/***************************************************************************
* Copyright (C) 2006 by Magnus Lundin *
* lundin@mlu.mine.nu *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see . *
***************************************************************************/
#ifndef OPENOCD_TARGET_ARM_ADI_V5_H
#define OPENOCD_TARGET_ARM_ADI_V5_H
/**
* @file
* This defines formats and data structures used to talk to ADIv5 entities.
* Those include a DAP, different types of Debug Port (DP), and memory mapped
* resources accessed through a MEM-AP.
*/
#include
#include "arm_jtag.h"
/* three-bit ACK values for SWD access (sent LSB first) */
#define SWD_ACK_OK 0x1
#define SWD_ACK_WAIT 0x2
#define SWD_ACK_FAULT 0x4
#define DPAP_WRITE 0
#define DPAP_READ 1
#define BANK_REG(bank, reg) (((bank) << 4) | (reg))
/* A[3:0] for DP registers; A[1:0] are always zero.
* - JTAG accesses all of these via JTAG_DP_DPACC, except for
* IDCODE (JTAG_DP_IDCODE) and ABORT (JTAG_DP_ABORT).
* - SWD accesses these directly, sometimes needing SELECT.DPBANKSEL
*/
#define DP_DPIDR BANK_REG(0x0, 0x0) /* DPv1+: ro */
#define DP_ABORT BANK_REG(0x0, 0x0) /* DPv1+: SWD: wo */
#define DP_CTRL_STAT BANK_REG(0x0, 0x4) /* DPv0+: rw */
#define DP_DLCR BANK_REG(0x1, 0x4) /* DPv1+: SWD: rw */
#define DP_TARGETID BANK_REG(0x2, 0x4) /* DPv2: ro */
#define DP_DLPIDR BANK_REG(0x3, 0x4) /* DPv2: ro */
#define DP_EVENTSTAT BANK_REG(0x4, 0x4) /* DPv2: ro */
#define DP_RESEND BANK_REG(0x0, 0x8) /* DPv1+: SWD: ro */
#define DP_SELECT BANK_REG(0x0, 0x8) /* DPv0+: JTAG: rw; SWD: wo */
#define DP_RDBUFF BANK_REG(0x0, 0xC) /* DPv0+: ro */
#define DP_TARGETSEL BANK_REG(0x0, 0xC) /* DPv2: SWD: wo */
#define DLCR_TO_TRN(dlcr) ((uint32_t)(1 + ((3 & (dlcr)) >> 8))) /* 1..4 clocks */
/* Fields of the DP's AP ABORT register */
#define DAPABORT (1UL << 0)
#define STKCMPCLR (1UL << 1) /* SWD-only */
#define STKERRCLR (1UL << 2) /* SWD-only */
#define WDERRCLR (1UL << 3) /* SWD-only */
#define ORUNERRCLR (1UL << 4) /* SWD-only */
/* Fields of the DP's CTRL/STAT register */
#define CORUNDETECT (1UL << 0)
#define SSTICKYORUN (1UL << 1)
/* 3:2 - transaction mode (e.g. pushed compare) */
#define SSTICKYCMP (1UL << 4)
#define SSTICKYERR (1UL << 5)
#define READOK (1UL << 6) /* SWD-only */
#define WDATAERR (1UL << 7) /* SWD-only */
/* 11:8 - mask lanes for pushed compare or verify ops */
/* 21:12 - transaction counter */
#define CDBGRSTREQ (1UL << 26)
#define CDBGRSTACK (1UL << 27)
#define CDBGPWRUPREQ (1UL << 28)
#define CDBGPWRUPACK (1UL << 29)
#define CSYSPWRUPREQ (1UL << 30)
#define CSYSPWRUPACK (1UL << 31)
/* MEM-AP register addresses */
#define MEM_AP_REG_CSW 0x00
#define MEM_AP_REG_TAR 0x04
#define MEM_AP_REG_TAR64 0x08 /* RW: Large Physical Address Extension */
#define MEM_AP_REG_DRW 0x0C /* RW: Data Read/Write register */
#define MEM_AP_REG_BD0 0x10 /* RW: Banked Data register 0-3 */
#define MEM_AP_REG_BD1 0x14
#define MEM_AP_REG_BD2 0x18
#define MEM_AP_REG_BD3 0x1C
#define MEM_AP_REG_MBT 0x20 /* --: Memory Barrier Transfer register */
#define MEM_AP_REG_BASE64 0xF0 /* RO: Debug Base Address (LA) register */
#define MEM_AP_REG_CFG 0xF4 /* RO: Configuration register */
#define MEM_AP_REG_BASE 0xF8 /* RO: Debug Base Address register */
/* Generic AP register address */
#define AP_REG_IDR 0xFC /* RO: Identification Register */
/* Fields of the MEM-AP's CSW register */
#define CSW_8BIT 0
#define CSW_16BIT 1
