aboutsummaryrefslogtreecommitdiff
path: root/scrypt.c
diff options
context:
space:
mode:
Diffstat (limited to 'scrypt.c')
-rw-r--r--scrypt.c339
1 files changed, 120 insertions, 219 deletions
diff --git a/scrypt.c b/scrypt.c
index 6f70cc2..3288f60 100644
--- a/scrypt.c
+++ b/scrypt.c
@@ -1,5 +1,5 @@
/*-
- * Copyright 2009 Colin Percival, 2011 ArtForz
+ * Copyright 2009 Colin Percival, 2011 ArtForz, 2011 pooler
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
@@ -37,228 +37,134 @@
#include "sha256-helpers.h"
#include "scrypt-simd-helpers.h"
-static void blkcpy(void *, void *, size_t);
-static void blkxor(void *, void *, size_t);
-static void salsa20_8(uint32_t[16]);
-static void blockmix_salsa8(uint32_t *, uint32_t *, uint32_t *, size_t);
-static uint64_t integerify(void *, size_t);
-static void smix(uint8_t *, size_t, uint64_t, uint32_t *, uint32_t *);
-
-static void
-blkcpy(void * dest, void * src, size_t len)
-{
- size_t * D = dest;
- size_t * S = src;
- size_t L = len / sizeof(size_t);
- size_t i;
-
- for (i = 0; i < L; i++)
- D[i] = S[i];
-}
-
-static void
-blkxor(void * dest, void * src, size_t len)
-{
- size_t * D = dest;
- size_t * S = src;
- size_t L = len / sizeof(size_t);
- size_t i;
-
- for (i = 0; i < L; i++)
- D[i] ^= S[i];
-}
-
/**
* salsa20_8(B):
* Apply the salsa20/8 core to the provided block.
*/
-static void
-salsa20_8(uint32_t B[16])
+static inline void
+salsa20_8(uint32_t B[16], const uint32_t Bx[16])
{
- uint32_t x[16];
+ uint32_t x00,x01,x02,x03,x04,x05,x06,x07,x08,x09,x10,x11,x12,x13,x14,x15;
size_t i;
- blkcpy(x, B, 64);
+ x00 = (B[ 0] ^= Bx[ 0]);
+ x01 = (B[ 1] ^= Bx[ 1]);
+ x02 = (B[ 2] ^= Bx[ 2]);
+ x03 = (B[ 3] ^= Bx[ 3]);
+ x04 = (B[ 4] ^= Bx[ 4]);
+ x05 = (B[ 5] ^= Bx[ 5]);
+ x06 = (B[ 6] ^= Bx[ 6]);
+ x07 = (B[ 7] ^= Bx[ 7]);
+ x08 = (B[ 8] ^= Bx[ 8]);
+ x09 = (B[ 9] ^= Bx[ 9]);
+ x10 = (B[10] ^= Bx[10]);
+ x11 = (B[11] ^= Bx[11]);
+ x12 = (B[12] ^= Bx[12]);
+ x13 = (B[13] ^= Bx[13]);
+ x14 = (B[14] ^= Bx[14]);
+ x15 = (B[15] ^= Bx[15]);
for (i = 0; i < 8; i += 2) {
#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
/* Operate on columns. */
- x[ 4] ^= R(x[ 0]+x[12], 7); x[ 8] ^= R(x[ 4]+x[ 0], 9);
