aboutsummaryrefslogtreecommitdiff
path: root/lib/Checker/RangeConstraintManager.cpp
diff options
context:
space:
mode:
authorArgyrios Kyrtzidis <akyrtzi@gmail.com>2010-12-22 18:52:29 +0000
committerArgyrios Kyrtzidis <akyrtzi@gmail.com>2010-12-22 18:52:29 +0000
commitbce30c533a2b444db97533e3a9a567558120bd70 (patch)
treeb730703a0680231ab757d3f3e607251b4c78e155 /lib/Checker/RangeConstraintManager.cpp
parent98cabbad47a4d9db6b7e95c950d3302c110d1b02 (diff)
[analyzer] Refactoring: lib/Checker -> lib/GR and libclangChecker -> libclangGRCore
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@122421 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Checker/RangeConstraintManager.cpp')
-rw-r--r--lib/Checker/RangeConstraintManager.cpp439
1 files changed, 0 insertions, 439 deletions
diff --git a/lib/Checker/RangeConstraintManager.cpp b/lib/Checker/RangeConstraintManager.cpp
deleted file mode 100644
index 423777e28d..0000000000
--- a/lib/Checker/RangeConstraintManager.cpp
+++ /dev/null
@@ -1,439 +0,0 @@
-//== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines RangeConstraintManager, a class that tracks simple
-// equality and inequality constraints on symbolic values of GRState.
-//
-//===----------------------------------------------------------------------===//
-
-#include "SimpleConstraintManager.h"
-#include "clang/GR/PathSensitive/GRState.h"
-#include "clang/GR/PathSensitive/GRStateTrait.h"
-#include "clang/GR/PathSensitive/GRTransferFuncs.h"
-#include "clang/GR/ManagerRegistry.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/ADT/FoldingSet.h"
-#include "llvm/ADT/ImmutableSet.h"
-#include "llvm/Support/raw_ostream.h"
-
-using namespace clang;
-
-namespace { class ConstraintRange {}; }
-static int ConstraintRangeIndex = 0;
-
-/// A Range represents the closed range [from, to]. The caller must
-/// guarantee that from <= to. Note that Range is immutable, so as not
-/// to subvert RangeSet's immutability.
-namespace {
-class Range : public std::pair<const llvm::APSInt*,
- const llvm::APSInt*> {
-public:
- Range(const llvm::APSInt &from, const llvm::APSInt &to)
- : std::pair<const llvm::APSInt*, const llvm::APSInt*>(&from, &to) {
- assert(from <= to);
- }
- bool Includes(const llvm::APSInt &v) const {
- return *first <= v && v <= *second;
- }
- const llvm::APSInt &From() const {
- return *first;
- }
- const llvm::APSInt &To() const {
- return *second;
- }
- const llvm::APSInt *getConcreteValue() const {
- return &From() == &To() ? &From() : NULL;
- }
-
- void Profile(llvm::FoldingSetNodeID &ID) const {
- ID.AddPointer(&From());
- ID.AddPointer(&To());
- }
-};
-
-
-class RangeTrait : public llvm::ImutContainerInfo<Range> {
-public:
- // When comparing if one Range is less than another, we should compare
- // the actual APSInt values instead of their pointers. This keeps the order
- // consistent (instead of comparing by pointer values) and can potentially
- // be used to speed up some of the operations in RangeSet.
- static inline bool isLess(key_type_ref lhs, key_type_ref rhs) {
- return *lhs.first < *rhs.first || (!(*rhs.first < *lhs.first) &&
- *lhs.second < *rhs.second);
- }
-};
-
-/// RangeSet contains a set of ranges. If the set is empty, then
-/// there the value of a symbol is overly constrained and there are no
-/// possible values for that symbol.
-class RangeSet {
- typedef llvm::ImmutableSet<Range, RangeTrait> PrimRangeSet;
- PrimRangeSet ranges; // no need to make const, since it is an
- // ImmutableSet - this allows default operator=
- // to work.
-public:
- typedef PrimRangeSet::Factory Factory;
- typedef PrimRangeSet::iterator iterator;
-
- RangeSet(PrimRangeSet RS) : ranges(RS) {}
-
- iterator begin() const { return ranges.begin(); }
- iterator end() const { return ranges.end(); }
-
- bool isEmpty() const { return ranges.isEmpty(); }
-
- /// Construct a new RangeSet representing '{ [from, to] }'.
