1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
|
//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the CodeGenDAGPatterns class, which is used to read and
// represent the patterns present in a .td file for instructions.
//
//===----------------------------------------------------------------------===//
#include "CodeGenDAGPatterns.h"
#include "Record.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Debug.h"
#include <set>
#include <algorithm>
using namespace llvm;
//===----------------------------------------------------------------------===//
// EEVT::TypeSet Implementation
//===----------------------------------------------------------------------===//
static inline bool isInteger(MVT::SimpleValueType VT) {
return EVT(VT).isInteger();
}
static inline bool isFloatingPoint(MVT::SimpleValueType VT) {
return EVT(VT).isFloatingPoint();
}
static inline bool isVector(MVT::SimpleValueType VT) {
return EVT(VT).isVector();
}
static inline bool isScalar(MVT::SimpleValueType VT) {
return !EVT(VT).isVector();
}
EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) {
if (VT == MVT::iAny)
EnforceInteger(TP);
else if (VT == MVT::fAny)
EnforceFloatingPoint(TP);
else if (VT == MVT::vAny)
EnforceVector(TP);
else {
assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR ||
VT == MVT::iPTRAny) && "Not a concrete type!");
TypeVec.push_back(VT);
}
}
EEVT::TypeSet::TypeSet(const std::vector<MVT::SimpleValueType> &VTList) {
assert(!VTList.empty() && "empty list?");
TypeVec.append(VTList.begin(), VTList.end());
if (!VTList.empty())
assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny &&
VTList[0] != MVT::fAny);
// Verify no duplicates.
array_pod_sort(TypeVec.begin(), TypeVec.end());
assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end());
}
/// FillWithPossibleTypes - Set to all legal types and return true, only valid
/// on completely unknown type sets.
bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP,
bool (*Pred)(MVT::SimpleValueType),
const char *PredicateName) {
assert(isCompletelyUnknown());
const std::vector<MVT::SimpleValueType> &LegalTypes =
TP.getDAGPatterns().getTargetInfo().getLegalValueTypes();
for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i)
if (Pred == 0 || Pred(LegalTypes[i]))
TypeVec.push_back(LegalTypes[i]);
// If we have nothing that matches the predicate, bail out.
if (TypeVec.empty())
TP.error("Type inference contradiction found, no " +
std::string(PredicateName) + " types found");
// No need to sort with one element.
if (TypeVec.size() == 1) return true;
// Remove duplicates.
array_pod_sort(TypeVec.begin(), TypeVec.end());
TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end());
return true;
}
/// hasIntegerTypes - Return true if this TypeSet contains iAny or an
/// integer value type.
bool EEVT::TypeSet::hasIntegerTypes() const {
for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
if (isInteger(TypeVec[i]))
return true;
return false;
}
/// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
/// a floating point value type.
bool EEVT::TypeSet::hasFloatingPointTypes() const {
for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
if (isFloatingPoint(TypeVec[i]))
return true;
return false;
}
/// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector
/// value type.
bool EEVT::TypeSet::hasVectorTypes() const {
for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
if (isVector(TypeVec[i]))
return true;
return false;
}
std::string EEVT::TypeSet::getName() const {
if (TypeVec.empty()) return "<empty>";
std::string Result;
for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) {
std::string VTName = llvm::getEnumName(TypeVec[i]);
// Strip off MVT:: prefix if present.
if (VTName.substr(0,5) == "MVT::")
VTName = VTName.substr(5);
if (i) Result += ':';
Result += VTName;
}
if (TypeVec.size() == 1)
return Result;
return "{" + Result + "}";
}
/// MergeInTypeInfo - This merges in type information from the specified
/// argument. If 'this' changes, it returns true. If the two types are
/// contradictory (e.g. merge f32 into i32) then this throws an exception.
bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){
if (InVT.isCompletelyUnknown() || *this == InVT)
return false;
if (isCompletelyUnknown()) {
*this = InVT;
return true;
}
assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns");
// Handle the abstract cases, seeing if we can resolve them better.
switch (TypeVec[0]) {
default: break;
case MVT::iPTR:
case MVT::iPTRAny:
if (InVT.hasIntegerTypes()) {
EEVT::TypeSet InCopy(InVT);
InCopy.EnforceInteger(TP);
InCopy.EnforceScalar(TP);
if (InCopy.isConcrete()) {
// If the RHS has one integer type, upgrade iPTR to i32.
TypeVec[0] = InVT.TypeVec[0];
return true;
}
// If the input has multiple scalar integers, this doesn't add any info.
if (!InCopy.isCompletelyUnknown())
return false;
}
break;
}
// If the input constraint is iAny/iPTR and this is an integer type list,
// remove non-integer types from the list.
if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
hasIntegerTypes()) {
bool MadeChange = EnforceInteger(TP);
// If we're merging in iPTR/iPTRAny and the node currently has a list of
// multiple different integer types, replace them with a single iPTR.
if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
TypeVec.size() != 1) {
TypeVec.resize(1);
TypeVec[0] = InVT.TypeVec[0];
MadeChange = true;
}
return MadeChange;
}
// If this is a type list and the RHS is a typelist as well, eliminate entries
// from this list that aren't in the other one.
bool MadeChange = false;
TypeSet InputSet(*this);
for (unsigned i = 0; i != TypeVec.size(); ++i) {
bool InInVT = false;
for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j)
if (TypeVec[i] == InVT.TypeVec[j]) {
InInVT = true;
break;
}
if (InInVT) continue;
TypeVec.erase(TypeVec.begin()+i--);
MadeChange = true;
}
// If we removed all of our types, we have a type contradiction.
if (!TypeVec.empty())
return MadeChange;
// FIXME: Really want an SMLoc here!
TP.error("Type inference contradiction found, merging '" +
InVT.getName() + "' into '" + InputSet.getName() + "'");
return true; // unreachable
}
/// EnforceInteger - Remove all non-integer types from this set.
bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) {
// If we know nothing, then get the full set.
if (TypeVec.empty())
return FillWithPossibleTypes(TP, isInteger, "integer");
if (!hasFloatingPointTypes())
return false;
TypeSet InputSet(*this);
// Filter out all the fp types.
for (unsigned i = 0; i != TypeVec.size(); ++i)
if (!isInteger(TypeVec[i]))
TypeVec.erase(TypeVec.begin()+i--);
if (TypeVec.empty())
TP.error("Type inference contradiction found, '" +
InputSet.getName() + "' needs to be integer");
return true;
}
/// EnforceFloatingPoint - Remove all integer types from this set.
bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) {
// If we know nothing, then get the full set.
if (TypeVec.empty())
return FillWithPossibleTypes(TP, isFloatingPoint, "floating point");
if (!hasIntegerTypes())
return false;
TypeSet InputSet(*this);
// Filter out all the fp types.
for (unsigned i = 0; i != TypeVec.size(); ++i)
if (!isFloatingPoint(TypeVec[i]))
TypeVec.erase(TypeVec.begin()+i--);
if (TypeVec.empty())
TP.error("Type inference contradiction found, '" +
InputSet.getName() + "' needs to be floating point");
return true;
}
/// EnforceScalar - Remove all vector types from this.
bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) {
// If we know nothing, then get the full set.
if (TypeVec.empty())
return FillWithPossibleTypes(TP, isScalar, "scalar");
if (!hasVectorTypes())
return false;
TypeSet InputSet(*this);
// Filter out all the vector types.
for (unsigned i = 0; i != TypeVec.size(); ++i)
if (!isScalar(TypeVec[i]))
TypeVec.erase(TypeVec.begin()+i--);
if (TypeVec.empty())
TP.error("Type inference contradiction found, '" +
InputSet.getName() + "' needs to be scalar");
return true;
}
/// EnforceVector - Remove all vector types from this.
bool EEVT::TypeSet::EnforceVector(TreePattern &TP) {
// If we know nothing, then get the full set.
if (TypeVec.empty())
return FillWithPossibleTypes(TP, isVector, "vector");
TypeSet InputSet(*this);
bool MadeChange = false;
// Filter out all the scalar types.
for (unsigned i = 0; i != TypeVec.size(); ++i)
if (!isVector(TypeVec[i])) {
TypeVec.erase(TypeVec.begin()+i--);
MadeChange = true;
}
if (TypeVec.empty())
TP.error("Type inference contradiction found, '" +
InputSet.getName() + "' needs to be a vector");
return MadeChange;
}
/// EnforceSmallerThan - 'this' must be a smaller VT than Other. Update
/// this an other based on this information.
bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) {
// Both operands must be integer or FP, but we don't care which.
bool MadeChange = false;
if (isCompletelyUnknown())
MadeChange = FillWithPossibleTypes(TP);
if (Other.isCompletelyUnknown())
MadeChange = Other.FillWithPossibleTypes(TP);
// If one side is known to be integer or known to be FP but the other side has
// no information, get at least the type integrality info in there.
if (!hasFloatingPointTypes())
MadeChange |= Other.EnforceInteger(TP);
else if (!hasIntegerTypes())
MadeChange |= Other.EnforceFloatingPoint(TP);
if (!Other.hasFloatingPointTypes())
MadeChange |= EnforceInteger(TP);
else if (!Other.hasIntegerTypes())
MadeChange |= EnforceFloatingPoint(TP);
assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() &&
"Should have a type list now");
// If one contains vectors but the other doesn't pull vectors out.
if (!hasVectorTypes())
MadeChange |= Other.EnforceScalar(TP);
if (!hasVectorTypes())
MadeChange |= EnforceScalar(TP);
// This code does not currently handle nodes which have multiple types,
// where some types are integer, and some are fp. Assert that this is not
// the case.
assert(!(hasIntegerTypes() && hasFloatingPointTypes()) &&
!(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) &&
"SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
// Okay, find the smallest type from the current set and remove it from the
// largest set.
MVT::SimpleValueType Smallest = TypeVec[0];
for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
if (TypeVec[i] < Smallest)
Smallest = TypeVec[i];
// If this is the only type in the large set, the constraint can never be
// satisfied.
if (Other.TypeVec.size() == 1 && Other.TypeVec[0] == Smallest)
TP.error("Type inference contradiction found, '" +
Other.getName() + "' has nothing larger than '" + getName() +"'!");
SmallVector<MVT::SimpleValueType, 2>::iterator TVI =
std::find(Other.TypeVec.begin(), Other.TypeVec.end(), Smallest);
if (TVI != Other.TypeVec.end()) {
Other.TypeVec.erase(TVI);
MadeChange = true;
}
// Okay, find the largest type in the Other set and remove it from the
// current set.
