ConvertStatus & llvm::APFloat::opOverflow) { + *isInitializerConstant = true; + *ConstantValue = InitializerValue.Val; + return true; + } + } else { + *isInitializerConstant = false; + return true; + } + } + return false; + + // * from an integer type or unscoped enumeration type to an integer type + // that cannot represent all the values of the original type, except where + // the source is a constant expression and the actual value after + // conversion will fit into the target type and will produce the original + // value when converted back to the original type. + case ICK_Integral_Conversion: { + assert(FromType->isIntegralOrUnscopedEnumerationType()); + assert(ToType->isIntegralOrUnscopedEnumerationType()); + const bool FromSigned = FromType->isSignedIntegerOrEnumerationType(); + const unsigned FromWidth = Ctx.getIntWidth(FromType); + const bool ToSigned = ToType->isSignedIntegerOrEnumerationType(); + const unsigned ToWidth = Ctx.getIntWidth(ToType); + + if (FromWidth > ToWidth || + (FromWidth == ToWidth && FromSigned != ToSigned)) { + // Not all values of FromType can be represented in ToType. + llvm::APSInt InitializerValue; + if (Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) { + *isInitializerConstant = true; + *ConstantValue = APValue(InitializerValue); + + // Add a bit to the InitializerValue so we don't have to worry about + // signed vs. unsigned comparisons. + InitializerValue = InitializerValue.extend( + InitializerValue.getBitWidth() + 1); + // Convert the initializer to and from the target width and signed-ness. + llvm::APSInt ConvertedValue = InitializerValue; + ConvertedValue = ConvertedValue.trunc(ToWidth); + ConvertedValue.setIsSigned(ToSigned); + ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth()); + ConvertedValue.setIsSigned(InitializerValue.isSigned()); + // If the result is different, this was a narrowing conversion. + return ConvertedValue != InitializerValue; + } else { + // Variables are always narrowings. + *isInitializerConstant = false; + return true; + } + } + return false; + } + + default: + // Other kinds of conversions are not narrowings. + return false; + } +} + void InitializationSequence::AddAddressOverloadResolutionStep( FunctionDecl *Function, DeclAccessPair Found) { @@ -4972,6 +5129,51 @@ void InitializationSequence::dump() const { dump(llvm::errs()); } +static void DiagnoseNarrowingInInitList( + Sema& S, QualType EntityType, const Expr *InitE, + bool Constant, const APValue &ConstantValue) { + if (Constant) { + S.Diag(InitE->getLocStart(), + S.getLangOptions().CPlusPlus0x + ? diag::err_init_list_constant_narrowing + : diag::warn_init_list_constant_narrowing) + << InitE->getSourceRange() + << ConstantValue + << EntityType; + } else + S.Diag(InitE->getLocStart(), + S.getLangOptions().CPlusPlus0x + ? diag::err_init_list_variable_narrowing + : diag::warn_init_list_variable_narrowing) + << InitE->getSourceRange() + << InitE->getType() + << EntityType; + + llvm::SmallString<128> StaticCast; + llvm::raw_svector_ostream OS(StaticCast); + OS << "static_cast<"; + if (const TypedefType *TT = EntityType->getAs<TypedefType>()) { + // It's important to use the typedef's name if there is one so that the + // fixit doesn't break code using types like int64_t. + // + // FIXME: This will break if the typedef requires qualification. But + // getQualifiedNameAsString() includes non-machine-parsable components. + OS << TT->getDecl(); + } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>()) + OS << BT->getName(S.getLangOptions()); + else { + // Oops, we didn't find the actual type of the variable. Don't emit a fixit + // with a broken cast. + return; + } + OS << ">("; + S.Diag(InitE->getLocStart(), diag::note_init_list_narrowing_override) + << InitE->getSourceRange() + << FixItHint::CreateInsertion(InitE->getLocStart(), OS.str()) + << FixItHint::CreateInsertion( + S.getPreprocessor().getLocForEndOfToken(InitE->getLocEnd()), ")"); +} + //===----------------------------------------------------------------------===// // Initialization helper functions //===----------------------------------------------------------------------===// @@ -4993,7 +5195,8 @@ Sema::CanPerformCopyInitialization(const InitializedEntity &Entity, ExprResult Sema::PerformCopyInitialization(const InitializedEntity &Entity, SourceLocation EqualLoc, - ExprResult Init) { + ExprResult Init, + bool TopLevelOfInitList) { if (Init.isInvalid()) return ExprError(); @@ -5007,5 +5210,13 @@ Sema::PerformCopyInitialization(const InitializedEntity &Entity, EqualLoc); InitializationSequence Seq(*this, Entity, Kind, &InitE, 1); Init.release(); + + bool Constant = false; + APValue Result; + if (TopLevelOfInitList && + Seq.endsWithNarrowing(Context, InitE, &Constant, &Result)) { + DiagnoseNarrowingInInitList(*this, Entity.getType(), InitE, + Constant, Result); + } return Seq.Perform(*this, Entity, Kind, MultiExprArg(&InitE, 1)); } |