aboutsummaryrefslogtreecommitdiff
path: root/scrypt.c
blob: f6778a128c7f5b29fd1939d877f1be92ffbebbe2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
/*-
 * Copyright 2009 Colin Percival, 2011 ArtForz
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * This file was originally written by Colin Percival as part of the Tarsnap
 * online backup system.
 */

#include "cpuminer-config.h"
#include "miner.h"

#include <stdlib.h>
#include <stdint.h>
#include <string.h>

#define byteswap(x) ((((x) << 24) & 0xff000000u) | (((x) << 8) & 0x00ff0000u) | (((x) >> 8) & 0x0000ff00u) | (((x) >> 24) & 0x000000ffu))

typedef struct SHA256Context {
	uint32_t state[8];
	uint32_t buf[16];
} SHA256_CTX;

/*
 * Encode a length len/4 vector of (uint32_t) into a length len vector of
 * (unsigned char) in big-endian form.  Assumes len is a multiple of 4.
 */
static inline void
be32enc_vect(uint32_t *dst, const uint32_t *src, uint32_t len)
{
	uint32_t i;

	for (i = 0; i < len; i++)
		dst[i] = byteswap(src[i]);
}

/* Elementary functions used by SHA256 */
#define Ch(x, y, z)	((x & (y ^ z)) ^ z)
#define Maj(x, y, z)	((x & (y | z)) | (y & z))
#define SHR(x, n)	(x >> n)
#define ROTR(x, n)	((x >> n) | (x << (32 - n)))
#define S0(x)		(ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define S1(x)		(ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define s0(x)		(ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
#define s1(x)		(ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))

/* SHA256 round function */
#define RND(a, b, c, d, e, f, g, h, k)			\
	t0 = h + S1(e) + Ch(e, f, g) + k;		\
	t1 = S0(a) + Maj(a, b, c);			\
	d += t0;					\
	h  = t0 + t1;

/* Adjusted round function for rotating state */
#define RNDr(S, W, i, k)			\
	RND(S[(64 - i) % 8], S[(65 - i) % 8],	\
	    S[(66 - i) % 8], S[(67 - i) % 8],	\
	    S[(68 - i) % 8], S[(69 - i) % 8],	\
	    S[(70 - i) % 8], S[(71 - i) % 8],	\
	    W[i] + k)

/*
 * SHA256 block compression function.  The 256-bit state is transformed via
 * the 512-bit input block to produce a new state.
 */
static void
SHA256_Transform(uint32_t * state, const uint32_t block[16], int swap)
{
	uint32_t W[64];
	uint32_t S[8];
	uint32_t t0, t1;
	int i;

	/* 1. Prepare message schedule W. */
	if(swap)
		for (i = 0; i < 16; i++)
			W[i] = byteswap(block[i]);
	else
		memcpy(W, block, 64);
	for (i = 16; i < 64; i += 2) {
		W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
		W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15];
	}

	/* 2. Initialize working variables. */
	memcpy(S, state, 32);