MVT::SimpleValueType Largest = Other.TypeVec[0];
for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
if (Other.TypeVec[i] > Largest)
Largest = Other.TypeVec[i];
// If this is the only type in the small set, the constraint can never be
// satisfied.
if (TypeVec.size() == 1 && TypeVec[0] == Largest)
TP.error("Type inference contradiction found, '" +
getName() + "' has nothing smaller than '" + Other.getName()+"'!");
TVI = std::find(TypeVec.begin(), TypeVec.end(), Largest);
if (TVI != TypeVec.end()) {
TypeVec.erase(TVI);
MadeChange = true;
}
return MadeChange;
}
/// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type
/// whose element is specified by VTOperand.
bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand,
TreePattern &TP) {
// "This" must be a vector and "VTOperand" must be a scalar.
bool MadeChange = false;
MadeChange |= EnforceVector(TP);
MadeChange |= VTOperand.EnforceScalar(TP);
// If we know the vector type, it forces the scalar to agree.
if (isConcrete()) {
EVT IVT = getConcrete();
IVT = IVT.getVectorElementType();
return MadeChange |
VTOperand.MergeInTypeInfo(IVT.getSimpleVT().SimpleTy, TP);
}
// If the scalar type is known, filter out vector types whose element types
// disagree.
if (!VTOperand.isConcrete())
return MadeChange;
MVT::SimpleValueType VT = VTOperand.getConcrete();
TypeSet InputSet(*this);
// Filter out all the types which don't have the right element type.
for (unsigned i = 0; i != TypeVec.size(); ++i) {
assert(isVector(TypeVec[i]) && "EnforceVector didn't work");
if (EVT(TypeVec[i]).getVectorElementType().getSimpleVT().SimpleTy != VT) {
TypeVec.erase(TypeVec.begin()+i--);
MadeChange = true;
}
}
if (TypeVec.empty()) // FIXME: Really want an SMLoc here!
TP.error("Type inference contradiction found, forcing '" +
InputSet.getName() + "' to have a vector element");
return MadeChange;
}
//===----------------------------------------------------------------------===//
// Helpers for working with extended types.
bool RecordPtrCmp::operator()(const Record *LHS, const Record *RHS) const {
return LHS->getID() < RHS->getID();
}
/// Dependent variable map for CodeGenDAGPattern variant generation
typedef std::map<std::string, int> DepVarMap;
/// Const iterator shorthand for DepVarMap
typedef DepVarMap::const_iterator DepVarMap_citer;
namespace {
void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
if (N->isLeaf()) {
if (dynamic_cast<DefInit*>(N->getLeafValue()) != NULL) {
DepMap[N->getName()]++;
}
} else {
for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
FindDepVarsOf(N->getChild(i), DepMap);
}
}
//! Find dependent variables within child patterns
/*!
*/
void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
DepVarMap depcounts;
FindDepVarsOf(N, depcounts);
for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) {
if (i->second > 1) { // std::pair<std::string, int>
DepVars.insert(i->first);
}
}
}
//! Dump the dependent variable set:
void DumpDepVars(MultipleUseVarSet &DepVars) {
if (DepVars.empty()) {
DEBUG(errs() << "<empty set>");
} else {
DEBUG(errs() << "[ ");
for (MultipleUseVarSet::const_iterator i = DepVars.begin(), e = DepVars.end();
i != e; ++i) {
DEBUG(errs() << (*i) << " ");
}
DEBUG(errs() << "]");
}
}
}
//===----------------------------------------------------------------------===//
// PatternToMatch implementation
//
/// getPatternSize - Return the 'size' of this pattern. We want to match large
/// patterns before small ones. This is used to determine the size of a
/// pattern.
static unsigned getPatternSize(const TreePatternNode *P,
const CodeGenDAGPatterns &CGP) {
unsigned Size = 3; // The node itself.
// If the root node is a ConstantSDNode, increases its size.
// e.g. (set R32:$dst, 0).
if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue()))
Size += 2;
// FIXME: This is a hack to statically increase the priority of patterns
// which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
// Later we can allow complexity / cost for each pattern to be (optionally)
// specified. To get best possible pattern match we'll need to dynamically
// calculate the complexity of all patterns a dag can potentially map to.
const ComplexPattern *AM = P->getComplexPatternInfo(CGP);
if (AM)
Size += AM->getNumOperands() * 3;
// If this node has some predicate function that must match, it adds to the
// complexity of this node.
if (!P->getPredicateFns().empty())
++Size;
// Count children in the count if they are also nodes.
for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
TreePatternNode *Child = P->getChild(i);
if (!Child->isLeaf() && Child->getNumTypes() &&
Child->getType(0) != MVT::Other)
Size += getPatternSize(Child, CGP);
else if (Child->isLeaf()) {
if (dynamic_cast<IntInit*>(Child->getLeafValue()))
Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
else if (Child->getComplexPatternInfo(CGP))
Size += getPatternSize(Child, CGP);
else if (!Child->getPredicateFns().empty())
++Size;
}
}
return Size;
}
/// Compute the complexity metric for the input pattern. This roughly
/// corresponds to the number of nodes that are covered.
unsigned PatternToMatch::
getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
}
/// getPredicateCheck - Return a single string containing all of this
/// pattern's predicates concatenated with "&&" operators.
///
std::string PatternToMatch::getPredicateCheck() const {
std::string PredicateCheck;
for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) {
Record *Def = Pred->getDef();
if (!Def->isSubClassOf("Predicate")) {
#ifndef NDEBUG
Def->dump();
#endif
assert(0 && "Unknown predicate type!");
}
if (!PredicateCheck.empty())
PredicateCheck += " && ";
PredicateCheck += "(" + Def->getValueAsString("CondString") + ")";
}
}
return PredicateCheck;
}
//===----------------------------------------------------------------------===//
// SDTypeConstraint implementation
//
SDTypeConstraint::SDTypeConstraint(Record *R) {
OperandNo = R->getValueAsInt("OperandNum");
if (R->isSubClassOf("SDTCisVT")) {
ConstraintType = SDTCisVT;
x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
if (x.SDTCisVT_Info.VT == MVT::isVoid)
throw TGError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
} else if (R->isSubClassOf("SDTCisPtrTy")) {
ConstraintType = SDTCisPtrTy;
} else if (R->isSubClassOf("SDTCisInt")) {
ConstraintType = SDTCisInt;
} else if (R->isSubClassOf("SDTCisFP")) {
ConstraintType = SDTCisFP;
} else if (R->isSubClassOf("SDTCisVec")) {
ConstraintType = SDTCisVec;
} else if (R->isSubClassOf("SDTCisSameAs")) {
ConstraintType = SDTCisSameAs;
x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
} else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
ConstraintType = SDTCisVTSmallerThanOp;
x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
R->getValueAsInt("OtherOperandNum");
} else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
ConstraintType = SDTCisOpSmallerThanOp;
x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
R->getValueAsInt("BigOperandNum");
} else if (R->isSubClassOf("SDTCisEltOfVec")) {
ConstraintType = SDTCisEltOfVec;
x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
} else {
errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
exit(1);
}
}
/// getOperandNum - Return the node corresponding to operand #OpNo in tree
/// N, and the result number in ResNo.
static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
const SDNodeInfo &NodeInfo,
unsigned &ResNo) {
unsigned NumResults = NodeInfo.getNumResults();
if (OpNo < NumResults) {
ResNo = OpNo;
return N;
}
OpNo -= NumResults;
if (OpNo >= N->getNumChildren()) {
errs() << "Invalid operand number in type constraint "
<< (OpNo+NumResults) << " ";
N->dump();
errs() << '\n';
exit(1);
}
return N->getChild(OpNo);
}
/// ApplyTypeConstraint - Given a node in a pattern, apply this type
/// constraint to the nodes operands. This returns true if it makes a
/// change, false otherwise. If a type contradiction is found, throw an
/// exception.
bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
const SDNodeInfo &NodeInfo,
TreePattern &TP) const {
unsigned ResNo = 0; // The result number being referenced.
TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
switch (ConstraintType) {
default: assert(0 && "Unknown constraint type!");
case SDTCisVT:
// Operand must be a particular type.
return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP);
case SDTCisPtrTy:
// Operand must be same as target pointer type.
return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
case SDTCisInt:
// Require it to be one of the legal integer VTs.
return NodeToApply->getExtType(ResNo).EnforceInteger(TP);
case SDTCisFP:
// Require it to be one of the legal fp VTs.
return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP);
case SDTCisVec:
// Require it to be one of the legal vector VTs.
return NodeToApply->getExtType(ResNo).EnforceVector(TP);
case SDTCisSameAs: {
unsigned OResNo = 0;
TreePatternNode *OtherNode =
getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)|
OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP);
}
case SDTCisVTSmallerThanOp: {
// The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
// have an integer type that is smaller than the VT.
if (!NodeToApply->isLeaf() ||
!dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) ||
!static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
->isSubClassOf("ValueType"))
TP.error(N->getOperator()->getName() + " expects a VT operand!");
MVT::SimpleValueType VT =
getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
EEVT::TypeSet TypeListTmp(VT, TP);
unsigned OResNo = 0;
TreePatternNode *OtherNode =
getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
OResNo);
return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP);
}
case SDTCisOpSmallerThanOp: {
unsigned BResNo = 0;
TreePatternNode *BigOperand =
getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
BResNo);
return NodeToApply->getExtType(ResNo).
EnforceSmallerThan(BigOperand->getExtType(BResNo), TP);
}
case SDTCisEltOfVec: {
unsigned VResNo = 0;
TreePatternNode *VecOperand =
getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
VResNo);
// Filter vector types out of VecOperand that don't have the right element
// type.
return VecOperand->getExtType(VResNo).
EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP);
}
}
return false;
}
//===----------------------------------------------------------------------===//
// SDNodeInfo implementation
//
SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
EnumName = R->getValueAsString("Opcode");
SDClassName = R->getValueAsString("SDClass");
Record *TypeProfile = R->getValueAsDef("TypeProfile");
NumResults = TypeProfile->getValueAsInt("NumResults");
NumOperands = TypeProfile->getValueAsInt("NumOperands");
// Parse the properties.
Properties = 0;
std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
if (PropList[i]->getName() == "SDNPCommutative") {
Properties |= 1 << SDNPCommutative;
} else if (PropList[i]->getName() == "SDNPAssociative") {
Properties |= 1 << SDNPAssociative;
} else if (PropList[i]->getName() == "SDNPHasChain") {
Properties |= 1 << SDNPHasChain;
} else if (PropList[i]->getName() == "SDNPOutFlag") {
Properties |= 1 << SDNPOutFlag;
} else if (PropList[i]->getName() == "SDNPInFlag") {
Properties |= 1 << SDNPInFlag;
} else if (PropList[i]->getName() == "SDNPOptInFlag") {
Properties |= 1 << SDNPOptInFlag;
} else if (PropList[i]->getName() == "SDNPMayStore") {
Properties |= 1 << SDNPMayStore;
} else if (PropList[i]->getName() == "SDNPMayLoad") {
Properties |= 1 << SDNPMayLoad;
} else if (PropList[i]->getName() == "SDNPSideEffect") {
Properties |= 1 << SDNPSideEffect;
} else if (PropList[i]->getName() == "SDNPMemOperand") {
Properties |= 1 << SDNPMemOperand;
} else if (PropList[i]->getName() == "SDNPVariadic") {
Properties |= 1 << SDNPVariadic;
} else {
errs() << "Unknown SD Node property '" << PropList[i]->getName()
<< "' on node '" << R->getName() << "'!\n";
exit(1);
}
}
// Parse the type constraints.
std::vector<Record*> ConstraintList =
TypeProfile->getValueAsListOfDefs("Constraints");
TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
}
/// getKnownType - If the type constraints on this node imply a fixed type
/// (e.g. all stores return void, etc), then return it as an
/// MVT::SimpleValueType. Otherwise, return EEVT::Other.
MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
unsigned NumResults = getNumResults();
assert(NumResults <= 1 &&
"We only work with nodes with zero or one result so far!");
assert(ResNo == 0 && "Only handles single result nodes so far");
for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) {
// Make sure that this applies to the correct node result.
if (TypeConstraints[i].OperandNo >= NumResults) // FIXME: need value #
continue;
switch (TypeConstraints[i].ConstraintType) {
default: break;
case SDTypeConstraint::SDTCisVT:
return TypeConstraints[i].x.SDTCisVT_Info.VT;
case SDTypeConstraint::SDTCisPtrTy:
return MVT::iPTR;
}
}
return MVT::Other;
}
//===----------------------------------------------------------------------===//
// TreePatternNode implementation
//
TreePatternNode::~TreePatternNode() {
#if 0 // FIXME: implement refcounted tree nodes!
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
delete getChild(i);
#endif
}
static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
if (Operator->getName() == "set" ||
Operator->getName() == "implicit")
return 0; // All return nothing.
if (Operator->isSubClassOf("Intrinsic"))
return CDP.getIntrinsic(Operator).IS.RetVTs.size();
if (Operator->isSubClassOf("SDNode"))
return CDP.getSDNodeInfo(Operator).getNumResults();
if (Operator->isSubClassOf("PatFrag")) {
// If we've already parsed this pattern fragment, get it. Otherwise, handle
// the forward reference case where one pattern fragment references another
// before it is processed.
if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator))
return PFRec->getOnlyTree()->getNumTypes();
// Get the result tree.
DagInit *Tree = Operator->getValueAsDag("Fragment");
Record *Op = 0;
if (Tree && dynamic_cast<DefInit*>(Tree->getOperator()))
Op = dynamic_cast<DefInit*>(Tree->getOperator())->getDef();
assert(Op && "Invalid Fragment");
return GetNumNodeResults(Op, CDP);
}
if (Operator->isSubClassOf("Instruction")) {
CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
// FIXME: Should allow access to all the results here.
unsigned NumDefsToAdd = InstInfo.NumDefs ? 1 : 0;
// Add on one implicit def if it has a resolvable type.
if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
++NumDefsToAdd;
return NumDefsToAdd;
}
if (Operator->isSubClassOf("SDNodeXForm"))
return 1; // FIXME: Generalize SDNodeXForm
Operator->dump();
errs() << "Unhandled node in GetNumNodeResults\n";
exit(1);
}
void TreePatternNode::print(raw_ostream &OS) const {
if (isLeaf())
OS << *getLeafValue();
else
OS << '(' << getOperator()->getName();
for (unsigned i = 0, e = Types.size(); i != e; ++i)
OS << ':' << getExtType(i).getName();
if (!isLeaf()) {
if (getNumChildren() != 0) {
OS << " ";
getChild(0)->print(OS);
for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
OS << ", ";
getChild(i)->print(OS);
}
}
OS << ")";
}
for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i)
OS << "<<P:" << PredicateFns[i] << ">>";
if (TransformFn)
OS << "<<X:" << TransformFn->getName() << ">>";
if (!getName().empty())
OS << ":$" << getName();
}
void TreePatternNode::dump() const {
print(errs());
}
/// isIsomorphicTo - Return true if this node is recursively
/// isomorphic to the specified node. For this comparison, the node's
/// entire state is considered. The assigned name is ignored, since
/// nodes with differing names are considered isomorphic. However, if
/// the assigned name is present in the dependent variable set, then
/// the assigned name is considered significant and the node is
/// isomorphic if the names match.
bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
const MultipleUseVarSet &DepVars) const {
if (N == this) return true;
if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
getPredicateFns() != N->getPredicateFns() ||
getTransformFn() != N->getTransformFn())
return false;
if (isLeaf()) {
if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue())) {
return ((DI->getDef() == NDI->getDef())
&& (DepVars.find(getName()) == DepVars.end()
|| getName() == N->getName()));
}
}
return getLeafValue() == N->getLeafValue();
}
if (N->getOperator() != getOperator() ||
N->getNumChildren() != getNumChildren()) return false;
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
return false;
return true;
}
/// clone - Make a copy of this tree and all of its children.
///
TreePatternNode *TreePatternNode::clone() const {
TreePatternNode *New;
if (isLeaf()) {
New = new TreePatternNode(getLeafValue(), getNumTypes());
} else {
std::vector<TreePatternNode*> CChildren;
CChildren.reserve(Children.size());
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
CChildren.push_back(getChild(i)->clone());
New = new TreePatternNode(getOperator(), CChildren, getNumTypes());
}
New->setName(getName());
New->Types = Types;
New->setPredicateFns(getPredicateFns());
New->setTransformFn(getTransformFn());
return New;
}
/// RemoveAllTypes - Recursively strip all the types of this tree.
void TreePatternNode::RemoveAllTypes() {
for (unsigned i = 0, e = Types.size(); i != e; ++i)
Types[i] = EEVT::TypeSet(); // Reset to unknown type.
if (isLeaf()) return;
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
getChild(i)->RemoveAllTypes();
}
/// SubstituteFormalArguments - Replace the formal arguments in this tree
/// with actual values specified by ArgMap.
void TreePatternNode::
SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
if (isLeaf()) return;
for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
TreePatternNode *Child = getChild(i);
if (Child->isLeaf()) {
Init *Val = Child->getLeafValue();
if (dynamic_cast<DefInit*>(Val) &&
static_cast<DefInit*>(Val)->getDef()->getName() == "node") {
// We found a use of a formal argument, replace it with its value.
TreePatternNode *NewChild = ArgMap[Child->getName()];
assert(NewChild && "Couldn't find formal argument!");
assert((Child->getPredicateFns().empty() ||
NewChild->getPredicateFns() == Child->getPredicateFns()) &&
"Non-empty child predicate clobbered!");
setChild(i, NewChild);
}
} else {
getChild(i)->SubstituteFormalArguments(ArgMap);
}
}
}
/// InlinePatternFragments - If this pattern refers to any pattern
/// fragments, inline them into place, giving us a pattern without any
/// PatFrag references.
TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
if (isLeaf()) return this; // nothing to do.
Record *Op = getOperator();
if (!Op->isSubClassOf("PatFrag")) {
// Just recursively inline children nodes.
for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
TreePatternNode *Child = getChild(i);
TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
assert((Child->getPredicateFns().empty() ||
NewChild->getPredicateFns() == Child->getPredicateFns()) &&
"Non-empty child predicate clobbered!");
setChild(i, NewChild);
}
return this;
}
// Otherwise, we found a reference to a fragment. First, look up its
// TreePattern record.
TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
// Verify that we are passing the right number of operands.
if (Frag->getNumArgs() != Children.size())
TP.error("'" + Op->getName() + "' fragment requires " +
utostr(Frag->getNumArgs()) + " operands!");
TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
std::string Code = Op->getValueAsCode("Predicate");
if (!Code.empty())
FragTree->addPredicateFn("Predicate_"+Op->getName());
// Resolve formal arguments to their actual value.
if (Frag->getNumArgs()) {
// Compute the map of formal to actual arguments.
std::map<std::string, TreePatternNode*> ArgMap;
for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
FragTree->SubstituteFormalArguments(ArgMap);
}
FragTree->setName(getName());
for (unsigned i = 0, e = Types.size(); i != e; ++i)
FragTree->UpdateNodeType(i, getExtType(i), TP);
// Transfer in the old predicates.
for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i)
FragTree->addPredicateFn(getPredicateFns()[i]);
// Get a new copy of this fragment to stitch into here.
//delete this; // FIXME: implement refcounting!
// The fragment we inlined could have recursive inlining that is needed. See
// if there are any pattern fragments in it and inline them as needed.
return FragTree->InlinePatternFragments(TP);
}
/// getImplicitType - Check to see if the specified record has an implicit
/// type which should be applied to it. This will infer the type of register
/// references from the register file information, for example.
///
static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo,
bool NotRegisters, TreePattern &TP) {
// Check to see if this is a register or a register class.
if (R->isSubClassOf("RegisterClass")) {
assert(ResNo == 0 && "Regclass ref only has one result!");
if (NotRegisters)
return EEVT::TypeSet(); // Unknown.
const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes());
}
if (R->isSubClassOf("PatFrag")) {
assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
// Pattern fragment types will be resolved when they are inlined.
return EEVT::TypeSet(); // Unknown.
}
if (R->isSubClassOf("Register")) {
assert(ResNo == 0 && "Registers only produce one result!");
if (NotRegisters)
return EEVT::TypeSet(); // Unknown.
const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
return EEVT::TypeSet(T.getRegisterVTs(R));
}
if (R->isSubClassOf("SubRegIndex")) {
assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
return EEVT::TypeSet();
}
if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
assert(ResNo == 0 && "This node only has one result!");
// Using a VTSDNode or CondCodeSDNode.
return EEVT::TypeSet(MVT::Other, TP);
}
if (R->isSubClassOf("ComplexPattern")) {
assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
if (NotRegisters)
return EEVT::TypeSet(); // Unknown.
return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(),
TP);
}
if (R->isSubClassOf("PointerLikeRegClass")) {
assert(ResNo == 0 && "Regclass can only have one result!");
return EEVT::TypeSet(MVT::iPTR, TP);
}
if (R->getName() == "node" || R->getName() == "srcvalue" ||
R->getName() == "zero_reg") {
// Placeholder.
return EEVT::TypeSet(); // Unknown.
