diff options
author | Siarhei Siamashka <siarhei.siamashka@gmail.com> | 2011-12-22 21:22:07 +0200 |
---|---|---|
committer | Siarhei Siamashka <siarhei.siamashka@gmail.com> | 2011-12-22 21:22:07 +0200 |
commit | 611402938ec3658773f4d0073375ae60d9323727 (patch) | |
tree | bbecbf35764a94066b6e986bfd8f587a244fc671 | |
parent | 99084f8be4de50789345c42ae1e56378496c2981 (diff) |
Unmangle scrypt.c (revert to cd0b57640c0de03ac23bc965649d4085b1a2556a)
The mangled scrypt.c from Art Forz is too much broken on big endian
systems. Revert it back to something that is more maintainable.
-rw-r--r-- | scrypt.c | 673 |
1 files changed, 472 insertions, 201 deletions
@@ -34,24 +34,83 @@ #include <stdint.h> #include <string.h> -#define byteswap(x) ((((x) << 24) & 0xff000000u) | (((x) << 8) & 0x00ff0000u) | (((x) >> 8) & 0x0000ff00u) | (((x) >> 24) & 0x000000ffu)) + +static inline uint32_t +be32dec(const void *pp) +{ + const uint8_t *p = (uint8_t const *)pp; + + return ((uint32_t)(p[3]) + ((uint32_t)(p[2]) << 8) + + ((uint32_t)(p[1]) << 16) + ((uint32_t)(p[0]) << 24)); +} + +static inline void +be32enc(void *pp, uint32_t x) +{ + uint8_t * p = (uint8_t *)pp; + + p[3] = x & 0xff; + p[2] = (x >> 8) & 0xff; + p[1] = (x >> 16) & 0xff; + p[0] = (x >> 24) & 0xff; +} + +static inline uint32_t +le32dec(const void *pp) +{ + const uint8_t *p = (uint8_t const *)pp; + + return ((uint32_t)(p[0]) + ((uint32_t)(p[1]) << 8) + + ((uint32_t)(p[2]) << 16) + ((uint32_t)(p[3]) << 24)); +} + +static inline void +le32enc(void *pp, uint32_t x) +{ + uint8_t * p = (uint8_t *)pp; + + p[0] = x & 0xff; + p[1] = (x >> 8) & 0xff; + p[2] = (x >> 16) & 0xff; + p[3] = (x >> 24) & 0xff; +} + typedef struct SHA256Context { uint32_t state[8]; - uint32_t buf[16]; + uint32_t count[2]; + unsigned char buf[64]; } SHA256_CTX; +typedef struct HMAC_SHA256Context { + SHA256_CTX ictx; + SHA256_CTX octx; +} HMAC_SHA256_CTX; + /* * Encode a length len/4 vector of (uint32_t) into a length len vector of * (unsigned char) in big-endian form. Assumes len is a multiple of 4. */ -static inline void -be32enc_vect(uint32_t *dst, const uint32_t *src, uint32_t len) +static void +be32enc_vect(unsigned char *dst, const uint32_t *src, size_t len) { - uint32_t i; + size_t i; + + for (i = 0; i < len / 4; i++) + be32enc(dst + i * 4, src[i]); +} + +/* + * Decode a big-endian length len vector of (unsigned char) into a length + * len/4 vector of (uint32_t). Assumes len is a multiple of 4. + */ +static void +be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len) +{ + size_t i; - for (i = 0; i < len; i++) - dst[i] = byteswap(src[i]); + for (i = 0; i < len / 4; i++) + dst[i] = be32dec(src + i * 4); } /* Elementary functions used by SHA256 */ @@ -84,7 +143,7 @@ be32enc_vect(uint32_t *dst, const uint32_t *src, uint32_t len) * the 512-bit input block to produce a new state. */ static void -SHA256_Transform(uint32_t * state, const uint32_t block[16], int swap) +SHA256_Transform(uint32_t * state, const unsigned char block[64]) { uint32_t W[64]; uint32_t S[8]; @@ -92,15 +151,9 @@ SHA256_Transform(uint32_t * state, const