diff options
Diffstat (limited to 'scrypt.c')
-rw-r--r-- | scrypt.c | 339 |
1 files changed, 120 insertions, 219 deletions
@@ -1,5 +1,5 @@ /*- - * Copyright 2009 Colin Percival, 2011 ArtForz + * Copyright 2009 Colin Percival, 2011 ArtForz, 2011 pooler * All rights reserved. * * Redistribution and use in source and binary forms, with or without @@ -37,228 +37,134 @@ #include "sha256-helpers.h" #include "scrypt-simd-helpers.h" -static void blkcpy(void *, void *, size_t); -static void blkxor(void *, void *, size_t); -static void salsa20_8(uint32_t[16]); -static void blockmix_salsa8(uint32_t *, uint32_t *, uint32_t *, size_t); -static uint64_t integerify(void *, size_t); -static void smix(uint8_t *, size_t, uint64_t, uint32_t *, uint32_t *); - -static void -blkcpy(void * dest, void * src, size_t len) -{ - size_t * D = dest; - size_t * S = src; - size_t L = len / sizeof(size_t); - size_t i; - - for (i = 0; i < L; i++) - D[i] = S[i]; -} - -static void -blkxor(void * dest, void * src, size_t len) -{ - size_t * D = dest; - size_t * S = src; - size_t L = len / sizeof(size_t); - size_t i; - - for (i = 0; i < L; i++) - D[i] ^= S[i]; -} - /** * salsa20_8(B): * Apply the salsa20/8 core to the provided block. */ -static void -salsa20_8(uint32_t B[16]) +static inline void +salsa20_8(uint32_t B[16], const uint32_t Bx[16]) { - uint32_t x[16]; + uint32_t x00,x01,x02,x03,x04,x05,x06,x07,x08,x09,x10,x11,x12,x13,x14,x15; size_t i; - blkcpy(x, B, 64); + x00 = (B[ 0] ^= Bx[ 0]); + x01 = (B[ 1] ^= Bx[ 1]); + x02 = (B[ 2] ^= Bx[ 2]); + x03 = (B[ 3] ^= Bx[ 3]); + x04 = (B[ 4] ^= Bx[ 4]); + x05 = (B[ 5] ^= Bx[ 5]); + x06 = (B[ 6] ^= Bx[ 6]); + x07 = (B[ 7] ^= Bx[ 7]); + x08 = (B[ 8] ^= Bx[ 8]); + x09 = (B[ 9] ^= Bx[ 9]); + x10 = (B[10] ^= Bx[10]); + x11 = (B[11] ^= Bx[11]); + x12 = (B[12] ^= Bx[12]); + x13 = (B[13] ^= Bx[13]); + x14 = (B[14] ^= Bx[14]); + x15 = (B[15] ^= Bx[15]); for (i = 0; i < 8; i += 2) { #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) /* Operate on columns. */ - x[ 4] ^= R(x[ 0]+x[12], 7); x[ 8] ^= R(x[ 4]+x[ 0], 9); - x[12] ^= R(x[ 8]+x[ 4],13); x[ 0] ^= R(x[12]+x[ 8],18); - - x[ 9] ^= R(x[ 5]+x[ 1], 7); x[13] ^= R(x[ 9]+x[ 5], 9); - x[ 1] ^= R(x[13]+x[ 9],13); x[ 5] ^= R(x[ 1]+x[13],18); - - x[14] ^= R(x[10]+x[ 6], 7); x[ 2] ^= R(x[14]+x[10], 9); - x[ 6] ^= R(x[ 2]+x[14],13); x[10] ^= R(x[ 6]+x[ 2],18); - - x[ 3] ^= R(x[15]+x[11], 7); x[ 7] ^= R(x[ 3]+x[15], 9); - x[11] ^= R(x[ 7]+x[ 3],13); x[15] ^= R(x[11]+x[ 7],18); + x04 ^= R(x00+x12, 7); x09 ^= R(x05+x01, 7); x14 ^= R(x10+x06, 7); x03 ^= R(x15+x11, 7); + x08 ^= R(x04+x00, 9); x13 ^= R(x09+x05, 9); x02 ^= R(x14+x10, 9); x07 ^= R(x03+x15, 9); + x12 ^= R(x08+x04,13); x01 ^= R(x13+x09,13); x06 ^= R(x02+x14,13); x11 ^= R(x07+x03,13); + x00 ^= R(x12+x08,18); x05 ^= R(x01+x13,18); x10 ^= R(x06+x02,18); x15 ^= R(x11+x07,18); /* Operate on rows. */ - x[ 1] ^= R(x[ 0]+x[ 3], 7); x[ 2] ^= R(x[ 1]+x[ 0], 9); - x[ 3] ^= R(x[ 2]+x[ 1],13); x[ 0] ^= R(x[ 3]+x[ 2],18); - - x[ 6] ^= R(x[ 5]+x[ 4], 7); x[ 7] ^= R(x[ 6]+x[ 5], 9); - x[ 4] ^= R(x[ 7]+x[ 6],13); x[ 5] ^= R(x[ 4]+x[ 7],18); - - x[11] ^= R(x[10]+x[ 9], 7); x[ 8] ^= R(x[11]+x[10], 9); - x[ 9] ^= R(x[ 8]+x[11],13); x[10] ^= R(x[ 9]+x[ 8],18); - - x[12] ^= R(x[15]+x[14], 7); x[13] ^= R(x[12]+x[15], 9); - x[14] ^= R(x[13]+x[12],13); x[15] ^= R(x[14]+x[13],18); + x01 ^= R(x00+x03, 7); x06 ^= R(x05+x04, 7); x11 ^= R(x10+x09, 7); x12 ^= R(x15+x14, 7); + x02 ^= R(x01+x00, 9); x07 ^= R(x06+x05, 9); x08 ^= R(x11+x10, 9); x13 ^= R(x12+x15, 9); + x03 ^= R(x02+x01,13); x04 ^= R(x07+x06,13); x09 ^= R(x08+x11,13); x14 ^= R(x13+x12,13); + x00 ^= R(x03+x02,18); x05 ^= R(x04+x07,18); x10 ^= R(x09+x08,18); x15 ^= R(x14+x13,18); #undef R } - for (i = 0; i < 16; i++) - B[i] += x[i]; + B[ 0] += x00; + B[ 1] += x01; + B[ 2] += x02; + B[ 3] += x03; + B[ 4] += x04; + B[ 5] += x05; + B[ 6] += x06; + B[ 7] += x07; + B[ 8] += x08; + B[ 9] += x09; + B[10] += x10; + B[11] += x11; + B[12] += x12; + B[13] += x13; + B[14] += x14; + B[15] += x15; } -/** - * blockmix_salsa8(Bin, Bout, X, r): - * Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r - * bytes in length; the output Bout must also be the same size. The - * temporary space X must be 64 bytes. - */ -static void -blockmix_salsa8(uint32_t * Bin, uint32_t * Bout, uint32_t * X, size_t r) +static inline void scrypt_core1(uint32_t *X, uint32_t *V) { - size_t i; - - /* 1: X <-- B_{2r - 1} */ - blkcpy(X, &Bin[(2 * r - 1) * 16], 64); - - /* 2: for i = 0 to 2r - 1 do */ - for (i = 0; i < 2 * r; i += 2) { - /* 3: X <-- H(X \xor B_i) */ - blkxor(X, &Bin[i * 16], 64); - salsa20_8(X); + uint32_t i; + uint32_t j; + uint32_t k; + uint64_t *p1, *p2; + p1 = (uint64_t *)X; + for (i = 0; i < 1024; i += 2) { + memcpy(&V[i * 32], X, 128); - /* 4: Y_i <-- X */ - /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ - blkcpy(&Bout[i * 8], X, 64); + salsa20_8(&X[0], &X[16]); + salsa20_8(&X[16], &X[0]); - /* 3: X <-- H(X \xor B_i) */ - blkxor(X, &Bin[i * 16 + 16], 64); - salsa20_8(X); + memcpy(&V[(i + 1) * 32], X, 128); - /* 4: Y_i <-- X */ - /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ - blkcpy(&Bout[i * 8 + r * 16], X, 64); + salsa20_8(&X[0], &X[16]); + salsa20_8(&X[16], &X[0]); } -} - -/** - * integerify(B, r): - * Return the result of parsing B_{2r-1} as a little-endian integer. - */ -static uint64_t -integerify(void * B, size_t r) -{ - uint32_t * X = (void *)((uintptr_t)(B) + (2 * r - 1) * 64); - - return (((uint64_t)(X[1]) << 32) + X[0]); -} - -/** - * smix(B, r, N, V, XY): - * Compute B = SMix_r(B, N). The input B must be 128r bytes in length; - * the temporary storage V must be 128rN bytes in length; the temporary - * storage XY must be 256r + 64 bytes in length. The value N must be a - * power of 2 greater than 1. The arrays B, V, and XY must be aligned to a - * multiple of 64 bytes. - */ -static void -smix(uint8_t * B, size_t r, uint64_t N, uint32_t * V, uint32_t * XY) -{ - uint32_t * X = XY; - uint32_t * Y = &XY[32 * r]; - uint32_t * Z = &XY[64 * r]; - uint64_t i; - uint64_t j; - size_t k; - - /* 1: X <-- B */ - for (k = 0; k < 32 * r; k++) - X[k] = le32dec(&B[4 * k]); - - /* 2: for i = 0 to N - 1 do */ - for (i = 0; i < N; i += 2) { - /* 3: V_i <-- X */ - blkcpy(&V[i * (32 * r)], X, 128 * r); - - /* 4: X <-- H(X) */ - blockmix_salsa8(X, Y, Z, r); - - /* 3: V_i <-- X */ - blkcpy(&V[(i + 1) * (32 * r)], Y, 128 * r); - - /* 4: X <-- H(X) */ - blockmix_salsa8(Y, X, Z, r); + for (i = 0; i < 1024; i += 2) { + j = X[16] & 1023; + p2 = (uint64_t *)(&V[j * 32]); + for(k = 0; k < 16; k++) + p1[k] ^= p2[k]; + + salsa20_8(&X[0], &X[16]); + salsa20_8(&X[16], &X[0]); + + j = X[16] & 1023; + p2 = (uint64_t *)(&V[j * 32]); + for(k = 0; k < 16; k++) + p1[k] ^= p2[k]; + + salsa20_8(&X[0], &X[16]); + salsa20_8(&X[16], &X[0]); } - - /* 6: for i = 0 to N - 1 do */ - for (i = 0; i < N; i += 2) { - /* 7: j <-- Integerify(X) mod N */ - j = integerify(X, r) & (N - 1); - - /* 8: X <-- H(X \xor V_j) */ - blkxor(X, &V[j * (32 * r)], 128 * r); - blockmix_salsa8(X, Y, Z, r); - - /* 7: j <-- Integerify(X) mod N */ - j = integerify(Y, r) & (N - 1); - - /* 8: X <-- H(X \xor V_j) */ - blkxor(Y, &V[j * (32 * r)], 128 * r); - blockmix_salsa8(Y, X, Z, r); - } - - /* 10: B' <-- X */ - for (k = 0; k < 32 * r; k++) - le32enc(&B[4 * k], X[k]); } + /* cpu and memory intensive function to transform a 80 byte buffer into a 32 byte output scratchpad size needs to be at least 63 + (128 * r * p) + (256 * r + 64) + (128 * r * N) bytes */ -static void scrypt_1024_1_1_256_sp1(const char* input, char* output, char* scratchpad) +static void scrypt_1024_1_1_256_sp1(const uint32_t* input, uint32_t* output, uint8_t* scratchpad) { - uint8_t * B; + uint32_t tstate[8], ostate[8]; + uint32_t * B; uint32_t * V; - uint32_t * XY; - uint32_t i; - - const uint32_t N = 1024; - const uint32_t r = 1; - const uint32_t p = 1; - B = (uint8_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63)); - XY = (uint32_t *)(B + (128 * r * p)); - V = (uint32_t *)(B + (128 * r * p) + (256 * r + 64)); + B = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63)); + V = (uint32_t *)(B + 32); - /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */ - PBKDF2_SHA256((const uint8_t*)input, 80, (const uint8_t*)input, 80, 1, B, p * 128 * r); + PBKDF2_SHA256_80_128_init(input, tstate, ostate); + PBKDF2_SHA256_80_128(tstate, ostate, input, B); #ifdef HAVE_SCRYPT_SIMD_HELPERS - scrypt_simd_core1(B, XY); + scrypt_simd_core1(B, V); #else - /* 2: for i = 0 to p - 1 do */ - for (i = 0; i < p; i++) { - /* 3: B_i <-- MF(B_i, N) */ - smix(&B[i * 128 * r], r, N, V, XY); - } + scrypt_core1(B, V); #endif - /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */ - PBKDF2_SHA256((const uint8_t*)input, 80, B, p * 128 * r, 1, (uint8_t*)output, 32); + PBKDF2_SHA256_80_128_32(tstate, ostate, input, B, output); } -int scanhash_scrypt1(int thr_id, unsigned char *pdata, unsigned char *scratchbuf, +int scanhash_scrypt1(int thr_id, unsigned char *pdata, uint8_t *scratchbuf, const unsigned char *ptarget, uint32_t max_nonce, unsigned long *hashes_done) { - unsigned char data[80]; - unsigned char tmp_hash[32]; - uint32_t *nonce = (uint32_t *)(data + 64 + 12); + uint32_t data[20]; + uint32_t tmp_hash[32]; + uint32_t *nonce = (uint32_t *)(data + 19); uint32_t n = 0; uint32_t Htarg = le32dec(ptarget + 28); int i; @@ -266,14 +172,14 @@ int scanhash_scrypt1(int thr_id, unsigned char *pdata, unsigned char *scratchbuf work_restart[thr_id].restart = 0; for (i = 0; i < 80/4; i++) - ((uint32_t *)data)[i] = swab32(((uint32_t *)pdata)[i]); + data[i] = be32dec(pdata + i * 4); while(1) { n++; - le32enc(nonce, n); + *nonce = n; scrypt_1024_1_1_256_sp1(data, tmp_hash, scratchbuf); - if (le32dec(tmp_hash+28) <= Htarg) { + if (tmp_hash[7] <= Htarg) { be32enc(pdata + 64 + 12, n); *hashes_done = n; return true; @@ -290,46 +196,41 @@ int scanhash_scrypt1(int thr_id, unsigned char *pdata, unsigned