1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
|
/*-
* Copyright 2009 Colin Percival, 2011 ArtForz
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file was originally written by Colin Percival as part of the Tarsnap
* online backup system.
*/
#include "cpuminer-config.h"
#include "miner.h"
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
static inline uint32_t
be32dec(const void *pp)
{
const uint8_t *p = (uint8_t const *)pp;
return ((uint32_t)(p[3]) + ((uint32_t)(p[2]) << 8) +
((uint32_t)(p[1]) << 16) + ((uint32_t)(p[0]) << 24));
}
static inline void
be32enc(void *pp, uint32_t x)
{
uint8_t * p = (uint8_t *)pp;
p[3] = x & 0xff;
p[2] = (x >> 8) & 0xff;
p[1] = (x >> 16) & 0xff;
p[0] = (x >> 24) & 0xff;
}
static inline uint32_t
le32dec(const void *pp)
{
const uint8_t *p = (uint8_t const *)pp;
return ((uint32_t)(p[0]) + ((uint32_t)(p[1]) << 8) +
((uint32_t)(p[2]) << 16) + ((uint32_t)(p[3]) << 24));
}
static inline void
le32enc(void *pp, uint32_t x)
{
uint8_t * p = (uint8_t *)pp;
p[0] = x & 0xff;
p[1] = (x >> 8) & 0xff;
p[2] = (x >> 16) & 0xff;
p[3] = (x >> 24) & 0xff;
}
typedef struct SHA256Context {
uint32_t state[8];
uint32_t count[2];
unsigned char buf[64];
} SHA256_CTX;
typedef struct HMAC_SHA256Context {
SHA256_CTX ictx;
SHA256_CTX octx;
} HMAC_SHA256_CTX;
/*
* Encode a length len/4 vector of (uint32_t) into a length len vector of
* (unsigned char) in big-endian form. Assumes len is a multiple of 4.
*/
static void
be32enc_vect(unsigned char *dst, const uint32_t *src, size_t len)
{
size_t i;
for (i = 0; i < len / 4; i++)
be32enc(dst + i * 4, src[i]);
}
/*
* Decode a big-endian length len vector of (unsigned char) into a length
* len/4 vector of (uint32_t). Assumes len is a multiple of 4.
*/
static void
be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len)
{
size_t i;
for (i = 0; i < len / 4; i++)
dst[i] = be32dec(src + i * 4);
}
/* Elementary functions used by SHA256 */
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
#define SHR(x, n) (x >> n)
#define ROTR(x, n) ((x >> n) | (x << (32 - n)))
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
/* SHA256 round function */
#define RND(a, b, c, d, e, f, g, h, k) \
t0 = h + S1(e) + Ch(e, f, g) + k; \
t1 = S0(a) + Maj(a, b, c); \
d += t0; \
h = t0 + t1;
/* Adjusted round function for rotating state */
#define RNDr(S, W, i, k) \
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
S[(66 - i) % 8], S[(67 - i) % 8], \
S[(68 - i) % 8], S[(69 - i) % 8], \
S[(70 - i) % 8], S[(71 - i) % 8], \
W[i] + k)
/*
* SHA256 block compression function. The 256-bit state is transformed via
* the 512-bit input block to produce a new state.
