/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see . *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "arm920t.h"
#include
#include "target_type.h"
#include "register.h"
#include "arm_opcodes.h"
/*
* For information about the ARM920T, see ARM DDI 0151C especially
* Chapter 9 about debug support, which shows how to manipulate each
* of the different scan chains:
*
* 0 ... ARM920 signals, e.g. to rest of SOC (unused here)
* 1 ... debugging; watchpoint and breakpoint status, etc; also
* MMU and cache access in conjunction with scan chain 15
* 2 ... EmbeddedICE
* 3 ... external boundary scan (SoC-specific, unused here)
* 4 ... access to cache tag RAM
* 6 ... ETM9
* 15 ... access coprocessor 15, "physical" or "interpreted" modes
* "interpreted" works with a few actual MRC/MCR instructions
* "physical" provides register-like behaviors. Section 9.6.7
* covers these details.
*
* The ARM922T is similar, but with smaller caches (8K each, vs 16K).
*/
#if 0
#define _DEBUG_INSTRUCTION_EXECUTION_
#endif
/* Table 9-8 shows scan chain 15 format during physical access mode, using a
* dedicated 6-bit address space (encoded in bits 33:38). Writes use one
* JTAG scan, while reads use two.
*
* Table 9-9 lists the thirteen registers which support physical access.
* ARM920T_CP15_PHYS_ADDR() constructs the 6-bit reg_addr parameter passed
* to arm920t_read_cp15_physical() and arm920t_write_cp15_physical().
*
* x == bit[38]
* y == bits[37:34]
* z == bit[33]
*/
#define ARM920T_CP15_PHYS_ADDR(x, y, z) ((x << 5) | (y << 1) << (z))
/* Registers supporting physical Read access (from table 9-9) */
#define CP15PHYS_CACHETYPE ARM920T_CP15_PHYS_ADDR(0, 0x0, 1)
#define CP15PHYS_ICACHE_IDX ARM920T_CP15_PHYS_ADDR(1, 0xd, 1)
#define CP15PHYS_DCACHE_IDX ARM920T_CP15_PHYS_ADDR(1, 0xe, 1)
/* NOTE: several more registers support only physical read access */
/* Registers supporting physical Read/Write access (from table 9-9) */
#define CP15PHYS_CTRL ARM920T_CP15_PHYS_ADDR(0, 0x1, 0)
#define CP15PHYS_PID ARM920T_CP15_PHYS_ADDR(0, 0xd, 0)
#define CP15PHYS_TESTSTATE ARM920T_CP15_PHYS_ADDR(0, 0xf, 0)
#define CP15PHYS_ICACHE ARM920T_CP15_PHYS_ADDR(1, 0x1, 1)
#define CP15PHYS_DCACHE ARM920T_CP15_PHYS_ADDR(1, 0x2, 1)
static int arm920t_read_cp15_physical(struct target *target,
int reg_addr, uint32_t *value)
{
struct arm920t_common *arm920t = target_to_arm920(target);
struct arm_jtag *jtag_info;
struct scan_field fields[4];
uint8_t access_type_buf = 1;
uint8_t reg_addr_buf = reg_addr & 0x3f;
uint8_t nr_w_buf = 0;
int retval;
jtag_info = &arm920t->arm7_9_common.jtag_info;
retval = arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
retval = arm_jtag_set_instr(jtag_info->tap, jtag_info->intest_instr, NULL, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
fields[0].num_bits = 1;
fields[0].out_value = &access_type_buf;
fields[0].in_value = NULL;
fields[1].num_bits = 32;
fields[1].out_value = NULL;
fields[1].in_value = NULL;
fields[2].num_bits = 6;
fields[2].out_value = ®_addr_buf;
fields[2].in_value = NULL;
fields[3].num_bits = 1;
fields[3].out_value = &nr_w_buf;
fields[3].in_value = NULL;
jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
fields[1].in_value = (uint8_t *)value;
jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
jtag_add_callback(arm_le_to_h_u32, (jtag_callback_data_t)value);
#ifdef _DEBUG_INSTRUCTION_EXECUTION_
jtag_execute_queue();
LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, *value);
#endif
return ERROR_OK;
}
static int arm920t_write_cp15_physical(struct target *target,
int reg_addr, uint32_t value)
{
struct arm920t_common *arm920t = target_to_arm920(target);
struct arm_jtag *jtag_info;
struct scan_field fields[4];
uint8_t access_type_buf = 1;
uint8_t reg_addr_buf = reg_addr & 0x3f;
uint8_t nr_w_buf = 1;
uint8_t value_buf[4];
int retval;
jtag_info = &arm920t->arm7_9_common.jtag_info;
buf_set_u32(value_buf, 0, 32, value);
retval = arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
retval = arm_jtag_set_instr(jtag_info->tap, jtag_info->intest_instr, NULL, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
fields[0].num_bits = 1;
fields[0].out_value = &access_type_buf;
fields[0].in_value = NULL;
fields[1].num_bits = 32;
fields[1].out_value = value_buf;
fields[1].in_value = NULL;
fields[2].num_bits = 6;
fields[2].out_value = ®_addr_buf;
fields[2].in_value = NULL;
fields[3].num_bits = 1;
fields[3].out_value = &nr_w_buf;
fields[3].in_value = NULL;
jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
#ifdef _DEBUG_INSTRUCTION_EXECUTION_
LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, value);
#endif
return ERROR_OK;
}
/* See table 9-10 for scan chain 15 format during interpreted access mode.
* If the TESTSTATE register is set for interpreted access, certain CP15
* MRC and MCR instructions may be executed through scan chain 15.
*
* Tables 9-11, 9-12, and 9-13 show which MRC and MCR instructions can be
* executed using scan chain 15 interpreted mode.
