aboutsummaryrefslogtreecommitdiff
path: root/src/target/mips32_pracc.c
blob: c72a5078d6eeaa17c510ec7c7942f9708b360eb3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
/***************************************************************************
 *   Copyright (C) 2008 by Spencer Oliver                                  *
 *   spen@spen-soft.co.uk                                                  *
 *                                                                         *
 *   Copyright (C) 2008 by David T.L. Wong                                 *
 *                                                                         *
 *   Copyright (C) 2009 by David N. Claffey <dnclaffey@gmail.com>          *
 *                                                                         *
 *   Copyright (C) 2011 by Drasko DRASKOVIC                                *
 *   drasko.draskovic@gmail.com                                            *
 *                                                                         *
 *   This program is free software; you can redistribute it and/or modify  *
 *   it under the terms of the GNU General Public License as published by  *
 *   the Free Software Foundation; either version 2 of the License, or     *
 *   (at your option) any later version.                                   *
 *                                                                         *
 *   This program is distributed in the hope that it will be useful,       *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
 *   GNU General Public License for more details.                          *
 *                                                                         *
 *   You should have received a copy of the GNU General Public License     *
 *   along with this program; if not, write to the                         *
 *   Free Software Foundation, Inc.,                                       *
 *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
 ***************************************************************************/

/*
 * This version has optimized assembly routines for 32 bit operations:
 * - read word
 * - write word
 * - write array of words
 *
 * One thing to be aware of is that the MIPS32 cpu will execute the
 * instruction after a branch instruction (one delay slot).
 *
 * For example:
 *  LW $2, ($5 +10)
 *  B foo
 *  LW $1, ($2 +100)
 *
 * The LW $1, ($2 +100) instruction is also executed. If this is
 * not wanted a NOP can be inserted:
 *
 *  LW $2, ($5 +10)
 *  B foo
 *  NOP
 *  LW $1, ($2 +100)
 *
 * or the code can be changed to:
 *
 *  B foo
 *  LW $2, ($5 +10)
 *  LW $1, ($2 +100)
 *
 * The original code contained NOPs. I have removed these and moved
 * the branches.
 *
 * I also moved the PRACC_STACK to 0xFF204000. This allows
 * the use of 16 bits offsets to get pointers to the input
 * and output area relative to the stack. Note that the stack
 * isn't really a stack (the stack pointer is not 'moving')
 * but a FIFO simulated in software.
 *
 * These changes result in a 35% speed increase when programming an
 * external flash.
 *
 * More improvement could be gained if the registers do no need
 * to be preserved but in that case the routines should be aware
 * OpenOCD is used as a flash programmer or as a debug tool.
 *
 * Nico Coesel
 */

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <helper/time_support.h>

#include "mips32.h"
#include "mips32_pracc.h"

struct mips32_pracc_context {
	uint32_t *local_iparam;
	int num_iparam;
	uint32_t *local_oparam;
	int num_oparam;
	const uint32_t *code;
	int code_len;
	uint32_t stack[32];
	int stack_offset;
	struct mips_ejtag *ejtag_info;
};

static int mips32_pracc_sync_cache(struct mips_ejtag *ejtag_info,
		uint32_t start_addr, uint32_t end_addr);
static int mips32_pracc_clean_invalidate_cache(struct mips_ejtag *ejtag_info,
		uint32_t start_addr, uint32_t end_addr);

static int wait_for_pracc_rw(struct mips_ejtag *ejtag_info, uint32_t *ctrl)
{
	uint32_t ejtag_ctrl;
	long long then = timeval_ms();
	int timeout;
	int retval;

	/* wait for the PrAcc to become "1" */
	mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL);

	while (1) {
		ejtag_ctrl = ejtag_info->ejtag_ctrl;
		retval = mips_ejtag_drscan_32(ejtag_info, &ejtag_ctrl);
		if (retval != ERROR_OK)
			return retval;

		if (ejtag_ctrl & EJTAG_CTRL_PRACC)
			break;

		timeout = timeval_ms() - then;
		if (timeout > 1000) {
			LOG_DEBUG("DEBUGMODULE: No memory access in progress!");
			return ERROR_JTAG_DEVICE_ERROR;
		}
	}

	*ctrl = ejtag_ctrl;
	return ERROR_OK;
}

static int mips32_pracc_exec_read(struct mips32_pracc_context *ctx, uint32_t address)
{
	struct mips_ejtag *ejtag_info = ctx->ejtag_info;
	int offset;
	uint32_t ejtag_ctrl, data;

	if ((address >= MIPS32_PRACC_PARAM_IN)
		&& (address < MIPS32_PRACC_PARAM_IN + ctx->num_iparam * 4)) {
		offset = (address - MIPS32_PRACC_PARAM_IN) / 4;
		data = ctx->local_iparam[offset];
	} else if ((address >= MIPS32_PRACC_PARAM_OUT)
		&& (address < MIPS32_PRACC_PARAM_OUT + ctx->num_oparam * 4)) {
		offset = (address - MIPS32_PRACC_PARAM_OUT) / 4;
		data = ctx->local_oparam[offset];
	} else if ((address >= MIPS32_PRACC_TEXT)
		&& (address < MIPS32_PRACC_TEXT + ctx->code_len * 4)) {
		offset = (address - MIPS32_PRACC_TEXT) / 4;
		data = ctx->code[offset];
	} else if (address == MIPS32_PRACC_STACK) {
		if (ctx->stack_offset <= 0) {
			LOG_ERROR("Error: Pracc stack out of bounds");
			return ERROR_JTAG_DEVICE_ERROR;
		}
		/* save to our debug stack */
		data = ctx->stack[--ctx->stack_offset];
	} else {
		/* TODO: send JMP 0xFF200000 instruction. Hopefully processor jump back
		 * to start of debug vector */

