aboutsummaryrefslogtreecommitdiff
path: root/src/flash/nor/at91samd.c
blob: c0be3f7d1cac21975abdb3eea9645eca28f56b29 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
/***************************************************************************
 *   Copyright (C) 2013 by Andrey Yurovsky                                 *
 *   Andrey Yurovsky <yurovsky@gmail.com>                                  *
 *                                                                         *
 *   This program is free software; you can redistribute it and/or modify  *
 *   it under the terms of the GNU General Public License as published by  *
 *   the Free Software Foundation; either version 2 of the License, or     *
 *   (at your option) any later version.                                   *
 *                                                                         *
 *   This program is distributed in the hope that it will be useful,       *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
 *   GNU General Public License for more details.                          *
 *                                                                         *
 *   You should have received a copy of the GNU General Public License     *
 *   along with this program; if not, write to the                         *
 *   Free Software Foundation, Inc.,                                       *
 *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.           *
 ***************************************************************************/

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include "imp.h"

#define SAMD_NUM_SECTORS	16

#define SAMD_FLASH			0x00000000	/* physical Flash memory */
#define SAMD_DSU			0x41002000	/* Device Service Unit */
#define SAMD_NVMCTRL		0x41004000	/* Non-volatile memory controller */

#define SAMD_DSU_DID		0x18		/* Device ID register */

#define SAMD_NVMCTRL_CTRLA		0x00	/* NVM control A register */
#define SAMD_NVMCTRL_CTRLB		0x04	/* NVM control B register */
#define SAMD_NVMCTRL_PARAM		0x08	/* NVM parameters register */
#define SAMD_NVMCTRL_INTFLAG	0x18	/* NVM Interupt Flag Status & Clear */
#define SAMD_NVMCTRL_STATUS		0x18	/* NVM status register */
#define SAMD_NVMCTRL_ADDR		0x1C	/* NVM address register */
#define SAMD_NVMCTRL_LOCK		0x20	/* NVM Lock section register */

#define SAMD_CMDEX_KEY		0xA5UL
#define SAMD_NVM_CMD(n)		((SAMD_CMDEX_KEY << 8) | (n & 0x7F))

/* NVMCTRL commands.  See Table 20-4 in 42129F–SAM–10/2013 */
#define SAMD_NVM_CMD_ER		0x02		/* Erase Row */
#define SAMD_NVM_CMD_WP		0x04		/* Write Page */
#define SAMD_NVM_CMD_EAR	0x05		/* Erase Auxilary Row */
#define SAMD_NVM_CMD_WAP	0x06		/* Write Auxilary Page */
#define SAMD_NVM_CMD_LR		0x40		/* Lock Region */
#define SAMD_NVM_CMD_UR		0x41		/* Unlock Region */
#define SAMD_NVM_CMD_SPRM	0x42		/* Set Power Reduction Mode */
#define SAMD_NVM_CMD_CPRM	0x43		/* Clear Power Reduction Mode */
#define SAMD_NVM_CMD_PBC	0x44		/* Page Buffer Clear */
#define SAMD_NVM_CMD_SSB	0x45		/* Set Security Bit */
#define SAMD_NVM_CMD_INVALL	0x46		/* Invalidate all caches */

/* Known identifiers */
#define SAMD_PROCESSOR_M0	0x01
#define SAMD_FAMILY_D		0x00
#define SAMD_SERIES_20		0x00
#define SAMD_SERIES_21		0x01

struct samd_part {
	uint8_t id;
	const char *name;
	uint32_t flash_kb;
	uint32_t ram_kb;
};

/* Known SAMD20 parts. See Table 12-8 in 42129F–SAM–10/2013 */
static const struct samd_part samd20_parts[] = {
	{ 0x0, "SAMD20J18A", 256, 32 },
	{ 0x1, "SAMD20J17A", 128, 16 },
	{ 0x2, "SAMD20J16A", 64, 8 },
	{ 0x3, "SAMD20J15A", 32, 4 },
	{ 0x4, "SAMD20J14A", 16, 2 },
	{ 0x5, "SAMD20G18A", 256, 32 },
	{ 0x6, "SAMD20G17A", 128, 16 },
	{ 0x7, "SAMD20G16A", 64, 8 },
	{ 0x8, "SAMD20G15A", 32, 4 },
	{ 0x9, "SAMD20G14A", 16, 2 },
	{ 0xB, "SAMD20E17A", 128, 16 },
	{ 0xC, "SAMD20E16A", 64, 8 },
	{ 0xD, "SAMD20E15A", 32, 4 },
	{ 0xE, "SAMD20E14A", 16, 2 },
};