#define CSW_32BIT 2
#define CSW_ADDRINC_MASK (3UL << 4)
#define CSW_ADDRINC_OFF 0UL
#define CSW_ADDRINC_SINGLE (1UL << 4)
#define CSW_ADDRINC_PACKED (2UL << 4)
#define CSW_DEVICE_EN (1UL << 6)
#define CSW_TRIN_PROG (1UL << 7)
#define CSW_SPIDEN (1UL << 23)
/* 30:24 - implementation-defined! */
#define CSW_HPROT (1UL << 25) /* ? */
#define CSW_MASTER_DEBUG (1UL << 29) /* ? */
#define CSW_SPROT (1UL << 30)
#define CSW_DBGSWENABLE (1UL << 31)
/* Fields of the MEM-AP's IDR register */
#define IDR_REV (0xFUL << 28)
#define IDR_JEP106 (0x7FFUL << 17)
#define IDR_CLASS (0xFUL << 13)
#define IDR_VARIANT (0xFUL << 4)
#define IDR_TYPE (0xFUL << 0)
#define IDR_JEP106_ARM 0x04760000
#define DP_SELECT_APSEL 0xFF000000
#define DP_SELECT_APBANK 0x000000F0
#define DP_SELECT_DPBANK 0x0000000F
#define DP_SELECT_INVALID 0x00FFFF00 /* Reserved bits one */
/**
* This represents an ARM Debug Interface (v5) Access Port (AP).
* Most common is a MEM-AP, for memory access.
*/
struct adiv5_ap {
/**
* DAP this AP belongs to.
*/
struct adiv5_dap *dap;
/**
* Number of this AP.
*/
uint8_t ap_num;
/**
* Default value for (MEM-AP) AP_REG_CSW register.
*/
uint32_t csw_default;
/**
* Cache for (MEM-AP) AP_REG_CSW register value. This is written to
* configure an access mode, such as autoincrementing AP_REG_TAR during
* word access. "-1" indicates no cached value.
*/
uint32_t csw_value;
/**
* Cache for (MEM-AP) AP_REG_TAR register value This is written to
* configure the address being read or written
* "-1" indicates no cached value.
*/
uint32_t tar_value;
/**
* Configures how many extra tck clocks are added after starting a
* MEM-AP access before we try to read its status (and/or result).
*/
uint32_t memaccess_tck;
/* Size of TAR autoincrement block, ARM ADI Specification requires at least 10 bits */
uint32_t tar_autoincr_block;
/* true if packed transfers are supported by the MEM-AP */
bool packed_transfers;
/* true if unaligned memory access is not supported by the MEM-AP */
bool unaligned_access_bad;
};
/**
* This represents an ARM Debug Interface (v5) Debug Access Port (DAP).
* A DAP has two types of component: one Debug Port (DP), which is a
* transport agent; and at least one Access Port (AP), controlling
* resource access.
*
* There are two basic DP transports: JTAG, and ARM's low pin-count SWD.
* Accordingly, this interface is responsible for hiding the transport
* differences so upper layer code can largely ignore them.
*
* When the chip is implemented with JTAG-DP or SW-DP, the transport is
* fixed as JTAG or SWD, respectively. Chips incorporating SWJ-DP permit
* a choice made at board design time (by only using the SWD pins), or
* as part of setting up a debug session (if all the dual-role JTAG/SWD
* signals are available).
*/
struct adiv5_dap {
const struct dap_ops *ops;
/* dap transaction list for WAIT support */
struct list_head cmd_journal;
struct jtag_tap *tap;
/* Control config */
uint32_t dp_ctrl_stat;
struct adiv5_ap ap[256];
/* The current manually selected AP by the "dap apsel" command */
uint32_t apsel;
/**
* Cache for DP_SELECT register. A value of DP_SELECT_INVALID
* indicates no cached value and forces rewrite of the register.
*/
uint32_t select;
/* information about current pending SWjDP-AHBAP transaction */
uint8_t ack;
/**
* Holds the pointer to the destination word for the last queued read,
* for use with posted AP read sequence optimization.