*/
static void
SHA256_Transform(uint32_t * state, const unsigned char block[64])
{
uint32_t W[64];
uint32_t S[8];
uint32_t t0, t1;
int i;
/* 1. Prepare message schedule W. */
be32dec_vect(W, block, 64);
for (i = 16; i < 64; i++)
W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
/* 2. Initialize working variables. */
memcpy(S, state, 32);
/* 3. Mix. */
RNDr(S, W, 0, 0x428a2f98);
RNDr(S, W, 1, 0x71374491);
RNDr(S, W, 2, 0xb5c0fbcf);
RNDr(S, W, 3, 0xe9b5dba5);
RNDr(S, W, 4, 0x3956c25b);
RNDr(S, W, 5, 0x59f111f1);
RNDr(S, W, 6, 0x923f82a4);
RNDr(S, W, 7, 0xab1c5ed5);
RNDr(S, W, 8, 0xd807aa98);
RNDr(S, W, 9, 0x12835b01);
RNDr(S, W, 10, 0x243185be);
RNDr(S, W, 11, 0x550c7dc3);
RNDr(S, W, 12, 0x72be5d74);
RNDr(S, W, 13, 0x80deb1fe);
RNDr(S, W, 14, 0x9bdc06a7);
RNDr(S, W, 15, 0xc19bf174);
RNDr(S, W, 16, 0xe49b69c1);
RNDr(S, W, 17, 0xefbe4786);
RNDr(S, W, 18, 0x0fc19dc6);
RNDr(S, W, 19, 0x240ca1cc);
RNDr(S, W, 20, 0x2de92c6f);
RNDr(S, W, 21, 0x4a7484aa);
RNDr(S, W, 22, 0x5cb0a9dc);
RNDr(S, W, 23, 0x76f988da);
RNDr(S, W, 24, 0x983e5152);
RNDr(S, W, 25, 0xa831c66d);
RNDr(S, W, 26, 0xb00327c8);
RNDr(S, W, 27, 0xbf597fc7);
RNDr(S, W, 28, 0xc6e00bf3);
RNDr(S, W, 29, 0xd5a79147);
RNDr(S, W, 30, 0x06ca6351);
RNDr(S, W, 31, 0x14292967);
RNDr(S, W, 32, 0x27b70a85);
RNDr(S, W, 33, 0x2e1b2138);
RNDr(S, W, 34, 0x4d2c6dfc);
RNDr(S, W, 35, 0x53380d13);
RNDr(S, W, 36, 0x650a7354);
RNDr(S, W, 37, 0x766a0abb);
RNDr(S, W, 38, 0x81c2c92e);
RNDr(S, W, 39, 0x92722c85);
RNDr(S, W, 40, 0xa2bfe8a1);
RNDr(S, W, 41, 0xa81a664b);
RNDr(S, W, 42, 0xc24b8b70);
RNDr(S, W, 43, 0xc76c51a3);
RNDr(S, W, 44, 0xd192e819);
RNDr(S, W, 45, 0xd6990624);
RNDr(S, W, 46, 0xf40e3585);
RNDr(S, W, 47, 0x106aa070);
RNDr(S, W, 48, 0x19a4c116);
RNDr(S, W, 49, 0x1e376c08);
RNDr(S, W, 50, 0x2748774c);
RNDr(S, W, 51, 0x34b0bcb5);
RNDr(S, W, 52, 0x391c0cb3);
RNDr(S, W, 53, 0x4ed8aa4a);
RNDr(S, W, 54, 0x5b9cca4f);
RNDr(S, W, 55, 0x682e6ff3);
RNDr(S, W, 56, 0x748f82ee);
RNDr(S, W, 57, 0x78a5636f);
RNDr(S, W, 58, 0x84c87814);
RNDr(S, W, 59, 0x8cc70208);
RNDr(S, W, 60, 0x90befffa);
RNDr(S, W, 61, 0xa4506ceb);
RNDr(S, W, 62, 0xbef9a3f7);
RNDr(S, W, 63, 0xc67178f2);
/* 4. Mix local working variables into global state */
for (i = 0; i < 8; i++)
state[i] += S[i];
/* Clean the stack. */
memset(W, 0, 256);
memset(S, 0, 32);
t0 = t1 = 0;
}
static unsigned char PAD[64] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
/* SHA-256 initialization. Begins a SHA-256 operation. */
static void
SHA256_Init(SHA256_CTX * ctx)
{
/* Zero bits processed so far */
ctx->count[0] = ctx->count[1] = 0;
/* Magic initialization constants */
ctx->state[0] = 0x6A09E667;
ctx->state[1] = 0xBB67AE85;
ctx->state[2] = 0x3C6EF372;
ctx->state[3] = 0xA54FF53A;
ctx->state[4] = 0x510E527F;
ctx->state[5] = 0x9B05688C;
ctx->state[6] = 0x1F83D9AB;
ctx->state[7] = 0x5BE0CD19;
}
/* Add bytes into the hash */
static void
SHA256_Update(SHA256_CTX * ctx, const void *in, size_t len)
{
uint32_t bitlen[2];
uint32_t r;
const unsigned char *src = in;
/* Number of bytes left in the buffer from previous updates */
r = (ctx->count[1] >> 3) & 0x3f;
/* Convert the length into a number of bits */
bitlen[1] = ((uint32_t)len) << 3;
bitlen[0] = (uint32_t)(len >> 29);
/* Update number of bits */