/* Known SAMD21 parts. */
static const struct samd_part samd21_parts[] = {
	{ 0x0, "SAMD21J18A", 256, 32 },
	{ 0x1, "SAMD21J17A", 128, 16 },
	{ 0x2, "SAMD21J16A", 64, 8 },
	{ 0x3, "SAMD21J15A", 32, 4 },
	{ 0x4, "SAMD21J14A", 16, 2 },
	{ 0x5, "SAMD21G18A", 256, 32 },
	{ 0x6, "SAMD21G17A", 128, 16 },
	{ 0x7, "SAMD21G16A", 64, 8 },
	{ 0x8, "SAMD21G15A", 32, 4 },
	{ 0x9, "SAMD21G14A", 16, 2 },
	{ 0xA, "SAMD21E18A", 256, 32 },
	{ 0xB, "SAMD21E17A", 128, 16 },
	{ 0xC, "SAMD21E16A", 64, 8 },
	{ 0xD, "SAMD21E15A", 32, 4 },
	{ 0xE, "SAMD21E14A", 16, 2 },
};

/* Each family of parts contains a parts table in the DEVSEL field of DID.  The
 * processor ID, family ID, and series ID are used to determine which exact
 * family this is and then we can use the corresponding table. */
struct samd_family {
	uint8_t processor;
	uint8_t family;
	uint8_t series;
	const struct samd_part *parts;
	size_t num_parts;
};

/* Known SAMD families */
static const struct samd_family samd_families[] = {
	{ SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_20,
		samd20_parts, ARRAY_SIZE(samd20_parts) },
	{ SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_21,
		samd21_parts, ARRAY_SIZE(samd21_parts) },
};

struct samd_info {
	uint32_t page_size;
	int num_pages;
	int sector_size;

	bool probed;
	struct target *target;
	struct samd_info *next;
};

static struct samd_info *samd_chips;

static const struct samd_part *samd_find_part(uint32_t id)
{
	uint8_t processor = (id >> 28);
	uint8_t family = (id >> 24) & 0x0F;
	uint8_t series = (id >> 16) & 0xFF;
	uint8_t devsel = id & 0xFF;

	for (unsigned i = 0; i < ARRAY_SIZE(samd_families); i++) {
		if (samd_families[i].processor == processor &&
			samd_families[i].series == series &&
			samd_families[i].family == family) {
			for (unsigned j = 0; j < samd_families[i].num_parts; j++) {
				if (samd_families[i].parts[j].id == devsel)
					return &samd_families[i].parts[j];
			}
		}
	}

	return NULL;
}

static int samd_protect_check(struct flash_bank *bank)
{
	int res;
	uint16_t lock;

	res = target_read_u16(bank->target,
			SAMD_NVMCTRL + SAMD_NVMCTRL_LOCK, &lock);
	if (res != ERROR_OK)
		return res;

	/* Lock bits are active-low */
	for (int i = 0; i < bank->num_sectors; i++)
		bank->sectors[i].is_protected = !(lock & (1<<i));

	return ERROR_OK;
}

static int samd_probe(struct flash_bank *bank)
{
	uint32_t id, param;
	int res;
	struct samd_info *chip = (struct samd_info *)bank->driver_priv;
	const struct samd_part *part;

	if (chip->probed)
		return ERROR_OK;

	res = target_read_u32(bank->target, SAMD_DSU + SAMD_DSU_DID, &id);
	if (res != ERROR_OK) {
		LOG_ERROR("Couldn't read Device ID register");
		return res;
	}

	part = samd_find_part(id);
	if (part == NULL) {
		LOG_ERROR("Couldn't find part correspoding to DID %08" PRIx32, id);
		return ERROR_FAIL;
	}

	res = target_read_u32(bank->target,
			SAMD_NVMCTRL + SAMD_NVMCTRL_PARAM, &param);
	if (res != ERROR_OK) {
		LOG_ERROR("Couldn't read NVM Parameters register");
		return res;
	}

	bank->size = part->flash_kb * 1024;

	chip->sector_size = bank->size / SAMD_NUM_SECTORS;