		LOG_ERROR("Error reading unexpected address 0x%8.8" PRIx32 "", address);
		return ERROR_JTAG_DEVICE_ERROR;
	}

	/* Send the data out */
	mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_DATA);
	mips_ejtag_drscan_32_out(ctx->ejtag_info, data);

	/* Clear the access pending bit (let the processor eat!) */
	ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
	mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_CONTROL);
	mips_ejtag_drscan_32_out(ctx->ejtag_info, ejtag_ctrl);

	return jtag_execute_queue();
}

static int mips32_pracc_exec_write(struct mips32_pracc_context *ctx, uint32_t address)
{
	uint32_t ejtag_ctrl, data;
	int offset;
	struct mips_ejtag *ejtag_info = ctx->ejtag_info;
	int retval;

	mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_DATA);
	retval = mips_ejtag_drscan_32(ctx->ejtag_info, &data);
	if (retval != ERROR_OK)
		return retval;

	/* Clear access pending bit */
	ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
	mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_CONTROL);
	mips_ejtag_drscan_32_out(ctx->ejtag_info, ejtag_ctrl);

	retval = jtag_execute_queue();
	if (retval != ERROR_OK)
		return retval;

	if ((address >= MIPS32_PRACC_PARAM_OUT)
		&& (address < MIPS32_PRACC_PARAM_OUT + ctx->num_oparam * 4)) {
		offset = (address - MIPS32_PRACC_PARAM_OUT) / 4;
		ctx->local_oparam[offset] = data;
	} else if (address == MIPS32_PRACC_STACK) {
		if (ctx->stack_offset >= 32) {
			LOG_ERROR("Error: Pracc stack out of bounds");
			return ERROR_JTAG_DEVICE_ERROR;
		}
		/* save data onto our stack */
		ctx->stack[ctx->stack_offset++] = data;
	} else {
		LOG_ERROR("Error writing unexpected address 0x%8.8" PRIx32 "", address);
		return ERROR_JTAG_DEVICE_ERROR;
	}

	return ERROR_OK;
}

int mips32_pracc_exec(struct mips_ejtag *ejtag_info, int code_len, const uint32_t *code,
		int num_param_in, uint32_t *param_in, int num_param_out, uint32_t *param_out, int cycle)
{
	uint32_t ejtag_ctrl;
	uint32_t address;
	struct mips32_pracc_context ctx;
	int retval;
	int pass = 0;

	ctx.local_iparam = param_in;
	ctx.local_oparam = param_out;
	ctx.num_iparam = num_param_in;
	ctx.num_oparam = num_param_out;
	ctx.code = code;
	ctx.code_len = code_len;
	ctx.ejtag_info = ejtag_info;
	ctx.stack_offset = 0;

	while (1) {
		retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
		if (retval != ERROR_OK)
			return retval;

		address = 0;
		mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS);
		retval = mips_ejtag_drscan_32(ejtag_info, &address);
		if (retval != ERROR_OK)
			return retval;

		/* Check for read or write */
		if (ejtag_ctrl & EJTAG_CTRL_PRNW) {
			retval = mips32_pracc_exec_write(&ctx, address);
			if (retval != ERROR_OK)
				return retval;
		} else {
			/* Check to see if its reading at the debug vector. The first pass through
			 * the module is always read at the vector, so the first one we allow.  When
			 * the second read from the vector occurs we are done and just exit. */
			if ((address == MIPS32_PRACC_TEXT) && (pass++))
				break;

			retval = mips32_pracc_exec_read(&ctx, address);
			if (retval != ERROR_OK)
				return retval;
		}

		if (cycle == 0)
			break;
	}

	/* stack sanity check */
	if (ctx.stack_offset != 0)
		LOG_DEBUG("Pracc Stack not zero");

	return ERROR_OK;
}

inline void pracc_queue_init(struct pracc_queue_info *ctx)
{
	ctx->retval = ERROR_OK;
	ctx->code_count = 0;
	ctx->store_count = 0;

	ctx->pracc_list = malloc(2 * ctx->max_code * sizeof(uint32_t));
	if (ctx->pracc_list == NULL) {
		LOG_ERROR("Out of memory");
		ctx->retval = ERROR_FAIL;
	}
}

inline void pracc_add(struct pracc_queue_info *ctx, uint32_t addr, uint32_t instr)
{
	ctx->pracc_list[ctx->max_code + ctx->code_count] = addr;
	ctx->pracc_list[ctx->code_count++] = instr;
	if (addr)
		ctx->store_count++;
}

inline void pracc_queue_free(struct pracc_queue_info *ctx)
{
	if (ctx->code_count > ctx->max_code)	/* Only for internal check, will be erased */
		LOG_ERROR("Internal error, code count: %d > max code: %d", ctx->code_count, ctx->max_code);
	if (ctx->pracc_list != NULL)
		free(ctx->pracc_list);
}

int mips32_pracc_queue_exec(struct mips_ejtag *ejtag_info, struct pracc_queue_info *ctx, uint32_t *buf)
{
	if (ejtag_info->mode == 0)
		return mips32_pracc_exec(ejtag_info, ctx->code_count, ctx->pracc_list, 0, NULL,
				  ctx->store_count, buf, ctx->code_count - 1);

	union scan_in {
		uint8_t scan_96[12];
		struct {
			uint8_t ctrl[4];
			uint8_t data[4];
			uint8_t addr[4];
		} scan_32;