*/
static int arm920t_execute_cp15(struct target *target, uint32_t cp15_opcode,
uint32_t arm_opcode)
{
int retval;
struct arm920t_common *arm920t = target_to_arm920(target);
struct arm_jtag *jtag_info;
struct scan_field fields[4];
uint8_t access_type_buf = 0; /* interpreted access */
uint8_t reg_addr_buf = 0x0;
uint8_t nr_w_buf = 0;
uint8_t cp15_opcode_buf[4];
jtag_info = &arm920t->arm7_9_common.jtag_info;
retval = arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
retval = arm_jtag_set_instr(jtag_info->tap, jtag_info->intest_instr, NULL, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
buf_set_u32(cp15_opcode_buf, 0, 32, cp15_opcode);
fields[0].num_bits = 1;
fields[0].out_value = &access_type_buf;
fields[0].in_value = NULL;
fields[1].num_bits = 32;
fields[1].out_value = cp15_opcode_buf;
fields[1].in_value = NULL;
fields[2].num_bits = 6;
fields[2].out_value = ®_addr_buf;
fields[2].in_value = NULL;
fields[3].num_bits = 1;
fields[3].out_value = &nr_w_buf;
fields[3].in_value = NULL;
jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
arm9tdmi_clock_out(jtag_info, arm_opcode, 0, NULL, 0);
arm9tdmi_clock_out(jtag_info, ARMV4_5_NOP, 0, NULL, 1);
retval = arm7_9_execute_sys_speed(target);
if (retval != ERROR_OK)
return retval;
retval = jtag_execute_queue();
if (retval != ERROR_OK) {
LOG_ERROR("failed executing JTAG queue");
return retval;
}
return ERROR_OK;
}
static int arm920t_read_cp15_interpreted(struct target *target,
uint32_t cp15_opcode, uint32_t address, uint32_t *value)
{
struct arm *arm = target_to_arm(target);
uint32_t *regs_p[1];
uint32_t regs[2];
uint32_t cp15c15 = 0x0;
struct reg *r = arm->core_cache->reg_list;
/* load address into R1 */
regs[1] = address;
arm9tdmi_write_core_regs(target, 0x2, regs);
/* read-modify-write CP15 test state register
* to enable interpreted access mode */
arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
jtag_execute_queue();
cp15c15 |= 1; /* set interpret mode */
arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
/* execute CP15 instruction and ARM load (reading from coprocessor) */
arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_LDR(0, 1));
/* disable interpreted access mode */
cp15c15 &= ~1U; /* clear interpret mode */
arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
/* retrieve value from R0 */
regs_p[0] = value;
arm9tdmi_read_core_regs(target, 0x1, regs_p);
jtag_execute_queue();
#ifdef _DEBUG_INSTRUCTION_EXECUTION_
LOG_DEBUG("cp15_opcode: %8.8x, address: %8.8x, value: %8.8x",
cp15_opcode, address, *value);
#endif
if (!is_arm_mode(arm->core_mode)) {
LOG_ERROR("not a valid arm core mode - communication failure?");
return ERROR_FAIL;
}
r[0].dirty = 1;
r[1].dirty = 1;
return ERROR_OK;
}
static
int arm920t_write_cp15_interpreted(struct target *target,
uint32_t cp15_opcode, uint32_t value, uint32_t address)
{
uint32_t cp15c15 = 0x0;
struct arm *arm = target_to_arm(target);
uint32_t regs[2];
struct reg *r = arm->core_cache->reg_list;
/* load value, address into R0, R1 */
regs[0] = value;
regs[1] = address;
arm9tdmi_write_core_regs(target, 0x3, regs);
/* read-modify-write CP15 test state register
* to enable interpreted access mode */
arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
jtag_execute_queue();
cp15c15 |= 1; /* set interpret mode */
arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
/* execute CP15 instruction and ARM store (writing to coprocessor) */
arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_STR(0, 1));
/* disable interpreted access mode */
cp15c15 &= ~1U; /* set interpret mode */
arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
#ifdef _DEBUG_INSTRUCTION_EXECUTION_
LOG_DEBUG("cp15_opcode: %8.8x, value: %8.8x, address: %8.8x",
cp15_opcode, value, address);
#endif
if (!is_arm_mode(arm->core_mode)) {
LOG_ERROR("not a valid arm core mode - communication failure?");
return ERROR_FAIL;
}
r[0].dirty = 1;
r[1].dirty = 1;
return ERROR_OK;
}
/* EXPORTED to FA256 */
int arm920t_get_ttb(struct target *target, uint32_t *result)
{
int retval;
uint32_t ttb = 0x0;
retval = arm920t_read_cp15_interpreted(target,
/* FIXME use opcode macro */
0xeebf0f51, 0x0, &ttb);
if (retval != ERROR_OK)
return retval;
*result = ttb;
return ERROR_OK;
}
/* EXPORTED to FA256 */
int arm920t_disable_mmu_caches(struct target *target, int mmu,
int d_u_cache, int i_cache)
{
uint32_t cp15_control;
int retval;
/* read cp15 control register */
retval = arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_control);
if (retval != ERROR_OK)
return retval;
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
if (mmu)
cp15_control &= ~0x1U;
if (d_u_cache)
cp15_control &= ~0x4U;
if (i_cache)
cp15_control &= ~0x1000U;
retval = arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_control);
return retval;
}
/* EXPORTED to FA256 */
int arm920t_enable_mmu_caches(struct target *target, int mmu,
int d_u_cache, int i_cache)
{
uint32_t cp15_control;
int retval;
/* read cp15 control register */
retval = arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_control);
if (retval != ERROR_OK)
return retval;
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
if (mmu)
cp15_control |= 0x1U;
if (d_u_cache)
cp15_control |= 0x4U;
if (i_cache)
cp15_control |= 0x1000U;
retval = arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_control);
return retval;
}
/* EXPORTED to FA256 */
int arm920t_post_debug_entry(struct target *target)
{
uint32_t cp15c15;
struct arm920t_common *arm920t = target_to_arm920(target);
int retval;
/* examine cp15 control reg */
retval = arm920t_read_cp15_physical(target,
CP15PHYS_CTRL, &arm920t->cp15_control_reg);
