aboutsummaryrefslogtreecommitdiff
path: root/src/flash/arm_nandio.c
blob: 20a76f43cc27458ec25b6741006b41ecc3761b04 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
/*
 * Copyright (C) 2009 by Marvell Semiconductors, Inc.
 * Written by Nicolas Pitre <nico at marvell.com>
 *
 * Copyright (C) 2009 by David Brownell
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the
 * Free Software Foundation, Inc.,
 * 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 */

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include "arm_nandio.h"
#include "armv4_5.h"
#include "algorithm.h"


/*
 * ARM-specific bulk write from buffer to address of 8-bit wide NAND.
 * For now this only supports ARMv4 and ARMv5 cores.
 *
 * Enhancements to target_run_algorithm() could enable:
 *   - ARMv6 and ARMv7 cores in ARM mode
 *
 * Different code fragments could handle:
 *   - Thumb2 cores like Cortex-M (needs different byteswapping)
 *   - 16-bit wide data (needs different setup too)
 */
int arm_nandwrite(struct arm_nand_data *nand, uint8_t *data, int size)
{
	struct target		*target = nand->target;
	struct armv4_5_algorithm	algo;
	struct arm		*armv4_5 = target->arch_info;
	struct reg_param	reg_params[3];
	uint32_t		target_buf;
	uint32_t		exit = 0;
	int			retval;

	/* Inputs:
	 *  r0	NAND data address (byte wide)
	 *  r1	buffer address
	 *  r2	buffer length
	 */
	static const uint32_t code[] = {
		0xe4d13001,	/* s: ldrb  r3, [r1], #1 */
		0xe5c03000,	/*    strb  r3, [r0]     */
		0xe2522001,	/*    subs  r2, r2, #1   */
		0x1afffffb,	/*    bne   s            */

		/* exit: ARMv4 needs hardware breakpoint */
		0xe1200070,	/* e: bkpt  #0           */
	};

	if (!nand->copy_area) {
		uint8_t		code_buf[sizeof(code)];
		unsigned	i;

		/* make sure we have a working area */
		if (target_alloc_working_area(target,
				sizeof(code) + nand->chunk_size,
				&nand->copy_area) != ERROR_OK) {
			LOG_DEBUG("%s: no %d byte buffer",
					__FUNCTION__,
					(int) sizeof(code) + nand->chunk_size);
			return ERROR_NAND_NO_BUFFER;
		}

		/* buffer code in target endianness */
		for (i = 0; i < sizeof(code) / 4; i++)
			target_buffer_set_u32(target, code_buf + i * 4, code[i]);

		/* copy code to work area */
                retval = target_write_memory(target,
					nand->copy_area->address,
					4, sizeof(code) / 4, code_buf);
		if (retval != ERROR_OK)
			return retval;
	}

	/* copy data to work area */
	target_buf = nand->copy_area->address + sizeof(code);
	retval = target_bulk_write_memory(target, target_buf, size / 4, data);
	if (retval == ERROR_OK && (size & 3) != 0)
		retval = target_write_memory(target,
				target_buf + (size & ~3),
				1, size & 3, data + (size & ~3));
	if (retval != ERROR_OK)
		return retval;

	/* set up algorithm and parameters */
	algo.common_magic = ARMV4_5_COMMON_MAGIC;
	algo.core_mode = ARMV4_5_MODE_SVC;
	algo.core_state = ARMV4_5_STATE_ARM;

	init_reg_param(&reg_params[0], "r0", 32, PARAM_IN);
	init_reg_param(&reg_params[1], "r1", 32, PARAM_IN);
	init_reg_param(&reg_params[2], "r2", 32, PARAM_IN);

	buf_set_u32(reg_params[0].value, 0, 32, nand->data);
	buf_set_u32(reg_params[1].value, 0, 32, target_buf);
	buf_set_u32(reg_params[2].value, 0, 32, size);

	/* armv4 must exit using a hardware breakpoint */
	if (armv4_5->is_armv4)
		exit = nand->copy_area->address + sizeof(code) - 4;