- RangeSet(Factory &F, const llvm::APSInt &from, const llvm::APSInt &to)
- : ranges(F.add(F.getEmptySet(), Range(from, to))) {}
-
- /// Profile - Generates a hash profile of this RangeSet for use
- /// by FoldingSet.
- void Profile(llvm::FoldingSetNodeID &ID) const { ranges.Profile(ID); }
-
- /// getConcreteValue - If a symbol is contrained to equal a specific integer
- /// constant then this method returns that value. Otherwise, it returns
- /// NULL.
- const llvm::APSInt* getConcreteValue() const {
- return ranges.isSingleton() ? ranges.begin()->getConcreteValue() : 0;
- }
-
-private:
- void IntersectInRange(BasicValueFactory &BV, Factory &F,
- const llvm::APSInt &Lower,
- const llvm::APSInt &Upper,
- PrimRangeSet &newRanges,
- PrimRangeSet::iterator &i,
- PrimRangeSet::iterator &e) const {
- // There are six cases for each range R in the set:
- // 1. R is entirely before the intersection range.
- // 2. R is entirely after the intersection range.
- // 3. R contains the entire intersection range.
- // 4. R starts before the intersection range and ends in the middle.
- // 5. R starts in the middle of the intersection range and ends after it.
- // 6. R is entirely contained in the intersection range.
- // These correspond to each of the conditions below.
- for (/* i = begin(), e = end() */; i != e; ++i) {
- if (i->To() < Lower) {
- continue;
- }
- if (i->From() > Upper) {
- break;
- }
-
- if (i->Includes(Lower)) {
- if (i->Includes(Upper)) {
- newRanges = F.add(newRanges, Range(BV.getValue(Lower),
- BV.getValue(Upper)));
- break;
- } else
- newRanges = F.add(newRanges, Range(BV.getValue(Lower), i->To()));
- } else {
- if (i->Includes(Upper)) {
- newRanges = F.add(newRanges, Range(i->From(), BV.getValue(Upper)));
- break;
- } else
- newRanges = F.add(newRanges, *i);
- }
- }
- }
-
-public:
- // Returns a set containing the values in the receiving set, intersected with
- // the closed range [Lower, Upper]. Unlike the Range type, this range uses
- // modular arithmetic, corresponding to the common treatment of C integer
- // overflow. Thus, if the Lower bound is greater than the Upper bound, the
- // range is taken to wrap around. This is equivalent to taking the
- // intersection with the two ranges [Min, Upper] and [Lower, Max],
- // or, alternatively, /removing/ all integers between Upper and Lower.
- RangeSet Intersect(BasicValueFactory &BV, Factory &F,
- const llvm::APSInt &Lower,
- const llvm::APSInt &Upper) const {
- PrimRangeSet newRanges = F.getEmptySet();
-
- PrimRangeSet::iterator i = begin(), e = end();
- if (Lower <= Upper)
- IntersectInRange(BV, F, Lower, Upper, newRanges, i, e);
- else {
- // The order of the next two statements is important!
- // IntersectInRange() does not reset the iteration state for i and e.
- // Therefore, the lower range most be handled first.
- IntersectInRange(BV, F, BV.getMinValue(Upper), Upper, newRanges, i, e);
- IntersectInRange(BV, F, Lower, BV.getMaxValue(Lower), newRanges, i, e);
- }
- return newRanges;
- }
-
- void print(llvm::raw_ostream &os) const {
- bool isFirst = true;
- os << "{ ";
- for (iterator i = begin(), e = end(); i != e; ++i) {
- if (isFirst)
- isFirst = false;
- else
- os << ", ";
-
- os << '[' << i->From().toString(10) << ", " << i->To().toString(10)
- << ']';
- }
- os << " }";
- }
-
- bool operator==(const RangeSet &other) const {
- return ranges == other.ranges;
- }
-};
-} // end anonymous namespace
-
-typedef llvm::ImmutableMap<SymbolRef,RangeSet> ConstraintRangeTy;
-
-namespace clang {
-template<>
-struct GRStateTrait<ConstraintRange>
- : public GRStatePartialTrait<ConstraintRangeTy> {
- static inline void* GDMIndex() { return &ConstraintRangeIndex; }
-};
-}
-
-namespace {
-class RangeConstraintManager : public SimpleConstraintManager{
- RangeSet GetRange(const GRState *state, SymbolRef sym);
-public:
- RangeConstraintManager(GRSubEngine &subengine)
- : SimpleConstraintManager(subengine) {}
-
- const GRState *assumeSymNE(const GRState* state, SymbolRef sym,
- const llvm::APSInt& Int,
- const llvm::APSInt& Adjustment);
-
- const GRState *assumeSymEQ(const GRState* state, SymbolRef sym,
- const llvm::APSInt& Int,
- const llvm::APSInt& Adjustment);
-
- const GRState *assumeSymLT(const GRState* state, SymbolRef sym,
- const llvm::APSInt& Int,
- const llvm::APSInt& Adjustment);
-
- const GRState *assumeSymGT(const GRState* state, SymbolRef sym,
- const llvm::APSInt& Int,
- const llvm::APSInt& Adjustment);
-
- const GRState *assumeSymGE(const GRState* state, SymbolRef sym,
- const llvm::APSInt& Int,
- const llvm::APSInt& Adjustment);
-
- const GRState *assumeSymLE(const GRState* state, SymbolRef sym,
- const llvm::APSInt& Int,
- const llvm::APSInt& Adjustment);
-
- const llvm::APSInt* getSymVal(const GRState* St, SymbolRef sym) const;
-
- // FIXME: Refactor into SimpleConstraintManager?