	} *scan_in = malloc(sizeof(union scan_in) * (ctx->code_count + ctx->store_count));
	if (scan_in == NULL) {
		LOG_ERROR("Out of memory");
		return ERROR_FAIL;
	}

	unsigned num_clocks =
		((uint64_t)(ejtag_info->scan_delay) * jtag_get_speed_khz() + 500000) / 1000000;

	uint32_t ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
	mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ALL);

	int scan_count = 0;
	for (int i = 0; i != 2 * ctx->code_count; i++) {
		uint32_t data = 0;
		if (i & 1u) {			/* Check store address from previous instruction, if not the first */
			if (i < 2 || 0 == ctx->pracc_list[ctx->max_code + (i / 2) - 1])
				continue;
		} else
			data = ctx->pracc_list[i / 2];

		jtag_add_clocks(num_clocks);
		mips_ejtag_add_scan_96(ejtag_info, ejtag_ctrl, data, scan_in[scan_count++].scan_96);
	}

	int retval = jtag_execute_queue();		/* execute queued scans */
	if (retval != ERROR_OK)
		goto exit;

	uint32_t fetch_addr = MIPS32_PRACC_TEXT;		/* start address */
	scan_count = 0;
	for (int i = 0; i != 2 * ctx->code_count; i++) {				/* verify every pracc access */
		uint32_t store_addr = 0;
		if (i & 1u) {			/* Read store addres from previous instruction, if not the first */
			store_addr = ctx->pracc_list[ctx->max_code + (i / 2) - 1];
			if (i < 2 || 0 == store_addr)
				continue;
		}

		ejtag_ctrl = buf_get_u32(scan_in[scan_count].scan_32.ctrl, 0, 32);
		if (!(ejtag_ctrl & EJTAG_CTRL_PRACC)) {
			LOG_ERROR("Error: access not pending  count: %d", scan_count);
			retval = ERROR_FAIL;
			goto exit;
		}

		uint32_t addr = buf_get_u32(scan_in[scan_count].scan_32.addr, 0, 32);

		if (store_addr != 0) {
			if (!(ejtag_ctrl & EJTAG_CTRL_PRNW)) {
				LOG_ERROR("Not a store/write access, count: %d", scan_count);
				retval = ERROR_FAIL;
				goto exit;
			}
			if (addr != store_addr) {
				LOG_ERROR("Store address mismatch, read: %x expected: %x count: %d",
						addr, store_addr, scan_count);
				retval = ERROR_FAIL;
				goto exit;
			}
			int buf_index = (addr - MIPS32_PRACC_PARAM_OUT) / 4;
			buf[buf_index] = buf_get_u32(scan_in[scan_count].scan_32.data, 0, 32);

		} else {
			if (ejtag_ctrl & EJTAG_CTRL_PRNW) {
				LOG_ERROR("Not a fetch/read access, count: %d", scan_count);
				retval = ERROR_FAIL;
				goto exit;
			}
			if (addr != fetch_addr) {
				LOG_ERROR("Fetch addr mismatch, read: %x expected: %x count: %d", addr, fetch_addr, scan_count);
				retval = ERROR_FAIL;
				goto exit;
			}
			fetch_addr += 4;
		}
		scan_count++;
	}
exit:
	free(scan_in);
	return retval;
}

int mips32_pracc_read_u32(struct mips_ejtag *ejtag_info, uint32_t addr, uint32_t *buf)
{
	struct pracc_queue_info ctx = {.max_code = 9};
	pracc_queue_init(&ctx);
	if (ctx.retval != ERROR_OK)
		goto exit;

	pracc_add(&ctx, 0, MIPS32_MTC0(15, 31, 0));					/* move $15 to COP0 DeSave */
	pracc_add(&ctx, 0, MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR));			/* $15 = MIPS32_PRACC_BASE_ADDR */
	pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16((addr + 0x8000))));		/* load  $8 with modified upper address */
	pracc_add(&ctx, 0, MIPS32_LW(8, LOWER16(addr), 8));				/* lw $8, LOWER16(addr)($8) */
	pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT,
				MIPS32_SW(8, PRACC_OUT_OFFSET, 15));			/* sw $8,PRACC_OUT_OFFSET($15) */
	pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(ejtag_info->reg8)));		/* restore upper 16 of $8 */
	pracc_add(&ctx, 0, MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8)));		/* restore lower 16 of $8 */
	pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1)));					/* jump to start */
	pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0));					/* move COP0 DeSave to $15 */

	ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, buf);
exit:
	pracc_queue_free(&ctx);
	return ctx.retval;
}

int mips32_pracc_read_mem(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, void *buf)
{
	if (count == 1 && size == 4)
		return mips32_pracc_read_u32(ejtag_info, addr, (uint32_t *)buf);

	uint32_t *data = NULL;
	struct pracc_queue_info ctx = {.max_code = 256 * 3 + 9 + 1};	/* alloc memory for the worst case */
	pracc_queue_init(&ctx);
	if (ctx.retval != ERROR_OK)
		goto exit;

	if (size != 4) {
		data = malloc(256 * sizeof(uint32_t));
		if (data == NULL) {
			LOG_ERROR("Out of memory");
			goto exit;
		}
	}

	uint32_t *buf32 = buf;
	uint16_t *buf16 = buf;
	uint8_t *buf8 = buf;

	while (count) {
		ctx.code_count = 0;
		ctx.store_count = 0;
		int this_round_count = (count > 256) ? 256 : count;
		uint32_t last_upper_base_addr = UPPER16((addr + 0x8000));

		pracc_add(&ctx, 0, MIPS32_MTC0(15, 31, 0));					/* save $15 in DeSave */
		pracc_add(&ctx, 0, MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR));			/* $15 = MIPS32_PRACC_BASE_ADDR */
		pracc_add(&ctx, 0, MIPS32_LUI(9, last_upper_base_addr));		/* load the upper memory address in $9 */

		for (int i = 0; i != this_round_count; i++) {			/* Main code loop */
			uint32_t upper_base_addr = UPPER16((addr + 0x8000));
			if (last_upper_base_addr != upper_base_addr) {			/* if needed, change upper address in $9 */
				pracc_add(&ctx, 0, MIPS32_LUI(9, upper_base_addr));
				last_upper_base_addr = upper_base_addr;
			}