if ((ctx->count[1] += bitlen[1]) < bitlen[1])
ctx->count[0]++;
ctx->count[0] += bitlen[0];
/* Handle the case where we don't need to perform any transforms */
if (len < 64 - r) {
memcpy(&ctx->buf[r], src, len);
return;
}
/* Finish the current block */
memcpy(&ctx->buf[r], src, 64 - r);
SHA256_Transform(ctx->state, ctx->buf);
src += 64 - r;
len -= 64 - r;
/* Perform complete blocks */
while (len >= 64) {
SHA256_Transform(ctx->state, src);
src += 64;
len -= 64;
}
/* Copy left over data into buffer */
memcpy(ctx->buf, src, len);
}
/* Add padding and terminating bit-count. */
static void
SHA256_Pad(SHA256_CTX * ctx)
{
unsigned char len[8];
uint32_t r, plen;
/*
* Convert length to a vector of bytes -- we do this now rather
* than later because the length will change after we pad.
*/
be32enc_vect(len, ctx->count, 8);
/* Add 1--64 bytes so that the resulting length is 56 mod 64 */
r = (ctx->count[1] >> 3) & 0x3f;
plen = (r < 56) ? (56 - r) : (120 - r);
SHA256_Update(ctx, PAD, (size_t)plen);
/* Add the terminating bit-count */
SHA256_Update(ctx, len, 8);
}
/*
* SHA-256 finalization. Pads the input data, exports the hash value,
* and clears the context state.
*/
static void
SHA256_Final(unsigned char digest[32], SHA256_CTX * ctx)
{
/* Add padding */
SHA256_Pad(ctx);
/* Write the hash */
be32enc_vect(digest, ctx->state, 32);
/* Clear the context state */
memset((void *)ctx, 0, sizeof(*ctx));
}
/* Initialize an HMAC-SHA256 operation with the given key. */
static void
HMAC_SHA256_Init(HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen)
{
unsigned char pad[64];
unsigned char khash[32];
const unsigned char * K = _K;
size_t i;
/* If Klen > 64, the key is really SHA256(K). */
if (Klen > 64) {
SHA256_Init(&ctx->ictx);
SHA256_Update(&ctx->ictx, K, Klen);
SHA256_Final(khash, &ctx->ictx);
K = khash;
Klen = 32;
}
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
SHA256_Init(&ctx->ictx);
memset(pad, 0x36, 64);
for (i = 0; i < Klen; i++)
pad[i] ^= K[i];
SHA256_Update(&ctx->ictx, pad, 64);
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
SHA256_Init(&ctx->octx);
memset(pad, 0x5c, 64);
for (i = 0; i < Klen; i++)
pad[i] ^= K[i];
SHA256_Update(&ctx->octx, pad, 64);
/* Clean the stack. */
memset(khash, 0, 32);
}
/* Add bytes to the HMAC-SHA256 operation. */
static void
HMAC_SHA256_Update(HMAC_SHA256_CTX * ctx, const void *in, size_t len)
{
/* Feed data to the inner SHA256 operation. */
SHA256_Update(&ctx->ictx, in, len);
}
/* Finish an HMAC-SHA256 operation. */
static void
HMAC_SHA256_Final(unsigned char digest[32], HMAC_SHA256_CTX * ctx)
{
unsigned char ihash[32];
/* Finish the inner SHA256 operation. */
SHA256_Final(ihash, &ctx->ictx);
/* Feed the inner hash to the outer SHA256 operation. */
SHA256_Update(&ctx->octx, ihash, 32);
/* Finish the outer SHA256 operation. */
SHA256_Final(digest, &ctx->octx);
/* Clean the stack. */
memset(ihash, 0, 32);
}
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
static void
PBKDF2_SHA256(const uint8_t * passwd, size_t passwdlen, const uint8_t * salt,
size_t saltlen, uint64_t c, uint8_t * buf, size_t dkLen)
{
HMAC_SHA256_CTX PShctx, hctx;
size_t i;
uint8_t ivec[4];
uint8_t U[32];
uint8_t T[32];
uint64_t j;
int k;
size_t clen;
/* Compute HMAC state after processing P and S. */
