aboutsummaryrefslogtreecommitdiff
path: root/tools/llvm-upgrade/UpgradeParser.y
blob: 1751912a2e6b2984761c32303f7e41546d677d12 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
//===-- llvmAsmParser.y - Parser for llvm assembly files --------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file implements the bison parser for LLVM assembly languages files.
//
//===----------------------------------------------------------------------===//

%{
#include "UpgradeInternals.h"
#include "llvm/CallingConv.h"
#include "llvm/InlineAsm.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/ParameterAttributes.h"
#include "llvm/ValueSymbolTable.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <iostream>
#include <map>
#include <list>
#include <utility>

// DEBUG_UPREFS - Define this symbol if you want to enable debugging output
// relating to upreferences in the input stream.
//
//#define DEBUG_UPREFS 1
#ifdef DEBUG_UPREFS
#define UR_OUT(X) std::cerr << X
#else
#define UR_OUT(X)
#endif

#define YYERROR_VERBOSE 1
#define YYINCLUDED_STDLIB_H
#define YYDEBUG 1

int yylex();
int yyparse();

int yyerror(const char*);
static void warning(const std::string& WarningMsg);

namespace llvm {

std::istream* LexInput;
static std::string CurFilename;

// This bool controls whether attributes are ever added to function declarations
// definitions and calls.
static bool AddAttributes = false;

static Module *ParserResult;
static bool ObsoleteVarArgs;
static bool NewVarArgs;
static BasicBlock *CurBB;
static GlobalVariable *CurGV;

// This contains info used when building the body of a function.  It is
// destroyed when the function is completed.
//
typedef std::vector<Value *> ValueList;           // Numbered defs

typedef std::pair<std::string,TypeInfo> RenameMapKey;
typedef std::map<RenameMapKey,std::string> RenameMapType;

static void 
ResolveDefinitions(std::map<const Type *,ValueList> &LateResolvers,
                   std::map<const Type *,ValueList> *FutureLateResolvers = 0);

static struct PerModuleInfo {
  Module *CurrentModule;
  std::map<const Type *, ValueList> Values; // Module level numbered definitions
  std::map<const Type *,ValueList> LateResolveValues;
  std::vector<PATypeHolder> Types;
  std::vector<Signedness> TypeSigns;
  std::map<std::string,Signedness> NamedTypeSigns;
  std::map<std::string,Signedness> NamedValueSigns;
  std::map<ValID, PATypeHolder> LateResolveTypes;
  static Module::Endianness Endian;
  static Module::PointerSize PointerSize;
  RenameMapType RenameMap;

  /// PlaceHolderInfo - When temporary placeholder objects are created, remember
  /// how they were referenced and on which line of the input they came from so
  /// that we can resolve them later and print error messages as appropriate.
  std::map<Value*, std::pair<ValID, int> > PlaceHolderInfo;

  // GlobalRefs - This maintains a mapping between <Type, ValID>'s and forward
  // references to global values.  Global values may be referenced before they
  // are defined, and if so, the temporary object that they represent is held
  // here.  This is used for forward references of GlobalValues.
  //
  typedef std::map<std::pair<const PointerType *, ValID>, GlobalValue*> 
    GlobalRefsType;
  GlobalRefsType GlobalRefs;

  void ModuleDone() {
    // If we could not resolve some functions at function compilation time
    // (calls to functions before they are defined), resolve them now...  Types
    // are resolved when the constant pool has been completely parsed.
    //
    ResolveDefinitions(LateResolveValues);

    // Check to make sure that all global value forward references have been
    // resolved!
    //
    if (!GlobalRefs.empty()) {
      std::string UndefinedReferences = "Unresolved global references exist:\n";

      for (GlobalRefsType::iterator I = GlobalRefs.begin(), E =GlobalRefs.end();
           I != E; ++I) {
        UndefinedReferences += "  " + I->first.first->getDescription() + " " +
                               I->first.second.getName() + "\n";
      }
      error(UndefinedReferences);
      return;
    }

    if (CurrentModule->getDataLayout().empty()) {
      std::string dataLayout;
      if (Endian != Module::AnyEndianness)
        dataLayout.append(Endian == Module::BigEndian ? "E" : "e");
      if (PointerSize != Module::AnyPointerSize) {
        if (!dataLayout.empty())
          dataLayout += "-";
        dataLayout.append(PointerSize == Module::Pointer64 ? 
                          "p:64:64" : "p:32:32");
      }
      CurrentModule->setDataLayout(dataLayout);
    }