	/* The PSZ field (bits 18:16) indicate the page size bytes as 2^(3+n) so
	 * 0 is 8KB and 7 is 1024KB. */
	chip->page_size = (8 << ((param >> 16) & 0x7));
	/* The NVMP field (bits 15:0) indicates the total number of pages */
	chip->num_pages = param & 0xFFFF;

	/* Sanity check: the total flash size in the DSU should match the page size
	 * multiplied by the number of pages. */
	if (bank->size != chip->num_pages * chip->page_size) {
		LOG_WARNING("SAMD: bank size doesn't match NVM parameters. "
				"Identified %uKB Flash but NVMCTRL reports %u %uB pages",
				part->flash_kb, chip->num_pages, chip->page_size);
	}

	/* Allocate the sector table */
	bank->num_sectors = SAMD_NUM_SECTORS;
	bank->sectors = calloc(bank->num_sectors, sizeof((bank->sectors)[0]));
	if (!bank->sectors)
		return ERROR_FAIL;

	/* Fill out the sector information: all SAMD sectors are the same size and
	 * there is always a fixed number of them. */
	for (int i = 0; i < bank->num_sectors; i++) {
		bank->sectors[i].size = chip->sector_size;
		bank->sectors[i].offset = i * chip->sector_size;
		/* mark as unknown */
		bank->sectors[i].is_erased = -1;
		bank->sectors[i].is_protected = -1;
	}

	samd_protect_check(bank);

	/* Done */
	chip->probed = true;

	LOG_INFO("SAMD MCU: %s (%uKB Flash, %uKB RAM)", part->name,
			part->flash_kb, part->ram_kb);

	return ERROR_OK;
}

static int samd_protect(struct flash_bank *bank, int set, int first, int last)
{
	int res;
	struct samd_info *chip = (struct samd_info *)bank->driver_priv;

	for (int s = first; s <= last; s++) {
		/* Load an address that is within this sector (we use offset 0) */
		res = target_write_u32(bank->target, SAMD_NVMCTRL + SAMD_NVMCTRL_ADDR,
				s * chip->sector_size);
		if (res != ERROR_OK)
			return res;

		/* Tell the controller to lock that sector */
		res = target_write_u16(bank->target,
				SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLA,
				SAMD_NVM_CMD(SAMD_NVM_CMD_LR));
		if (res != ERROR_OK)
			return res;
	}

	samd_protect_check(bank);

	return ERROR_OK;
}

static bool samd_check_error(struct flash_bank *bank)
{
	int ret;
	bool error;
	uint16_t status;

	ret = target_read_u16(bank->target,
			SAMD_NVMCTRL + SAMD_NVMCTRL_STATUS, &status);
	if (ret != ERROR_OK) {
		LOG_ERROR("Can't read NVM status");
		return true;
	}

	if (status & 0x001C) {
		if (status & (1 << 4)) /* NVME */
			LOG_ERROR("SAMD: NVM Error");
		if (status & (1 << 3)) /* LOCKE */
			LOG_ERROR("SAMD: NVM lock error");
		if (status & (1 << 2)) /* PROGE */
			LOG_ERROR("SAMD: NVM programming error");

		error = true;
	} else {
		error = false;
	}

	/* Clear the error conditions by writing a one to them */
	ret = target_write_u16(bank->target,
			SAMD_NVMCTRL + SAMD_NVMCTRL_STATUS, status);
	if (ret != ERROR_OK)
		LOG_ERROR("Can't clear NVM error conditions");

	return error;
}

static int samd_erase_row(struct flash_bank *bank, uint32_t address)
{
	int res;
	bool error = false;

	/* Set an address contained in the row to be erased */
	res = target_write_u32(bank->target,
			SAMD_NVMCTRL + SAMD_NVMCTRL_ADDR, address >> 1);
	if (res == ERROR_OK) {
		/* Issue the Erase Row command to erase that row */
		res = target_write_u16(bank->target,
				SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLA,
				SAMD_NVM_CMD(SAMD_NVM_CMD_ER));