*/
uint32_t *last_read;
/* The TI TMS470 and TMS570 series processors use a BE-32 memory ordering
* despite lack of support in the ARMv7 architecture. Memory access through
* the AHB-AP has strange byte ordering these processors, and we need to
* swizzle appropriately. */
bool ti_be_32_quirks;
/**
* Signals that an attempt to reestablish communication afresh
* should be performed before the next access.
*/
bool do_reconnect;
};
/**
* Transport-neutral representation of queued DAP transactions, supporting
* both JTAG and SWD transports. All submitted transactions are logically
* queued, until the queue is executed by run(). Some implementations might
* execute transactions as soon as they're submitted, but no status is made
* available until run().
*/
struct dap_ops {
/** DP register read. */
int (*queue_dp_read)(struct adiv5_dap *dap, unsigned reg,
uint32_t *data);
/** DP register write. */
int (*queue_dp_write)(struct adiv5_dap *dap, unsigned reg,
uint32_t data);
/** AP register read. */
int (*queue_ap_read)(struct adiv5_ap *ap, unsigned reg,
uint32_t *data);
/** AP register write. */
int (*queue_ap_write)(struct adiv5_ap *ap, unsigned reg,
uint32_t data);
/** AP operation abort. */
int (*queue_ap_abort)(struct adiv5_dap *dap, uint8_t *ack);
/** Executes all queued DAP operations. */
int (*run)(struct adiv5_dap *dap);
/** Executes all queued DAP operations but doesn't check
* sticky error conditions */
int (*sync)(struct adiv5_dap *dap);
};
/*
* Access Port classes
*/
enum ap_class {
AP_CLASS_NONE = 0x00000, /* No class defined */
AP_CLASS_MEM_AP = 0x10000, /* MEM-AP */
};
/*
* Access Port types
*/
enum ap_type {
AP_TYPE_JTAG_AP = 0x0, /* JTAG-AP - JTAG master for controlling other JTAG devices */
AP_TYPE_AHB_AP = 0x1, /* AHB Memory-AP */
AP_TYPE_APB_AP = 0x2, /* APB Memory-AP */
AP_TYPE_AXI_AP = 0x4, /* AXI Memory-AP */
};
/**
* Queue a DP register read.
* Note that not all DP registers are readable; also, that JTAG and SWD
* have slight differences in DP register support.
*
* @param dap The DAP used for reading.
* @param reg The two-bit number of the DP register being read.
* @param data Pointer saying where to store the register's value
* (in host endianness).
*
* @return ERROR_OK for success, else a fault code.
*/
static inline int dap_queue_dp_read(struct adiv5_dap *dap,
unsigned reg, uint32_t *data)
{
assert(dap->ops != NULL);
return dap->ops->queue_dp_read(dap, reg, data);
}
/**
* Queue a DP register write.
* Note that not all DP registers are writable; also, that JTAG and SWD
* have slight differences in DP register support.
*
* @param dap The DAP used for writing.
* @param reg The two-bit number of the DP register being written.
* @param data Value being written (host endianness)
*
* @return ERROR_OK for success, else a fault code.
*/
static inline int dap_queue_dp_write(struct adiv5_dap *dap,
unsigned reg, uint32_t data)
{
assert(dap->ops != NULL);
return dap->ops->queue_dp_write(dap, reg, data);
}
/**
* Queue an AP register read.
*
* @param ap The AP used for reading.
* @param reg The number of the AP register being read.
* @param data Pointer saying where to store the register's value
* (in host endianness).
*
* @return ERROR_OK for success, else a fault code.
*/
static inline int dap_queue_ap_read(struct adiv5_ap *ap,
unsigned reg, uint32_t *data)
{
assert(ap->dap->ops != NULL);
return ap->dap->ops->queue_ap_read(ap, reg, data);
}
/**
* Queue an AP register write.
*
* @param ap The AP used for writing.
* @param reg The number of the AP register being written.
* @param data Value being written (host endianness)
*
* @return ERROR_OK for success, else a fault code.
*/
static inline int dap_queue_ap_write(struct adiv5_ap *ap,
unsigned reg, uint32_t data)
{
assert(ap->dap->ops != NULL);
return ap->dap->ops->queue_ap_write(ap, reg, data);
}
/**
* Queue an AP abort operation. The current AP transaction is aborted,
* including any update of the transaction counter. The AP is left in
* an unknown state (so it must be re-initialized). For use only after
* the AP has reported WAIT status for an extended period.