if (retval != ERROR_OK)
return retval;
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, arm920t->cp15_control_reg);
if (arm920t->armv4_5_mmu.armv4_5_cache.ctype == -1) {
uint32_t cache_type_reg;
/* identify caches */
retval = arm920t_read_cp15_physical(target,
CP15PHYS_CACHETYPE, &cache_type_reg);
if (retval != ERROR_OK)
return retval;
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
armv4_5_identify_cache(cache_type_reg,
&arm920t->armv4_5_mmu.armv4_5_cache);
}
arm920t->armv4_5_mmu.mmu_enabled =
(arm920t->cp15_control_reg & 0x1U) ? 1 : 0;
arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
(arm920t->cp15_control_reg & 0x4U) ? 1 : 0;
arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
(arm920t->cp15_control_reg & 0x1000U) ? 1 : 0;
/* save i/d fault status and address register
* FIXME use opcode macros */
retval = arm920t_read_cp15_interpreted(target, 0xee150f10, 0x0, &arm920t->d_fsr);
if (retval != ERROR_OK)
return retval;
retval = arm920t_read_cp15_interpreted(target, 0xee150f30, 0x0, &arm920t->i_fsr);
if (retval != ERROR_OK)
return retval;
retval = arm920t_read_cp15_interpreted(target, 0xee160f10, 0x0, &arm920t->d_far);
if (retval != ERROR_OK)
return retval;
retval = arm920t_read_cp15_interpreted(target, 0xee160f30, 0x0, &arm920t->i_far);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("D FSR: 0x%8.8" PRIx32 ", D FAR: 0x%8.8" PRIx32
", I FSR: 0x%8.8" PRIx32 ", I FAR: 0x%8.8" PRIx32,
arm920t->d_fsr, arm920t->d_far, arm920t->i_fsr, arm920t->i_far);
if (arm920t->preserve_cache) {
/* read-modify-write CP15 test state register
* to disable I/D-cache linefills */
retval = arm920t_read_cp15_physical(target,
CP15PHYS_TESTSTATE, &cp15c15);
if (retval != ERROR_OK)
return retval;
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
cp15c15 |= 0x600;
retval = arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
if (retval != ERROR_OK)
return retval;
}
return ERROR_OK;
}
/* EXPORTED to FA256 */
void arm920t_pre_restore_context(struct target *target)
{
uint32_t cp15c15;
struct arm920t_common *arm920t = target_to_arm920(target);
/* restore i/d fault status and address register */
arm920t_write_cp15_interpreted(target, 0xee050f10, arm920t->d_fsr, 0x0);
arm920t_write_cp15_interpreted(target, 0xee050f30, arm920t->i_fsr, 0x0);
arm920t_write_cp15_interpreted(target, 0xee060f10, arm920t->d_far, 0x0);
arm920t_write_cp15_interpreted(target, 0xee060f30, arm920t->i_far, 0x0);
/* read-modify-write CP15 test state register
* to reenable I/D-cache linefills */
if (arm920t->preserve_cache) {
arm920t_read_cp15_physical(target,
CP15PHYS_TESTSTATE, &cp15c15);
jtag_execute_queue();
cp15c15 &= ~0x600U;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
}
}
static const char arm920_not[] = "target is not an ARM920";
static int arm920t_verify_pointer(struct command_context *cmd_ctx,
struct arm920t_common *arm920t)
{
if (arm920t->common_magic != ARM920T_COMMON_MAGIC) {
command_print(cmd_ctx, arm920_not);
return ERROR_TARGET_INVALID;
}
return ERROR_OK;
}
/** Logs summary of ARM920 state for a halted target. */
int arm920t_arch_state(struct target *target)
{
static const char *state[] = {
"disabled", "enabled"
};
struct arm920t_common *arm920t = target_to_arm920(target);
if (arm920t->common_magic != ARM920T_COMMON_MAGIC) {
LOG_ERROR("BUG: %s", arm920_not);
return ERROR_TARGET_INVALID;
}
arm_arch_state(target);
LOG_USER("MMU: %s, D-Cache: %s, I-Cache: %s",
state[arm920t->armv4_5_mmu.mmu_enabled],
state[arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled],
state[arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled]);
return ERROR_OK;
}
static int arm920_mmu(struct target *target, int *enabled)
{
if (target->state != TARGET_HALTED) {
LOG_ERROR("%s: target not halted", __func__);
return ERROR_TARGET_INVALID;
}
*enabled = target_to_arm920(target)->armv4_5_mmu.mmu_enabled;
return ERROR_OK;
}
static int arm920_virt2phys(struct target *target,
uint32_t virt, uint32_t *phys)
{
uint32_t cb;
struct arm920t_common *arm920t = target_to_arm920(target);
uint32_t ret;
int retval = armv4_5_mmu_translate_va(target,
&arm920t->armv4_5_mmu, virt, &cb, &ret);
if (retval != ERROR_OK)
return retval;
*phys = ret;
return ERROR_OK;
}
/** Reads a buffer, in the specified word size, with current MMU settings. */
int arm920t_read_memory(struct target *target, uint32_t address,
uint32_t size, uint32_t count, uint8_t *buffer)
{
int retval;
retval = arm7_9_read_memory(target, address, size, count, buffer);
return retval;
}
static int arm920t_read_phys_memory(struct target *target,
uint32_t address, uint32_t size,
uint32_t count, uint8_t *buffer)
{
struct arm920t_common *arm920t = target_to_arm920(target);
return armv4_5_mmu_read_physical(target, &arm920t->armv4_5_mmu,
address, size, count, buffer);
}
static int arm920t_write_phys_memory(struct target *target,
uint32_t address, uint32_t size,
uint32_t count, const uint8_t *buffer)
{
struct arm920t_common *arm920t = target_to_arm920(target);
return armv4_5_mmu_write_physical(target, &arm920t->armv4_5_mmu,
address, size, count, buffer);
}
/** Writes a buffer, in the specified word size, with current MMU settings. */
int arm920t_write_memory(struct target *target, uint32_t address,
uint32_t size, uint32_t count, const uint8_t *buffer)
{
int retval;
const uint32_t cache_mask = ~0x1f; /* cache line size : 32 byte */
struct arm920t_common *arm920t = target_to_arm920(target);
/* FIX!!!! this should be cleaned up and made much more general. The
* plan is to write up and test on arm920t specifically and
* then generalize and clean up afterwards.