uint32_t block[16], int swap) int i; /* 1. Prepare message schedule W. */ - if(swap) - for (i = 0; i < 16; i++) - W[i] = byteswap(block[i]); - else - memcpy(W, block, 64); - for (i = 16; i < 64; i += 2) { + be32dec_vect(W, block, 64); + for (i = 16; i < 64; i++) W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; - W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15]; - } /* 2. Initialize working variables. */ memcpy(S, state, 32); @@ -174,260 +227,478 @@ SHA256_Transform(uint32_t * state, const uint32_t block[16], int swap) /* 4. Mix local working variables into global state */ for (i = 0; i < 8; i++) state[i] += S[i]; + + /* Clean the stack. */ + memset(W, 0, 256); + memset(S, 0, 32); + t0 = t1 = 0; } -static inline void -SHA256_InitState(uint32_t * state) +static unsigned char PAD[64] = { + 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 +}; + +/* SHA-256 initialization. Begins a SHA-256 operation. */ +static void +SHA256_Init(SHA256_CTX * ctx) { + + /* Zero bits processed so far */ + ctx->count[0] = ctx->count[1] = 0; + /* Magic initialization constants */ - state[0] = 0x6A09E667; - state[1] = 0xBB67AE85; - state[2] = 0x3C6EF372; - state[3] = 0xA54FF53A; - state[4] = 0x510E527F; - state[5] = 0x9B05688C; - state[6] = 0x1F83D9AB; - state[7] = 0x5BE0CD19; + ctx->state[0] = 0x6A09E667; + ctx->state[1] = 0xBB67AE85; + ctx->state[2] = 0x3C6EF372; + ctx->state[3] = 0xA54FF53A; + ctx->state[4] = 0x510E527F; + ctx->state[5] = 0x9B05688C; + ctx->state[6] = 0x1F83D9AB; + ctx->state[7] = 0x5BE0CD19; +} + +/* Add bytes into the hash */ +static void +SHA256_Update(SHA256_CTX * ctx, const void *in, size_t len) +{ + uint32_t bitlen[2]; + uint32_t r; + const unsigned char *src = in; + + /* Number of bytes left in the buffer from previous updates */ + r = (ctx->count[1] >> 3) & 0x3f; + + /* Convert the length into a number of bits */ + bitlen[1] = ((uint32_t)len) << 3; + bitlen[0] = (uint32_t)(len >> 29); + + /* Update number of bits */ + if ((ctx->count[1] += bitlen[1]) < bitlen[1]) + ctx->count[0]++; + ctx->count[0] += bitlen[0]; + + /* Handle the case where we don't need to perform any transforms */ + if (len < 64 - r) { + memcpy(&ctx->buf[r], src, len); + return; + } + + /* Finish the current block */ + memcpy(&ctx->buf[r], src, 64 - r); + SHA256_Transform(ctx->state, ctx->buf); + src += 64 - r; + len -= 64 - r; + + /* Perform complete blocks */ + while (len >= 64) { + SHA256_Transform(ctx->state, src); + src += 64; + len -= 64; + } + + /* Copy left over data into buffer */ + memcpy(ctx->buf, src, len); +} + +/* Add padding and terminating bit-count. */ +static void +SHA256_Pad(SHA256_CTX * ctx) +{ + unsigned char len[8]; + uint32_t r, plen; + + /* + * Convert length to a vector of bytes -- we do this now rather + * than later because the length will change after we pad. + */ + be32enc_vect(len, ctx->count, 8); + + /* Add 1--64 bytes so that the resulting length is 56 mod 64 */ + r = (ctx->count[1] >> 3) & 0x3f; + plen = (r < 56) ? (56 - r) : (120 - r); + SHA256_Update(ctx, PAD, (size_t)plen); + + /* Add the terminating bit-count */ + SHA256_Update(ctx, len, 8); } -static const uint32_t passwdpad[12] = {0x00000080, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80020000}; -static const uint32_t outerpad[8] = {0x80000000, 0, 0, 0, 0, 0, 0, 0x00000300}; +/* + * SHA-256 finalization. Pads the input data, exports the hash value, + * and clears the context state. + */ +static void +SHA256_Final(unsigned char digest[32], SHA256_CTX * ctx) +{ + + /* Add padding */ + SHA256_Pad(ctx); + + /* Write the hash */ + be32enc_vect(digest, ctx->state, 32); + + /* Clear the context state */ + memset((void *)ctx, 0, sizeof(*ctx)); +} + +/* Initialize an HMAC-SHA256 operation with the given key. */ +static void +HMAC_SHA256_Init(HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen) +{ + unsigned char pad[64]; + unsigned char khash[32]; + const unsigned char * K = _K; + size_t i; + + /* If Klen > 64, the key is really SHA256(K). */ + if (Klen > 64) { + SHA256_Init(&ctx->ictx); + SHA256_Update(&ctx->ictx, K, Klen); + SHA256_Final(khash, &ctx->ictx); + K = khash; + Klen = 32; + } + + /* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */ + SHA256_Init(&ctx->ictx); + memset(pad, 0x36, 64); + for (i = 0; i < Klen; i++) + pad[i] ^= K[i]; + SHA256_Update(&ctx->ictx, pad, 64); + + /* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */ + SHA256_Init(&ctx->octx); + memset(pad, 0x5c, 64); + for (i = 0; i < Klen; i++) + pad[i] ^= K[i]; + SHA256_Update(&ctx->octx, pad, 64); + + /* Clean the stack. */ + memset(khash, 0, 32); +} + +/* Add bytes to the HMAC-SHA256 operation. */ +static void +HMAC_SHA256_Update(HMAC_SHA256_CTX * ctx, const void *in, size_t len) +{ + + /* Feed data to the inner SHA256 operation. */ + SHA256_Update(&ctx->ictx, in, len); +} + +/* Finish an HMAC-SHA256 operation. */ +static void +HMAC_SHA256_Final(unsigned char digest[32], HMAC_SHA256_CTX * ctx) +{ + unsigned char ihash[32]; + + /* Finish the inner SHA256 operation. */ + SHA256_Final(ihash, &ctx->ictx); + + /* Feed the inner hash to the outer SHA256 operation. */ + SHA256_Update(&ctx->octx, ihash, 32); + + /* Finish the outer SHA256 operation. */ + SHA256_Final(digest, &ctx->octx); + + /* Clean the stack. */ + memset(ihash, 0, 32); +} /** * PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen): * Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and * write the output to buf. The value dkLen must be at most 32 * (2^32 - 1). */ -static inline void -PBKDF2_SHA256_80_128(const uint32_t * passwd, uint32_t * buf) +static void +PBKDF2_SHA256(const uint8_t * passwd, size_t passwdlen, const uint8_t * salt, + size_t saltlen, uint64_t c, uint8_t * buf, size_t dkLen) { - SHA256_CTX PShictx, PShoctx; - uint32_t tstate[8]; - uint32_t ihash[8]; - uint32_t i; - uint32_t pad[16]; - - static const uint32_t innerpad[11] = {0x00000080, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xa0040000}; + HMAC_SHA256_CTX PShctx, hctx; + size_t i; + uint8_t ivec[4]; + uint8_t U[32]; + uint8_t T[32]; + uint64_t j; + int k; + size_t clen; - /* If Klen > 64, the key is really SHA256(K). */ - SHA256_InitState(tstate); - SHA256_Transform(tstate, passwd, 1); - memcpy(pad, passwd+16, 16); - memcpy(pad+4, passwdpad, 48); - SHA256_Transform(tstate, pad, 1); - memcpy(ihash, tstate, 32); - - SHA256_InitState(PShictx.state); - for (i = 0; i < 8; i++) - pad[i] = ihash[i] ^ 0x36363636; - for (; i < 16; i++) - pad[i] = 0x36363636; - SHA256_Transform(PShictx.state, pad, 0); - SHA256_Transform(PShictx.state, passwd, 1); - be32enc_vect(PShictx.buf, passwd+16, 4); - be32enc_vect(PShictx.buf+5, innerpad, 11); - - SHA256_InitState(PShoctx.state); - for (i = 0; i < 8; i++) - pad[i] = ihash[i] ^ 0x5c5c5c5c; - for (; i < 16; i++) - pad[i] = 0x5c5c5c5c; - SHA256_Transform(PShoctx.state, pad, 0); - memcpy(PShoctx.buf+8, outerpad, 32); + /* Compute HMAC state after processing P and S. */ + HMAC_SHA256_Init(&PShctx, passwd, passwdlen); + HMAC_SHA256_Update(&PShctx, salt, saltlen); /* Iterate through the blocks. */ - for (i = 0; i < 4; i++) { - uint32_t istate[8]; - uint32_t ostate[8]; - - memcpy(istate, PShictx.state, 32); - PShictx.buf[4] = i + 1; - SHA256_Transform(istate, PShictx.buf, 0); - memcpy(PShoctx.buf, istate, 32); - - memcpy(ostate, PShoctx.state, 32); - SHA256_Transform(ostate, PShoctx.buf, 0); - be32enc_vect(buf+i*8, ostate, 8); + for (i = 0; i * 32 < dkLen; i++) { + /* Generate INT(i + 1). */ + be32enc(ivec, (uint32_t)(i + 1)); + + /* Compute U_1 = PRF(P, S || INT(i)). */ + memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX)); + HMAC_SHA256_Update(&hctx, ivec, 4); + HMAC_SHA256_Final(U, &hctx); + + /* T_i = U_1 ... */ + memcpy(T, U, 32); + + for (j = 2; j <= c; j++) { + /* Compute U_j. */ + HMAC_SHA256_Init(&hctx, passwd, passwdlen); + HMAC_SHA256_Update(&hctx, U, 32); + HMAC_SHA256_Final(U, &hctx); + + /* ... xor U_j ... */ + for (k = 0; k < 32; k++) + T[k] ^= U[k]; + } + + /* Copy as many bytes as necessary into buf. */ + clen = dkLen - i * 32; + if (clen > 32) + clen = 32; + memcpy(&buf[i * 32], T, clen); } + + /* Clean PShctx, since we never called _Final on it. */ + memset(&PShctx, 0, sizeof(HMAC_SHA256_CTX)); } -static inline uint32_t -PBKDF2_SHA256_80_128_32(const uint32_t * passwd, const uint32_t * salt) -{ - uint32_t tstate[8]; - uint32_t ostate[8]; - uint32_t ihash[8]; - uint32_t i; +static void blkcpy(void *, void *, size_t); +static void blkxor(void *, void *, size_t); +static void salsa20_8(uint32_t[16]); +static void blockmix_salsa8(uint32_t *, uint32_t *, uint32_t *, size_t); +static uint64_t integerify(void *, size_t); +static void smix(uint8_t *, size_t, uint64_t, uint32_t *, uint32_t *); - /* Compute HMAC state after processing P and S. */ - uint32_t pad[16]; - - static const uint32_t ihash_finalblk[16] = {0x00000001,0x80000000,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0x00000620}; +static void +blkcpy(void * dest, void * src, size_t len) +{ + size_t * D = dest; + size_t * S = src; + size_t L = len / sizeof(size_t); + size_t i; - /* If Klen > 64, the key is really SHA256(K). */ - SHA256_InitState(tstate); - SHA256_Transform(tstate, passwd, 1); - memcpy(pad, passwd+16, 16); - memcpy(pad+4, passwdpad, 