- x[12] ^= R(x[ 8]+x[ 4],13); x[ 0] ^= R(x[12]+x[ 8],18);
-
- x[ 9] ^= R(x[ 5]+x[ 1], 7); x[13] ^= R(x[ 9]+x[ 5], 9);
- x[ 1] ^= R(x[13]+x[ 9],13); x[ 5] ^= R(x[ 1]+x[13],18);
-
- x[14] ^= R(x[10]+x[ 6], 7); x[ 2] ^= R(x[14]+x[10], 9);
- x[ 6] ^= R(x[ 2]+x[14],13); x[10] ^= R(x[ 6]+x[ 2],18);
-
- x[ 3] ^= R(x[15]+x[11], 7); x[ 7] ^= R(x[ 3]+x[15], 9);
- x[11] ^= R(x[ 7]+x[ 3],13); x[15] ^= R(x[11]+x[ 7],18);
+ x04 ^= R(x00+x12, 7); x09 ^= R(x05+x01, 7); x14 ^= R(x10+x06, 7); x03 ^= R(x15+x11, 7);
+ x08 ^= R(x04+x00, 9); x13 ^= R(x09+x05, 9); x02 ^= R(x14+x10, 9); x07 ^= R(x03+x15, 9);
+ x12 ^= R(x08+x04,13); x01 ^= R(x13+x09,13); x06 ^= R(x02+x14,13); x11 ^= R(x07+x03,13);
+ x00 ^= R(x12+x08,18); x05 ^= R(x01+x13,18); x10 ^= R(x06+x02,18); x15 ^= R(x11+x07,18);
/* Operate on rows. */
- x[ 1] ^= R(x[ 0]+x[ 3], 7); x[ 2] ^= R(x[ 1]+x[ 0], 9);
- x[ 3] ^= R(x[ 2]+x[ 1],13); x[ 0] ^= R(x[ 3]+x[ 2],18);
-
- x[ 6] ^= R(x[ 5]+x[ 4], 7); x[ 7] ^= R(x[ 6]+x[ 5], 9);
- x[ 4] ^= R(x[ 7]+x[ 6],13); x[ 5] ^= R(x[ 4]+x[ 7],18);
-
- x[11] ^= R(x[10]+x[ 9], 7); x[ 8] ^= R(x[11]+x[10], 9);
- x[ 9] ^= R(x[ 8]+x[11],13); x[10] ^= R(x[ 9]+x[ 8],18);
-
- x[12] ^= R(x[15]+x[14], 7); x[13] ^= R(x[12]+x[15], 9);
- x[14] ^= R(x[13]+x[12],13); x[15] ^= R(x[14]+x[13],18);
+ x01 ^= R(x00+x03, 7); x06 ^= R(x05+x04, 7); x11 ^= R(x10+x09, 7); x12 ^= R(x15+x14, 7);
+ x02 ^= R(x01+x00, 9); x07 ^= R(x06+x05, 9); x08 ^= R(x11+x10, 9); x13 ^= R(x12+x15, 9);
+ x03 ^= R(x02+x01,13); x04 ^= R(x07+x06,13); x09 ^= R(x08+x11,13); x14 ^= R(x13+x12,13);
+ x00 ^= R(x03+x02,18); x05 ^= R(x04+x07,18); x10 ^= R(x09+x08,18); x15 ^= R(x14+x13,18);
#undef R
}
- for (i = 0; i < 16; i++)
- B[i] += x[i];
+ B[ 0] += x00;
+ B[ 1] += x01;
+ B[ 2] += x02;
+ B[ 3] += x03;
+ B[ 4] += x04;
+ B[ 5] += x05;
+ B[ 6] += x06;
+ B[ 7] += x07;
+ B[ 8] += x08;
+ B[ 9] += x09;
+ B[10] += x10;
+ B[11] += x11;
+ B[12] += x12;
+ B[13] += x13;
+ B[14] += x14;
+ B[15] += x15;
}
-/**
- * blockmix_salsa8(Bin, Bout, X, r):
- * Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r
- * bytes in length; the output Bout must also be the same size. The
- * temporary space X must be 64 bytes.