    Values.clear();         // Clear out function local definitions
    Types.clear();
    TypeSigns.clear();
    NamedTypeSigns.clear();
    NamedValueSigns.clear();
    CurrentModule = 0;
  }

  // GetForwardRefForGlobal - Check to see if there is a forward reference
  // for this global.  If so, remove it from the GlobalRefs map and return it.
  // If not, just return null.
  GlobalValue *GetForwardRefForGlobal(const PointerType *PTy, ValID ID) {
    // Check to see if there is a forward reference to this global variable...
    // if there is, eliminate it and patch the reference to use the new def'n.
    GlobalRefsType::iterator I = GlobalRefs.find(std::make_pair(PTy, ID));
    GlobalValue *Ret = 0;
    if (I != GlobalRefs.end()) {
      Ret = I->second;
      GlobalRefs.erase(I);
    }
    return Ret;
  }
  void setEndianness(Module::Endianness E) { Endian = E; }
  void setPointerSize(Module::PointerSize sz) { PointerSize = sz; }
} CurModule;

Module::Endianness  PerModuleInfo::Endian = Module::AnyEndianness;
Module::PointerSize PerModuleInfo::PointerSize = Module::AnyPointerSize;

static struct PerFunctionInfo {
  Function *CurrentFunction;     // Pointer to current function being created

  std::map<const Type*, ValueList> Values; // Keep track of #'d definitions
  std::map<const Type*, ValueList> LateResolveValues;
  bool isDeclare;                   // Is this function a forward declararation?
  GlobalValue::LinkageTypes Linkage;// Linkage for forward declaration.

  /// BBForwardRefs - When we see forward references to basic blocks, keep
  /// track of them here.
  std::map<BasicBlock*, std::pair<ValID, int> > BBForwardRefs;
  std::vector<BasicBlock*> NumberedBlocks;
  RenameMapType RenameMap;
  unsigned NextBBNum;

  inline PerFunctionInfo() {
    CurrentFunction = 0;
    isDeclare = false;
    Linkage = GlobalValue::ExternalLinkage;    
  }

  inline void FunctionStart(Function *M) {
    CurrentFunction = M;
    NextBBNum = 0;
  }

  void FunctionDone() {
    NumberedBlocks.clear();

    // Any forward referenced blocks left?
    if (!BBForwardRefs.empty()) {
      error("Undefined reference to label " + 
            BBForwardRefs.begin()->first->getName());
      return;
    }

    // Resolve all forward references now.
    ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues);

    Values.clear();         // Clear out function local definitions
    RenameMap.clear();
    CurrentFunction = 0;
    isDeclare = false;
    Linkage = GlobalValue::ExternalLinkage;
  }
} CurFun;  // Info for the current function...

static bool inFunctionScope() { return CurFun.CurrentFunction != 0; }

/// This function is just a utility to make a Key value for the rename map.
/// The Key is a combination of the name, type, Signedness of the original 
/// value (global/function). This just constructs the key and ensures that
/// named Signedness values are resolved to the actual Signedness.
/// @brief Make a key for the RenameMaps
static RenameMapKey makeRenameMapKey(const std::string &Name, const Type* Ty, 
                                     const Signedness &Sign) {
  TypeInfo TI; 
  TI.T = Ty; 
  if (Sign.isNamed())
    // Don't allow Named Signedness nodes because they won't match. The actual
    // Signedness must be looked up in the NamedTypeSigns map.
    TI.S.copy(CurModule.NamedTypeSigns[Sign.getName()]);
  else
    TI.S.copy(Sign);
  return std::make_pair(Name, TI);
}


//===----------------------------------------------------------------------===//
//               Code to handle definitions of all the types
//===----------------------------------------------------------------------===//

static int InsertValue(Value *V,
                  std::map<const Type*,ValueList> &ValueTab = CurFun.Values) {
  if (V->hasName()) return -1;           // Is this a numbered definition?