	/* use alg to write data from work area to NAND chip */
	retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
			nand->copy_area->address, exit, 1000, &algo);
	if (retval != ERROR_OK)
		LOG_ERROR("error executing hosted NAND write");

	destroy_reg_param(&reg_params[0]);
	destroy_reg_param(&reg_params[1]);
	destroy_reg_param(&reg_params[2]);

	return retval;
}

/**
 * Uses an on-chip algorithm for an ARM device to read from a NAND device and
 * store the data into the host machine's memory.
 *
 * @param nand Pointer to the arm_nand_data struct that defines the I/O
 * @param data Pointer to the data buffer to store the read data
 * @param size Amount of data to be stored to the buffer.
 */
int arm_nandread(struct arm_nand_data *nand, uint8_t *data, uint32_t size) {
	struct target *target = nand->target;
	struct armv4_5_algorithm algo;
	struct arm *armv4_5 = target->arch_info;
	struct reg_param reg_params[3];
	uint32_t target_buf;
	uint32_t exit = 0;
	int retval;

	/* Inputs:
	 *  r0	buffer address
	 *  r1	NAND data address (byte wide)
	 *  r2	buffer length
	 */
	static const uint32_t code[] = {
		0xe5d13000,	/* s: ldrb  r3, [r1]     */
		0xe4c03001,	/*    strb  r3, [r0], #1 */
		0xe2522001,	/*    subs  r2, r2, #1   */
		0x1afffffb,	/*    bne   s            */

		/* exit: ARMv4 needs hardware breakpoint */
		0xe1200070,	/* e: bkpt  #0           */
	};

	/* create the copy area if not yet available */
	if (!nand->copy_area) {
		uint8_t code_buf[sizeof(code)];
		unsigned i;

		/* make sure we have a working area */
		retval = target_alloc_working_area(target, sizeof(code) + nand->chunk_size, &nand->copy_area);
		if (retval != ERROR_OK) {
			LOG_DEBUG("%s: no %d byte buffer", __FUNCTION__, (int) sizeof(code) + nand->chunk_size);
			return ERROR_NAND_NO_BUFFER;
		}

		/* buffer code in target endianness */
		for (i = 0; i < sizeof(code) / 4; i++) {
			target_buffer_set_u32(target, code_buf + i * 4, code[i]);
		}

		/* copy code to work area */
        retval = target_write_memory(target, nand->copy_area->address, 4, sizeof(code) / 4, code_buf);
		if (retval != ERROR_OK) {
			return retval;
		}
	}

	target_buf = nand->copy_area->address + sizeof(code);

	/* set up algorithm and parameters */
	algo.common_magic = ARMV4_5_COMMON_MAGIC;
	algo.core_mode = ARMV4_5_MODE_SVC;
	algo.core_state = ARMV4_5_STATE_ARM;

	init_reg_param(&reg_params[0], "r0", 32, PARAM_IN);
	init_reg_param(&reg_params[1], "r1", 32, PARAM_IN);
	init_reg_param(&reg_params[2], "r2", 32, PARAM_IN);

	buf_set_u32(reg_params[0].value, 0, 32, target_buf);
	buf_set_u32(reg_params[1].value, 0, 32, nand->data);
	buf_set_u32(reg_params[2].value, 0, 32, size);

	/* armv4 must exit using a hardware breakpoint */
	if (armv4_5->is_armv4)
		exit = nand->copy_area->address + sizeof(code) - 4;

	/* use alg to write data from NAND chip to work area */
	retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
			nand->copy_area->address, exit, 1000, &algo);
	if (retval != ERROR_OK)
		LOG_ERROR("error executing hosted NAND write");

	destroy_reg_param(&reg_params[0]);
	destroy_reg_param(&reg_params[1]);
	destroy_reg_param(&reg_params[2]);

	/* read from work area to the host's memory */
	retval = target_read_buffer(target, target_buf, size, data);

	return retval;
}