- */
-static void
-blockmix_salsa8(uint32_t * Bin, uint32_t * Bout, uint32_t * X, size_t r)
+static inline void scrypt_core1(uint32_t *X, uint32_t *V)
{
- size_t i;
-
- /* 1: X <-- B_{2r - 1} */
- blkcpy(X, &Bin[(2 * r - 1) * 16], 64);
-
- /* 2: for i = 0 to 2r - 1 do */
- for (i = 0; i < 2 * r; i += 2) {
- /* 3: X <-- H(X \xor B_i) */
- blkxor(X, &Bin[i * 16], 64);
- salsa20_8(X);
+ uint32_t i;
+ uint32_t j;
+ uint32_t k;
+ uint64_t *p1, *p2;
+ p1 = (uint64_t *)X;
+ for (i = 0; i < 1024; i += 2) {
+ memcpy(&V[i * 32], X, 128);
- /* 4: Y_i <-- X */
- /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
- blkcpy(&Bout[i * 8], X, 64);
+ salsa20_8(&X[0], &X[16]);
+ salsa20_8(&X[16], &X[0]);
- /* 3: X <-- H(X \xor B_i) */
- blkxor(X, &Bin[i * 16 + 16], 64);
- salsa20_8(X);
+ memcpy(&V[(i + 1) * 32], X, 128);
- /* 4: Y_i <-- X */
- /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
- blkcpy(&Bout[i * 8 + r * 16], X, 64);
+ salsa20_8(&X[0], &X[16]);
+ salsa20_8(&X[16], &X[0]);
}
-}
-
-/**
- * integerify(B, r):
- * Return the result of parsing B_{2r-1} as a little-endian integer.
- */
-static uint64_t
-integerify(void * B, size_t r)
-{
- uint32_t * X = (void *)((uintptr_t)(B) + (2 * r - 1) * 64);
-
- return (((uint64_t)(X[1]) << 32) + X[0]);
-}
-
-/**
- * smix(B, r, N, V, XY):
- * Compute B = SMix_r(B, N). The input B must be 128r bytes in length;
- * the temporary storage V must be 128rN bytes in length; the temporary
- * storage XY must be 256r + 64 bytes in length. The value N must be a
- * power of 2 greater than 1. The arrays B, V, and XY must be aligned to a
- * multiple of 64 bytes.
- */
-static void
-smix(uint8_t * B, size_t r, uint64_t N, uint32_t * V, uint32_t * XY)
-{
- uint32_t * X = XY;
- uint32_t * Y = &XY[32 * r];
- uint32_t * Z = &XY[64 * r];
- uint64_t i;
- uint64_t j;
- size_t k;
-
- /* 1: X <-- B */
- for (k = 0; k < 32 * r; k++)
- X[k] = le32dec(&B[4 * k]);
-
- /* 2: for i = 0 to N - 1 do */
- for (i = 0; i < N; i += 2) {
- /* 3: V_i <-- X */
- blkcpy(&V[i * (32 * r)], X, 128 * r);
-
- /* 4: X <-- H(X) */
- blockmix_salsa8(X, Y, Z, r);
-
- /* 3: V_i <-- X */
- blkcpy(&V[(i + 1) * (32 * r)], Y, 128 * r);
-
- /* 4: X <-- H(X) */
- blockmix_salsa8(Y, X, Z, r);
+ for (i = 0; i < 1024; i += 2) {
+ j = X[16] & 1023;
+ p2 = (uint64_t *)(&V[j * 32]);
+ for(k = 0; k < 16; k++)
+ p1[k] ^= p2[k];
+
+ salsa20_8(&X[0], &X[16]);
+ salsa20_8(&X[16], &X[0]);
+
+ j = X[16] & 1023;
+ p2 = (uint64_t *)(&V[j * 32]);
+ for(k = 0; k < 16; k++)
+ p1[k] ^= p2[k];
+
+ salsa20_8(&X[0], &X[16]);
+ salsa20_8(&X[16], &X[0]);
}
-
- /* 6: for i = 0 to N - 1 do */
- for (i = 0; i < N; i += 2) {
- /* 7: j <-- Integerify(X) mod N */
- j = integerify(X, r) & (N - 1);
-
- /* 8: X <-- H(X \xor V_j) */
- blkxor(X, &V[j * (32 * r)], 128 * r);
- blockmix_salsa8(X, Y, Z, r);
-
- /* 7: j <-- Integerify(X) mod N */
- j = integerify(Y, r) & (N - 1);
-
- /* 8: X <-- H(X \xor V_j) */
- blkxor(Y, &V[j * (32 * r)], 128 * r);
- blockmix_salsa8(Y, X, Z, r);
- }
