diff options
Diffstat (limited to 'src/clojure/contrib/monads/examples.clj')
-rw-r--r-- | src/clojure/contrib/monads/examples.clj | 425 |
1 files changed, 0 insertions, 425 deletions
diff --git a/src/clojure/contrib/monads/examples.clj b/src/clojure/contrib/monads/examples.clj deleted file mode 100644 index 00e5dfaf..00000000 --- a/src/clojure/contrib/monads/examples.clj +++ /dev/null @@ -1,425 +0,0 @@ -;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -;; -;; Monad application examples -;; -;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; - -(ns - #^{:author "Konrad Hinsen" - :skip-wiki true - :doc "Examples for using monads"} - clojure.contrib.monads.examples - (:use [clojure.contrib.monads - :only (domonad with-monad m-lift m-seq m-reduce m-when - sequence-m - maybe-m - state-m fetch-state set-state - writer-m write - cont-m run-cont call-cc - maybe-t)]) - (:require (clojure.contrib [accumulators :as accu]))) - -;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -;; -;; Sequence manipulations with the sequence monad -;; -;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; - -; Note: in the Haskell world, this monad is called the list monad. -; The Clojure equivalent to Haskell's lists are (possibly lazy) -; sequences. This is why I call this monad "sequence". All sequences -; created by sequence monad operations are lazy. - -; Monad comprehensions in the sequence monad work exactly the same -; as Clojure's 'for' construct, except that :while clauses are not -; available. -(domonad sequence-m - [x (range 5) - y (range 3)] - (+ x y)) - -; Inside a with-monad block, domonad is used without the monad name. -(with-monad sequence-m - (domonad - [x (range 5) - y (range 3)] - (+ x y))) - -; Conditions are written with :when, as in Clojure's for form: -(domonad sequence-m - [x (range 5) - y (range (+ 1 x)) - :when (= (+ x y) 2)] - (list x y)) - -; :let is also supported like in for: -(domonad sequence-m - [x (range 5) - y (range (+ 1 x)) - :let [sum (+ x y) - diff (- x y)] - :when (= sum 2)] - (list diff)) - -; An example of a sequence function defined in terms of a lift operation. -(with-monad sequence-m - (defn pairs [xs] - ((m-lift 2 #(list %1 %2)) xs xs))) - -(pairs (range 5)) - -; Another way to define pairs is through the m-seq operation. It takes -; a sequence of monadic values and returns a monadic value containing -; the sequence of the underlying values, obtained from chaining together -; from left to right the monadic values in the sequence. -(with-monad sequence-m - (defn pairs [xs] - (m-seq (list xs xs)))) - -(pairs (range 5)) - -; This definition suggests a generalization: -(with-monad sequence-m - (defn ntuples [n xs] - (m-seq (replicate n xs)))) - -(ntuples 2 (range 5)) -(ntuples 3 (range 5)) - -; Lift operations can also be used inside a monad comprehension: -(domonad sequence-m - [x ((m-lift 1 (partial * 2)) (range 5)) - y (range 2)] - [x y]) - -; The m-plus operation does concatenation in the sequence monad. -(domonad sequence-m - [x ((m-lift 2 +) (range 5) (range 3)) - y (m-plus (range 2) '(10 11))] - [x y]) - - -;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -;; -;; Handling failures with the maybe monad -;; -;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; - -; Maybe monad versions of basic arithmetic -(with-monad maybe-m - (def m+ (m-lift 2 +)) - (def m- (m-lift 2 -)) - (def m* (m-lift 2 *))) - -; Division is special for two reasons: we can't call it m/ because that's -; not a legal Clojure symbol, and we want it to fail if a division by zero -; is attempted. It is best defined by a monad comprehension with a -; :when clause: -(defn safe-div [x y] - (domonad maybe-m - [a x - b y - :when (not (zero? b))] - (/ a b))) - -; Now do some non-trivial computation with division -; It fails for (1) x = 0, (2) y = 0 or (3) y = -x. -(with-monad maybe-m - (defn some-function [x y] - (let [one (m-result 1)] - (safe-div one (m+ (safe-div one (m-result x)) - (safe-div one (m-result y))))))) - -; An example that doesn't fail: -(some-function 2 3) -; And two that do fail, at different places: -(some-function 2 0) -(some-function 2 -2) - -; In the maybe monad, m-plus selects the first monadic value that -; holds a valid value. -(with-monad maybe-m - (m-plus (some-function 2 0) (some-function 2 -2) (some-function 2 3))) - -;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -;; -;; Random numbers with the state monad -;; -;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; - -; A state monad item represents a computation