HMAC_SHA256_Init(&PShctx, passwd, passwdlen);
HMAC_SHA256_Update(&PShctx, salt, saltlen);
/* Iterate through the blocks. */
for (i = 0; i * 32 < dkLen; i++) {
/* Generate INT(i + 1). */
be32enc(ivec, (uint32_t)(i + 1));
/* Compute U_1 = PRF(P, S || INT(i)). */
memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX));
HMAC_SHA256_Update(&hctx, ivec, 4);
HMAC_SHA256_Final(U, &hctx);
/* T_i = U_1 ... */
memcpy(T, U, 32);
for (j = 2; j <= c; j++) {
/* Compute U_j. */
HMAC_SHA256_Init(&hctx, passwd, passwdlen);
HMAC_SHA256_Update(&hctx, U, 32);
HMAC_SHA256_Final(U, &hctx);
/* ... xor U_j ... */
for (k = 0; k < 32; k++)
T[k] ^= U[k];
}
/* Copy as many bytes as necessary into buf. */
clen = dkLen - i * 32;
if (clen > 32)
clen = 32;
memcpy(&buf[i * 32], T, clen);
}
/* Clean PShctx, since we never called _Final on it. */
memset(&PShctx, 0, sizeof(HMAC_SHA256_CTX));
}
/*****************************************************************************/
#ifdef __ALTIVEC__
#include <altivec.h>
#include <vec_types.h>
static void
blkcpy(void * dest, void * src, size_t len)
{
vec_uint4 * D = dest;
vec_uint4 * S = src;
size_t L = len / sizeof(vec_uint4);
size_t i;
for (i = 0; i < L; i++)
D[i] = S[i];
}
static void
blkxor(void * dest, void * src, size_t len)
{
vec_uint4 * D = dest;
vec_uint4 * S = src;
size_t L = len / sizeof(vec_uint4);
size_t i;
for (i = 0; i < L; i++)
D[i] = vec_xor(D[i], S[i]);
}
/**
* salsa20_8(B):
* Apply the salsa20/8 core to the provided block.
*/
static void
salsa20_8(uint32_t B32[16])
{
vec_uint4 * B = (vec_uint4 *)&B32[0];
vec_uint4 X0, X1, X2, X3;
vec_uint4 T;
size_t i;
const vec_uchar16 perm_0x93 = { 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
const vec_uchar16 perm_0x4E = { 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7 };
const vec_uchar16 perm_0x39 = { 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3 };
X0 = B[0];
X1 = B[1];
X2 = B[2];
X3 = B[3];
for (i = 0; i < 8; i += 2) {
#define R(a,b) vec_rl(a, vec_splats((uint32_t)b))
/* Operate on "columns". */
T = vec_add(X0, X3);
X1 = vec_xor(X1, R(T, 7));
T = vec_add(X1, X0);
X2 = vec_xor(X2, R(T, 9));
T = vec_add(X2, X1);
X3 = vec_xor(X3, R(T, 13));
T = vec_add(X3, X2);
X0 = vec_xor(X0, R(T, 18));
/* Rearrange data. */
X1 = vec_perm(X1, X1, perm_0x93);
X2 = vec_perm(X2, X2, perm_0x4E);
X3 = vec_perm(X3, X3, perm_0x39);
/* Operate on "rows". */
T = vec_add(X0, X1);
X3 = vec_xor(X3, R(T, 7));
T = vec_add(X3, X0);
X2 = vec_xor(X2, R(T, 9));
T = vec_add(X2, X3);
X1 = vec_xor(X1, R(T, 13));
T = vec_add(X1, X2);
X0 = vec_xor(X0, R(T, 18));
/* Rearrange data. */
X1 = vec_perm(X1, X1, perm_0x39);
X2 = vec_perm(X2, X2, perm_0x4E);
X3 = vec_perm(X3, X3, perm_0x93);
#undef R
}
B[0] = vec_add(B[0], X0);
B[1] = vec_add(B[1], X1);
B[2] = vec_add(B[2], X2);
B[3] = vec_add(B[3], X3);
}
#else
static void
blkcpy(void * dest, void * src, size_t len)
{
uint64_t * D = dest;
uint64_t * S = src;
size_t L = len / sizeof(uint64_t);
size_t i;
for (i = 0; i < L; i++)
D[i] = S[i];
}
static void
blkxor(void * dest, void * src, size_t len)
{
uint64_t * D = dest;
uint64_t * S = src;
size_t L = len / sizeof(uint64_t);
size_t i;
for (i = 0; i < L; i++)
D[i] ^= S[i];
}
/**
* salsa20_8(B):
* Apply the salsa20/8 core to the provided block.