	/* 3. Mix. */
	RNDr(S, W, 0, 0x428a2f98);
	RNDr(S, W, 1, 0x71374491);
	RNDr(S, W, 2, 0xb5c0fbcf);
	RNDr(S, W, 3, 0xe9b5dba5);
	RNDr(S, W, 4, 0x3956c25b);
	RNDr(S, W, 5, 0x59f111f1);
	RNDr(S, W, 6, 0x923f82a4);
	RNDr(S, W, 7, 0xab1c5ed5);
	RNDr(S, W, 8, 0xd807aa98);
	RNDr(S, W, 9, 0x12835b01);
	RNDr(S, W, 10, 0x243185be);
	RNDr(S, W, 11, 0x550c7dc3);
	RNDr(S, W, 12, 0x72be5d74);
	RNDr(S, W, 13, 0x80deb1fe);
	RNDr(S, W, 14, 0x9bdc06a7);
	RNDr(S, W, 15, 0xc19bf174);
	RNDr(S, W, 16, 0xe49b69c1);
	RNDr(S, W, 17, 0xefbe4786);
	RNDr(S, W, 18, 0x0fc19dc6);
	RNDr(S, W, 19, 0x240ca1cc);
	RNDr(S, W, 20, 0x2de92c6f);
	RNDr(S, W, 21, 0x4a7484aa);
	RNDr(S, W, 22, 0x5cb0a9dc);
	RNDr(S, W, 23, 0x76f988da);
	RNDr(S, W, 24, 0x983e5152);
	RNDr(S, W, 25, 0xa831c66d);
	RNDr(S, W, 26, 0xb00327c8);
	RNDr(S, W, 27, 0xbf597fc7);
	RNDr(S, W, 28, 0xc6e00bf3);
	RNDr(S, W, 29, 0xd5a79147);
	RNDr(S, W, 30, 0x06ca6351);
	RNDr(S, W, 31, 0x14292967);
	RNDr(S, W, 32, 0x27b70a85);
	RNDr(S, W, 33, 0x2e1b2138);
	RNDr(S, W, 34, 0x4d2c6dfc);
	RNDr(S, W, 35, 0x53380d13);
	RNDr(S, W, 36, 0x650a7354);
	RNDr(S, W, 37, 0x766a0abb);
	RNDr(S, W, 38, 0x81c2c92e);
	RNDr(S, W, 39, 0x92722c85);
	RNDr(S, W, 40, 0xa2bfe8a1);
	RNDr(S, W, 41, 0xa81a664b);
	RNDr(S, W, 42, 0xc24b8b70);
	RNDr(S, W, 43, 0xc76c51a3);
	RNDr(S, W, 44, 0xd192e819);
	RNDr(S, W, 45, 0xd6990624);
	RNDr(S, W, 46, 0xf40e3585);
	RNDr(S, W, 47, 0x106aa070);
	RNDr(S, W, 48, 0x19a4c116);
	RNDr(S, W, 49, 0x1e376c08);
	RNDr(S, W, 50, 0x2748774c);
	RNDr(S, W, 51, 0x34b0bcb5);
	RNDr(S, W, 52, 0x391c0cb3);
	RNDr(S, W, 53, 0x4ed8aa4a);
	RNDr(S, W, 54, 0x5b9cca4f);
	RNDr(S, W, 55, 0x682e6ff3);
	RNDr(S, W, 56, 0x748f82ee);
	RNDr(S, W, 57, 0x78a5636f);
	RNDr(S, W, 58, 0x84c87814);
	RNDr(S, W, 59, 0x8cc70208);
	RNDr(S, W, 60, 0x90befffa);
	RNDr(S, W, 61, 0xa4506ceb);
	RNDr(S, W, 62, 0xbef9a3f7);
	RNDr(S, W, 63, 0xc67178f2);

	/* 4. Mix local working variables into global state */
	for (i = 0; i < 8; i++)
		state[i] += S[i];
}

static inline void
SHA256_InitState(uint32_t * state)
{
	/* Magic initialization constants */
	state[0] = 0x6A09E667;
	state[1] = 0xBB67AE85;
	state[2] = 0x3C6EF372;
	state[3] = 0xA54FF53A;
	state[4] = 0x510E527F;
	state[5] = 0x9B05688C;
	state[6] = 0x1F83D9AB;
	state[7] = 0x5BE0CD19;
}

static const uint32_t passwdpad[12] = {0x00000080, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80020000};
static const uint32_t outerpad[8] = {0x80000000, 0, 0, 0, 0, 0, 0, 0x00000300};

/**
 * PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
 * Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
 * write the output to buf.  The value dkLen must be at most 32 * (2^32 - 1).
 */
static inline void
PBKDF2_SHA256_80_128(const uint32_t * passwd, uint32_t * buf)
{
	SHA256_CTX PShictx, PShoctx;
	uint32_t tstate[8];
	uint32_t ihash[8];
	uint32_t i;
	uint32_t pad[16];
	
	static const uint32_t innerpad[11] = {0x00000080, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xa0040000};

	/* If Klen > 64, the key is really SHA256(K). */
	SHA256_InitState(tstate);
	SHA256_Transform(tstate, passwd, 1);
	memcpy(pad, passwd+16, 16);
	memcpy(pad+4, passwdpad, 48);
	SHA256_Transform(tstate, pad, 1);
	memcpy(ihash, tstate, 32);

	SHA256_InitState(PShictx.state);
	for (i = 0; i < 8; i++)
		pad[i] = ihash[i] ^ 0x36363636;
	for (; i < 16; i++)
		pad[i] = 0x36363636;
	SHA256_Transform(PShictx.state, pad, 0);
	SHA256_Transform(PShictx.state, passwd, 1);
	be32enc_vect(PShictx.buf, passwd+16, 4);
	be32enc_vect(PShictx.buf+5, innerpad, 11);