			if (size == 4)
				pracc_add(&ctx, 0, MIPS32_LW(8, LOWER16(addr), 9));		/* load from memory to $8 */
			else if (size == 2)
				pracc_add(&ctx, 0, MIPS32_LHU(8, LOWER16(addr), 9));
			else
				pracc_add(&ctx, 0, MIPS32_LBU(8, LOWER16(addr), 9));

			pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + i * 4,
					  MIPS32_SW(8, PRACC_OUT_OFFSET + i * 4, 15));		/* store $8 at param out */
			addr += size;
		}
		pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(ejtag_info->reg8)));		/* restore upper 16 bits of reg 8 */
		pracc_add(&ctx, 0, MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8)));	/* restore lower 16 bits of reg 8 */
		pracc_add(&ctx, 0, MIPS32_LUI(9, UPPER16(ejtag_info->reg9)));		/* restore upper 16 bits of reg 9 */
		pracc_add(&ctx, 0, MIPS32_ORI(9, 9, LOWER16(ejtag_info->reg9)));	/* restore lower 16 bits of reg 9 */

		pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1)));				/* jump to start */
		pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0));					/* restore $15 from DeSave */

		if (size == 4) {
			ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, buf32);
			if (ctx.retval != ERROR_OK)
				goto exit;
			buf32 += this_round_count;
		} else {
			ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, data);
			if (ctx.retval != ERROR_OK)
				goto exit;

			uint32_t *data_p = data;
			for (int i = 0; i != this_round_count; i++) {
				if (size == 2)
					*buf16++ = *data_p++;
				else
					*buf8++ = *data_p++;
			}
		}
		count -= this_round_count;
	}
exit:
	pracc_queue_free(&ctx);
	if (data != NULL)
		free(data);
	return ctx.retval;
}

int mips32_cp0_read(struct mips_ejtag *ejtag_info, uint32_t *val, uint32_t cp0_reg, uint32_t cp0_sel)
{
	struct pracc_queue_info ctx = {.max_code = 8};
	pracc_queue_init(&ctx);
	if (ctx.retval != ERROR_OK)
		goto exit;

	pracc_add(&ctx, 0, MIPS32_MTC0(15, 31, 0));					/* move $15 to COP0 DeSave */
	pracc_add(&ctx, 0, MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR));			/* $15 = MIPS32_PRACC_BASE_ADDR */
	pracc_add(&ctx, 0, MIPS32_MFC0(8, 0, 0) | (cp0_reg << 11) | cp0_sel);	/* move COP0 [cp0_reg select] to $8 */
	pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT,
				MIPS32_SW(8, PRACC_OUT_OFFSET, 15));			/* store $8 to pracc_out */
	pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0));					/* move COP0 DeSave to $15 */
	pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(ejtag_info->reg8)));		/* restore upper 16 bits  of $8 */
	pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1)));					/* jump to start */
	pracc_add(&ctx, 0, MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8)));		/* restore lower 16 bits of $8 */

	ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, val);
exit:
	pracc_queue_free(&ctx);
	return ctx.retval;

	/**
	 * Note that our input parametes cp0_reg and cp0_sel
	 * are numbers (not gprs) which make part of mfc0 instruction opcode.
	 *
	 * These are not fix, but can be different for each mips32_cp0_read() function call,
	 * and that is why we must insert them directly into opcode,
	 * i.e. we can not pass it on EJTAG microprogram stack (via param_in),
	 * and put them into the gprs later from MIPS32_PRACC_STACK
	 * because mfc0 do not use gpr as a parameter for the cp0_reg and select part,
	 * but plain (immediate) number.
	 *
	 * MIPS32_MTC0 is implemented via MIPS32_R_INST macro.
	 * In order to insert our parameters, we must change rd and funct fields.
	 *
	 * code[2] |= (cp0_reg << 11) | cp0_sel;   change rd and funct of MIPS32_R_INST macro
	 **/
}

int mips32_cp0_write(struct mips_ejtag *ejtag_info, uint32_t val, uint32_t cp0_reg, uint32_t cp0_sel)
{
	struct pracc_queue_info ctx = {.max_code = 6};
	pracc_queue_init(&ctx);
	if (ctx.retval != ERROR_OK)
		goto exit;

	pracc_add(&ctx, 0, MIPS32_MTC0(15, 31, 0));					/* move $15 to COP0 DeSave */
	pracc_add(&ctx, 0, MIPS32_LUI(15, UPPER16(val)));				/* Load val to $15 */
	pracc_add(&ctx, 0, MIPS32_ORI(15, 15, LOWER16(val)));

	pracc_add(&ctx, 0, MIPS32_MTC0(15, 0, 0) | (cp0_reg << 11) | cp0_sel);	/* write cp0 reg / sel */

	pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1)));					/* jump to start */
	pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0));					/* move COP0 DeSave to $15 */

	ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL);
exit:
	pracc_queue_free(&ctx);
	return ctx.retval;

	/**
	 * Note that MIPS32_MTC0 macro is implemented via MIPS32_R_INST macro.
	 * In order to insert our parameters, we must change rd and funct fields.
	 * code[3] |= (cp0_reg << 11) | cp0_sel;   change rd and funct fields of MIPS32_R_INST macro
	 **/
}