48); - SHA256_Transform(tstate, pad, 1); - memcpy(ihash, tstate, 32); - - SHA256_InitState(ostate); - for (i = 0; i < 8; i++) - pad[i] = ihash[i] ^ 0x5c5c5c5c; - for (; i < 16; i++) - pad[i] = 0x5c5c5c5c; - SHA256_Transform(ostate, pad, 0); + for (i = 0; i < L; i++) + D[i] = S[i]; +} - SHA256_InitState(tstate); - for (i = 0; i < 8; i++) - pad[i] = ihash[i] ^ 0x36363636; - for (; i < 16; i++) - pad[i] = 0x36363636; - SHA256_Transform(tstate, pad, 0); - SHA256_Transform(tstate, salt, 1); - SHA256_Transform(tstate, salt+16, 1); - SHA256_Transform(tstate, ihash_finalblk, 0); - memcpy(pad, tstate, 32); - memcpy(pad+8, outerpad, 32); +static void +blkxor(void * dest, void * src, size_t len) +{ + size_t * D = dest; + size_t * S = src; + size_t L = len / sizeof(size_t); + size_t i; - /* Feed the inner hash to the outer SHA256 operation. */ - SHA256_Transform(ostate, pad, 0); - /* Finish the outer SHA256 operation. */ - return byteswap(ostate[7]); + for (i = 0; i < L; i++) + D[i] ^= S[i]; } - /** * salsa20_8(B): * Apply the salsa20/8 core to the provided block. */ -static inline void -salsa20_8(uint32_t B[16], const uint32_t Bx[16]) +static void +salsa20_8(uint32_t B[16]) { - uint32_t x00,x01,x02,x03,x04,x05,x06,x07,x08,x09,x10,x11,x12,x13,x14,x15; + uint32_t x[16]; size_t i; - x00 = (B[ 0] ^= Bx[ 0]); - x01 = (B[ 1] ^= Bx[ 1]); - x02 = (B[ 2] ^= Bx[ 2]); - x03 = (B[ 3] ^= Bx[ 3]); - x04 = (B[ 4] ^= Bx[ 4]); - x05 = (B[ 5] ^= Bx[ 5]); - x06 = (B[ 6] ^= Bx[ 6]); - x07 = (B[ 7] ^= Bx[ 7]); - x08 = (B[ 8] ^= Bx[ 8]); - x09 = (B[ 9] ^= Bx[ 9]); - x10 = (B[10] ^= Bx[10]); - x11 = (B[11] ^= Bx[11]); - x12 = (B[12] ^= Bx[12]); - x13 = (B[13] ^= Bx[13]); - x14 = (B[14] ^= Bx[14]); - x15 = (B[15] ^= Bx[15]); + blkcpy(x, B, 64); for (i = 0; i < 8; i += 2) { #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) /* Operate on columns. */ - x04 ^= R(x00+x12, 7); x09 ^= R(x05+x01, 7); x14 ^= R(x10+x06, 7); x03 ^= R(x15+x11, 7); - x08 ^= R(x04+x00, 9); x13 ^= R(x09+x05, 9); x02 ^= R(x14+x10, 9); x07 ^= R(x03+x15, 9); - x12 ^= R(x08+x04,13); x01 ^= R(x13+x09,13); x06 ^= R(x02+x14,13); x11 ^= R(x07+x03,13); - x00 ^= R(x12+x08,18); x05 ^= R(x01+x13,18); x10 ^= R(x06+x02,18); x15 ^= R(x11+x07,18); + x[ 4] ^= R(x[ 0]+x[12], 7); x[ 8] ^= R(x[ 4]+x[ 0], 9); + x[12] ^= R(x[ 8]+x[ 4],13); x[ 0] ^= R(x[12]+x[ 8],18); + + x[ 9] ^= R(x[ 5]+x[ 1], 7); x[13] ^= R(x[ 9]+x[ 5], 9); + x[ 1] ^= R(x[13]+x[ 9],13); x[ 5] ^= R(x[ 1]+x[13],18); + + x[14] ^= R(x[10]+x[ 6], 7); x[ 2] ^= R(x[14]+x[10], 9); + x[ 6] ^= R(x[ 2]+x[14],13); x[10] ^= R(x[ 6]+x[ 2],18); + + x[ 3] ^= R(x[15]+x[11], 7); x[ 7] ^= R(x[ 3]+x[15], 9); + x[11] ^= R(x[ 7]+x[ 3],13); x[15] ^= R(x[11]+x[ 7],18); /* Operate on rows. */ - x01 ^= R(x00+x03, 7); x06 ^= R(x05+x04, 7); x11 ^= R(x10+x09, 7); x12 ^= R(x15+x14, 7); - x02 ^= R(x01+x00, 9); x07 ^= R(x06+x05, 9); x08 ^= R(x11+x10, 9); x13 ^= R(x12+x15, 9); - x03 ^= R(x02+x01,13); x04 ^= R(x07+x06,13); x09 ^= R(x08+x11,13); x14 ^= R(x13+x12,13); - x00 ^= R(x03+x02,18); x05 ^= R(x04+x07,18); x10 ^= R(x09+x08,18); x15 ^= R(x14+x13,18); + x[ 1] ^= R(x[ 0]+x[ 3], 7); x[ 