*
* @param dap The DAP used for writing.
* @param ack Pointer to where transaction status will be stored.
*
* @return ERROR_OK for success, else a fault code.
*/
static inline int dap_queue_ap_abort(struct adiv5_dap *dap, uint8_t *ack)
{
assert(dap->ops != NULL);
return dap->ops->queue_ap_abort(dap, ack);
}
/**
* Perform all queued DAP operations, and clear any errors posted in the
* CTRL_STAT register when they are done. Note that if more than one AP
* operation will be queued, one of the first operations in the queue
* should probably enable CORUNDETECT in the CTRL/STAT register.
*
* @param dap The DAP used.
*
* @return ERROR_OK for success, else a fault code.
*/
static inline int dap_run(struct adiv5_dap *dap)
{
assert(dap->ops != NULL);
return dap->ops->run(dap);
}
static inline int dap_sync(struct adiv5_dap *dap)
{
assert(dap->ops != NULL);
if (dap->ops->sync)
return dap->ops->sync(dap);
return ERROR_OK;
}
static inline int dap_dp_read_atomic(struct adiv5_dap *dap, unsigned reg,
uint32_t *value)
{
int retval;
retval = dap_queue_dp_read(dap, reg, value);
if (retval != ERROR_OK)
return retval;
return dap_run(dap);
}
static inline int dap_dp_poll_register(struct adiv5_dap *dap, unsigned reg,
uint32_t mask, uint32_t value, int timeout)
{
assert(timeout > 0);
assert((value & mask) == value);
int ret;
uint32_t regval;
LOG_DEBUG("DAP: poll %x, mask 0x%08" PRIx32 ", value 0x%08" PRIx32,
reg, mask, value);
do {
ret = dap_dp_read_atomic(dap, reg, ®val);
if (ret != ERROR_OK)
return ret;
if ((regval & mask) == value)
break;
alive_sleep(10);
} while (--timeout);
if (!timeout) {
LOG_DEBUG("DAP: poll %x timeout", reg);
return ERROR_WAIT;
} else {
return ERROR_OK;
}
}
/* Queued MEM-AP memory mapped single word transfers. */
int mem_ap_read_u32(struct adiv5_ap *ap,
uint32_t address, uint32_t *value);
int mem_ap_write_u32(struct adiv5_ap *ap,
uint32_t address, uint32_t value);
/* Synchronous MEM-AP memory mapped single word transfers. */
int mem_ap_read_atomic_u32(struct adiv5_ap *ap,
uint32_t address, uint32_t *value);
int mem_ap_write_atomic_u32(struct adiv5_ap *ap,
uint32_t address, uint32_t value);
/* Synchronous MEM-AP memory mapped bus block transfers. */
int mem_ap_read_buf(struct adiv5_ap *ap,
uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address);
int mem_ap_write_buf(struct adiv5_ap *ap,
const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address);
/* Synchronous, non-incrementing buffer functions for accessing fifos. */
int mem_ap_read_buf_noincr(struct adiv5_ap *ap,
uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address);
int mem_ap_write_buf_noincr(struct adiv5_ap *ap,
const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address);
/* Create DAP struct */
struct adiv5_dap *dap_init(void);
/* Initialisation of the debug system, power domains and registers */
int dap_dp_init(struct adiv5_dap *dap);
int mem_ap_init(struct adiv5_ap *ap);
/* Probe the AP for ROM Table location */
int dap_get_debugbase(struct adiv5_ap *ap,
uint32_t *dbgbase, uint32_t *apid);
/* Probe Access Ports to find a particular type */
int dap_find_ap(struct adiv5_dap *dap,
enum ap_type type_to_find,
struct adiv5_ap **ap_out);
static inline struct adiv5_ap *dap_ap(struct adiv5_dap *dap, uint8_t ap_num)
{
return &dap->ap[ap_num];
}
/* Lookup CoreSight component */
int dap_lookup_cs_component(struct adiv5_ap *ap,
uint32_t dbgbase, uint8_t type, uint32_t *addr, int32_t *idx);
struct target;
/* Put debug link into SWD mode */
int dap_to_swd(struct target *target);
/* Put debug link into JTAG mode */
int dap_to_jtag(struct target *target);
extern const struct command_registration dap_command_handlers[];
struct adiv5_private_config {
int ap_num;
};
extern int adiv5_jim_configure(struct target *target, Jim_GetOptInfo *goi);
#endif /* OPENOCD_TARGET_ARM_ADI_V5_H */