/**
 * \b mips32_pracc_sync_cache
 *
 * Synchronize Caches to Make Instruction Writes Effective
 * (ref. doc. MIPS32 Architecture For Programmers Volume II: The MIPS32 Instruction Set,
 *  Document Number: MD00086, Revision 2.00, June 9, 2003)
 *
 * When the instruction stream is written, the SYNCI instruction should be used
 * in conjunction with other instructions to make the newly-written instructions effective.
 *
 * Explanation :
 * A program that loads another program into memory is actually writing the D- side cache.
 * The instructions it has loaded can't be executed until they reach the I-cache.
 *
 * After the instructions have been written, the loader should arrange
 * to write back any containing D-cache line and invalidate any locations
 * already in the I-cache.
 *
 * You can do that with cache instructions, but those instructions are only available in kernel mode,
 * and a loader writing instructions for the use of its own process need not be privileged software.
 *
 * In the latest MIPS32/64 CPUs, MIPS provides the synci instruction,
 * which does the whole job for a cache-line-sized chunk of the memory you just loaded:
 * That is, it arranges a D-cache write-back and an I-cache invalidate.
 *
 * To employ synci at user level, you need to know the size of a cache line,
 * and that can be obtained with a rdhwr SYNCI_Step
 * from one of the standard “hardware registers”.
 */
static int mips32_pracc_sync_cache(struct mips_ejtag *ejtag_info,
		uint32_t start_addr, uint32_t end_addr)
{
	static const uint32_t code[] = {
															/* start: */
		MIPS32_MTC0(15, 31, 0),								/* move $15 to COP0 DeSave */
		MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)),		/* $15 = MIPS32_PRACC_STACK */
		MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)),
		MIPS32_SW(8, 0, 15),								/* sw $8,($15) */
		MIPS32_SW(9, 0, 15),								/* sw $9,($15) */
		MIPS32_SW(10, 0, 15),								/* sw $10,($15) */
		MIPS32_SW(11, 0, 15),								/* sw $11,($15) */

		MIPS32_LUI(8, UPPER16(MIPS32_PRACC_PARAM_IN)),		/* $8 = MIPS32_PRACC_PARAM_IN */
		MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_PARAM_IN)),
		MIPS32_LW(9, 0, 8),									/* Load write start_addr to $9 */
		MIPS32_LW(10, 4, 8),								/* Load write end_addr to $10 */

		MIPS32_RDHWR(11, MIPS32_SYNCI_STEP),				/* $11 = MIPS32_SYNCI_STEP */
		MIPS32_BEQ(11, 0, 6),								/* beq $11, $0, end */
		MIPS32_NOP,
															/* synci_loop : */
		MIPS32_SYNCI(0, 9),									/* synci 0($9) */
		MIPS32_SLTU(8, 10, 9),								/* sltu $8, $10, $9  # $8 = $10 < $9 ? 1 : 0 */
		MIPS32_BNE(8, 0, NEG16(3)),							/* bne $8, $0, synci_loop */
		MIPS32_ADDU(9, 9, 11),								/* $9 += MIPS32_SYNCI_STEP */
		MIPS32_SYNC,
															/* end: */
		MIPS32_LW(11, 0, 15),								/* lw $11,($15) */
		MIPS32_LW(10, 0, 15),								/* lw $10,($15) */
		MIPS32_LW(9, 0, 15),								/* lw $9,($15) */
		MIPS32_LW(8, 0, 15),								/* lw $8,($15) */
		MIPS32_B(NEG16(24)),								/* b start */
		MIPS32_MFC0(15, 31, 0),								/* move COP0 DeSave to $15 */
	};

	/* TODO remove array */
	uint32_t *param_in = malloc(2 * sizeof(uint32_t));
	int retval;
	param_in[0] = start_addr;
	param_in[1] = end_addr;

	retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 2, param_in, 0, NULL, 1);

	free(param_in);

	return retval;
}

/**
 * \b mips32_pracc_clean_invalidate_cache
 *
 * Writeback D$ and Invalidate I$
 * so that the instructions written can be visible to CPU
 */
static int mips32_pracc_clean_invalidate_cache(struct mips_ejtag *ejtag_info,
													uint32_t start_addr, uint32_t end_addr)
{
	static const uint32_t code[] = {
															/* start: */
		MIPS32_MTC0(15, 31, 0),								/* move $15 to COP0 DeSave */
		MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)),		/* $15 = MIPS32_PRACC_STACK */
		MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)),
		MIPS32_SW(8, 0, 15),								/* sw $8,($15) */
		MIPS32_SW(9, 0, 15),								/* sw $9,($15) */
		MIPS32_SW(10, 0, 15),								/* sw $10,($15) */
		MIPS32_SW(11, 0, 15),								/* sw $11,($15) */

		MIPS32_LUI(8, UPPER16(MIPS32_PRACC_PARAM_IN)),		/* $8 = MIPS32_PRACC_PARAM_IN */
		MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_PARAM_IN)),
		MIPS32_LW(9, 0, 8),									/* Load write start_addr to $9 */
		MIPS32_LW(10, 4, 8),								/* Load write end_addr to $10 */
		MIPS32_LW(11, 8, 8),								/* Load write clsiz to $11 */

															/* cache_loop: */
		MIPS32_SLTU(8, 10, 9),								/* sltu $8, $10, $9  :  $8 <- $10 < $9 ? */
		MIPS32_BGTZ(8, 6),									/* bgtz $8, end */
		MIPS32_NOP,

		MIPS32_CACHE(MIPS32_CACHE_D_HIT_WRITEBACK, 0, 9),		/* cache Hit_Writeback_D, 0($9) */
		MIPS32_CACHE(MIPS32_CACHE_I_HIT_INVALIDATE, 0, 9),	/* cache Hit_Invalidate_I, 0($9) */

		MIPS32_ADDU(9, 9, 11),								/* $9 += $11 */

		MIPS32_B(NEG16(7)),									/* b cache_loop */
		MIPS32_NOP,
															/* end: */
		MIPS32_LW(11, 0, 15),								/* lw $11,($15) */
		MIPS32_LW(10, 0, 15),								/* lw $10,($15) */
		MIPS32_LW(9, 0, 15),								/* lw $9,($15) */
		MIPS32_LW(8, 0, 15),								/* lw $8,($15) */
		MIPS32_B(NEG16(25)),								/* b start */
		MIPS32_MFC0(15, 31, 0),								/* move COP0 DeSave to $15 */
	};