-
- /* 10: B' <-- X */
- for (k = 0; k < 32 * r; k++)
- le32enc(&B[4 * k], X[k]);
}
+
/* cpu and memory intensive function to transform a 80 byte buffer into a 32 byte output
scratchpad size needs to be at least 63 + (128 * r * p) + (256 * r + 64) + (128 * r * N) bytes
*/
-static void scrypt_1024_1_1_256_sp1(const char* input, char* output, char* scratchpad)
+static void scrypt_1024_1_1_256_sp1(const uint32_t* input, uint32_t* output, uint8_t* scratchpad)
{
- uint8_t * B;
+ uint32_t tstate[8], ostate[8];
+ uint32_t * B;
uint32_t * V;
- uint32_t * XY;
- uint32_t i;
-
- const uint32_t N = 1024;
- const uint32_t r = 1;
- const uint32_t p = 1;
- B = (uint8_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63));
- XY = (uint32_t *)(B + (128 * r * p));
- V = (uint32_t *)(B + (128 * r * p) + (256 * r + 64));
+ B = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63));
+ V = (uint32_t *)(B + 32);
- /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
- PBKDF2_SHA256((const uint8_t*)input, 80, (const uint8_t*)input, 80, 1, B, p * 128 * r);
+ PBKDF2_SHA256_80_128_init(input, tstate, ostate);
+ PBKDF2_SHA256_80_128(tstate, ostate, input, B);
#ifdef HAVE_SCRYPT_SIMD_HELPERS
- scrypt_simd_core1(B, XY);
+ scrypt_simd_core1(B, V);
#else
- /* 2: for i = 0 to p - 1 do */
- for (i = 0; i < p; i++) {
- /* 3: B_i <-- MF(B_i, N) */
- smix(&B[i * 128 * r], r, N, V, XY);
- }
+ scrypt_core1(B, V);
#endif
- /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
- PBKDF2_SHA256((const uint8_t*)input, 80, B, p * 128 * r, 1, (uint8_t*)output, 32);
+ PBKDF2_SHA256_80_128_32(tstate, ostate, input, B, output);
}
-int scanhash_scrypt1(int thr_id, unsigned char *pdata, unsigned char *scratchbuf,
+int scanhash_scrypt1(int thr_id, unsigned char *pdata, uint8_t *scratchbuf,
const unsigned char *ptarget,
uint32_t max_nonce, unsigned long *hashes_done)
{
- unsigned char data[80];
- unsigned char tmp_hash[32];
- uint32_t *nonce = (uint32_t *)(data + 64 + 12);
+ uint32_t data[20];
+ uint32_t tmp_hash[32];
+ uint32_t *nonce = (uint32_t *)(data + 19);
uint32_t n = 0;
uint32_t Htarg = le32dec(ptarget + 28);
int i;
@@ -266,14 +172,14 @@ int scanhash_scrypt1(int thr_id, unsigned char *pdata, unsigned char *scratchbuf
work_restart[thr_id].restart = 0;
for (i = 0; i < 80/4; i++)
- ((uint32_t *)data)[i] = swab32(((uint32_t *)pdata)[i]);
+ data[i] = be32dec(pdata + i * 4);
while(1) {
n++;
- le32enc(nonce, n);
+ *nonce = n;
scrypt_1024_1_1_256_sp1(data, tmp_hash, scratchbuf);
- if (le32dec(tmp_hash+28) <= Htarg) {
+ if (tmp_hash[7] <= Htarg) {
be32enc(pdata + 64 + 12, n);
*hashes_done = n;
return true;
@@ -290,46 +196,41 @@ int scanhash_scrypt1(int thr_id, unsigned char *pdata, unsigned char *scratchbuf
#ifdef HAVE_SCRYPT_SIMD_HELPERS
static void
-scrypt_1024_1_1_256_sp2(const unsigned char * input1,
- unsigned char * output1,
- const unsigned char * input2,
- unsigned char * output2,
- unsigned char * scratchpad)
+scrypt_1024_1_1_256_sp2(const uint32_t * input1,