*
* Also it should be moved to the callbacks that handle breakpoints
* specifically and not the generic memory write fn's. See XScale code.
*/
if (arm920t->armv4_5_mmu.mmu_enabled && (count == 1) &&
((size == 2) || (size == 4))) {
/* special case the handling of single word writes to
* bypass MMU, to allow implementation of breakpoints
* in memory marked read only
* by MMU
*/
uint32_t cb;
uint32_t pa;
/*
* We need physical address and cb
*/
retval = armv4_5_mmu_translate_va(target, &arm920t->armv4_5_mmu,
address, &cb, &pa);
if (retval != ERROR_OK)
return retval;
if (arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled) {
if (cb & 0x1) {
LOG_DEBUG("D-Cache buffered, "
"drain write buffer");
/*
* Buffered ?
* Drain write buffer - MCR p15,0,Rd,c7,c10,4
*/
retval = arm920t_write_cp15_interpreted(target,
ARMV4_5_MCR(15, 0, 0, 7, 10, 4),
0x0, 0);
if (retval != ERROR_OK)
return retval;
}
if (cb == 0x3) {
/*
* Write back memory ? -> clean cache
*
* There is no way to clean cache lines using
* cp15 scan chain, so copy the full cache
* line from cache to physical memory.
*/
uint8_t data[32];
LOG_DEBUG("D-Cache in 'write back' mode, "
"flush cache line");
retval = target_read_memory(target,
address & cache_mask, 1,
sizeof(data), &data[0]);
if (retval != ERROR_OK)
return retval;
retval = armv4_5_mmu_write_physical(target,
&arm920t->armv4_5_mmu,
pa & cache_mask, 1,
sizeof(data), &data[0]);
if (retval != ERROR_OK)
return retval;
}
/* Cached ? */
if (cb & 0x2) {
/*
* Cached ? -> Invalidate data cache using MVA
*
* MCR p15,0,Rd,c7,c6,1
*/
LOG_DEBUG("D-Cache enabled, "
"invalidate cache line");
retval = arm920t_write_cp15_interpreted(target,
ARMV4_5_MCR(15, 0, 0, 7, 6, 1), 0x0,
address & cache_mask);
if (retval != ERROR_OK)
return retval;
}
}
/* write directly to physical memory,
* bypassing any read only MMU bits, etc.
*/
retval = armv4_5_mmu_write_physical(target,
&arm920t->armv4_5_mmu, pa, size,
count, buffer);
if (retval != ERROR_OK)
return retval;
} else {
retval = arm7_9_write_memory(target, address, size, count, buffer);
if (retval != ERROR_OK)
return retval;
}
/* If ICache is enabled, we have to invalidate affected ICache lines
* the DCache is forced to write-through,
* so we don't have to clean it here
*/
if (arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled) {
if (count <= 1) {
/* invalidate ICache single entry with MVA
* mcr 15, 0, r0, cr7, cr5, {1}
*/
LOG_DEBUG("I-Cache enabled, "
"invalidating affected I-Cache line");
retval = arm920t_write_cp15_interpreted(target,
ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
0x0, address & cache_mask);
if (retval != ERROR_OK)
return retval;
} else {
/* invalidate ICache
* mcr 15, 0, r0, cr7, cr5, {0}
*/
retval = arm920t_write_cp15_interpreted(target,
ARMV4_5_MCR(15, 0, 0, 7, 5, 0),
0x0, 0x0);
if (retval != ERROR_OK)
return retval;
}
}
return ERROR_OK;
}
/* EXPORTED to FA256 */
int arm920t_soft_reset_halt(struct target *target)
{
int retval = ERROR_OK;
struct arm920t_common *arm920t = target_to_arm920(target);
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
struct arm *arm = &arm7_9->arm;
struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
retval = target_halt(target);
if (retval != ERROR_OK)
return retval;
int64_t then = timeval_ms();
bool timeout;
while (!(timeout = ((timeval_ms()-then) > 1000))) {
if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) == 0) {
embeddedice_read_reg(dbg_stat);
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
} else
break;
if (debug_level >= 3) {
/* do not eat all CPU, time out after 1 se*/
alive_sleep(100);
} else
keep_alive();
}
if (timeout) {
LOG_ERROR("Failed to halt CPU after 1 sec");
return ERROR_TARGET_TIMEOUT;
}
target->state = TARGET_HALTED;
/* SVC, ARM state, IRQ and FIQ disabled */
uint32_t cpsr;
cpsr = buf_get_u32(arm->cpsr->value, 0, 32);
cpsr &= ~0xff;
cpsr |= 0xd3;
arm_set_cpsr(arm, cpsr);
arm->cpsr->dirty = 1;
/* start fetching from 0x0 */
buf_set_u32(arm->pc->value, 0, 32, 0x0);
arm->pc->dirty = 1;
arm->pc->valid = 1;
arm920t_disable_mmu_caches(target, 1, 1, 1);
arm920t->armv4_5_mmu.mmu_enabled = 0;
arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled = 0;
arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled = 0;
return target_call_event_callbacks(target, TARGET_EVENT_HALTED);
}
/* FIXME remove forward decls */
static int arm920t_mrc(struct target *target, int cpnum,
uint32_t op1, uint32_t op2,
uint32_t CRn, uint32_t CRm,
uint32_t *value);
static int arm920t_mcr(struct target *target, int cpnum,
uint32_t op1, uint32_t op2,
uint32_t CRn, uint32_t CRm,
uint32_t value);
static int arm920t_init_arch_info(struct target *target,
struct arm920t_common *arm920t, struct jtag_tap *tap)
{
struct arm7_9_common *arm7_9 = &arm920t->arm7_9_common;
arm7_9->arm.mrc = arm920t_mrc;
arm7_9->arm.mcr = arm920t_mcr;
/* initialize arm7/arm9 specific info (including armv4_5) */
arm9tdmi_init_arch_info(target, arm7_9, tap);
arm920t->common_magic = ARM920T_COMMON_MAGIC;
arm7_9->post_debug_entry = arm920t_post_debug_entry;
arm7_9->pre_restore_context = arm920t_pre_restore_context;
arm7_9->write_memory = arm920t_write_memory;
arm920t->armv4_5_mmu.armv4_5_cache.ctype = -1;
arm920t->armv4_5_mmu.get_ttb = arm920t_get_ttb;
arm920t->armv4_5_mmu.read_memory = arm7_9_read_memory;
arm920t->armv4_5_mmu.write_memory = arm7_9_write_memory;
arm920t->armv4_5_mmu.disable_mmu_caches = arm920t_disable_mmu_caches;
arm920t->armv4_5_mmu.enable_mmu_caches = arm920t_enable_mmu_caches;
arm920t->armv4_5_mmu.has_tiny_pages = 1;