- bool isEqual(const GRState* St, SymbolRef sym, const llvm::APSInt& V) const {
- const llvm::APSInt *i = getSymVal(St, sym);
- return i ? *i == V : false;
- }
-
- const GRState* RemoveDeadBindings(const GRState* St, SymbolReaper& SymReaper);
-
- void print(const GRState* St, llvm::raw_ostream& Out,
- const char* nl, const char *sep);
-
-private:
- RangeSet::Factory F;
-};
-
-} // end anonymous namespace
-
-ConstraintManager* clang::CreateRangeConstraintManager(GRStateManager&,
- GRSubEngine &subeng) {
- return new RangeConstraintManager(subeng);
-}
-
-const llvm::APSInt* RangeConstraintManager::getSymVal(const GRState* St,
- SymbolRef sym) const {
- const ConstraintRangeTy::data_type *T = St->get<ConstraintRange>(sym);
- return T ? T->getConcreteValue() : NULL;
-}
-
-/// Scan all symbols referenced by the constraints. If the symbol is not alive
-/// as marked in LSymbols, mark it as dead in DSymbols.
-const GRState*
-RangeConstraintManager::RemoveDeadBindings(const GRState* state,
- SymbolReaper& SymReaper) {
-
- ConstraintRangeTy CR = state->get<ConstraintRange>();
- ConstraintRangeTy::Factory& CRFactory = state->get_context<ConstraintRange>();
-
- for (ConstraintRangeTy::iterator I = CR.begin(), E = CR.end(); I != E; ++I) {
- SymbolRef sym = I.getKey();
- if (SymReaper.maybeDead(sym))
- CR = CRFactory.remove(CR, sym);
- }
-
- return state->set<ConstraintRange>(CR);
-}
-
-RangeSet
-RangeConstraintManager::GetRange(const GRState *state, SymbolRef sym) {
- if (ConstraintRangeTy::data_type* V = state->get<ConstraintRange>(sym))
- return *V;
-
- // Lazily generate a new RangeSet representing all possible values for the
- // given symbol type.
- QualType T = state->getSymbolManager().getType(sym);
- BasicValueFactory& BV = state->getBasicVals();
- return RangeSet(F, BV.getMinValue(T), BV.getMaxValue(T));
-}
-
-//===------------------------------------------------------------------------===
-// assumeSymX methods: public interface for RangeConstraintManager.
-//===------------------------------------------------------------------------===/
-
-// The syntax for ranges below is mathematical, using [x, y] for closed ranges
-// and (x, y) for open ranges. These ranges are modular, corresponding with
-// a common treatment of C integer overflow. This means that these methods
-// do not have to worry about overflow; RangeSet::Intersect can handle such a
-// "wraparound" range.
-// As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1,
-// UINT_MAX, 0, 1, and 2.
-
-const GRState*
-RangeConstraintManager::assumeSymNE(const GRState* state, SymbolRef sym,
- const llvm::APSInt& Int,
- const llvm::APSInt& Adjustment) {
- BasicValueFactory &BV = state->getBasicVals();
-
- llvm::APSInt Lower = Int-Adjustment;
- llvm::APSInt Upper = Lower;
- --Lower;
- ++Upper;
-
- // [Int-Adjustment+1, Int-Adjustment-1]
- // Notice that the lower bound is greater than the upper bound.