}
TP.error("Unknown node flavor used in pattern: " + R->getName());
return EEVT::TypeSet(MVT::Other, TP);
}
/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
/// CodeGenIntrinsic information for it, otherwise return a null pointer.
const CodeGenIntrinsic *TreePatternNode::
getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
return 0;
unsigned IID =
dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue();
return &CDP.getIntrinsicInfo(IID);
}
/// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
/// return the ComplexPattern information, otherwise return null.
const ComplexPattern *
TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
if (!isLeaf()) return 0;
DefInit *DI = dynamic_cast<DefInit*>(getLeafValue());
if (DI && DI->getDef()->isSubClassOf("ComplexPattern"))
return &CGP.getComplexPattern(DI->getDef());
return 0;
}
/// NodeHasProperty - Return true if this node has the specified property.
bool TreePatternNode::NodeHasProperty(SDNP Property,
const CodeGenDAGPatterns &CGP) const {
if (isLeaf()) {
if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
return CP->hasProperty(Property);
return false;
}
Record *Operator = getOperator();
if (!Operator->isSubClassOf("SDNode")) return false;
return CGP.getSDNodeInfo(Operator).hasProperty(Property);
}
/// TreeHasProperty - Return true if any node in this tree has the specified
/// property.
bool TreePatternNode::TreeHasProperty(SDNP Property,
const CodeGenDAGPatterns &CGP) const {
if (NodeHasProperty(Property, CGP))
return true;
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
if (getChild(i)->TreeHasProperty(Property, CGP))
return true;
return false;
}
/// isCommutativeIntrinsic - Return true if the node corresponds to a
/// commutative intrinsic.
bool
TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
return Int->isCommutative;
return false;
}
/// ApplyTypeConstraints - Apply all of the type constraints relevant to
/// this node and its children in the tree. This returns true if it makes a
/// change, false otherwise. If a type contradiction is found, throw an
/// exception.
bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
if (isLeaf()) {
if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
// If it's a regclass or something else known, include the type.
bool MadeChange = false;
for (unsigned i = 0, e = Types.size(); i != e; ++i)
MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
NotRegisters, TP), TP);
return MadeChange;
}
if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) {
assert(Types.size() == 1 && "Invalid IntInit");
// Int inits are always integers. :)
bool MadeChange = Types[0].EnforceInteger(TP);
if (!Types[0].isConcrete())
return MadeChange;
MVT::SimpleValueType VT = getType(0);
if (VT == MVT::iPTR || VT == MVT::iPTRAny)
return MadeChange;
unsigned Size = EVT(VT).getSizeInBits();
// Make sure that the value is representable for this type.
if (Size >= 32) return MadeChange;
int Val = (II->getValue() << (32-Size)) >> (32-Size);
if (Val == II->getValue()) return MadeChange;
// If sign-extended doesn't fit, does it fit as unsigned?
unsigned ValueMask;
unsigned UnsignedVal;
ValueMask = unsigned(~uint32_t(0UL) >> (32-Size));
UnsignedVal = unsigned(II->getValue());
if ((ValueMask & UnsignedVal) == UnsignedVal)
return MadeChange;
TP.error("Integer value '" + itostr(II->getValue())+
"' is out of range for type '" + getEnumName(getType(0)) + "'!");
return MadeChange;
}
return false;
}
// special handling for set, which isn't really an SDNode.
if (getOperator()->getName() == "set") {
assert(getNumTypes() == 0 && "Set doesn't produce a value");
assert(getNumChildren() >= 2 && "Missing RHS of a set?");
unsigned NC = getNumChildren();
TreePatternNode *SetVal = getChild(NC-1);
bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters);
for (unsigned i = 0; i < NC-1; ++i) {
TreePatternNode *Child = getChild(i);
MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
// Types of operands must match.
MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP);
MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP);
}
return MadeChange;
}
if (getOperator()->getName() == "implicit") {
assert(getNumTypes() == 0 && "Node doesn't produce a value");
bool MadeChange = false;
for (unsigned i = 0; i < getNumChildren(); ++i)
MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
return MadeChange;
}
if (getOperator()->getName() == "COPY_TO_REGCLASS") {
bool MadeChange = false;
MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters);
assert(getChild(0)->getNumTypes() == 1 &&
getChild(1)->getNumTypes() == 1 && "Unhandled case");
// child #1 of COPY_TO_REGCLASS should be a register class. We don't care
// what type it gets, so if it didn't get a concrete type just give it the
// first viable type from the reg class.
if (!getChild(1)->hasTypeSet(0) &&
!getChild(1)->getExtType(0).isCompletelyUnknown()) {
MVT::SimpleValueType RCVT = getChild(1)->getExtType(0).getTypeList()[0];
MadeChange |= getChild(1)->UpdateNodeType(0, RCVT, TP);
}
return MadeChange;
}
if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
bool MadeChange = false;
// Apply the result type to the node.
unsigned NumRetVTs = Int->IS.RetVTs.size();
unsigned NumParamVTs = Int->IS.ParamVTs.size();
for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
if (getNumChildren() != NumParamVTs + 1)
TP.error("Intrinsic '" + Int->Name + "' expects " +
utostr(NumParamVTs) + " operands, not " +
utostr(getNumChildren() - 1) + " operands!");
// Apply type info to the intrinsic ID.
MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
}
return MadeChange;
}
if (getOperator()->isSubClassOf("SDNode")) {
const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
// Check that the number of operands is sane. Negative operands -> varargs.
if (NI.getNumOperands() >= 0 &&
getNumChildren() != (unsigned)NI.getNumOperands())
TP.error(getOperator()->getName() + " node requires exactly " +
itostr(NI.getNumOperands()) + " operands!");
bool MadeChange = NI.ApplyTypeConstraints(this, TP);
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
return MadeChange;
}
if (getOperator()->isSubClassOf("Instruction")) {
const DAGInstruction &Inst = CDP.getInstruction(getOperator());
CodeGenInstruction &InstInfo =
CDP.getTargetInfo().getInstruction(getOperator());
bool MadeChange = false;
// Apply the result types to the node, these come from the things in the
// (outs) list of the instruction.
// FIXME: Cap at one result so far.
unsigned NumResultsToAdd = InstInfo.NumDefs ? 1 : 0;
for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) {
Record *ResultNode = Inst.getResult(ResNo);
if (ResultNode->isSubClassOf("PointerLikeRegClass")) {
MadeChange |= UpdateNodeType(ResNo, MVT::iPTR, TP);
} else if (ResultNode->getName() == "unknown") {
// Nothing to do.
} else {
assert(ResultNode->isSubClassOf("RegisterClass") &&
"Operands should be register classes!");
const CodeGenRegisterClass &RC =
CDP.getTargetInfo().getRegisterClass(ResultNode);
MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP);
}
}
// If the instruction has implicit defs, we apply the first one as a result.
// FIXME: This sucks, it should apply all implicit defs.
if (!InstInfo.ImplicitDefs.empty()) {
unsigned ResNo = NumResultsToAdd;
// FIXME: Generalize to multiple possible types and multiple possible
// ImplicitDefs.
MVT::SimpleValueType VT =
InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
if (VT != MVT::Other)
MadeChange |= UpdateNodeType(ResNo, VT, TP);
}
// If this is an INSERT_SUBREG, constrain the source and destination VTs to
// be the same.
if (getOperator()->getName() == "INSERT_SUBREG") {
assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
}
unsigned ChildNo = 0;
for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
Record *OperandNode = Inst.getOperand(i);
// If the instruction expects a predicate or optional def operand, we
// codegen this by setting the operand to it's default value if it has a
// non-empty DefaultOps field.
if ((OperandNode->isSubClassOf("PredicateOperand") ||
OperandNode->isSubClassOf("OptionalDefOperand")) &&
!CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
continue;
// Verify that we didn't run out of provided operands.
if (ChildNo >= getNumChildren())
TP.error("Instruction '" + getOperator()->getName() +
"' expects more operands than were provided.");
MVT::SimpleValueType VT;
TreePatternNode *Child = getChild(ChildNo++);
unsigned ChildResNo = 0; // Instructions always use res #0 of their op.
if (OperandNode->isSubClassOf("RegisterClass")) {
const CodeGenRegisterClass &RC =
CDP.getTargetInfo().getRegisterClass(OperandNode);
MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP);
} else if (OperandNode->isSubClassOf("Operand")) {
VT = getValueType(OperandNode->getValueAsDef("Type"));
MadeChange |= Child->UpdateNodeType(ChildResNo, VT, TP);
} else if (OperandNode->isSubClassOf("PointerLikeRegClass")) {
MadeChange |= Child->UpdateNodeType(ChildResNo, MVT::iPTR, TP);
} else if (OperandNode->getName() == "unknown") {
// Nothing to do.
} else {
assert(0 && "Unknown operand type!");
abort();
}
MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
}
if (ChildNo != getNumChildren())
TP.error("Instruction '" + getOperator()->getName() +
"' was provided too many operands!");
return MadeChange;
}
assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
// Node transforms always take one operand.
if (getNumChildren() != 1)
TP.error("Node transform '" + getOperator()->getName() +
"' requires one operand!");
bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
// If either the output or input of the xform does not have exact
// type info. We assume they must be the same. Otherwise, it is perfectly
// legal to transform from one type to a completely different type.
#if 0
if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP);
MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP);
return MadeChange;
}
#endif
return MadeChange;
}
/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
/// RHS of a commutative operation, not the on LHS.
static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
if (!N->isLeaf() && N->getOperator()->getName() == "imm")
return true;
if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue()))
return true;
return false;
}
/// canPatternMatch - If it is impossible for this pattern to match on this
/// target, fill in Reason and return false. Otherwise, return true. This is
/// used as a sanity check for .td files (to prevent people from writing stuff
/// that can never possibly work), and to prevent the pattern permuter from
/// generating stuff that is useless.
bool TreePatternNode::canPatternMatch(std::string &Reason,
const CodeGenDAGPatterns &CDP) {
if (isLeaf()) return true;
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
if (!getChild(i)->canPatternMatch(Reason, CDP))
return false;
// If this is an intrinsic, handle cases that would make it not match. For
// example, if an operand is required to be an immediate.
if (getOperator()->isSubClassOf("Intrinsic")) {
// TODO:
return true;
}
// If this node is a commutative operator, check that the LHS isn't an
// immediate.
const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
// Scan all of the operands of the node and make sure that only the last one
// is a constant node, unless the RHS also is.
if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
if (OnlyOnRHSOfCommutative(getChild(i))) {
Reason="Immediate value must be on the RHS of commutative operators!";
return false;
}
}
}
return true;
}
//===----------------------------------------------------------------------===//
// TreePattern implementation
//
TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
isInputPattern = isInput;
for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
Trees.push_back(ParseTreePattern(RawPat->getElement(i), ""));
}
TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
isInputPattern = isInput;
Trees.push_back(ParseTreePattern(Pat, ""));
}
TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
isInputPattern = isInput;
Trees.push_back(Pat);
}
void TreePattern::error(const std::string &Msg) const {
dump();
throw TGError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
}
void TreePattern::ComputeNamedNodes() {
for (unsigned i = 0, e = Trees.size(); i != e; ++i)
ComputeNamedNodes(Trees[i]);
}
void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
if (!N->getName().empty())
NamedNodes[N->getName()].push_back(N);
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
ComputeNamedNodes(N->getChild(i));
}
TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){
if (DefInit *DI = dynamic_cast<DefInit*>(TheInit)) {
Record *R = DI->getDef();
// Direct reference to a leaf DagNode or PatFrag? Turn it into a
// TreePatternNode if its own. For example:
/// (foo GPR, imm) -> (foo GPR, (imm))
if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag"))
return ParseTreePattern(new DagInit(DI, "",
std::vector<std::pair<Init*, std::string> >()),
OpName);
// Input argument?
TreePatternNode *Res = new TreePatternNode(DI, 1);
if (R->getName() == "node" && !OpName.empty()) {
if (OpName.empty())
error("'node' argument requires a name to match with operand list");
Args.push_back(OpName);
}
Res->setName(OpName);
return Res;
}
if (IntInit *II = dynamic_cast<IntInit*>(TheInit)) {
if (!OpName.empty())
error("Constant int argument should not have a name!");
return new TreePatternNode(II, 1);
}
if (BitsInit *BI = dynamic_cast<BitsInit*>(TheInit)) {
// Turn this into an IntInit.