*/
static void
salsa20_8(uint32_t B[16])
{
uint32_t x[16];
size_t i;
blkcpy(x, B, 64);
for (i = 0; i < 8; i += 2) {
#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
/* Operate on columns. */
x[ 4] ^= R(x[ 0]+x[12], 7); x[ 8] ^= R(x[ 4]+x[ 0], 9);
x[12] ^= R(x[ 8]+x[ 4],13); x[ 0] ^= R(x[12]+x[ 8],18);
x[ 5] ^= R(x[ 1]+x[13], 7); x[ 9] ^= R(x[ 5]+x[ 1], 9);
x[13] ^= R(x[ 9]+x[ 5],13); x[ 1] ^= R(x[13]+x[ 9],18);
x[ 6] ^= R(x[ 2]+x[14], 7); x[10] ^= R(x[ 6]+x[ 2], 9);
x[14] ^= R(x[10]+x[ 6],13); x[ 2] ^= R(x[14]+x[10],18);
x[ 7] ^= R(x[ 3]+x[15], 7); x[11] ^= R(x[ 7]+x[ 3], 9);
x[15] ^= R(x[11]+x[ 7],13); x[ 3] ^= R(x[15]+x[11],18);
/* Operate on rows. */
x[13] ^= R(x[ 0]+x[ 7], 7); x[10] ^= R(x[13]+x[ 0], 9);
x[ 7] ^= R(x[10]+x[13],13); x[ 0] ^= R(x[ 7]+x[10],18);
x[14] ^= R(x[ 1]+x[ 4], 7); x[11] ^= R(x[14]+x[ 1], 9);
x[ 4] ^= R(x[11]+x[14],13); x[ 1] ^= R(x[ 4]+x[11],18);
x[15] ^= R(x[ 2]+x[ 5], 7); x[ 8] ^= R(x[15]+x[ 2], 9);
x[ 5] ^= R(x[ 8]+x[15],13); x[ 2] ^= R(x[ 5]+x[ 8],18);
x[12] ^= R(x[ 3]+x[ 6], 7); x[ 9] ^= R(x[12]+x[ 3], 9);
x[ 6] ^= R(x[ 9]+x[12],13); x[ 3] ^= R(x[ 6]+x[ 9],18);
#undef R
}
for (i = 0; i < 16; i++)
B[i] += x[i];
}
#endif
/**
* blockmix_salsa8(Bin, Bout, X, r):
* Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r
* bytes in length; the output Bout must also be the same size. The
* temporary space X must be 64 bytes.
*/
static void
blockmix_salsa8(uint32_t * Bin, uint32_t * Bout, uint32_t * X)
{
blkcpy(X, &Bin[16], 64);
blkxor(X, &Bin[0], 64);
salsa20_8(X);
blkcpy(&Bout[0], X, 64);
blkxor(X, &Bin[16], 64);
salsa20_8(X);
blkcpy(&Bout[16], X, 64);
}
/**
* smix(B, r, N, V, XY):
* Compute B = SMix_r(B, N). The input B must be 128r bytes in length;
* the temporary storage V must be 128rN bytes in length; the temporary
* storage XY must be 256r + 64 bytes in length. The value N must be a
* power of 2 greater than 1. The arrays B, V, and XY must be aligned to a
* multiple of 64 bytes.