	/**
	 * Find cache line size in bytes
	 */
	uint32_t conf;
	uint32_t dl, clsiz;

	mips32_cp0_read(ejtag_info, &conf, 16, 1);
	dl = (conf & MIPS32_CONFIG1_DL_MASK) >> MIPS32_CONFIG1_DL_SHIFT;

	/* dl encoding : dl=1 => 4 bytes, dl=2 => 8 bytes, etc... */
	clsiz = 0x2 << dl;

	/* TODO remove array */
	uint32_t *param_in = malloc(3 * sizeof(uint32_t));
	int retval;
	param_in[0] = start_addr;
	param_in[1] = end_addr;
	param_in[2] = clsiz;

	retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 3, param_in, 0, NULL, 1);

	free(param_in);

	return retval;
}

static int mips32_pracc_write_mem_generic(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, void *buf)
{
	struct pracc_queue_info ctx = {.max_code = 128 * 3 + 6 + 1};	/* alloc memory for the worst case */
	pracc_queue_init(&ctx);
	if (ctx.retval != ERROR_OK)
		goto exit;

	uint32_t *buf32 = buf;
	uint16_t *buf16 = buf;
	uint8_t *buf8 = buf;

	while (count) {
		ctx.code_count = 0;
		ctx.store_count = 0;
		int this_round_count = (count > 128) ? 128 : count;
		uint32_t last_upper_base_addr = UPPER16((addr + 0x8000));

		pracc_add(&ctx, 0, MIPS32_MTC0(15, 31, 0));				/* save $15 in DeSave */
		pracc_add(&ctx, 0, MIPS32_LUI(15, last_upper_base_addr));		/* load $15 with memory base address */

		for (int i = 0; i != this_round_count; i++) {
			uint32_t upper_base_addr = UPPER16((addr + 0x8000));
			if (last_upper_base_addr != upper_base_addr) {
				pracc_add(&ctx, 0, MIPS32_LUI(15, upper_base_addr));	/* if needed, change upper address in $15*/
				last_upper_base_addr = upper_base_addr;
			}

			if (size == 4) {			/* for word writes check if one half word is 0 and load it accordingly */
				if (LOWER16(*buf32) == 0)
					pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(*buf32)));		/* load only upper value */
				else if (UPPER16(*buf32) == 0)
						pracc_add(&ctx, 0, MIPS32_ORI(8, 0, LOWER16(*buf32)));	/* load only lower */
				else {
					pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(*buf32)));		/* load upper and lower */
					pracc_add(&ctx, 0, MIPS32_ORI(8, 8, LOWER16(*buf32)));
				}
				pracc_add(&ctx, 0, MIPS32_SW(8, LOWER16(addr), 15));		/* store word to memory */
				buf32++;

			} else if (size == 2) {
				pracc_add(&ctx, 0, MIPS32_ORI(8, 0, *buf16));		/* load lower value */
				pracc_add(&ctx, 0, MIPS32_SH(8, LOWER16(addr), 15));	/* store half word to memory */
				buf16++;

			} else {
				pracc_add(&ctx, 0, MIPS32_ORI(8, 0, *buf8));		/* load lower value */
				pracc_add(&ctx, 0, MIPS32_SB(8, LOWER16(addr), 15));	/* store byte to memory */
				buf8++;
			}
			addr += size;
		}

		pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(ejtag_info->reg8)));		/* restore upper 16 bits of reg 8 */
		pracc_add(&ctx, 0, MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8)));	/* restore lower 16 bits of reg 8 */

		pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1)));				/* jump to start */
		pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0));				/* restore $15 from DeSave */

		ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL);
		if (ctx.retval != ERROR_OK)
			goto exit;
		count -= this_round_count;
	}
exit:
	pracc_queue_free(&ctx);
	return ctx.retval;
}

int mips32_pracc_write_mem(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, void *buf)
{
	int retval = mips32_pracc_write_mem_generic(ejtag_info, addr, size, count, buf);
	if (retval != ERROR_OK)
		return retval;

	/**
	 * If we are in the cachable regoion and cache is activated,
	 * we must clean D$ + invalidate I$ after we did the write,
	 * so that changes do not continue to live only in D$, but to be
	 * replicated in I$ also (maybe we wrote the istructions)
	 */
	uint32_t conf = 0;
	int cached = 0;

	if ((KSEGX(addr) == KSEG1) || ((addr >= 0xff200000) && (addr <= 0xff3fffff)))
		return retval; /*Nothing to do*/

	mips32_cp0_read(ejtag_info, &conf, 16, 0);

	switch (KSEGX(addr)) {
		case KUSEG:
			cached = (conf & MIPS32_CONFIG0_KU_MASK) >> MIPS32_CONFIG0_KU_SHIFT;
			break;
		case KSEG0:
			cached = (conf & MIPS32_CONFIG0_K0_MASK) >> MIPS32_CONFIG0_K0_SHIFT;
			break;
		case KSEG2:
		case KSEG3:
			cached = (conf & MIPS32_CONFIG0_K23_MASK) >> MIPS32_CONFIG0_K23_SHIFT;
			break;
		default:
			/* what ? */
			break;
	}

	/**
	 * Check cachablitiy bits coherency algorithm -
	 * is the region cacheable or uncached.
	 * If cacheable we have to synchronize the cache
	 */
	if (cached == 0x3) {
		uint32_t start_addr, end_addr;
		uint32_t rel;

		start_addr = addr;
		end_addr = addr + count * size;