Init *II = BI->convertInitializerTo(new IntRecTy());
if (II == 0 || !dynamic_cast<IntInit*>(II))
error("Bits value must be constants!");
return ParseTreePattern(II, OpName);
}
DagInit *Dag = dynamic_cast<DagInit*>(TheInit);
if (!Dag) {
TheInit->dump();
error("Pattern has unexpected init kind!");
}
DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator());
if (!OpDef) error("Pattern has unexpected operator type!");
Record *Operator = OpDef->getDef();
if (Operator->isSubClassOf("ValueType")) {
// If the operator is a ValueType, then this must be "type cast" of a leaf
// node.
if (Dag->getNumArgs() != 1)
error("Type cast only takes one operand!");
TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0));
// Apply the type cast.
assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
New->UpdateNodeType(0, getValueType(Operator), *this);
if (!OpName.empty())
error("ValueType cast should not have a name!");
return New;
}
// Verify that this is something that makes sense for an operator.
if (!Operator->isSubClassOf("PatFrag") &&
!Operator->isSubClassOf("SDNode") &&
!Operator->isSubClassOf("Instruction") &&
!Operator->isSubClassOf("SDNodeXForm") &&
!Operator->isSubClassOf("Intrinsic") &&
Operator->getName() != "set" &&
Operator->getName() != "implicit")
error("Unrecognized node '" + Operator->getName() + "'!");
// Check to see if this is something that is illegal in an input pattern.
if (isInputPattern) {
if (Operator->isSubClassOf("Instruction") ||
Operator->isSubClassOf("SDNodeXForm"))
error("Cannot use '" + Operator->getName() + "' in an input pattern!");
} else {
if (Operator->isSubClassOf("Intrinsic"))
error("Cannot use '" + Operator->getName() + "' in an output pattern!");
if (Operator->isSubClassOf("SDNode") &&
Operator->getName() != "imm" &&
Operator->getName() != "fpimm" &&
Operator->getName() != "tglobaltlsaddr" &&
Operator->getName() != "tconstpool" &&
Operator->getName() != "tjumptable" &&
Operator->getName() != "tframeindex" &&
Operator->getName() != "texternalsym" &&
Operator->getName() != "tblockaddress" &&
Operator->getName() != "tglobaladdr" &&
Operator->getName() != "bb" &&
Operator->getName() != "vt")
error("Cannot use '" + Operator->getName() + "' in an output pattern!");
}
std::vector<TreePatternNode*> Children;
// Parse all the operands.
for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i)));
// If the operator is an intrinsic, then this is just syntactic sugar for for
// (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
// convert the intrinsic name to a number.
if (Operator->isSubClassOf("Intrinsic")) {
const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
// If this intrinsic returns void, it must have side-effects and thus a
// chain.
if (Int.IS.RetVTs.empty())
Operator = getDAGPatterns().get_intrinsic_void_sdnode();
else if (Int.ModRef != CodeGenIntrinsic::NoMem)
// Has side-effects, requires chain.
Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
else // Otherwise, no chain.
Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID), 1);
Children.insert(Children.begin(), IIDNode);
}
unsigned NumResults = GetNumNodeResults(Operator, CDP);
TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults);
Result->setName(OpName);
if (!Dag->getName().empty()) {
assert(Result->getName().empty());
Result->setName(Dag->getName());
}
return Result;
}
/// SimplifyTree - See if we can simplify this tree to eliminate something that
/// will never match in favor of something obvious that will. This is here
/// strictly as a convenience to target authors because it allows them to write
/// more type generic things and have useless type casts fold away.
///
/// This returns true if any change is made.
static bool SimplifyTree(TreePatternNode *&N) {
if (N->isLeaf())
return false;
// If we have a bitconvert with a resolved type and if the source and
// destination types are the same, then the bitconvert is useless, remove it.
if (N->getOperator()->getName() == "bitconvert" &&
N->getExtType(0).isConcrete() &&
N->getExtType(0) == N->getChild(0)->getExtType(0) &&
N->getName().empty()) {
N = N->getChild(0);
SimplifyTree(N);
return true;
}
// Walk all children.
bool MadeChange = false;
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
TreePatternNode *Child = N->getChild(i);
MadeChange |= SimplifyTree(Child);
N->setChild(i, Child);
}
return MadeChange;
}
/// InferAllTypes - Infer/propagate as many types throughout the expression
/// patterns as possible. Return true if all types are inferred, false
/// otherwise. Throw an exception if a type contradiction is found.
bool TreePattern::
InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
if (NamedNodes.empty())
ComputeNamedNodes();
bool MadeChange = true;
while (MadeChange) {
MadeChange = false;
for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
MadeChange |= SimplifyTree(Trees[i]);
}
// If there are constraints on our named nodes, apply them.
for (StringMap<SmallVector<TreePatternNode*,1> >::iterator
I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) {
SmallVectorImpl<TreePatternNode*> &Nodes = I->second;
// If we have input named node types, propagate their types to the named
// values here.
if (InNamedTypes) {
// FIXME: Should be error?
assert(InNamedTypes->count(I->getKey()) &&
"Named node in output pattern but not input pattern?");
const SmallVectorImpl<TreePatternNode*> &InNodes =
InNamedTypes->find(I->getKey())->second;
// The input types should be fully resolved by now.
for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
// If this node is a register class, and it is the root of the pattern
// then we're mapping something onto an input register. We allow
// changing the type of the input register in this case. This allows
// us to match things like:
// def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
if (Nodes[i] == Trees[0] && Nodes[i]->isLeaf()) {
DefInit *DI = dynamic_cast<DefInit*>(Nodes[i]->getLeafValue());
if (DI && DI->getDef()->isSubClassOf("RegisterClass"))
continue;
}
assert(Nodes[i]->getNumTypes() == 1 &&
InNodes[0]->getNumTypes() == 1 &&
"FIXME: cannot name multiple result nodes yet");
MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0),
*this);
}
}
// If there are multiple nodes with the same name, they must all have the
// same type.
if (I->second.size() > 1) {
for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
"FIXME: cannot name multiple result nodes yet");
MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
}
}
}
}
bool HasUnresolvedTypes = false;
for (unsigned i = 0, e = Trees.size(); i != e; ++i)
HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
return !HasUnresolvedTypes;
}
void TreePattern::print(raw_ostream &OS) const {
OS << getRecord()->getName();
if (!Args.empty()) {
OS << "(" << Args[0];
for (unsigned i = 1, e = Args.size(); i != e; ++i)
OS << ", " << Args[i];
OS << ")";
}
OS << ": ";
if (Trees.size() > 1)
OS << "[\n";
for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
OS << "\t";
Trees[i]->print(OS);
OS << "\n";
}
if (Trees.size() > 1)
OS << "]\n";
}
void TreePattern::dump() const { print(errs()); }
//===----------------------------------------------------------------------===//
// CodeGenDAGPatterns implementation
//
CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : Records(R) {
Intrinsics = LoadIntrinsics(Records, false);
TgtIntrinsics = LoadIntrinsics(Records, true);
ParseNodeInfo();
ParseNodeTransforms();
ParseComplexPatterns();
ParsePatternFragments();
ParseDefaultOperands();
ParseInstructions();
ParsePatterns();
// Generate variants. For example, commutative patterns can match
// multiple ways. Add them to PatternsToMatch as well.
GenerateVariants();
// Infer instruction flags. For example, we can detect loads,
// stores, and side effects in many cases by examining an
// instruction's pattern.
InferInstructionFlags();
}
CodeGenDAGPatterns::~CodeGenDAGPatterns() {
for (pf_iterator I = PatternFragments.begin(),
E = PatternFragments.end(); I != E; ++I)
delete I->second;
}
Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
Record *N = Records.getDef(Name);
if (!N || !N->isSubClassOf("SDNode")) {
errs() << "Error getting SDNode '" << Name << "'!\n";
exit(1);
}
return N;
}
// Parse all of the SDNode definitions for the target, populating SDNodes.
void CodeGenDAGPatterns::ParseNodeInfo() {
std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
while (!Nodes.empty()) {
SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
Nodes.pop_back();
}
// Get the builtin intrinsic nodes.
intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
}
/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
/// map, and emit them to the file as functions.
void CodeGenDAGPatterns::ParseNodeTransforms() {
std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
while (!Xforms.empty()) {
Record *XFormNode = Xforms.back();
Record *SDNode = XFormNode->getValueAsDef("Opcode");
std::string Code = XFormNode->getValueAsCode("XFormFunction");
SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
Xforms.pop_back();
}
}
void CodeGenDAGPatterns::ParseComplexPatterns() {
std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
while (!AMs.empty()) {
ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
AMs.pop_back();
}
}
/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
/// file, building up the PatternFragments map. After we've collected them all,
/// inline fragments together as necessary, so that there are no references left
/// inside a pattern fragment to a pattern fragment.
///
void CodeGenDAGPatterns::ParsePatternFragments() {
std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
// First step, parse all of the fragments.
for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
PatternFragments[Fragments[i]] = P;
// Validate the argument list, converting it to set, to discard duplicates.
std::vector<std::string> &Args = P->getArgList();
std::set<std::string> OperandsSet(Args.begin(), Args.end());
if (OperandsSet.count(""))
P->error("Cannot have unnamed 'node' values in pattern fragment!");
// Parse the operands list.
DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator());
// Special cases: ops == outs == ins. Different names are used to
// improve readability.
if (!OpsOp ||
(OpsOp->getDef()->getName() != "ops" &&
OpsOp->getDef()->getName() != "outs" &&
OpsOp->getDef()->getName() != "ins"))
P->error("Operands list should start with '(ops ... '!");
// Copy over the arguments.
Args.clear();
for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) ||
static_cast<DefInit*>(OpsList->getArg(j))->
getDef()->getName() != "node")
P->error("Operands list should all be 'node' values.");
if (OpsList->getArgName(j).empty())
P->error("Operands list should have names for each operand!");
if (!OperandsSet.count(OpsList->getArgName(j)))
P->error("'" + OpsList->getArgName(j) +
"' does not occur in pattern or was multiply specified!");
OperandsSet.erase(OpsList->getArgName(j));
Args.push_back(OpsList->getArgName(j));
}
if (!OperandsSet.empty())
P->error("Operands list does not contain an entry for operand '" +
*OperandsSet.begin() + "'!");
// If there is a code init for this fragment, keep track of the fact that
// this fragment uses it.
std::string Code = Fragments[i]->getValueAsCode("Predicate");
if (!Code.empty())
P->getOnlyTree()->addPredicateFn("Predicate_"+Fragments[i]->getName());
// If there is a node transformation corresponding to this, keep track of
// it.
Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
P->getOnlyTree()->setTransformFn(Transform);
}
// Now that we've parsed all of the tree fragments, do a closure on them so
// that there are not references to PatFrags left inside of them.
for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
TreePattern *ThePat = PatternFragments[Fragments[i]];
ThePat->InlinePatternFragments();
// Infer as many types as possible. Don't worry about it if we don't infer
// all of them, some may depend on the inputs of the pattern.
try {
ThePat->InferAllTypes();
} catch (...) {
// If this pattern fragment is not supported by this target (no types can
// satisfy its constraints), just ignore it. If the bogus pattern is
// actually used by instructions, the type consistency error will be
// reported there.
}
// If debugging, print out the pattern fragment result.
DEBUG(ThePat->dump());
}
}
void CodeGenDAGPatterns::ParseDefaultOperands() {
std::vector<Record*> DefaultOps[2];
DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand");
DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand");
// Find some SDNode.
assert(!SDNodes.empty() && "No SDNodes parsed?");
Init *SomeSDNode = new DefInit(SDNodes.begin()->first);
for (unsigned iter = 0; iter != 2; ++iter) {
for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) {
DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps");
// Clone the DefaultInfo dag node, changing the operator from 'ops' to
// SomeSDnode so that we can parse this.
std::vector<std::pair<Init*, std::string> > Ops;
for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
DefaultInfo->getArgName(op)));
DagInit *DI = new DagInit(SomeSDNode, "", Ops);
// Create a TreePattern to parse this.
TreePattern P(DefaultOps[iter][i], DI, false, *this);
assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
// Copy the operands over into a DAGDefaultOperand.
DAGDefaultOperand DefaultOpInfo;
TreePatternNode *T = P.getTree(0);
for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
TreePatternNode *TPN = T->getChild(op);
while (TPN->ApplyTypeConstraints(P, false))
/* Resolve all types */;
if (TPN->ContainsUnresolvedType()) {
if (iter == 0)
throw "Value #" + utostr(i) + " of PredicateOperand '" +
DefaultOps[iter][i]->getName() +"' doesn't have a concrete type!";
else
throw "Value #" + utostr(i) + " of OptionalDefOperand '" +
DefaultOps[iter][i]->getName() +"' doesn't have a concrete type!";
}
DefaultOpInfo.DefaultOps.push_back(TPN);
}
// Insert it into the DefaultOperands map so we can find it later.
DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo;
}
}
}
/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
/// instruction input. Return true if this is a real use.
static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
std::map<std::string, TreePatternNode*> &InstInputs) {
// No name -> not interesting.
if (Pat->getName().empty()) {
if (Pat->isLeaf()) {
DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
if (DI && DI->getDef()->isSubClassOf("RegisterClass"))
I->error("Input " + DI->getDef()->getName() + " must be named!");
}
return false;
}
Record *Rec;
if (Pat->isLeaf()) {
DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
Rec = DI->getDef();
} else {
Rec = Pat->getOperator();
}
// SRCVALUE nodes are ignored.
if (Rec->getName() == "srcvalue")
return false;
TreePatternNode *&Slot = InstInputs[Pat->getName()];
if (!Slot) {
Slot = Pat;
return true;
}
Record *SlotRec;
if (Slot->isLeaf()) {
SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef();
} else {
assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
SlotRec = Slot->getOperator();
}
// Ensure that the inputs agree if we've already seen this input.
if (Rec != SlotRec)
I->error("All $" + Pat->getName() + " inputs must agree with each other");
if (Slot->getExtTypes() != Pat->getExtTypes())
I->error("All $" + Pat->getName() + " inputs must agree with each other");
return true;
}
/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
/// part of "I", the instruction), computing the set of inputs and outputs of
/// the pattern. Report errors if we see anything naughty.
void CodeGenDAGPatterns::
FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
std::map<std::string, TreePatternNode*> &InstInputs,
std::map<std::string, TreePatternNode*>&InstResults,
std::vector<Record*> &InstImpResults) {
if (Pat->isLeaf()) {
bool isUse = HandleUse(I, Pat, InstInputs);
if (!isUse && Pat->getTransformFn())
I->error("Cannot specify a transform function for a non-input value!");
return;
}
if (Pat->getOperator()->getName() == "implicit") {
for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
TreePatternNode *Dest = Pat->getChild(i);
if (!Dest->isLeaf())
I->error("implicitly defined value should be a register!");
DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
if (!Val || !Val->getDef()->isSubClassOf("Register"))
I->error("implicitly defined value should be a register!");
InstImpResults.push_back(Val->getDef());
}
return;
}
if (Pat->getOperator()->getName() != "set") {
// If this is not a set, verify that the children nodes are not void typed,
// and recurse.
for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
if (Pat->getChild(i)->getNumTypes() == 0)
I->error("Cannot have void nodes inside of patterns!");
FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
InstImpResults);
}
// If this is a non-leaf node with no children, treat it basically as if
// it were a leaf. This handles nodes like (imm).
bool isUse = HandleUse(I, Pat, InstInputs);
if (!isUse && Pat->getTransformFn())
I->error("Cannot specify a transform function for a non-input value!");
return;
}
// Otherwise, this is a set, validate and collect instruction results.
if (Pat->getNumChildren() == 0)
I->error("set requires operands!");
if (Pat->getTransformFn())
I->error("Cannot specify a transform function on a set node!");
// Check the set destinations.
unsigned NumDests = Pat->getNumChildren()-1;
for (unsigned i = 0; i != NumDests; ++i) {
TreePatternNode *Dest = Pat->getChild(i);
if (!Dest->isLeaf())
I->error("set destination should be a register!");
DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
if (!Val)
I->error("set destination should be a register!");
if (Val->getDef()->isSubClassOf("RegisterClass") ||
Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
if (Dest->getName().empty())
I->error("set destination must have a name!");
if (InstResults.count(Dest->getName()))
I->error("cannot set '" + Dest->getName() +"' multiple times");
InstResults[Dest->getName()] = Dest;
} else if (Val->getDef()->isSubClassOf("Register")) {
InstImpResults.push_back(Val->getDef());
} else {
I->error("set destination should be a register!");
}
}
// Verify and collect info from the computation.
FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
InstInputs, InstResults, InstImpResults);
}
//===----------------------------------------------------------------------===//
// Instruction Analysis
//===----------------------------------------------------------------------===//
class InstAnalyzer {
const CodeGenDAGPatterns &CDP;
bool &mayStore;
bool &mayLoad;
bool &HasSideEffects;
bool &IsVariadic;
public:
InstAnalyzer(const CodeGenDAGPatterns &cdp,
bool &maystore, bool &mayload, bool &hse, bool &isv)
: CDP(cdp), mayStore(maystore), mayLoad(mayload), HasSideEffects(hse),
IsVariadic(isv) {
}
/// Analyze - Analyze the specified instruction, returning true if the
/// instruction had a pattern.
bool Analyze(Record *InstRecord) {
const TreePattern *Pattern = CDP.getInstruction(InstRecord).getPattern();
if (Pattern == 0) {
HasSideEffects = 1;
return false; // No pattern.
}
// FIXME: Assume only the first tree is the pattern. The others are clobber
// nodes.
AnalyzeNode(Pattern->getTree(0));
return true;
}
private:
void AnalyzeNode(const TreePatternNode *N) {
if (N->isLeaf()) {
if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
Record *LeafRec = DI->getDef();
// Handle ComplexPattern leaves.
if (LeafRec->isSubClassOf("ComplexPattern")) {
const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
if (CP.hasProperty(SDNPMayStore)) mayStore = true;
if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
if (CP.hasProperty(SDNPSideEffect)) HasSideEffects = true;
}
}
return;
}
// Analyze children.
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
AnalyzeNode(N->getChild(i));
// Ignore set nodes, which are not SDNodes.
if (N->getOperator()->getName() == "set")
return;
// Get information about the SDNode for the operator.
const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
// Notice properties of the node.
if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true;
if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true;
if (OpInfo.hasProperty(SDNPSideEffect)) HasSideEffects = true;
if (OpInfo.hasProperty(SDNPVariadic)) IsVariadic = true;
if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
// If this is an intrinsic, analyze it.
if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem)
mayLoad = true;// These may load memory.
if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteArgMem)
mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem)
// WriteMem intrinsics can have other strange effects.
HasSideEffects = true;
}
}
};
static void InferFromPattern(const CodeGenInstruction &Inst,
bool &MayStore, bool &MayLoad,
bool &HasSideEffects, bool &IsVariadic,
const CodeGenDAGPatterns &CDP) {
MayStore = MayLoad = HasSideEffects = IsVariadic = false;
bool HadPattern =
InstAnalyzer(CDP, MayStore, MayLoad, HasSideEffects, IsVariadic)
.Analyze(Inst.TheDef);
// InstAnalyzer only correctly analyzes mayStore/mayLoad so far.
if (Inst.mayStore) { // If the .td file explicitly sets mayStore, use it.
// If we decided that this is a store from the pattern, then the .td file
// entry is redundant.
if (MayStore)
fprintf(stderr,
"Warning: mayStore flag explicitly set on instruction '%s'"
" but flag already inferred from pattern.\n",
Inst.TheDef->getName().c_str());
MayStore = true;
}
if (Inst.mayLoad) { // If the .td file explicitly sets mayLoad, use it.
// If we decided that this is a load from the pattern, then the .td file
// entry is redundant.
if (MayLoad)
fprintf(stderr,
"Warning: mayLoad flag explicitly set on instruction '%s'"
" but flag already inferred from pattern.\n",
Inst.TheDef->getName().c_str());
MayLoad = true;
}
if (Inst.neverHasSideEffects) {
if (HadPattern)
fprintf(stderr, "Warning: neverHasSideEffects set on instruction '%s' "
"which already has a pattern\n", Inst.TheDef->getName().c_str());
HasSideEffects = false;
}
if (Inst.hasSideEffects) {
if (HasSideEffects)
fprintf(stderr, "Warning: hasSideEffects set on instruction '%s' "
"which already inferred this.\n", Inst.TheDef->getName().c_str());
HasSideEffects = true;
}
if (Inst.isVariadic)
IsVariadic = true; // Can warn if we want.
}
/// ParseInstructions - Parse all of the instructions, inlining and resolving
/// any fragments involved. This populates the Instructions list with fully
/// resolved instructions.
void CodeGenDAGPatterns::ParseInstructions() {
std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
ListInit *LI = 0;
if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern")))
LI = Instrs[i]->getValueAsListInit("Pattern");
// If there is no pattern, only collect minimal information about the
// instruction for its operand list. We have to assume that there is one
// result, as we have no detailed info.
if (!LI || LI->getSize() == 0) {
std::vector<Record*> Results;
std::vector<Record*> Operands;
CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
if (InstInfo.OperandList.size() != 0) {
if (InstInfo.NumDefs == 0) {
// These produce no results
for (unsigned j = 0, e = InstInfo.OperandList.size(); j < e; ++j)
Operands.push_back(InstInfo.OperandList[j].Rec);
} else {
// Assume the first operand is the result.