*/
static void
smix(uint8_t * B, uint64_t N, uint32_t * V, uint32_t * XY)
{
uint32_t * X = XY;
uint32_t * Y = &XY[32];
uint32_t * Z = &XY[64];
uint64_t i;
uint64_t j;
/* 1: X <-- B */
for (i = 0; i < 16; i++) {
X[i] = le32dec(&B[(i * 5 % 16) * 4]);
X[16 + i] = le32dec(&B[(16 + (i * 5 % 16)) * 4]);
}
/* 2: for i = 0 to N - 1 do */
for (i = 0; i < N; i += 2) {
/* 3: V_i <-- X */
blkcpy(&V[i * 32], X, 128);
/* 4: X <-- H(X) */
blockmix_salsa8(X, Y, Z);
/* 3: V_i <-- X */
blkcpy(&V[(i + 1) * 32], Y, 128);
/* 4: X <-- H(X) */
blockmix_salsa8(Y, X, Z);
}
/* 6: for i = 0 to N - 1 do */
for (i = 0; i < N; i += 2) {
/* 7: j <-- Integerify(X) mod N */
j = X[16] & (N - 1);
/* 8: X <-- H(X \xor V_j) */
blkxor(X, &V[j * 32], 128);
blockmix_salsa8(X, Y, Z);
/* 7: j <-- Integerify(X) mod N */
j = Y[16] & (N - 1);
/* 8: X <-- H(X \xor V_j) */
blkxor(Y, &V[j * 32], 128);
blockmix_salsa8(Y, X, Z);
}
/* 10: B' <-- X */
for (i = 0; i < 16; i++) {
le32enc(&B[(i * 5 % 16) * 4], X[i]);
le32enc(&B[(16 + (i * 5 % 16)) * 4], X[16 + i]);
}
}
#if defined(__x86_64__)
void x64_scrypt_core(uint8_t *B, uint32_t *V);
#elif defined(__i386__)
void x86_scrypt_core(uint8_t *B, uint32_t *V);
#endif
/* cpu and memory intensive function to transform a 80 byte buffer into a 32 byte output
scratchpad size needs to be at least 63 + (128 * r * p) + (256 * r + 64) + (128 * r * N) bytes
*/
static void scrypt_1024_1_1_256_sp(const char* input, char* output, char* scratchpad)
{
uint8_t * B;
uint32_t * V;
uint32_t * XY;
const uint32_t N = 1024;
const uint32_t r = 1;
const uint32_t p = 1;
B = (uint8_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63));
XY = (uint32_t *)(B + (128 * r * p));
V = (uint32_t *)(B + (128 * r * p) + (256 * r + 64));
/* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
PBKDF2_SHA256((const uint8_t*)input, 80, (const uint8_t*)input, 80, 1, B, p * 128 * r);
#if defined(__x86_64__)
x64_scrypt_core(B, XY);
#elif defined(__i386__)
x86_scrypt_core(B, XY);
#else
smix(B, N, V, XY);
#endif
/* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
PBKDF2_SHA256((const uint8_t*)input, 80, B, p * 128 * r, 1, (uint8_t*)output, 32);
}
int scanhash_scrypt(int thr_id, unsigned char *pdata, unsigned char *scratchbuf,
const unsigned char *ptarget,
uint32_t max_nonce, unsigned long *hashes_done)
{
unsigned char data[80];
unsigned char tmp_hash[32];
uint32_t *nonce = (uint32_t *)(data + 64 + 12);
uint32_t n = 0;
uint32_t Htarg = le32dec(ptarget + 28);
int i;
work_restart[thr_id].restart = 0;
for (i = 0; i < 80/4; i++)
((uint32_t *)data)[i] = swab32(((uint32_t *)pdata)[i]);
while(1) {
n++;
le32enc(nonce, n);
scrypt_1024_1_1_256_sp(data, tmp_hash, scratchbuf);
if (le32dec(tmp_hash+28) <= Htarg) {
be32enc(pdata + 64 + 12, n);
*hashes_done = n;
return true;
}
if ((n >= max_nonce) || work_restart[thr_id].restart) {
*hashes_done = n;
break;
}
}
return false;
}
|