		/** select cache synchronisation mechanism based on Architecture Release */
		rel = (conf & MIPS32_CONFIG0_AR_MASK) >> MIPS32_CONFIG0_AR_SHIFT;
		switch (rel) {
			case MIPS32_ARCH_REL1:
				/* MIPS32/64 Release 1 - we must use cache instruction */
				mips32_pracc_clean_invalidate_cache(ejtag_info, start_addr, end_addr);
				break;
			case MIPS32_ARCH_REL2:
				/* MIPS32/64 Release 2 - we can use synci instruction */
				mips32_pracc_sync_cache(ejtag_info, start_addr, end_addr);
				break;
			default:
				/* what ? */
				break;
		}
	}

	return retval;
}

int mips32_pracc_write_regs(struct mips_ejtag *ejtag_info, uint32_t *regs)
{
	static const uint32_t cp0_write_code[] = {
		MIPS32_MTC0(1, 12, 0),							/* move $1 to status */
		MIPS32_MTLO(1),									/* move $1 to lo */
		MIPS32_MTHI(1),									/* move $1 to hi */
		MIPS32_MTC0(1, 8, 0),							/* move $1 to badvaddr */
		MIPS32_MTC0(1, 13, 0),							/* move $1 to cause*/
		MIPS32_MTC0(1, 24, 0),							/* move $1 to depc (pc) */
	};

	struct pracc_queue_info ctx = {.max_code = 37 * 2 + 6 + 1};
	pracc_queue_init(&ctx);
	if (ctx.retval != ERROR_OK)
		goto exit;

	/* load registers 2 to 31 with lui and ori instructions, check if some instructions can be saved */
	for (int i = 2; i < 32; i++) {
		if (LOWER16((regs[i])) == 0)					/* if lower half word is 0, lui instruction only */
			pracc_add(&ctx, 0, MIPS32_LUI(i, UPPER16((regs[i]))));
		else if (UPPER16((regs[i])) == 0)					/* if upper half word is 0, ori with $0 only*/
			pracc_add(&ctx, 0, MIPS32_ORI(i, 0, LOWER16((regs[i]))));
		else {									/* default, load with lui and ori instructions */
			pracc_add(&ctx, 0, MIPS32_LUI(i, UPPER16((regs[i]))));
			pracc_add(&ctx, 0, MIPS32_ORI(i, i, LOWER16((regs[i]))));
		}
	}

	for (int i = 0; i != 6; i++) {
		pracc_add(&ctx, 0, MIPS32_LUI(1, UPPER16((regs[i + 32]))));		/* load CPO value in $1, with lui and ori */
		pracc_add(&ctx, 0, MIPS32_ORI(1, 1, LOWER16((regs[i + 32]))));
		pracc_add(&ctx, 0, cp0_write_code[i]);					/* write value from $1 to CPO register */
	}

	pracc_add(&ctx, 0, MIPS32_LUI(1, UPPER16((regs[1]))));			/* load upper half word in $1 */
	pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1)));					/* jump to start */
	pracc_add(&ctx, 0, MIPS32_ORI(1, 1, LOWER16((regs[1]))));		/* load lower half word in $1 */

	ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL);

	ejtag_info->reg8 = regs[8];
	ejtag_info->reg9 = regs[9];
exit:
	pracc_queue_free(&ctx);
	return ctx.retval;
}

int mips32_pracc_read_regs(struct mips_ejtag *ejtag_info, uint32_t *regs)
{
	static int cp0_read_code[] = {
		MIPS32_MFC0(8, 12, 0),							/* move status to $8 */
		MIPS32_MFLO(8),									/* move lo to $8 */
		MIPS32_MFHI(8),									/* move hi to $8 */
		MIPS32_MFC0(8, 8, 0),							/* move badvaddr to $8 */
		MIPS32_MFC0(8, 13, 0),							/* move cause to $8 */
		MIPS32_MFC0(8, 24, 0),							/* move depc (pc) to $8 */
	};

	struct pracc_queue_info ctx = {.max_code = 48};
	pracc_queue_init(&ctx);
	if (ctx.retval != ERROR_OK)
		goto exit;

	pracc_add(&ctx, 0, MIPS32_MTC0(1, 31, 0));						/* move $1 to COP0 DeSave */
	pracc_add(&ctx, 0, MIPS32_LUI(1, PRACC_UPPER_BASE_ADDR));				/* $1 = MIP32_PRACC_BASE_ADDR */

	for (int i = 2; i != 32; i++)					/* store GPR's 2 to 31 */
		pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + (i * 4),
				  MIPS32_SW(i, PRACC_OUT_OFFSET + (i * 4), 1));

	for (int i = 0; i != 6; i++) {
		pracc_add(&ctx, 0, cp0_read_code[i]);				/* load COP0 needed registers to $8 */
		pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + (i + 32) * 4,			/* store $8 at PARAM OUT */
				  MIPS32_SW(8, PRACC_OUT_OFFSET + (i + 32) * 4, 1));
	}
	pracc_add(&ctx, 0, MIPS32_MFC0(8, 31, 0));					/* move DeSave to $8, reg1 value */
	pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + 4,					/* store reg1 value from $8 to param out */
			  MIPS32_SW(8, PRACC_OUT_OFFSET + 4, 1));

	pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1)));					/* jump to start */
	pracc_add(&ctx, 0, MIPS32_MFC0(1, 31, 0));					/* move COP0 DeSave to $1, restore reg1 */

	if (ejtag_info->mode == 0)
		ctx.store_count++;	/* Needed by legacy code, due to offset from reg0 */

	ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, regs);

	ejtag_info->reg8 = regs[8];	/* reg8 is saved but not restored, next called function should restore it */
	ejtag_info->reg9 = regs[9];
exit:
	pracc_queue_free(&ctx);
	return ctx.retval;
}