arm920t->armv4_5_mmu.mmu_enabled = 0;
/* disabling linefills leads to lockups, so keep them enabled for now
* this doesn't affect correctness, but might affect timing issues, if
* important data is evicted from the cache during the debug session
* */
arm920t->preserve_cache = 0;
/* override hw single-step capability from ARM9TDMI */
arm7_9->has_single_step = 1;
return ERROR_OK;
}
static int arm920t_target_create(struct target *target, Jim_Interp *interp)
{
struct arm920t_common *arm920t;
arm920t = calloc(1, sizeof(struct arm920t_common));
return arm920t_init_arch_info(target, arm920t, target->tap);
}
COMMAND_HANDLER(arm920t_handle_read_cache_command)
{
int retval = ERROR_OK;
struct target *target = get_current_target(CMD_CTX);
struct arm920t_common *arm920t = target_to_arm920(target);
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
struct arm *arm = &arm7_9->arm;
uint32_t cp15c15;
uint32_t cp15_ctrl, cp15_ctrl_saved;
uint32_t regs[16];
uint32_t *regs_p[16];
uint32_t C15_C_D_Ind, C15_C_I_Ind;
int i;
FILE *output;
int segment, index_t;
struct reg *r;
retval = arm920t_verify_pointer(CMD_CTX, arm920t);
if (retval != ERROR_OK)
return retval;
if (CMD_ARGC != 1)
return ERROR_COMMAND_SYNTAX_ERROR;
output = fopen(CMD_ARGV[0], "w");
if (output == NULL) {
LOG_DEBUG("error opening cache content file");
return ERROR_OK;
}
for (i = 0; i < 16; i++)
regs_p[i] = ®s[i];
/* disable MMU and Caches */
arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_ctrl);
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
cp15_ctrl_saved = cp15_ctrl;
cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED
| ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl);
/* read CP15 test state register */
arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
jtag_execute_queue();
/* read DCache content */
fprintf(output, "DCache:\n");
/* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
for (segment = 0;
segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets;
segment++) {
fprintf(output, "\nsegment: %i\n----------", segment);
/* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
regs[0] = 0x0 | (segment << 5);
arm9tdmi_write_core_regs(target, 0x1, regs);
/* set interpret mode */
cp15c15 |= 0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
/* D CAM Read, loads current victim into C15.C.D.Ind */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 2, 0, 15, 6, 2), ARMV4_5_LDR(1, 0));
/* read current victim */
arm920t_read_cp15_physical(target,
CP15PHYS_DCACHE_IDX, &C15_C_D_Ind);
/* clear interpret mode */
cp15c15 &= ~0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
for (index_t = 0; index_t < 64; index_t++) {
/* Ra:
* r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
*/
regs[0] = 0x0 | (segment << 5) | (index_t << 26);
arm9tdmi_write_core_regs(target, 0x1, regs);
/* set interpret mode */
cp15c15 |= 0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
/* Write DCache victim */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 0, 0, 9, 1, 0), ARMV4_5_LDR(1, 0));
/* Read D RAM */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 2, 0, 15, 10, 2),
ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
/* Read D CAM */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 2, 0, 15, 6, 2),
ARMV4_5_LDR(9, 0));
/* clear interpret mode */
cp15c15 &= ~0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
/* read D RAM and CAM content */
arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
/* mask LFSR[6] */
regs[9] &= 0xfffffffe;
fprintf(output, "\nsegment: %i, index: %i, CAM: 0x%8.8"
PRIx32 ", content (%s):\n",
segment, index_t, regs[9],
(regs[9] & 0x10) ? "valid" : "invalid");
for (i = 1; i < 9; i++) {
fprintf(output, "%i: 0x%8.8" PRIx32 "\n",
i-1, regs[i]);
}
}
/* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26);
arm9tdmi_write_core_regs(target, 0x1, regs);
/* set interpret mode */
cp15c15 |= 0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
/* Write DCache victim */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 0, 0, 9, 1, 0), ARMV4_5_LDR(1, 0));
/* clear interpret mode */
cp15c15 &= ~0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
}
/* read ICache content */
fprintf(output, "ICache:\n");
/* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
for (segment = 0;
segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets;
segment++) {
fprintf(output, "segment: %i\n----------", segment);
/* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
regs[0] = 0x0 | (segment << 5);
arm9tdmi_write_core_regs(target, 0x1, regs);
/* set interpret mode */
cp15c15 |= 0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
/* I CAM Read, loads current victim into C15.C.I.Ind */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 2, 0, 15, 5, 2), ARMV4_5_LDR(1, 0));
/* read current victim */
arm920t_read_cp15_physical(target, CP15PHYS_ICACHE_IDX,
&C15_C_I_Ind);
/* clear interpret mode */
cp15c15 &= ~0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
for (index_t = 0; index_t < 64; index_t++) {
/* Ra:
* r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
*/
regs[0] = 0x0 | (segment << 5) | (index_t << 26);
arm9tdmi_write_core_regs(target, 0x1, regs);
/* set interpret mode */
cp15c15 |= 0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
/* Write ICache victim */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 0, 0, 9, 1, 1), ARMV4_5_LDR(1, 0));
/* Read I RAM */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 2, 0, 15, 9, 2),
ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