char *scratchbuf #ifdef HAVE_SCRYPT_SIMD_HELPERS static void -scrypt_1024_1_1_256_sp2(const unsigned char * input1, - unsigned char * output1, - const unsigned char * input2, - unsigned char * output2, - unsigned char * scratchpad) +scrypt_1024_1_1_256_sp2(const uint32_t * input1, + uint32_t * output1, + const uint32_t * input2, + uint32_t * output2, + uint8_t * scratchpad) { - uint8_t * B1, * B2; - uint8_t * V; - - const uint32_t N = 1024; - const uint32_t r = 1; - const uint32_t p = 1; + uint32_t tstate1[8], tstate2[8], ostate1[8], ostate2[8]; + uint32_t * B1, * B2; + uint32_t * V; - B1 = (uint8_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63)); - B2 = B1 + 128; - V = B2 + 128; + B1 = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63)); + B2 = B1 + 32; + V = B2 + 32; - /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */ - PBKDF2_SHA256((const uint8_t*)input1, 80, (const uint8_t*)input1, 80, 1, B1, p * 128 * r); - /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */ - PBKDF2_SHA256((const uint8_t*)input2, 80, (const uint8_t*)input2, 80, 1, B2, p * 128 * r); + PBKDF2_SHA256_80_128_init(input1, tstate1, ostate1); + PBKDF2_SHA256_80_128_init(input2, tstate2, ostate2); + PBKDF2_SHA256_80_128(tstate1, ostate1, input1, B1); + PBKDF2_SHA256_80_128(tstate2, ostate2, input2, B2); scrypt_simd_core2(B1, V); - /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */ - PBKDF2_SHA256((const uint8_t*)input1, 80, B1, p * 128 * r, 1, (uint8_t*)output1, 32); - /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */ - PBKDF2_SHA256((const uint8_t*)input2, 80, B2, p * 128 * r, 1, (uint8_t*)output2, 32); + PBKDF2_SHA256_80_128_32(tstate1, ostate1, input1, B1, output1); + PBKDF2_SHA256_80_128_32(tstate2, ostate2, input2, B2, output2); } int scanhash_scrypt2(int thr_id, unsigned char *pdata, unsigned char *scratchbuf, const unsigned char *ptarget, uint32_t max_nonce, unsigned long *hashes_done) { - unsigned char data1[80]; - unsigned char tmp_hash1[32]; - unsigned char data2[80]; - unsigned char tmp_hash2[32]; - uint32_t *nonce1 = (uint32_t *)(data1 + 64 + 12); - uint32_t *nonce2 = (uint32_t *)(data2 + 64 + 12); + uint32_t data1[20]; + uint32_t tmp_hash1[8]; + uint32_t data2[20]; + uint32_t tmp_hash2[8]; + uint32_t *nonce1 = (uint32_t *)(data1 + 19); + uint32_t *nonce2 = (uint32_t *)(data2 + 19); uint32_t n = 0; uint32_t Htarg = le32dec(ptarget + 28); int i; @@ -337,22 +238,22 @@ int scanhash_scrypt2(int thr_id, unsigned char *pdata, unsigned char *scratchbuf work_restart[thr_id].restart = 0; for (i = 0; i < 80/4; i++) { - ((uint32_t *)data1)[i] = swab32(((uint32_t *)pdata)[i]); - ((uint32_t *)data2)[i] = swab32(((uint32_t *)pdata)[i]); + ((uint32_t *)data1)[i] = be32dec(pdata + i * 4); + ((uint32_t *)data2)[i] = be32dec(pdata + i * 4); } while(1) { - le32enc(nonce1, n + 1); - le32enc(nonce2, n + 2); + *nonce1 = n + 1; + *nonce2 = n + 2; scrypt_1024_1_1_256_sp2(data1, tmp_hash1, data2, tmp_hash2, scratchbuf); - if (le32dec(tmp_hash1+28) <= Htarg) { + if (tmp_hash1[7] <= Htarg) { be32enc(pdata + 64 + 12, n + 1); *hashes_done = n + 1; return true; } - if (le32dec(tmp_hash2+28) <= Htarg && n + 2 <= max_nonce) { + if (tmp_hash2[7] <= Htarg && n + 2 <= max_nonce) { be32enc(pdata + 64 + 12, n + 2); *hashes_done = n + 2; return true; |