		/* Check (and clear) error conditions */
		error = samd_check_error(bank);
	}

	if (res != ERROR_OK || error)  {
		LOG_ERROR("Failed to erase row containing %08X" PRIx32, address);
		return ERROR_FAIL;
	}

	return ERROR_OK;
}

static int samd_erase(struct flash_bank *bank, int first, int last)
{
	int res;
	int rows_in_sector;
	struct samd_info *chip = (struct samd_info *)bank->driver_priv;

	if (bank->target->state != TARGET_HALTED) {
		LOG_ERROR("Target not halted");

		return ERROR_TARGET_NOT_HALTED;
	}

	if (!chip->probed) {
		if (samd_probe(bank) != ERROR_OK)
			return ERROR_FLASH_BANK_NOT_PROBED;
	}

	/* The SAMD NVM has row erase granularity.  There are four pages in a row
	 * and the number of rows in a sector depends on the sector size, which in
	 * turn depends on the Flash capacity as there is a fixed number of
	 * sectors. */
	rows_in_sector = chip->sector_size / (chip->page_size * 4);

	/* For each sector to be erased */
	for (int s = first; s <= last; s++) {
		/* For each row in that sector */
		for (int r = s * rows_in_sector; r < (s + 1) * rows_in_sector; r++) {
			res = samd_erase_row(bank, r * chip->page_size * 4);
			if (res != ERROR_OK) {
				LOG_ERROR("SAMD: failed to erase sector %d", s);
				return res;
			}
		}

		bank->sectors[s].is_erased = 1;
	}

	return ERROR_OK;
}

static struct flash_sector *samd_find_sector_by_address(struct flash_bank *bank, uint32_t address)
{
	struct samd_info *chip = (struct samd_info *)bank->driver_priv;

	for (int i = 0; i < bank->num_sectors; i++) {
		if (bank->sectors[i].offset <= address &&
		    address < bank->sectors[i].offset + chip->sector_size)
			return &bank->sectors[i];
	}
	return NULL;
}

/* Write an entire row (four pages) from host buffer 'buf' to row-aligned
 * 'address' in the Flash. */
static int samd_write_row(struct flash_bank *bank, uint32_t address,
		const uint8_t *buf)
{
	int res;
	struct samd_info *chip = (struct samd_info *)bank->driver_priv;

	struct flash_sector *sector = samd_find_sector_by_address(bank, address);

	if (!sector) {
		LOG_ERROR("Can't find sector corresponding to address 0x%08" PRIx32, address);
		return ERROR_FLASH_OPERATION_FAILED;
	}

	if (sector->is_protected) {
		LOG_ERROR("Trying to write to a protected sector at 0x%08" PRIx32, address);
		return ERROR_FLASH_OPERATION_FAILED;
	}

	/* Erase the row that we'll be writing to */
	res = samd_erase_row(bank, address);
	if (res != ERROR_OK)
		return res;

	/* Now write the pages in this row. */
	for (unsigned int i = 0; i < 4; i++) {
		bool error;

		/* Write the page contents to the target's page buffer.  A page write
		 * is issued automatically once the last location is written in the
		 * page buffer (ie: a complete page has been written out). */
		res = target_write_memory(bank->target, address, 4,
				chip->page_size / 4, buf);
		if (res != ERROR_OK) {
			LOG_ERROR("%s: %d", __func__, __LINE__);
			return res;
		}

		error = samd_check_error(bank);
		if (error)
			return ERROR_FAIL;

		/* Next page */
		address += chip->page_size;
		buf += chip->page_size;
	}

	sector->is_erased = 0;

	return res;
}

/* Write partial contents into row-aligned 'address' on the Flash from host
 * buffer 'buf' by writing 'nb' of 'buf' at 'row_offset' into the Flash row. */
static int samd_write_row_partial(struct flash_bank *bank, uint32_t address,
		const uint8_t *buf, uint32_t row_offset, uint32_t nb)
{
	int res;
	struct samd_info *chip = (struct samd_info *)bank->driver_priv;
	uint32_t row_size = chip->page_size * 4;
	uint8_t *rb = malloc(row_size);
	if (!rb)
		return ERROR_FAIL;

	assert(row_offset + nb < row_size);
	assert((address % row_size) == 0);

	/* Retrieve the full row contents from Flash */
	res = target_read_memory(bank->target, address, 4, row_size / 4, rb);
	if (res != ERROR_OK) {
		free(rb);
		return res;
	}