+ uint32_t * output1,
+ const uint32_t * input2,
+ uint32_t * output2,
+ uint8_t * scratchpad)
{
- uint8_t * B1, * B2;
- uint8_t * V;
-
- const uint32_t N = 1024;
- const uint32_t r = 1;
- const uint32_t p = 1;
+ uint32_t tstate1[8], tstate2[8], ostate1[8], ostate2[8];
+ uint32_t * B1, * B2;
+ uint32_t * V;
- B1 = (uint8_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63));
- B2 = B1 + 128;
- V = B2 + 128;
+ B1 = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63));
+ B2 = B1 + 32;
+ V = B2 + 32;
- /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
- PBKDF2_SHA256((const uint8_t*)input1, 80, (const uint8_t*)input1, 80, 1, B1, p * 128 * r);
- /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
- PBKDF2_SHA256((const uint8_t*)input2, 80, (const uint8_t*)input2, 80, 1, B2, p * 128 * r);
+ PBKDF2_SHA256_80_128_init(input1, tstate1, ostate1);
+ PBKDF2_SHA256_80_128_init(input2, tstate2, ostate2);
+ PBKDF2_SHA256_80_128(tstate1, ostate1, input1, B1);
+ PBKDF2_SHA256_80_128(tstate2, ostate2, input2, B2);
scrypt_simd_core2(B1, V);
- /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
- PBKDF2_SHA256((const uint8_t*)input1, 80, B1, p * 128 * r, 1, (uint8_t*)output1, 32);
- /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
- PBKDF2_SHA256((const uint8_t*)input2, 80, B2, p * 128 * r, 1, (uint8_t*)output2, 32);
+ PBKDF2_SHA256_80_128_32(tstate1, ostate1, input1, B1, output1);
+ PBKDF2_SHA256_80_128_32(tstate2, ostate2, input2, B2, output2);
}
int scanhash_scrypt2(int thr_id, unsigned char *pdata, unsigned char *scratchbuf,
const unsigned char *ptarget,
uint32_t max_nonce, unsigned long *hashes_done)
{
- unsigned char data1[80];
- unsigned char tmp_hash1[32];
- unsigned char data2[80];
- unsigned char tmp_hash2[32];
- uint32_t *nonce1 = (uint32_t *)(data1 + 64 + 12);
- uint32_t *nonce2 = (uint32_t *)(data2 + 64 + 12);
+ uint32_t data1[20];
+ uint32_t tmp_hash1[8];
+ uint32_t data2[20];
+ uint32_t tmp_hash2[8];
+ uint32_t *nonce1 = (uint32_t *)(data1 + 19);
+ uint32_t *nonce2 = (uint32_t *)(data2 + 19);
uint32_t n = 0;
uint32_t Htarg = le32dec(ptarget + 28);
int i;
@@ -337,22 +238,22 @@ int scanhash_scrypt2(int thr_id, unsigned char *pdata, unsigned char *scratchbuf
work_restart[thr_id].restart = 0;
for (i = 0; i < 80/4; i++) {
- ((uint32_t *)data1)[i] = swab32(((uint32_t *)pdata)[i]);
- ((uint32_t *)data2)[i] = swab32(((uint32_t *)pdata)[i]);
+ ((uint32_t *)data1)[i] = be32dec(pdata + i * 4);
+ ((uint32_t *)data2)[i] = be32dec(pdata + i * 4);
}
while(1) {
- le32enc(nonce1, n + 1);
- le32enc(nonce2, n + 2);
+ *nonce1 = n + 1;
+ *nonce2 = n + 2;
scrypt_1024_1_1_256_sp2(data1, tmp_hash1, data2, tmp_hash2, scratchbuf);
- if (le32dec(tmp_hash1+28) <= Htarg) {
+ if (tmp_hash1[7] <= Htarg) {
be32enc(pdata + 64 + 12, n + 1);
*hashes_done = n + 1;
return true;
}
- if (le32dec(tmp_hash2+28) <= Htarg && n + 2 <= max_nonce) {
+ if (tmp_hash2[7] <= Htarg && n + 2 <= max_nonce) {
be32enc(pdata + 64 + 12, n + 2);
*hashes_done = n + 2;
return true;