/* Read I CAM */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 2, 0, 15, 5, 2),
ARMV4_5_LDR(9, 0));
/* clear interpret mode */
cp15c15 &= ~0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
/* read I RAM and CAM content */
arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
/* mask LFSR[6] */
regs[9] &= 0xfffffffe;
fprintf(output, "\nsegment: %i, index: %i, "
"CAM: 0x%8.8" PRIx32 ", content (%s):\n",
segment, index_t, regs[9],
(regs[9] & 0x10) ? "valid" : "invalid");
for (i = 1; i < 9; i++) {
fprintf(output, "%i: 0x%8.8" PRIx32 "\n",
i-1, regs[i]);
}
}
/* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26);
arm9tdmi_write_core_regs(target, 0x1, regs);
/* set interpret mode */
cp15c15 |= 0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
/* Write ICache victim */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 0, 0, 9, 1, 1), ARMV4_5_LDR(1, 0));
/* clear interpret mode */
cp15c15 &= ~0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
}
/* restore CP15 MMU and Cache settings */
arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl_saved);
command_print(CMD_CTX, "cache content successfully output to %s",
CMD_ARGV[0]);
fclose(output);
if (!is_arm_mode(arm->core_mode)) {
LOG_ERROR("not a valid arm core mode - communication failure?");
return ERROR_FAIL;
}
/* force writeback of the valid data */
r = arm->core_cache->reg_list;
r[0].dirty = r[0].valid;
r[1].dirty = r[1].valid;
r[2].dirty = r[2].valid;
r[3].dirty = r[3].valid;
r[4].dirty = r[4].valid;
r[5].dirty = r[5].valid;
r[6].dirty = r[6].valid;
r[7].dirty = r[7].valid;
r = arm_reg_current(arm, 8);
r->dirty = r->valid;
r = arm_reg_current(arm, 9);
r->dirty = r->valid;
return ERROR_OK;
}
COMMAND_HANDLER(arm920t_handle_read_mmu_command)
{
int retval = ERROR_OK;
struct target *target = get_current_target(CMD_CTX);
struct arm920t_common *arm920t = target_to_arm920(target);
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
struct arm *arm = &arm7_9->arm;
uint32_t cp15c15;
uint32_t cp15_ctrl, cp15_ctrl_saved;
uint32_t regs[16];
uint32_t *regs_p[16];
int i;
FILE *output;
uint32_t Dlockdown, Ilockdown;
struct arm920t_tlb_entry d_tlb[64], i_tlb[64];
int victim;
struct reg *r;
retval = arm920t_verify_pointer(CMD_CTX, arm920t);
if (retval != ERROR_OK)
return retval;
if (CMD_ARGC != 1)
return ERROR_COMMAND_SYNTAX_ERROR;
output = fopen(CMD_ARGV[0], "w");
if (output == NULL) {
LOG_DEBUG("error opening mmu content file");
return ERROR_OK;
}
for (i = 0; i < 16; i++)
regs_p[i] = ®s[i];
/* disable MMU and Caches */
arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_ctrl);
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
cp15_ctrl_saved = cp15_ctrl;
cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED
| ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl);
/* read CP15 test state register */
arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
/* prepare reading D TLB content
* */
/* set interpret mode */
cp15c15 |= 0x1;
arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
/* Read D TLB lockdown */
arm920t_execute_cp15(target,
ARMV4_5_MRC(15, 0, 0, 10, 0, 0), ARMV4_5_LDR(1, 0));
/* clear interpret mode */
cp15c15 &= ~0x1;
arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
/* read D TLB lockdown stored to r1 */
arm9tdmi_read_core_regs(target, 0x2, regs_p);
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
Dlockdown = regs[1];
for (victim = 0; victim < 64; victim += 8) {
/* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
* base remains unchanged, victim goes through entries 0 to 63
*/
regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
arm9tdmi_write_core_regs(target, 0x2, regs);
/* set interpret mode */
cp15c15 |= 0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
/* Write D TLB lockdown */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 0, 0, 10, 0, 0),
ARMV4_5_STR(1, 0));
/* Read D TLB CAM */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 4, 0, 15, 6, 4),
ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
/* clear interpret mode */
cp15c15 &= ~0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
/* read D TLB CAM content stored to r2-r9 */
arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
for (i = 0; i < 8; i++)
d_tlb[victim + i].cam = regs[i + 2];
}
for (victim = 0; victim < 64; victim++) {
/* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
* base remains unchanged, victim goes through entries 0 to 63
*/
regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
arm9tdmi_write_core_regs(target, 0x2, regs);
/* set interpret mode */
cp15c15 |= 0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
/* Write D TLB lockdown */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 0, 0, 10, 0, 0), ARMV4_5_STR(1, 0));
/* Read D TLB RAM1 */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 4, 0, 15, 10, 4), ARMV4_5_LDR(2, 0));
/* Read D TLB RAM2 */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 4, 0, 15, 2, 5), ARMV4_5_LDR(3, 0));
/* clear interpret mode */
cp15c15 &= ~0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
/* read D TLB RAM content stored to r2 and r3 */
arm9tdmi_read_core_regs(target, 0xc, regs_p);
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
d_tlb[victim].ram1 = regs[2];
d_tlb[victim].ram2 = regs[3];
}
/* restore D TLB lockdown */
regs[1] = Dlockdown;
arm9tdmi_write_core_regs(target, 0x2, regs);
/* Write D TLB lockdown */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 0, 0, 10, 0, 0), ARMV4_5_STR(1, 0));
/* prepare reading I TLB content