2] ^= R(x[ 1]+x[ 0], 9); + x[ 3] ^= R(x[ 2]+x[ 1],13); x[ 0] ^= R(x[ 3]+x[ 2],18); + + x[ 6] ^= R(x[ 5]+x[ 4], 7); x[ 7] ^= R(x[ 6]+x[ 5], 9); + x[ 4] ^= R(x[ 7]+x[ 6],13); x[ 5] ^= R(x[ 4]+x[ 7],18); + + x[11] ^= R(x[10]+x[ 9], 7); x[ 8] ^= R(x[11]+x[10], 9); + x[ 9] ^= R(x[ 8]+x[11],13); x[10] ^= R(x[ 9]+x[ 8],18); + + x[12] ^= R(x[15]+x[14], 7); x[13] ^= R(x[12]+x[15], 9); + x[14] ^= R(x[13]+x[12],13); x[15] ^= R(x[14]+x[13],18); #undef R } - B[ 0] += x00; - B[ 1] += x01; - B[ 2] += x02; - B[ 3] += x03; - B[ 4] += x04; - B[ 5] += x05; - B[ 6] += x06; - B[ 7] += x07; - B[ 8] += x08; - B[ 9] += x09; - B[10] += x10; - B[11] += x11; - B[12] += x12; - B[13] += x13; - B[14] += x14; - B[15] += x15; + for (i = 0; i < 16; i++) + B[i] += x[i]; +} + +/** + * blockmix_salsa8(Bin, Bout, X, r): + * Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r + * bytes in length; the output Bout must also be the same size. The + * temporary space X must be 64 bytes. + */ +static void +blockmix_salsa8(uint32_t * Bin, uint32_t * Bout, uint32_t * X, size_t r) +{ + size_t i; + + /* 1: X <-- B_{2r - 1} */ + blkcpy(X, &Bin[(2 * r - 1) * 16], 64); + + /* 2: for i = 0 to 2r - 1 do */ + for (i = 0; i < 2 * r; i += 2) { + /* 3: X <-- H(X \xor B_i) */ + blkxor(X, &Bin[i * 16], 64); + salsa20_8(X); + + /* 4: Y_i <-- X */ + /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ + blkcpy(&Bout[i * 8], X, 64); + + /* 3: X <-- H(X \xor B_i) */ + blkxor(X, &Bin[i * 16 + 16], 64); + salsa20_8(X); + + /* 4: Y_i <-- X */ + /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ + blkcpy(&Bout[i * 8 + r * 16], X, 64); + } +} + +/** + * integerify(B, r): + * Return the result of parsing B_{2r-1} as a little-endian integer. + */ +static uint64_t +integerify(void * B, size_t r) +{ + uint32_t * X = (void *)((uintptr_t)(B) + (2 * r - 1) * 64); + + return (((uint64_t)(X[1]) << 32) + X[0]); +} + +/** + * smix(B, r, N, V, XY): + * Compute B = SMix_r(B, N). The input B must be 128r bytes in length; + * the temporary storage V must be 128rN bytes in length; the temporary + * storage XY must be 256r + 64 bytes in length. The value N must be a + * power of 2 greater than 1. The arrays B, V, and XY must be aligned to a + * multiple of 64 bytes. + */ +static void +smix(uint8_t * B, size_t r, uint64_t N, uint32_t * V, uint32_t * XY) +{ + uint32_t * X = XY; + uint32_t * Y = &XY[32 * r]; + uint32_t * Z = &XY[64 * r]; + uint64_t i; + uint64_t j; + size_t k; + + /* 1: X <-- B */ + for (k = 0; k < 32 * r; k++) + X[k] = le32dec(&B[4 * k]); + + /* 2: for i = 0 to N - 1 do */ + for (i = 0; i < N; i += 2) { + /* 3: V_i <-- X */ + blkcpy(&V[i * (32 * r)], X, 128 * r); + + /* 4: X <-- H(X) */ + blockmix_salsa8(X, Y, Z, r); + + /* 3: V_i <-- X */ + blkcpy(&V[(i + 1) * (32 * r)], Y, 128 * r); + + /* 4: X <-- H(X) */ + blockmix_salsa8(Y, X, Z, r); + } + + /* 6: for i = 0 to N - 1 do */ + for (i = 0; i < N; i += 2) { + /* 7: j <-- Integerify(X) mod N */ + j = integerify(X, r) & (N - 1); + + /* 8: X <-- H(X \xor V_j) */ + blkxor(X, &V[j * (32 * r)], 128 * r); + blockmix_salsa8(X, Y, Z, r); + + /* 7: j <-- Integerify(X) mod N */ + j = integerify(Y, r) & (N - 1); + + /* 8: X <-- H(X \xor V_j) */ + blkxor(Y, &V[j * (32 * r)], 128 * r); + blockmix_salsa8(Y, X, Z, r); + } + + /* 10: B' <-- X */ + for (k = 0; k < 32 * r; k++) + le32enc(&B[4 * k], X[k]); } /* cpu and memory intensive function to transform a 80 byte buffer into a 32 byte output scratchpad size needs to be at least 63 + (128 * r * p) + (256 * r + 64) + (128 * r * N) bytes */ -static uint32_t scrypt_1024_1_1_256_sp(const uint32_t* input, char* scratchpad) +static void scrypt_1024_1_1_256_sp(const char* input, char* output, char* scratchpad) { + uint8_t * B; uint32_t * V; - uint32_t X[32]; + uint32_t * XY; uint32_t i; - uint32_t j; - uint32_t k; - uint64_t *p1, *p2; - - p1 = (uint64_t *)X; - V = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63)); - PBKDF2_SHA256_80_128(input, X); + const uint32_t N = 1024; + const uint32_t r = 1; + const uint32_t p = 1; - for (i = 0; i < 1024; i += 2) { - memcpy(&V[i * 32], X, 128); + B = (uint8_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63)); + XY = (uint32_t *)(B + (128 * r * p)); + V = (uint32_t *)(B + (128 * r * p) + (256 * r + 64)); - salsa20_8(&X[0], &X[16]); - salsa20_8(&X[16], &X[0]); + /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */ + PBKDF2_SHA256((const uint8_t*)input, 80, (const uint8_t*)input, 80, 1, B, p * 128 * r); - memcpy(&V[(i + 1) * 32], X, 128); - - salsa20_8(&X[0], &X[16]); - salsa20_8(&X[16], &X[0]); - } - for (i = 0; i < 1024; i += 2) { - j = X[16] & 1023; - p2 = (uint64_t *)(&V[j * 32]); - for(k = 0; k < 16; k++) - p1[k] ^= p2[k]; - - salsa20_8(&X[0], &X[16]); - salsa20_8(&X[16], &X[0]); - - j = X[16] & 1023; - p2 = (uint64_t *)(&V[j * 32]); - for(k = 0; k < 16; k++) - p1[k] ^= p2[k]; - - salsa20_8(&X[0], &X[16]); - salsa20_8(&X[16], &X[0]); + /* 2: for i = 0 to p - 1 do */ + for (i = 0; i < p; i++) { + /* 3: B_i <-- MF(B_i, N) */ + smix(&B[i * 128 * r], r, N, V, XY); } - return PBKDF2_SHA256_80_128_32(input, X); + /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */ + PBKDF2_SHA256((const uint8_t*)input, 80, B, p * 128 * r, 1, (uint8_t*)output, 32); } int scanhash_scrypt(int thr_id, unsigned char *pdata, unsigned char *scratchbuf, const unsigned char *ptarget, uint32_t max_nonce, unsigned long *hashes_done) { - uint32_t data[20]; - uint32_t tmp_hash7; + unsigned char data[80]; + unsigned char tmp_hash[32]; + uint32_t *nonce = (uint32_t *)(data + 64 + 12); uint32_t n = 0; - uint32_t Htarg = ((const uint32_t *)ptarget)[7]; + uint32_t Htarg = *(uint32_t *)(ptarget + 28); int i; work_restart[thr_id].restart = 0; - be32enc_vect(data, (const uint32_t *)pdata, 19); + for (i = 0; i < 80/4; i++) + ((uint32_t *)data)[i] = swab32(((uint32_t *)pdata)[i]); while(1) { n++; - data[19] = n; - tmp_hash7 = scrypt_1024_1_1_256_sp(data, scratchbuf); + *nonce = n; + scrypt_1024_1_1_256_sp(data, tmp_hash, scratchbuf); - if (tmp_hash7 <= Htarg) { - ((uint32_t *)pdata)[19] = byteswap(n); + if (*(uint32_t *)(tmp_hash+28) <= Htarg) { + *(uint32_t *)(pdata + 64 + 12) = swab32(n); *hashes_done = n; return true; } |