Results.push_back(InstInfo.OperandList[0].Rec);
// The rest are inputs.
for (unsigned j = 1, e = InstInfo.OperandList.size(); j < e; ++j)
Operands.push_back(InstInfo.OperandList[j].Rec);
}
}
// Create and insert the instruction.
std::vector<Record*> ImpResults;
Instructions.insert(std::make_pair(Instrs[i],
DAGInstruction(0, Results, Operands, ImpResults)));
continue; // no pattern.
}
// Parse the instruction.
TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
// Inline pattern fragments into it.
I->InlinePatternFragments();
// Infer as many types as possible. If we cannot infer all of them, we can
// never do anything with this instruction pattern: report it to the user.
if (!I->InferAllTypes())
I->error("Could not infer all types in pattern!");
// InstInputs - Keep track of all of the inputs of the instruction, along
// with the record they are declared as.
std::map<std::string, TreePatternNode*> InstInputs;
// InstResults - Keep track of all the virtual registers that are 'set'
// in the instruction, including what reg class they are.
std::map<std::string, TreePatternNode*> InstResults;
std::vector<Record*> InstImpResults;
// Verify that the top-level forms in the instruction are of void type, and
// fill in the InstResults map.
for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
TreePatternNode *Pat = I->getTree(j);
if (Pat->getNumTypes() != 0)
I->error("Top-level forms in instruction pattern should have"
" void types");
// Find inputs and outputs, and verify the structure of the uses/defs.
FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
InstImpResults);
}
// Now that we have inputs and outputs of the pattern, inspect the operands
// list for the instruction. This determines the order that operands are
// added to the machine instruction the node corresponds to.
unsigned NumResults = InstResults.size();
// Parse the operands list from the (ops) list, validating it.
assert(I->getArgList().empty() && "Args list should still be empty here!");
CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]);
// Check that all of the results occur first in the list.
std::vector<Record*> Results;
TreePatternNode *Res0Node = 0;
for (unsigned i = 0; i != NumResults; ++i) {
if (i == CGI.OperandList.size())
I->error("'" + InstResults.begin()->first +
"' set but does not appear in operand list!");
const std::string &OpName = CGI.OperandList[i].Name;
// Check that it exists in InstResults.
TreePatternNode *RNode = InstResults[OpName];
if (RNode == 0)
I->error("Operand $" + OpName + " does not exist in operand list!");
if (i == 0)
Res0Node = RNode;
Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef();
if (R == 0)
I->error("Operand $" + OpName + " should be a set destination: all "
"outputs must occur before inputs in operand list!");
if (CGI.OperandList[i].Rec != R)
I->error("Operand $" + OpName + " class mismatch!");
// Remember the return type.
Results.push_back(CGI.OperandList[i].Rec);
// Okay, this one checks out.
InstResults.erase(OpName);
}
// Loop over the inputs next. Make a copy of InstInputs so we can destroy
// the copy while we're checking the inputs.
std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
std::vector<TreePatternNode*> ResultNodeOperands;
std::vector<Record*> Operands;
for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) {
CodeGenInstruction::OperandInfo &Op = CGI.OperandList[i];
const std::string &OpName = Op.Name;
if (OpName.empty())
I->error("Operand #" + utostr(i) + " in operands list has no name!");
if (!InstInputsCheck.count(OpName)) {
// If this is an predicate operand or optional def operand with an
// DefaultOps set filled in, we can ignore this. When we codegen it,
// we will do so as always executed.
if (Op.Rec->isSubClassOf("PredicateOperand") ||
Op.Rec->isSubClassOf("OptionalDefOperand")) {
// Does it have a non-empty DefaultOps field? If so, ignore this
// operand.
if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
continue;
}
I->error("Operand $" + OpName +
" does not appear in the instruction pattern");
}
TreePatternNode *InVal = InstInputsCheck[OpName];
InstInputsCheck.erase(OpName); // It occurred, remove from map.
if (InVal->isLeaf() &&
dynamic_cast<DefInit*>(InVal->getLeafValue())) {
Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern"))
I->error("Operand $" + OpName + "'s register class disagrees"
" between the operand and pattern");
}
Operands.push_back(Op.Rec);
// Construct the result for the dest-pattern operand list.
TreePatternNode *OpNode = InVal->clone();
// No predicate is useful on the result.
OpNode->clearPredicateFns();
// Promote the xform function to be an explicit node if set.
if (Record *Xform = OpNode->getTransformFn()) {
OpNode->setTransformFn(0);
std::vector<TreePatternNode*> Children;
Children.push_back(OpNode);
OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
}
ResultNodeOperands.push_back(OpNode);
}
if (!InstInputsCheck.empty())
I->error("Input operand $" + InstInputsCheck.begin()->first +
" occurs in pattern but not in operands list!");
TreePatternNode *ResultPattern =
new TreePatternNode(I->getRecord(), ResultNodeOperands,
GetNumNodeResults(I->getRecord(), *this));
// Copy fully inferred output node type to instruction result pattern.
for (unsigned i = 0; i != NumResults; ++i)
ResultPattern->setType(i, Res0Node->getExtType(i));
// Create and insert the instruction.
// FIXME: InstImpResults should not be part of DAGInstruction.
DAGInstruction TheInst(I, Results, Operands, InstImpResults);
Instructions.insert(std::make_pair(I->getRecord(), TheInst));
// Use a temporary tree pattern to infer all types and make sure that the
// constructed result is correct. This depends on the instruction already
// being inserted into the Instructions map.
TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
Temp.InferAllTypes(&I->getNamedNodesMap());
DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
TheInsertedInst.setResultPattern(Temp.getOnlyTree());
DEBUG(I->dump());
}
// If we can, convert the instructions to be patterns that are matched!
for (std::map<Record*, DAGInstruction, RecordPtrCmp>::iterator II =
Instructions.begin(),
E = Instructions.end(); II != E; ++II) {
DAGInstruction &TheInst = II->second;
const TreePattern *I = TheInst.getPattern();
if (I == 0) continue; // No pattern.
// FIXME: Assume only the first tree is the pattern. The others are clobber
// nodes.
TreePatternNode *Pattern = I->getTree(0);
TreePatternNode *SrcPattern;
if (Pattern->getOperator()->getName() == "set") {
SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
} else{
// Not a set (store or something?)
SrcPattern = Pattern;
}
Record *Instr = II->first;
AddPatternToMatch(I,
PatternToMatch(Instr->getValueAsListInit("Predicates"),
SrcPattern,
TheInst.getResultPattern(),
TheInst.getImpResults(),
Instr->getValueAsInt("AddedComplexity"),
Instr->getID()));
}
}
typedef std::pair<const TreePatternNode*, unsigned> NameRecord;
static void FindNames(const TreePatternNode *P,
std::map<std::string, NameRecord> &Names,
const TreePattern *PatternTop) {
if (!P->getName().empty()) {
NameRecord &Rec = Names[P->getName()];
// If this is the first instance of the name, remember the node.
if (Rec.second++ == 0)
Rec.first = P;
else if (Rec.first->getExtTypes() != P->getExtTypes())
PatternTop->error("repetition of value: $" + P->getName() +
" where different uses have different types!");
}
if (!P->isLeaf()) {
for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
FindNames(P->getChild(i), Names, PatternTop);
}
}
void CodeGenDAGPatterns::AddPatternToMatch(const TreePattern *Pattern,
const PatternToMatch &PTM) {
// Do some sanity checking on the pattern we're about to match.
std::string Reason;
if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this))
Pattern->error("Pattern can never match: " + Reason);
// If the source pattern's root is a complex pattern, that complex pattern
// must specify the nodes it can potentially match.
if (const ComplexPattern *CP =
PTM.getSrcPattern()->getComplexPatternInfo(*this))
if (CP->getRootNodes().empty())
Pattern->error("ComplexPattern at root must specify list of opcodes it"
" could match");
// Find all of the named values in the input and output, ensure they have the
// same type.
std::map<std::string, NameRecord> SrcNames, DstNames;
FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
FindNames(PTM.getDstPattern(), DstNames, Pattern);
// Scan all of the named values in the destination pattern, rejecting them if
// they don't exist in the input pattern.
for (std::map<std::string, NameRecord>::iterator
I = DstNames.begin(), E = DstNames.end(); I != E; ++I) {
if (SrcNames[I->first].first == 0)
Pattern->error("Pattern has input without matching name in output: $" +
I->first);
}
// Scan all of the named values in the source pattern, rejecting them if the
// name isn't used in the dest, and isn't used to tie two values together.
for (std::map<std::string, NameRecord>::iterator
I = SrcNames.begin(), E = SrcNames.end(); I != E; ++I)
if (DstNames[I->first].first == 0 && SrcNames[I->first].second == 1)
Pattern->error("Pattern has dead named input: $" + I->first);
PatternsToMatch.push_back(PTM);
}
void CodeGenDAGPatterns::InferInstructionFlags() {
const std::vector<const CodeGenInstruction*> &Instructions =
Target.getInstructionsByEnumValue();
for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
CodeGenInstruction &InstInfo =
const_cast<CodeGenInstruction &>(*Instructions[i]);
// Determine properties of the instruction from its pattern.
bool MayStore, MayLoad, HasSideEffects, IsVariadic;
InferFromPattern(InstInfo, MayStore, MayLoad, HasSideEffects, IsVariadic,
*this);
InstInfo.mayStore = MayStore;
InstInfo.mayLoad = MayLoad;
InstInfo.hasSideEffects = HasSideEffects;
InstInfo.isVariadic = IsVariadic;
}
}
/// Given a pattern result with an unresolved type, see if we can find one
/// instruction with an unresolved result type. Force this result type to an
/// arbitrary element if it's possible types to converge results.
static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
if (N->isLeaf())
return false;
// Analyze children.
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
if (ForceArbitraryInstResultType(N->getChild(i), TP))
return true;
if (!N->getOperator()->isSubClassOf("Instruction"))
return false;
// If this type is already concrete or completely unknown we can't do
// anything.
for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete())
continue;
// Otherwise, force its type to the first possibility (an arbitrary choice).
if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP))
return true;
}
return false;
}
void CodeGenDAGPatterns::ParsePatterns() {
std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
Record *CurPattern = Patterns[i];
DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this);
// Inline pattern fragments into it.
Pattern->InlinePatternFragments();
ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
if (LI->getSize() == 0) continue; // no pattern.
// Parse the instruction.
TreePattern *Result = new TreePattern(CurPattern, LI, false, *this);
// Inline pattern fragments into it.
Result->InlinePatternFragments();
if (Result->getNumTrees() != 1)
Result->error("Cannot handle instructions producing instructions "
"with temporaries yet!");
bool IterateInference;
bool InferredAllPatternTypes, InferredAllResultTypes;
do {
// Infer as many types as possible. If we cannot infer all of them, we
// can never do anything with this pattern: report it to the user.
InferredAllPatternTypes =
Pattern->InferAllTypes(&Pattern->getNamedNodesMap());
// Infer as many types as possible. If we cannot infer all of them, we
// can never do anything with this pattern: report it to the user.