* */
/* set interpret mode */
cp15c15 |= 0x1;
arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
/* Read I TLB lockdown */
arm920t_execute_cp15(target,
ARMV4_5_MRC(15, 0, 0, 10, 0, 1), ARMV4_5_LDR(1, 0));
/* clear interpret mode */
cp15c15 &= ~0x1;
arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
/* read I TLB lockdown stored to r1 */
arm9tdmi_read_core_regs(target, 0x2, regs_p);
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
Ilockdown = regs[1];
for (victim = 0; victim < 64; victim += 8) {
/* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
* base remains unchanged, victim goes through entries 0 to 63
*/
regs[1] = (Ilockdown & 0xfc000000) | (victim << 20);
arm9tdmi_write_core_regs(target, 0x2, regs);
/* set interpret mode */
cp15c15 |= 0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
/* Write I TLB lockdown */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 0, 0, 10, 0, 1),
ARMV4_5_STR(1, 0));
/* Read I TLB CAM */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 4, 0, 15, 5, 4),
ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
/* clear interpret mode */
cp15c15 &= ~0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
/* read I TLB CAM content stored to r2-r9 */
arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
for (i = 0; i < 8; i++)
i_tlb[i + victim].cam = regs[i + 2];
}
for (victim = 0; victim < 64; victim++) {
/* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
* base remains unchanged, victim goes through entries 0 to 63
*/
regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
arm9tdmi_write_core_regs(target, 0x2, regs);
/* set interpret mode */
cp15c15 |= 0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
/* Write I TLB lockdown */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 0, 0, 10, 0, 1), ARMV4_5_STR(1, 0));
/* Read I TLB RAM1 */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 4, 0, 15, 9, 4), ARMV4_5_LDR(2, 0));
/* Read I TLB RAM2 */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 4, 0, 15, 1, 5), ARMV4_5_LDR(3, 0));
/* clear interpret mode */
cp15c15 &= ~0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
/* read I TLB RAM content stored to r2 and r3 */
arm9tdmi_read_core_regs(target, 0xc, regs_p);
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
i_tlb[victim].ram1 = regs[2];
i_tlb[victim].ram2 = regs[3];
}
/* restore I TLB lockdown */
regs[1] = Ilockdown;
arm9tdmi_write_core_regs(target, 0x2, regs);
/* Write I TLB lockdown */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 0, 0, 10, 0, 1), ARMV4_5_STR(1, 0));
/* restore CP15 MMU and Cache settings */
arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl_saved);
/* output data to file */
fprintf(output, "D TLB content:\n");
for (i = 0; i < 64; i++) {
fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32
" 0x%8.8" PRIx32 " %s\n",
i, d_tlb[i].cam, d_tlb[i].ram1, d_tlb[i].ram2,
(d_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
}
fprintf(output, "\n\nI TLB content:\n");
for (i = 0; i < 64; i++) {
fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32
" 0x%8.8" PRIx32 " %s\n",
i, i_tlb[i].cam, i_tlb[i].ram1, i_tlb[i].ram2,
(i_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
}
command_print(CMD_CTX, "mmu content successfully output to %s",
CMD_ARGV[0]);
fclose(output);
if (!is_arm_mode(arm->core_mode)) {
LOG_ERROR("not a valid arm core mode - communication failure?");
return ERROR_FAIL;
}
/* force writeback of the valid data */
r = arm->core_cache->reg_list;
r[0].dirty = r[0].valid;
r[1].dirty = r[1].valid;
r[2].dirty = r[2].valid;
r[3].dirty = r[3].valid;
r[4].dirty = r[4].valid;
r[5].dirty = r[5].valid;
r[6].dirty = r[6].valid;
r[7].dirty = r[7].valid;
r = arm_reg_current(arm, 8);
r->dirty = r->valid;
r = arm_reg_current(arm, 9);
r->dirty = r->valid;
return ERROR_OK;
}
COMMAND_HANDLER(arm920t_handle_cp15_command)
{
int retval;
struct target *target = get_current_target(CMD_CTX);
struct arm920t_common *arm920t = target_to_arm920(target);
retval = arm920t_verify_pointer(CMD_CTX, arm920t);
if (retval != ERROR_OK)
return retval;
if (target->state != TARGET_HALTED) {
command_print(CMD_CTX, "target must be stopped for "
"\"%s\" command", CMD_NAME);
return ERROR_OK;
}
/* one argument, read a register.
* two arguments, write it.
*/
if (CMD_ARGC >= 1) {
int address;
COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], address);
if (CMD_ARGC == 1) {
uint32_t value;
retval = arm920t_read_cp15_physical(target, address, &value);
if (retval != ERROR_OK) {
command_print(CMD_CTX,
"couldn't access reg %i", address);
return ERROR_OK;
}
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
command_print(CMD_CTX, "%i: %8.8" PRIx32,
address, value);
} else if (CMD_ARGC == 2) {
uint32_t value;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
retval = arm920t_write_cp15_physical(target,
address, value);
if (retval != ERROR_OK) {
command_print(CMD_CTX,
"couldn't access reg %i", address);
/* REVISIT why lie? "return retval"? */
return ERROR_OK;
}
command_print(CMD_CTX, "%i: %8.8" PRIx32,
address, value);
}
}
return ERROR_OK;
}
COMMAND_HANDLER(arm920t_handle_cp15i_command)
{
int retval;
struct target *target = get_current_target(CMD_CTX);
struct arm920t_common *arm920t = target_to_arm920(target);
retval = arm920t_verify_pointer(CMD_CTX, arm920t);
if (retval != ERROR_OK)
return retval;
if (target->state != TARGET_HALTED) {
command_print(CMD_CTX, "target must be stopped for "
"\"%s\" command", CMD_NAME);
return ERROR_OK;
}
/* one argument, read a register.