	SHA256_InitState(PShoctx.state);
	for (i = 0; i < 8; i++)
		pad[i] = ihash[i] ^ 0x5c5c5c5c;
	for (; i < 16; i++)
		pad[i] = 0x5c5c5c5c;
	SHA256_Transform(PShoctx.state, pad, 0);
	memcpy(PShoctx.buf+8, outerpad, 32);

	/* Iterate through the blocks. */
	for (i = 0; i < 4; i++) {
		uint32_t istate[8];
		uint32_t ostate[8];
		
		memcpy(istate, PShictx.state, 32);
		PShictx.buf[4] = i + 1;
		SHA256_Transform(istate, PShictx.buf, 0);
		memcpy(PShoctx.buf, istate, 32);

		memcpy(ostate, PShoctx.state, 32);
		SHA256_Transform(ostate, PShoctx.buf, 0);
		be32enc_vect(buf+i*8, ostate, 8);
	}
}


static inline uint32_t
PBKDF2_SHA256_80_128_32(const uint32_t * passwd, const uint32_t * salt)
{
	uint32_t tstate[8];
	uint32_t ostate[8];
	uint32_t ihash[8];
	uint32_t i;

	/* Compute HMAC state after processing P and S. */
	uint32_t pad[16];
	
	static const uint32_t ihash_finalblk[16] = {0x00000001,0x80000000,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0x00000620};

	/* If Klen > 64, the key is really SHA256(K). */
	SHA256_InitState(tstate);
	SHA256_Transform(tstate, passwd, 1);
	memcpy(pad, passwd+16, 16);
	memcpy(pad+4, passwdpad, 48);
	SHA256_Transform(tstate, pad, 1);
	memcpy(ihash, tstate, 32);

	SHA256_InitState(ostate);
	for (i = 0; i < 8; i++)
		pad[i] = ihash[i] ^ 0x5c5c5c5c;
	for (; i < 16; i++)
		pad[i] = 0x5c5c5c5c;
	SHA256_Transform(ostate, pad, 0);

	SHA256_InitState(tstate);
	for (i = 0; i < 8; i++)
		pad[i] = ihash[i] ^ 0x36363636;
	for (; i < 16; i++)
		pad[i] = 0x36363636;
	SHA256_Transform(tstate, pad, 0);
	SHA256_Transform(tstate, salt, 1);
	SHA256_Transform(tstate, salt+16, 1);
	SHA256_Transform(tstate, ihash_finalblk, 0);
	memcpy(pad, tstate, 32);
	memcpy(pad+8, outerpad, 32);

	/* Feed the inner hash to the outer SHA256 operation. */
	SHA256_Transform(ostate, pad, 0);
	/* Finish the outer SHA256 operation. */
	return byteswap(ostate[7]);
}


/**
 * salsa20_8(B):
 * Apply the salsa20/8 core to the provided block.
 */
static inline void
salsa20_8(uint32_t B[16], const uint32_t Bx[16])
{
	uint32_t x00,x01,x02,x03,x04,x05,x06,x07,x08,x09,x10,x11,x12,x13,x14,x15;
	size_t i;

	x00 = (B[ 0] ^= Bx[ 0]);
	x01 = (B[ 1] ^= Bx[ 1]);
	x02 = (B[ 2] ^= Bx[ 2]);
	x03 = (B[ 3] ^= Bx[ 3]);
	x04 = (B[ 4] ^= Bx[ 4]);
	x05 = (B[ 5] ^= Bx[ 5]);
	x06 = (B[ 6] ^= Bx[ 6]);
	x07 = (B[ 7] ^= Bx[ 7]);
	x08 = (B[ 8] ^= Bx[ 8]);
	x09 = (B[ 9] ^= Bx[ 9]);
	x10 = (B[10] ^= Bx[10]);
	x11 = (B[11] ^= Bx[11]);
	x12 = (B[12] ^= Bx[12]);
	x13 = (B[13] ^= Bx[13]);
	x14 = (B[14] ^= Bx[14]);
	x15 = (B[15] ^= Bx[15]);
	for (i = 0; i < 8; i += 2) {
#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
		/* Operate on columns. */
		x04 ^= R(x00+x12, 7);	x08 ^= R(x04+x00, 9);	x12 ^= R(x08+x04,13);	x00 ^= R(x12+x08,18);
		x09 ^= R(x05+x01, 7);	x13 ^= R(x09+x05, 9);	x01 ^= R(x13+x09,13);	x05 ^= R(x01+x13,18);
		x14 ^= R(x10+x06, 7);	x02 ^= R(x14+x10, 9);	x06 ^= R(x02+x14,13);	x10 ^= R(x06+x02,18);
		x03 ^= R(x15+x11, 7);	x07 ^= R(x03+x15, 9);	x11 ^= R(x07+x03,13);	x15 ^= R(x11+x07,18);

