diff options
author | Ulrich Weigand <ulrich.weigand@de.ibm.com> | 2013-05-06 16:26:41 +0000 |
---|---|---|
committer | Ulrich Weigand <ulrich.weigand@de.ibm.com> | 2013-05-06 16:26:41 +0000 |
commit | b8409215523e5478b8b0aa9cdcd10038cf7651fe (patch) | |
tree | c6e1ecac1928e195762075ab93f2ca7d5e12b0d4 /lib/CodeGen/TargetInfo.cpp | |
parent | 6b20351a1d6178addfaa86716aaba36f2e9ea188 (diff) |
Add SystemZ support
This patch then adds all the usual platform-specific pieces for SystemZ:
driver support, basic target info, register names and constraints,
ABI info and vararg support. It also adds new tests to verify pre-defined
macros and inline asm, and updates a test for the minimum alignment change.
This version of the patch incorporates feedback from reviews by
Eric Christopher and John McCall. Thanks to all reviewers!
Patch by Richard Sandiford.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@181211 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/CodeGen/TargetInfo.cpp')
-rw-r--r-- | lib/CodeGen/TargetInfo.cpp | 290 |
1 files changed, 290 insertions, 0 deletions
diff --git a/lib/CodeGen/TargetInfo.cpp b/lib/CodeGen/TargetInfo.cpp index 83d1f6d8b5..32b27b3172 100644 --- a/lib/CodeGen/TargetInfo.cpp +++ b/lib/CodeGen/TargetInfo.cpp @@ -4117,6 +4117,293 @@ void NVPTXTargetCodeGenInfo::addKernelMetadata(llvm::Function *F) { } //===----------------------------------------------------------------------===// +// SystemZ ABI Implementation +//===----------------------------------------------------------------------===// + +namespace { + +class SystemZABIInfo : public ABIInfo { +public: + SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} + + bool isPromotableIntegerType(QualType Ty) const; + bool isCompoundType(QualType Ty) const; + bool isFPArgumentType(QualType Ty) const; + + ABIArgInfo classifyReturnType(QualType RetTy) const; + ABIArgInfo classifyArgumentType(QualType ArgTy) const; + + virtual void computeInfo(CGFunctionInfo &FI) const { + FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); + for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); + it != ie; ++it) + it->info = classifyArgumentType(it->type); + } + + virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const; +}; + +class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { +public: + SystemZTargetCodeGenInfo(CodeGenTypes &CGT) + : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {} +}; + +} + +bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = Ty->getAs<EnumType>()) + Ty = EnumTy->getDecl()->getIntegerType(); + + // Promotable integer types are required to be promoted by the ABI. + if (Ty->isPromotableIntegerType()) + return true; + + // 32-bit values must also be promoted. + if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) + switch (BT->getKind()) { + case BuiltinType::Int: + case BuiltinType::UInt: + return true; + default: + return false; + } + return false; +} + +bool SystemZABIInfo::isCompoundType(QualType Ty) const { + return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty); +} + +bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { + if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) + switch (BT->getKind()) { + case BuiltinType::Float: + case BuiltinType::Double: + return true; + default: + return false; + } + + if (const RecordType *RT = Ty->getAsStructureType()) { + const RecordDecl *RD = RT->getDecl(); + bool Found = false; + + // If this is a C++ record, check the bases first. + if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) + for (CXXRecordDecl::base_class_const_iterator I = CXXRD->bases_begin(), + E = CXXRD->bases_end(); I != E; ++I) { + QualType Base = I->getType(); + + // Empty bases don't affect things either way. + if (isEmptyRecord(getContext(), Base, true)) + continue; + + if (Found) + return false; + Found = isFPArgumentType(Base); + if (!Found) + return false; + } + + // Check the fields. + for (RecordDecl::field_iterator I = RD->field_begin(), + E = RD->field_end(); I != E; ++I) { + const FieldDecl *FD = *I; + + // Empty bitfields don't affect things either way. + // Unlike isSingleElementStruct(), empty structure and array fields + // do count. So do anonymous bitfields that aren't zero-sized. + if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) + return true; + + // Unlike isSingleElementStruct(), arrays do not count. + // Nested isFPArgumentType structures still do though. + if (Found) + return false; + Found = isFPArgumentType(FD->getType()); + if (!Found) + return false; + } + + // Unlike isSingleElementStruct(), trailing padding is allowed. + // An 8-byte aligned struct s { float f; } is passed as a double. + return Found; + } + + return false; +} + +llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, + CodeGenFunction &CGF) const { + // Assume that va_list type is correct; should be pointer to LLVM type: + // struct { + // i64 __gpr; + // i64 __fpr; + // i8 *__overflow_arg_area; + // i8 *__reg_save_area; + // }; + + // Every argument occupies 8 bytes and is passed by preference in either + // GPRs or FPRs. + Ty = CGF.getContext().getCanonicalType(Ty); + ABIArgInfo AI = classifyArgumentType(Ty); + bool InFPRs = isFPArgumentType(Ty); + + llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); + bool IsIndirect = AI.isIndirect(); + unsigned UnpaddedBitSize; + if (IsIndirect) { + APTy = llvm::PointerType::getUnqual(APTy); + UnpaddedBitSize = 64; + } else + UnpaddedBitSize = getContext().getTypeSize(Ty); + unsigned PaddedBitSize = 64; + assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size."); + + unsigned PaddedSize = PaddedBitSize / 8; + unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8; + + unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding; + if (InFPRs) { + MaxRegs = 4; // Maximum of 4 FPR arguments + RegCountField = 1; // __fpr + RegSaveIndex = 16; // save offset for f0 + RegPadding = 0; // floats are passed in the high bits of an FPR + } else { + MaxRegs = 5; // Maximum of 5 GPR arguments + RegCountField = 0; // __gpr + RegSaveIndex = 2; // save offset for r2 + RegPadding = Padding; // values are passed in the low bits of a GPR + } + + llvm::Value *RegCountPtr = + CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); + llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); + llvm::Type *IndexTy = RegCount->getType(); + llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); + llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, + "fits_in_regs"); + + llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); + llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); + llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); + CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); + + // Emit code to load the value if it was passed in registers. + CGF.EmitBlock(InRegBlock); + + // Work out the address of an argument register. + llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize); + llvm::Value *ScaledRegCount = + CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); + llvm::Value *RegBase = + llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding); + llvm::Value *RegOffset = + CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); + llvm::Value *RegSaveAreaPtr = + CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); + llvm::Value *RegSaveArea = + CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); + llvm::Value *RawRegAddr = + CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr"); + llvm::Value *RegAddr = + CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr"); + + // Update the register count + llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); + llvm::Value *NewRegCount = + CGF.Builder.CreateAdd(RegCount, One, "reg_count"); + CGF.Builder.CreateStore(NewRegCount, RegCountPtr); + CGF.EmitBranch(ContBlock); + + // Emit code to load the value if it was passed in memory. + CGF.EmitBlock(InMemBlock); + + // Work out the address of a stack argument. + llvm::Value *OverflowArgAreaPtr = + CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); + llvm::Value *OverflowArgArea = + CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"); + llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding); + llvm::Value *RawMemAddr = + CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr"); + llvm::Value *MemAddr = + CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr"); + + // Update overflow_arg_area_ptr pointer + llvm::Value *NewOverflowArgArea = + CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area"); + CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); + CGF.EmitBranch(ContBlock); + + // Return the appropriate result. + CGF.EmitBlock(ContBlock); + llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr"); + ResAddr->addIncoming(RegAddr, InRegBlock); + ResAddr->addIncoming(MemAddr, InMemBlock); + + if (IsIndirect) + return CGF.Builder.CreateLoad(ResAddr, "indirect_arg"); + + return ResAddr; +} + + +ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { + if (RetTy->isVoidType()) + return ABIArgInfo::getIgnore(); + if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) + return ABIArgInfo::getIndirect(0); + return (isPromotableIntegerType(RetTy) ? + ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); +} + +ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { + // Handle the generic C++ ABI. + if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, CGT)) + return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); + + // Integers and enums are extended to full register width. + if (isPromotableIntegerType(Ty)) + return ABIArgInfo::getExtend(); + + // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. + uint64_t Size = getContext().getTypeSize(Ty); + if (Size != 8 && Size != 16 && Size != 32 && Size != 64) + return ABIArgInfo::getIndirect(0); + + // Handle small structures. + if (const RecordType *RT = Ty->getAs<RecordType>()) { + // Structures with flexible arrays have variable length, so really + // fail the size test above. + const RecordDecl *RD = RT->getDecl(); + if (RD->hasFlexibleArrayMember()) + return ABIArgInfo::getIndirect(0); + + // The structure is passed as an unextended integer, a float, or a double. + llvm::Type *PassTy; + if (isFPArgumentType(Ty)) { + assert(Size == 32 || Size == 64); + if (Size == 32) + PassTy = llvm::Type::getFloatTy(getVMContext()); + else + PassTy = llvm::Type::getDoubleTy(getVMContext()); + } else + PassTy = llvm::IntegerType::get(getVMContext(), Size); + return ABIArgInfo::getDirect(PassTy); + } + + // Non-structure compounds are passed indirectly. + if (isCompoundType(Ty)) + return ABIArgInfo::getIndirect(0); + + return ABIArgInfo::getDirect(0); +} + +//===----------------------------------------------------------------------===// // MBlaze ABI Implementation //===----------------------------------------------------------------------===// @@ -4860,6 +5147,9 @@ const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { case llvm::Triple::msp430: return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types)); + case llvm::Triple::systemz: + return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types)); + case llvm::Triple::tce: return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types)); |