/* fastdata upload/download requires an initialized working area
 * to load the download code; it should not be called otherwise
 * fetch order from the fastdata area
 * 1. start addr
 * 2. end addr
 * 3. data ...
 */
int mips32_pracc_fastdata_xfer(struct mips_ejtag *ejtag_info, struct working_area *source,
		int write_t, uint32_t addr, int count, uint32_t *buf)
{
	uint32_t handler_code[] = {
		/* caution when editing, table is modified below */
		/* r15 points to the start of this code */
		MIPS32_SW(8, MIPS32_FASTDATA_HANDLER_SIZE - 4, 15),
		MIPS32_SW(9, MIPS32_FASTDATA_HANDLER_SIZE - 8, 15),
		MIPS32_SW(10, MIPS32_FASTDATA_HANDLER_SIZE - 12, 15),
		MIPS32_SW(11, MIPS32_FASTDATA_HANDLER_SIZE - 16, 15),
		/* start of fastdata area in t0 */
		MIPS32_LUI(8, UPPER16(MIPS32_PRACC_FASTDATA_AREA)),
		MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_FASTDATA_AREA)),
		MIPS32_LW(9, 0, 8),								/* start addr in t1 */
		MIPS32_LW(10, 0, 8),							/* end addr to t2 */
														/* loop: */
		/* 8 */ MIPS32_LW(11, 0, 0),					/* lw t3,[t8 | r9] */
		/* 9 */ MIPS32_SW(11, 0, 0),					/* sw t3,[r9 | r8] */
		MIPS32_BNE(10, 9, NEG16(3)),					/* bne $t2,t1,loop */
		MIPS32_ADDI(9, 9, 4),							/* addi t1,t1,4 */

		MIPS32_LW(8, MIPS32_FASTDATA_HANDLER_SIZE - 4, 15),
		MIPS32_LW(9, MIPS32_FASTDATA_HANDLER_SIZE - 8, 15),
		MIPS32_LW(10, MIPS32_FASTDATA_HANDLER_SIZE - 12, 15),
		MIPS32_LW(11, MIPS32_FASTDATA_HANDLER_SIZE - 16, 15),

		MIPS32_LUI(15, UPPER16(MIPS32_PRACC_TEXT)),
		MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_TEXT)),
		MIPS32_JR(15),								/* jr start */
		MIPS32_MFC0(15, 31, 0),						/* move COP0 DeSave to $15 */
	};

	uint32_t jmp_code[] = {
		MIPS32_MTC0(15, 31, 0),			/* move $15 to COP0 DeSave */
		/* 1 */ MIPS32_LUI(15, 0),		/* addr of working area added below */
		/* 2 */ MIPS32_ORI(15, 15, 0),	/* addr of working area added below */
		MIPS32_JR(15),					/* jump to ram program */
		MIPS32_NOP,
	};

	int retval, i;
	uint32_t val, ejtag_ctrl, address;

	if (source->size < MIPS32_FASTDATA_HANDLER_SIZE)
		return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;

	if (write_t) {
		handler_code[8] = MIPS32_LW(11, 0, 8);	/* load data from probe at fastdata area */
		handler_code[9] = MIPS32_SW(11, 0, 9);	/* store data to RAM @ r9 */
	} else {
		handler_code[8] = MIPS32_LW(11, 0, 9);	/* load data from RAM @ r9 */
		handler_code[9] = MIPS32_SW(11, 0, 8);	/* store data to probe at fastdata area */
	}

	/* write program into RAM */
	if (write_t != ejtag_info->fast_access_save) {
		mips32_pracc_write_mem_generic(ejtag_info, source->address, 4, ARRAY_SIZE(handler_code), handler_code);
		/* save previous operation to speed to any consecutive read/writes */
		ejtag_info->fast_access_save = write_t;
	}

	LOG_DEBUG("%s using 0x%.8" PRIx32 " for write handler", __func__, source->address);

	jmp_code[1] |= UPPER16(source->address);
	jmp_code[2] |= LOWER16(source->address);

	for (i = 0; i < (int) ARRAY_SIZE(jmp_code); i++) {
		retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
		if (retval != ERROR_OK)
			return retval;

		mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA);
		mips_ejtag_drscan_32_out(ejtag_info, jmp_code[i]);

		/* Clear the access pending bit (let the processor eat!) */
		ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
		mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL);
		mips_ejtag_drscan_32_out(ejtag_info, ejtag_ctrl);
	}

	/* wait PrAcc pending bit for FASTDATA write */
	retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
	if (retval != ERROR_OK)
		return retval;

	/* next fetch to dmseg should be in FASTDATA_AREA, check */
	address = 0;
	mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS);
	retval = mips_ejtag_drscan_32(ejtag_info, &address);
	if (retval != ERROR_OK)
		return retval;

	if (address != MIPS32_PRACC_FASTDATA_AREA)
		return ERROR_FAIL;

	/* Send the load start address */
	val = addr;
	mips_ejtag_set_instr(ejtag_info, EJTAG_INST_FASTDATA);
	mips_ejtag_fastdata_scan(ejtag_info, 1, &val);

	retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
	if (retval != ERROR_OK)
		return retval;

	/* Send the load end address */
	val = addr + (count - 1) * 4;
	mips_ejtag_set_instr(ejtag_info, EJTAG_INST_FASTDATA);
	mips_ejtag_fastdata_scan(ejtag_info, 1, &val);

	unsigned num_clocks = 0;	/* like in legacy code */
	if (ejtag_info->mode != 0)
		num_clocks = ((uint64_t)(ejtag_info->scan_delay) * jtag_get_speed_khz() + 500000) / 1000000;

	for (i = 0; i < count; i++) {
		jtag_add_clocks(num_clocks);
		retval = mips_ejtag_fastdata_scan(ejtag_info, write_t, buf++);
		if (retval != ERROR_OK)
			return retval;
	}

	retval = jtag_execute_queue();
	if (retval != ERROR_OK) {
		LOG_ERROR("fastdata load failed");
		return retval;
	}

	retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
	if (retval != ERROR_OK)
		return retval;

	address = 0;
	mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS);
	retval = mips_ejtag_drscan_32(ejtag_info, &address);
	if (retval != ERROR_OK)
		return retval;

	if (address != MIPS32_PRACC_TEXT)
		LOG_ERROR("mini program did not return to start");

	return retval;
}