- RangeSet New = GetRange(state, sym).Intersect(BV, F, Upper, Lower);
- return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
-}
-
-const GRState*
-RangeConstraintManager::assumeSymEQ(const GRState* state, SymbolRef sym,
- const llvm::APSInt& Int,
- const llvm::APSInt& Adjustment) {
- // [Int-Adjustment, Int-Adjustment]
- BasicValueFactory &BV = state->getBasicVals();
- llvm::APSInt AdjInt = Int-Adjustment;
- RangeSet New = GetRange(state, sym).Intersect(BV, F, AdjInt, AdjInt);
- return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
-}
-
-const GRState*
-RangeConstraintManager::assumeSymLT(const GRState* state, SymbolRef sym,
- const llvm::APSInt& Int,
- const llvm::APSInt& Adjustment) {
- BasicValueFactory &BV = state->getBasicVals();
-
- QualType T = state->getSymbolManager().getType(sym);
- const llvm::APSInt &Min = BV.getMinValue(T);
-
- // Special case for Int == Min. This is always false.
- if (Int == Min)
- return NULL;
-
- llvm::APSInt Lower = Min-Adjustment;
- llvm::APSInt Upper = Int-Adjustment;
- --Upper;
-
- RangeSet New = GetRange(state, sym).Intersect(BV, F, Lower, Upper);
- return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
-}
-
-const GRState*
-RangeConstraintManager::assumeSymGT(const GRState* state, SymbolRef sym,
- const llvm::APSInt& Int,
- const llvm::APSInt& Adjustment) {
- BasicValueFactory &BV = state->getBasicVals();
-
- QualType T = state->getSymbolManager().getType(sym);
- const llvm::APSInt &Max = BV.getMaxValue(T);
-
- // Special case for Int == Max. This is always false.
- if (Int == Max)
- return NULL;
-
- llvm::APSInt Lower = Int-Adjustment;
- llvm::APSInt Upper = Max-Adjustment;
- ++Lower;
-
- RangeSet New = GetRange(state, sym).Intersect(BV, F, Lower, Upper);
- return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
-}
-
-const GRState*
-RangeConstraintManager::assumeSymGE(const GRState* state, SymbolRef sym,
- const llvm::APSInt& Int,
- const llvm::APSInt& Adjustment) {
- BasicValueFactory &BV = state->getBasicVals();
-
- QualType T = state->getSymbolManager().getType(sym);
- const llvm::APSInt &Min = BV.getMinValue(T);
-
- // Special case for Int == Min. This is always feasible.
- if (Int == Min)
- return state;
-
- const llvm::APSInt &Max = BV.getMaxValue(T);
-
- llvm::APSInt Lower = Int-Adjustment;
- llvm::APSInt Upper = Max-Adjustment;
-
- RangeSet New = GetRange(state, sym).Intersect(BV, F, Lower, Upper);
- return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
-}
-
-const GRState*
-RangeConstraintManager::assumeSymLE(const GRState* state, SymbolRef sym,
- const llvm::APSInt& Int,
- const llvm::APSInt& Adjustment) {
- BasicValueFactory &BV = state->getBasicVals();
-
- QualType T = state->getSymbolManager().getType(sym);
- const llvm::APSInt &Max = BV.getMaxValue(T);
-
- // Special case for Int == Max. This is always feasible.
- if (Int == Max)
- return state;
-
- const llvm::APSInt &Min = BV.getMinValue(T);
-
- llvm::APSInt Lower = Min-Adjustment;
- llvm::APSInt Upper = Int-Adjustment;
-
- RangeSet New = GetRange(state, sym).Intersect(BV, F, Lower, Upper);
- return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
-}
-
-//===------------------------------------------------------------------------===
-// Pretty-printing.
-//===------------------------------------------------------------------------===/
-
-void RangeConstraintManager::print(const GRState* St, llvm::raw_ostream& Out,
- const char* nl, const char *sep) {
-
- ConstraintRangeTy Ranges = St->get<ConstraintRange>();
-
- if (Ranges.isEmpty())
- return;
-
- Out << nl << sep << "ranges of symbol values:";
-
- for (ConstraintRangeTy::iterator I=Ranges.begin(), E=Ranges.end(); I!=E; ++I){
- Out << nl << ' ' << I.getKey() << " : ";
- I.getData().print(Out);
- }
-}