that changes a state and -; returns a value. Its structure is a function that takes a state argument -; and returns a two-item list containing the value and the updated state. -; It is important to realize that everything you put into a state monad -; expression is a state monad item (thus a function), and everything you -; get out as well. A state monad does not perform a calculation, it -; constructs a function that does the computation when called. - -; First, we define a simple random number generator with explicit state. -; rng is a function of its state (an integer) that returns the -; pseudo-random value derived from this state and the updated state -; for the next iteration. This is exactly the structure of a state -; monad item. -(defn rng [seed] - (let [m 259200 - value (/ (float seed) (float m)) - next (rem (+ 54773 (* 7141 seed)) m)] - [value next])) - -; We define a convenience function that creates an infinite lazy seq -; of values obtained from iteratively applying a state monad value. -(defn value-seq [f seed] - (lazy-seq - (let [[value next] (f seed)] - (cons value (value-seq f next))))) - -; Next, we define basic statistics functions to check our random numbers -(defn sum [xs] (apply + xs)) -(defn mean [xs] (/ (sum xs) (count xs))) -(defn variance [xs] - (let [m (mean xs) - sq #(* % %)] - (mean (for [x xs] (sq (- x m)))))) - -; rng implements a uniform distribution in the interval [0., 1.), so -; ideally, the mean would be 1/2 (0.5) and the variance 1/12 (0.8333). -(mean (take 1000 (value-seq rng 1))) -(variance (take 1000 (value-seq rng 1))) - -; We make use of the state monad to implement a simple (but often sufficient) -; approximation to a Gaussian distribution: the sum of 12 random numbers -; from rng's distribution, shifted by -6, has a distribution that is -; approximately Gaussian with 0 mean and variance 1, by virtue of the central -; limit theorem. -; In the first version, we call rng 12 times explicitly and calculate the -; shifted sum in a monad comprehension: -(def gaussian1 - (domonad state-m - [x1 rng - x2 rng - x3 rng - x4 rng - x5 rng - x6 rng - x7 rng - x8 rng - x9 rng - x10 rng - x11 rng - x12 rng] - (- (+ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12) 6.))) - -; Let's test it: -(mean (take 1000 (value-seq gaussian1 1))) -(variance (take 1000 (value-seq gaussian1 1))) - -; Of course, we'd rather have a loop construct for creating the 12 -; random numbers. This would be easy if we could define a summation -; operation on random-number generators, which would then be used in -; combination with reduce. The lift operation gives us exactly that. -; More precisely, we need (m-lift 2 +), because we want both arguments -; of + to be lifted to the state monad: -(def gaussian2 - (domonad state-m - [sum12 (reduce (m-lift 2 +) (replicate 12 rng))] - (- sum12 6.))) - -; Such a reduction is often quite useful, so there's m-reduce predefined -; to simplify it: -(def gaussian2 - (domonad state-m - [sum12 (m-reduce + (replicate 12 rng))] - (- sum12 6.))) - -; The statistics should be strictly the same as above, as long as -; we use the same seed: -(mean (take 1000 (value-seq gaussian2 1))) -(variance (take 1000 (value-seq gaussian2 1))) - -; We can also do the subtraction of 6 in a lifted function, and get rid -; of the monad comprehension altogether: -(with-monad state-m - (def gaussian3 - ((m-lift 1 #(- % 6.)) - (m-reduce + (replicate 12 rng))))) - -; Again, the statistics are the same: -(mean (take 1000 (value-seq gaussian3 1))) -(variance (take 1000 (value-seq gaussian3 1))) - -; For a random point in two dimensions, we'd like a random number generator -; that yields a list of two random numbers. The m-seq operation can easily -; provide it: -(with-monad state-m - (def rng2 (m-seq (list rng rng)))) - -; Let's test it: -(rng2 1) - -; fetch-state and get-state can be used to save the seed of the random -; number generator and go back to that saved seed later on: -(def identical-random-seqs - (domonad state-m - [seed (fetch-state) - x1 rng - x2 rng - _ (set-state seed) - y1 rng - y2 rng] - (list [x1 x2] [y1 y2]))) - -(identical-random-seqs 1) - -;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -;; -;; Logging with the writer monad -;; -;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; - -; A basic logging example -(domonad (writer-m accu/empty-string) - [x (m-result 1) - _ (write "first step\n") - y (m-result 2) - _ (write "second step\n")] - (+ x y)) - -; For a more elaborate application, let's trace the recursive