InferredAllResultTypes =
Result->InferAllTypes(&Pattern->getNamedNodesMap());
IterateInference = false;
// Apply the type of the result to the source pattern. This helps us
// resolve cases where the input type is known to be a pointer type (which
// is considered resolved), but the result knows it needs to be 32- or
// 64-bits. Infer the other way for good measure.
for (unsigned i = 0, e = std::min(Result->getTree(0)->getNumTypes(),
Pattern->getTree(0)->getNumTypes());
i != e; ++i) {
IterateInference = Pattern->getTree(0)->
UpdateNodeType(i, Result->getTree(0)->getExtType(i), *Result);
IterateInference |= Result->getTree(0)->
UpdateNodeType(i, Pattern->getTree(0)->getExtType(i), *Result);
}
// If our iteration has converged and the input pattern's types are fully
// resolved but the result pattern is not fully resolved, we may have a
// situation where we have two instructions in the result pattern and
// the instructions require a common register class, but don't care about
// what actual MVT is used. This is actually a bug in our modelling:
// output patterns should have register classes, not MVTs.
//
// In any case, to handle this, we just go through and disambiguate some
// arbitrary types to the result pattern's nodes.
if (!IterateInference && InferredAllPatternTypes &&
!InferredAllResultTypes)
IterateInference = ForceArbitraryInstResultType(Result->getTree(0),
*Result);
} while (IterateInference);
// Verify that we inferred enough types that we can do something with the
// pattern and result. If these fire the user has to add type casts.
if (!InferredAllPatternTypes)
Pattern->error("Could not infer all types in pattern!");
if (!InferredAllResultTypes) {
Pattern->dump();
Result->error("Could not infer all types in pattern result!");
}
// Validate that the input pattern is correct.
std::map<std::string, TreePatternNode*> InstInputs;
std::map<std::string, TreePatternNode*> InstResults;
std::vector<Record*> InstImpResults;
for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
InstInputs, InstResults,
InstImpResults);
// Promote the xform function to be an explicit node if set.
TreePatternNode *DstPattern = Result->getOnlyTree();
std::vector<TreePatternNode*> ResultNodeOperands;
for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
TreePatternNode *OpNode = DstPattern->getChild(ii);
if (Record *Xform = OpNode->getTransformFn()) {
OpNode->setTransformFn(0);
std::vector<TreePatternNode*> Children;
Children.push_back(OpNode);
OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
}
ResultNodeOperands.push_back(OpNode);
}
DstPattern = Result->getOnlyTree();
if (!DstPattern->isLeaf())
DstPattern = new TreePatternNode(DstPattern->getOperator(),
ResultNodeOperands,
DstPattern->getNumTypes());
for (unsigned i = 0, e = Result->getOnlyTree()->getNumTypes(); i != e; ++i)
DstPattern->setType(i, Result->getOnlyTree()->getExtType(i));
TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
Temp.InferAllTypes();
AddPatternToMatch(Pattern,
PatternToMatch(CurPattern->getValueAsListInit("Predicates"),
Pattern->getTree(0),
Temp.getOnlyTree(), InstImpResults,
CurPattern->getValueAsInt("AddedComplexity"),
CurPattern->getID()));
}
}
/// CombineChildVariants - Given a bunch of permutations of each child of the
/// 'operator' node, put them together in all possible ways.
static void CombineChildVariants(TreePatternNode *Orig,
const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
std::vector<TreePatternNode*> &OutVariants,
CodeGenDAGPatterns &CDP,
const MultipleUseVarSet &DepVars) {
// Make sure that each operand has at least one variant to choose from.
for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
if (ChildVariants[i].empty())
return;
// The end result is an all-pairs construction of the resultant pattern.
std::vector<unsigned> Idxs;
Idxs.resize(ChildVariants.size());
bool NotDone;
do {
#ifndef NDEBUG
DEBUG(if (!Idxs.empty()) {
errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
for (unsigned i = 0; i < Idxs.size(); ++i) {
errs() << Idxs[i] << " ";
}
errs() << "]\n";
});
#endif
// Create the variant and add it to the output list.
std::vector<TreePatternNode*> NewChildren;
for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
NewChildren.push_back(ChildVariants[i][Idxs[i]]);
TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren,
Orig->getNumTypes());
// Copy over properties.
R->setName(Orig->getName());
R->setPredicateFns(Orig->getPredicateFns());
R->setTransformFn(Orig->getTransformFn());
for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
R->setType(i, Orig->getExtType(i));
// If this pattern cannot match, do not include it as a variant.
std::string ErrString;
if (!R->canPatternMatch(ErrString, CDP)) {
delete R;
} else {
bool AlreadyExists = false;
// Scan to see if this pattern has already been emitted. We can get
// duplication due to things like commuting:
// (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
// which are the same pattern. Ignore the dups.
for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
if (R->isIsomorphicTo(OutVariants[i], DepVars)) {
AlreadyExists = true;
break;
}
if (AlreadyExists)
delete R;
else
OutVariants.push_back(R);
}
// Increment indices to the next permutation by incrementing the
// indicies from last index backward, e.g., generate the sequence
// [0, 0], [0, 1], [1, 0], [1, 1].
int IdxsIdx;
for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
Idxs[IdxsIdx] = 0;
else
break;
}
NotDone = (IdxsIdx >= 0);
} while (NotDone);
}
/// CombineChildVariants - A helper function for binary operators.
///
static void CombineChildVariants(TreePatternNode *Orig,
const std::vector<TreePatternNode*> &LHS,
const std::vector<TreePatternNode*> &RHS,
std::vector<TreePatternNode*> &OutVariants,
CodeGenDAGPatterns &CDP,
const MultipleUseVarSet &DepVars) {
std::vector<std::vector<TreePatternNode*> > ChildVariants;
ChildVariants.push_back(LHS);
ChildVariants.push_back(RHS);
CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
}
static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
std::vector<TreePatternNode *> &Children) {
assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
Record *Operator = N->getOperator();
// Only permit raw nodes.
if (!N->getName().empty() || !N->getPredicateFns().empty() ||
N->getTransformFn()) {
Children.push_back(N);
return;
}
if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
Children.push_back(N->getChild(0));
else
GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
Children.push_back(N->getChild(1));
else
GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
}
/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
/// the (potentially recursive) pattern by using algebraic laws.
///
static void GenerateVariantsOf(TreePatternNode *N,
std::vector<TreePatternNode*> &OutVariants,
CodeGenDAGPatterns &CDP,
const MultipleUseVarSet &DepVars) {
// We cannot permute leaves.
if (N->isLeaf()) {
OutVariants.push_back(N);
return;
}
// Look up interesting info about the node.
const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
// If this node is associative, re-associate.
if (NodeInfo.hasProperty(SDNPAssociative)) {
// Re-associate by pulling together all of the linked operators
std::vector<TreePatternNode*> MaximalChildren;
GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
// Only handle child sizes of 3. Otherwise we'll end up trying too many
// permutations.
if (MaximalChildren.size() == 3) {
// Find the variants of all of our maximal children.
std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
// There are only two ways we can permute the tree:
// (A op B) op C and A op (B op C)
// Within these forms, we can also permute A/B/C.
// Generate legal pair permutations of A/B/C.
std::vector<TreePatternNode*> ABVariants;
std::vector<TreePatternNode*> BAVariants;
std::vector<TreePatternNode*> ACVariants;
std::vector<TreePatternNode*> CAVariants;
std::vector<TreePatternNode*> BCVariants;
std::vector<TreePatternNode*> CBVariants;
CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
// Combine those into the result: (x op x) op x
CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
// Combine those into the result: x op (x op x)
CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
return;
}
}
// Compute permutations of all children.
std::vector<std::vector<TreePatternNode*> > ChildVariants;
ChildVariants.resize(N->getNumChildren());
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);
// Build all permutations based on how the children were formed.
CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
// If this node is commutative, consider the commuted order.
bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
assert((N->getNumChildren()==2 || isCommIntrinsic) &&
"Commutative but doesn't have 2 children!");
// Don't count children which are actually register references.
unsigned NC = 0;
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
TreePatternNode *Child = N->getChild(i);
if (Child->isLeaf())
if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
Record *RR = DI->getDef();
if (RR->isSubClassOf("Register"))
continue;
}
NC++;
}
// Consider the commuted order.
if (isCommIntrinsic) {
// Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
// operands are the commutative operands, and there might be more operands
// after those.
assert(NC >= 3 &&
"Commutative intrinsic should have at least 3 childrean!");
std::vector<std::vector<TreePatternNode*> > Variants;
Variants.push_back(ChildVariants[0]); // Intrinsic id.
Variants.push_back(ChildVariants[2]);
Variants.push_back(ChildVariants[1]);
for (unsigned i = 3; i != NC; ++i)
Variants.push_back(ChildVariants[i]);
CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
} else if (NC == 2)
CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
OutVariants, CDP, DepVars);
}
}
// GenerateVariants - Generate variants. For example, commutative patterns can
// match multiple ways. Add them to PatternsToMatch as well.
void CodeGenDAGPatterns::GenerateVariants() {
DEBUG(errs() << "Generating instruction variants.\n");
// Loop over all of the patterns we've collected, checking to see if we can
// generate variants of the instruction, through the exploitation of
// identities. This permits the target to provide aggressive matching without
// the .td file having to contain tons of variants of instructions.
//
// Note that this loop adds new patterns to the PatternsToMatch list, but we
// intentionally do not reconsider these. Any variants of added patterns have
// already been added.
//
for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
MultipleUseVarSet DepVars;
std::vector<TreePatternNode*> Variants;
FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
DEBUG(errs() << "Dependent/multiply used variables: ");
DEBUG(DumpDepVars(DepVars));
DEBUG(errs() << "\n");
GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this, DepVars);
assert(!Variants.empty() && "Must create at least original variant!");
Variants.erase(Variants.begin()); // Remove the original pattern.
if (Variants.empty()) // No variants for this pattern.
continue;
DEBUG(errs() << "FOUND VARIANTS OF: ";
PatternsToMatch[i].getSrcPattern()->dump();
errs() << "\n");
for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
TreePatternNode *Variant = Variants[v];
DEBUG(errs() << " VAR#" << v << ": ";
Variant->dump();
errs() << "\n");
// Scan to see if an instruction or explicit pattern already matches this.
bool AlreadyExists = false;
for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
// Skip if the top level predicates do not match.
if (PatternsToMatch[i].getPredicates() !=
PatternsToMatch[p].getPredicates())
continue;
// Check to see if this variant already exists.
if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), DepVars)) {
DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n");
AlreadyExists = true;
break;
}
}
// If we already have it, ignore the variant.
if (AlreadyExists) continue;
// Otherwise, add it to the list of patterns we have.
PatternsToMatch.
push_back(PatternToMatch(PatternsToMatch[i].getPredicates(),
Variant, PatternsToMatch[i].getDstPattern(),
PatternsToMatch[i].getDstRegs(),
PatternsToMatch[i].getAddedComplexity(),
Record::getNewUID()));
}
DEBUG(errs() << "\n");
}
}
|