* two arguments, write it.
*/
if (CMD_ARGC >= 1) {
uint32_t opcode;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], opcode);
if (CMD_ARGC == 1) {
uint32_t value;
retval = arm920t_read_cp15_interpreted(target,
opcode, 0x0, &value);
if (retval != ERROR_OK) {
command_print(CMD_CTX,
"couldn't execute %8.8" PRIx32,
opcode);
/* REVISIT why lie? "return retval"? */
return ERROR_OK;
}
command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32,
opcode, value);
} else if (CMD_ARGC == 2) {
uint32_t value;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
retval = arm920t_write_cp15_interpreted(target,
opcode, value, 0);
if (retval != ERROR_OK) {
command_print(CMD_CTX,
"couldn't execute %8.8" PRIx32,
opcode);
/* REVISIT why lie? "return retval"? */
return ERROR_OK;
}
command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32,
opcode, value);
} else if (CMD_ARGC == 3) {
uint32_t value;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
uint32_t address;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], address);
retval = arm920t_write_cp15_interpreted(target,
opcode, value, address);
if (retval != ERROR_OK) {
command_print(CMD_CTX,
"couldn't execute %8.8" PRIx32, opcode);
/* REVISIT why lie? "return retval"? */
return ERROR_OK;
}
command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32
" %8.8" PRIx32, opcode, value, address);
}
} else
return ERROR_COMMAND_SYNTAX_ERROR;
return ERROR_OK;
}
COMMAND_HANDLER(arm920t_handle_cache_info_command)
{
int retval;
struct target *target = get_current_target(CMD_CTX);
struct arm920t_common *arm920t = target_to_arm920(target);
retval = arm920t_verify_pointer(CMD_CTX, arm920t);
if (retval != ERROR_OK)
return retval;
return armv4_5_handle_cache_info_command(CMD_CTX,
&arm920t->armv4_5_mmu.armv4_5_cache);
}
static int arm920t_mrc(struct target *target, int cpnum,
uint32_t op1, uint32_t op2,
uint32_t CRn, uint32_t CRm,
uint32_t *value)
{
if (cpnum != 15) {
LOG_ERROR("Only cp15 is supported");
return ERROR_FAIL;
}
/* read "to" r0 */
return arm920t_read_cp15_interpreted(target,
ARMV4_5_MRC(cpnum, op1, 0, CRn, CRm, op2),
0, value);
}
static int arm920t_mcr(struct target *target, int cpnum,
uint32_t op1, uint32_t op2,
uint32_t CRn, uint32_t CRm,
uint32_t value)
{
if (cpnum != 15) {
LOG_ERROR("Only cp15 is supported");
return ERROR_FAIL;
}
/* write "from" r0 */
return arm920t_write_cp15_interpreted(target,
ARMV4_5_MCR(cpnum, op1, 0, CRn, CRm, op2),
0, value);
}
static const struct command_registration arm920t_exec_command_handlers[] = {
{
.name = "cp15",
.handler = arm920t_handle_cp15_command,
.mode = COMMAND_EXEC,
.help = "display/modify cp15 register",
.usage = "regnum [value]",
},
{
.name = "cp15i",
.handler = arm920t_handle_cp15i_command,
.mode = COMMAND_EXEC,
/* prefer using less error-prone "arm mcr" or "arm mrc" */
.help = "display/modify cp15 register using ARM opcode"
" (DEPRECATED)",
.usage = "instruction [value [address]]",
},
{
.name = "cache_info",
.handler = arm920t_handle_cache_info_command,
.mode = COMMAND_EXEC,
.usage = "",
.help = "display information about target caches",
},
{
.name = "read_cache",
.handler = arm920t_handle_read_cache_command,
.mode = COMMAND_EXEC,
.help = "dump I/D cache content to file",
.usage = "filename",
},
{
.name = "read_mmu",
.handler = arm920t_handle_read_mmu_command,
.mode = COMMAND_EXEC,
.help = "dump I/D mmu content to file",
.usage = "filename",
},
COMMAND_REGISTRATION_DONE
};
const struct command_registration arm920t_command_handlers[] = {
{
.chain = arm9tdmi_command_handlers,
},
{
.name = "arm920t",
.mode = COMMAND_ANY,
.help = "arm920t command group",
.usage = "",
.chain = arm920t_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
/** Holds methods for ARM920 targets. */
struct target_type arm920t_target = {
.name = "arm920t",
.poll = arm7_9_poll,
.arch_state = arm920t_arch_state,
.target_request_data = arm7_9_target_request_data,
.halt = arm7_9_halt,
.resume = arm7_9_resume,
.step = arm7_9_step,
.assert_reset = arm7_9_assert_reset,
.deassert_reset = arm7_9_deassert_reset,
.soft_reset_halt = arm920t_soft_reset_halt,
.get_gdb_reg_list = arm_get_gdb_reg_list,
.read_memory = arm920t_read_memory,
.write_memory = arm7_9_write_memory_opt,
.read_phys_memory = arm920t_read_phys_memory,
.write_phys_memory = arm920t_write_phys_memory,
.mmu = arm920_mmu,
.virt2phys = arm920_virt2phys,
.checksum_memory = arm_checksum_memory,
.blank_check_memory = arm_blank_check_memory,
.run_algorithm = armv4_5_run_algorithm,
.add_breakpoint = arm7_9_add_breakpoint,
.remove_breakpoint = arm7_9_remove_breakpoint,
.add_watchpoint = arm7_9_add_watchpoint,
.remove_watchpoint = arm7_9_remove_watchpoint,
.commands = arm920t_command_handlers,
.target_create = arm920t_target_create,
.init_target = arm9tdmi_init_target,
.examine = arm7_9_examine,
.check_reset = arm7_9_check_reset,
};