calls of -; a naive implementation of a Fibonacci function. The starting point is: -(defn fib [n] - (if (< n 2) - n - (let [n1 (dec n) - n2 (dec n1)] - (+ (fib n1) (fib n2))))) - -; First we rewrite it to make every computational step explicit -; in a let expression: -(defn fib [n] - (if (< n 2) - n - (let [n1 (dec n) - n2 (dec n1) - f1 (fib n1) - f2 (fib n2)] - (+ f1 f2)))) - -; Next, we replace the let by a domonad in a writer monad that uses a -; vector accumulator. We can then place calls to write in between the -; steps, and obtain as a result both the return value of the function -; and the accumulated trace values. -(with-monad (writer-m accu/empty-vector) - - (defn fib-trace [n] - (if (< n 2) - (m-result n) - (domonad - [n1 (m-result (dec n)) - n2 (m-result (dec n1)) - f1 (fib-trace n1) - _ (write [n1 f1]) - f2 (fib-trace n2) - _ (write [n2 f2]) - ] - (+ f1 f2)))) - -) - -(fib-trace 5) - -;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -;; -;; Sequences with undefined value: the maybe-t monad transformer -;; -;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; - -; A monad transformer is a function that takes a monad argument and -; returns a monad as its result. The resulting monad adds some -; specific behaviour aspect to the input monad. - -; The simplest monad transformer is maybe-t. It adds the functionality -; of the maybe monad (handling failures or undefined values) to any other -; monad. We illustrate this by applying maybe-t to the sequence monad. -; The result is an enhanced sequence monad in which undefined values -; (represented by nil) are not subjected to any transformation, but -; lead immediately to a nil result in the output. - -; First we define the combined monad: -(def seq-maybe-m (maybe-t sequence-m)) - -; As a first illustration, we create a range of integers and replace -; all even values by nil, using a simple when expression. We use this -; sequence in a monad comprehension that yields (inc x). The result -; is a sequence in which inc has been applied to all non-nil values, -; whereas the nil values appear unmodified in the output: -(domonad seq-maybe-m - [x (for [n (range 10)] (when (odd? n) n))] - (inc x)) - -; Next we repeat the definition of the function pairs (see above), but -; using the seq-maybe monad: -(with-monad seq-maybe-m - (defn pairs-maybe [xs] - (m-seq (list xs xs)))) - -; Applying this to a sequence containing nils yields the pairs of all -; non-nil values interspersed with nils that result from any combination -; in which one or both of the values is nil: -(pairs-maybe (for [n (range 5)] (when (odd? n) n))) - -; It is important to realize that undefined values (nil) are not eliminated -; from the iterations. They are simply not passed on to any operations. -; The outcome of any function applied to arguments of which at least one -; is nil is supposed to be nil as well, and the function is never called. - - -;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -;; -;; Continuation-passing style in the cont monad -;; -;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; - -; A simple computation performed in continuation-passing style. -; (m-result 1) returns a function that, when called with a single -; argument f, calls (f 1). The result of the domonad-computation is -; a function that behaves in the same way, passing 3 to its function -; argument. run-cont executes a continuation by calling it on identity. -(run-cont - (domonad cont-m - [x (m-result 1) - y (m-result 2)] - (+ x y))) - -; Let's capture a continuation using call-cc. We store it in a global -; variable so that we can do with it whatever we want. The computation -; is the same one as in the first example, but it has the side effect -; of storing the continuation at (m-result 2). -(def continuation nil) - -(run-cont - (domonad cont-m - [x (m-result 1) - y (call-cc (fn [c] (def continuation c) (c 2)))] - (+ x y))) - -; Now we can call the continuation with whatever argument we want. The -; supplied argument takes the place of 2 in the above computation: -(run-cont (continuation 5)) -(run-cont (continuation 42)) -(run-cont (continuation -1)) - -; Next, a function that illustrates how a captured continuation can be -; used as an "emergency exit" out of a computation: -(defn sqrt-as-str [x] - (call-cc - (fn [k] - (domonad cont-m - [_ (m-when (< x 0) (k (str "negative argument " x)))] - (str (. Math sqrt x)))))) - -(run-cont (sqrt-as-str 2)) -(run-cont (sqrt-as-str -2)) - -;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; |