	/* Insert our partial row over the data from Flash */
	memcpy(rb + (row_offset % row_size), buf, nb);

	/* Write the row back out */
	res = samd_write_row(bank, address, rb);
	free(rb);

	return res;
}

static int samd_write(struct flash_bank *bank, const uint8_t *buffer,
		uint32_t offset, uint32_t count)
{
	int res;
	uint32_t address;
	uint32_t nb = 0;
	struct samd_info *chip = (struct samd_info *)bank->driver_priv;
	uint32_t row_size = chip->page_size * 4;

	if (bank->target->state != TARGET_HALTED) {
		LOG_ERROR("Target not halted");

		return ERROR_TARGET_NOT_HALTED;
	}

	if (!chip->probed) {
		if (samd_probe(bank) != ERROR_OK)
			return ERROR_FLASH_BANK_NOT_PROBED;
	}

	if (offset % row_size) {
		/* We're starting at an unaligned offset so we'll write a partial row
		 * comprising that offset and up to the end of that row. */
		nb = row_size - (offset % row_size);
		if (nb > count)
			nb = count;
	} else if (count < row_size) {
		/* We're writing an aligned but partial row. */
		nb = count;
	}

	address = (offset / row_size) * row_size + bank->base;

	if (nb > 0) {
		res = samd_write_row_partial(bank, address, buffer,
				offset % row_size, nb);
		if (res != ERROR_OK)
			return res;

		/* We're done with the row contents */
		count -= nb;
		offset += nb;
		buffer += row_size;
	}

	/* There's at least one aligned row to write out. */
	if (count >= row_size) {
		int nr = count / row_size + ((count % row_size) ? 1 : 0);
		unsigned int r = 0;

		for (unsigned int i = address / row_size;
				(i < (address / row_size) + nr) && count > 0; i++) {
			address = (i * row_size) + bank->base;

			if (count >= row_size) {
				res = samd_write_row(bank, address, buffer + (r * row_size));
				/* Advance one row */
				offset += row_size;
				count -= row_size;
			} else {
				res = samd_write_row_partial(bank, address,
						buffer + (r * row_size), 0, count);
				/* We're done after this. */
				offset += count;
				count = 0;
			}

			r++;

			if (res != ERROR_OK)
				return res;
		}
	}

	return ERROR_OK;
}

FLASH_BANK_COMMAND_HANDLER(samd_flash_bank_command)
{
	struct samd_info *chip = samd_chips;

	while (chip) {
		if (chip->target == bank->target)
			break;
		chip = chip->next;
	}

	if (!chip) {
		/* Create a new chip */
		chip = calloc(1, sizeof(*chip));
		if (!chip)
			return ERROR_FAIL;

		chip->target = bank->target;
		chip->probed = false;

		bank->driver_priv = chip;

		/* Insert it into the chips list (at head) */
		chip->next = samd_chips;
		samd_chips = chip;
	}

	if (bank->base != SAMD_FLASH) {
		LOG_ERROR("Address 0x%08" PRIx32 " invalid bank address (try 0x%08" PRIx32
				"[at91samd series] )",
				bank->base, SAMD_FLASH);
		return ERROR_FAIL;
	}

	return ERROR_OK;
}

COMMAND_HANDLER(samd_handle_info_command)
{
	return ERROR_OK;
}

static const struct command_registration at91samd_exec_command_handlers[] = {
	{
		.name = "info",
		.handler = samd_handle_info_command,
		.mode = COMMAND_EXEC,
		.help = "Print information about the current at91samd chip"
			"and its flash configuration.",
	},
	COMMAND_REGISTRATION_DONE
};

static const struct command_registration at91samd_command_handlers[] = {
	{
		.name = "at91samd",
		.mode = COMMAND_ANY,
		.help = "at91samd flash command group",
		.usage = "",
		.chain = at91samd_exec_command_handlers,
	},
	COMMAND_REGISTRATION_DONE
};

struct flash_driver at91samd_flash = {
	.name = "at91samd",
	.commands = at91samd_command_handlers,
	.flash_bank_command = samd_flash_bank_command,
	.erase = samd_erase,
	.protect = samd_protect,
	.write = samd_write,
	.read = default_flash_read,
	.probe = samd_probe,
	.auto_probe = samd_probe,
	.erase_check = default_flash_blank_check,
	.protect_check = samd_protect_check,
};