		/* Operate on rows. */
		x01 ^= R(x00+x03, 7);	x02 ^= R(x01+x00, 9);	x03 ^= R(x02+x01,13);	x00 ^= R(x03+x02,18);
		x06 ^= R(x05+x04, 7);	x07 ^= R(x06+x05, 9);	x04 ^= R(x07+x06,13);	x05 ^= R(x04+x07,18);
		x11 ^= R(x10+x09, 7);	x08 ^= R(x11+x10, 9);	x09 ^= R(x08+x11,13);	x10 ^= R(x09+x08,18);
		x12 ^= R(x15+x14, 7);	x13 ^= R(x12+x15, 9);	x14 ^= R(x13+x12,13);	x15 ^= R(x14+x13,18);
#undef R
	}
	B[ 0] += x00;
	B[ 1] += x01;
	B[ 2] += x02;
	B[ 3] += x03;
	B[ 4] += x04;
	B[ 5] += x05;
	B[ 6] += x06;
	B[ 7] += x07;
	B[ 8] += x08;
	B[ 9] += x09;
	B[10] += x10;
	B[11] += x11;
	B[12] += x12;
	B[13] += x13;
	B[14] += x14;
	B[15] += x15;
}

/* cpu and memory intensive function to transform a 80 byte buffer into a 32 byte output
   scratchpad size needs to be at least 63 + (128 * r * p) + (256 * r + 64) + (128 * r * N) bytes
 */
static uint32_t scrypt_1024_1_1_256_sp(const uint32_t* input, char* scratchpad)
{
	uint32_t * V;
	uint32_t X[32];
	uint32_t i;
	uint32_t j;
	uint32_t k;
	uint64_t *p1, *p2;

	p1 = (uint64_t *)X;
	V = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63));

	PBKDF2_SHA256_80_128(input, X);

	for (i = 0; i < 1024; i += 2) {
		memcpy(&V[i * 32], X, 128);

		salsa20_8(&X[0], &X[16]);
		salsa20_8(&X[16], &X[0]);

		memcpy(&V[(i + 1) * 32], X, 128);

		salsa20_8(&X[0], &X[16]);
		salsa20_8(&X[16], &X[0]);
	}
	for (i = 0; i < 1024; i += 2) {
		j = X[16] & 1023;
		p2 = (uint64_t *)(&V[j * 32]);
		for(k = 0; k < 16; k++)
			p1[k] ^= p2[k];

		salsa20_8(&X[0], &X[16]);
		salsa20_8(&X[16], &X[0]);

		j = X[16] & 1023;
		p2 = (uint64_t *)(&V[j * 32]);
		for(k = 0; k < 16; k++)
			p1[k] ^= p2[k];

		salsa20_8(&X[0], &X[16]);
		salsa20_8(&X[16], &X[0]);
	}

	return PBKDF2_SHA256_80_128_32(input, X);
}

int scanhash_scrypt(int thr_id, unsigned char *pdata, unsigned char *scratchbuf,
	const unsigned char *ptarget,
	uint32_t max_nonce, unsigned long *hashes_done)
{
	uint32_t data[20];
	uint32_t tmp_hash7;
	uint32_t n = 0;
	uint32_t Htarg = ((const uint32_t *)ptarget)[7];
	int i;

	work_restart[thr_id].restart = 0;
	
	be32enc_vect(data, (const uint32_t *)pdata, 19);
	
	while(1) {
		n++;
		data[19] = n;
		tmp_hash7 = scrypt_1024_1_1_256_sp(data, scratchbuf);

		if (tmp_hash7 <= Htarg) {
			((uint32_t *)pdata)[19] = byteswap(n);
			*hashes_done = n;
			return true;
		}

		if ((n >= max_nonce) || work_restart[thr_id].restart) {
			*hashes_done = n;
			break;
		}
	}
	return false;
}