  // Yes, insert the value into the value table...
  ValueList &List = ValueTab[V->getType()];
  List.push_back(V);
  return List.size()-1;
}

static const Type *getType(const ValID &D, bool DoNotImprovise = false) {
  switch (D.Type) {
  case ValID::NumberVal:               // Is it a numbered definition?
    // Module constants occupy the lowest numbered slots...
    if ((unsigned)D.Num < CurModule.Types.size()) {
      return CurModule.Types[(unsigned)D.Num];
    }
    break;
  case ValID::NameVal:                 // Is it a named definition?
    if (const Type *N = CurModule.CurrentModule->getTypeByName(D.Name)) {
      return N;
    }
    break;
  default:
    error("Internal parser error: Invalid symbol type reference");
    return 0;
  }

  // If we reached here, we referenced either a symbol that we don't know about
  // or an id number that hasn't been read yet.  We may be referencing something
  // forward, so just create an entry to be resolved later and get to it...
  //
  if (DoNotImprovise) return 0;  // Do we just want a null to be returned?

  if (inFunctionScope()) {
    if (D.Type == ValID::NameVal) {
      error("Reference to an undefined type: '" + D.getName() + "'");
      return 0;
    } else {
      error("Reference to an undefined type: #" + itostr(D.Num));
      return 0;
    }
  }

  std::map<ValID, PATypeHolder>::iterator I =CurModule.LateResolveTypes.find(D);
  if (I != CurModule.LateResolveTypes.end())
    return I->second;

  Type *Typ = OpaqueType::get();
  CurModule.LateResolveTypes.insert(std::make_pair(D, Typ));
  return Typ;
}

/// This is like the getType method except that instead of looking up the type
/// for a given ID, it looks up that type's sign.
/// @brief Get the signedness of a referenced type
static Signedness getTypeSign(const ValID &D) {
  switch (D.Type) {
  case ValID::NumberVal:               // Is it a numbered definition?
    // Module constants occupy the lowest numbered slots...
    if ((unsigned)D.Num < CurModule.TypeSigns.size()) {
      return CurModule.TypeSigns[(unsigned)D.Num];
    }
    break;
  case ValID::NameVal: {               // Is it a named definition?
    std::map<std::string,Signedness>::const_iterator I = 
      CurModule.NamedTypeSigns.find(D.Name);
    if (I != CurModule.NamedTypeSigns.end())
      return I->second;
    // Perhaps its a named forward .. just cache the name
    Signedness S;
    S.makeNamed(D.Name);
    return S;
  }
  default: 
    break;
  }
  // If we don't find it, its signless
  Signedness S;
  S.makeSignless();
  return S;
}

/// This function is analagous to getElementType in LLVM. It provides the same
/// function except that it looks up the Signedness instead of the type. This is
/// used when processing GEP instructions that need to extract the type of an
/// indexed struct/array/ptr member. 
/// @brief Look up an element's sign.
static Signedness getElementSign(const ValueInfo& VI, 
                                 const std::vector<Value*> &Indices) {
  const Type *Ptr = VI.V->getType();
  assert(isa<PointerType>(Ptr) && "Need pointer type");

  unsigned CurIdx = 0;
  Signedness S(VI.S);
  while (const CompositeType *CT = dyn_cast<CompositeType>(Ptr)) {
    if (CurIdx == Indices.size())
      break;

    Value *Index = Indices[CurIdx++];
    assert(!isa<PointerType>(CT) || CurIdx == 1 && "Invalid type");
    Ptr = CT->getTypeAtIndex(Index);
    if (const Type* Ty = Ptr->getForwardedType())
      Ptr = Ty;
    assert(S.isComposite() && "Bad Signedness type");
    if (isa<StructType>(CT)) {
      S = S.get(cast<ConstantInt>(Index)->getZExtValue());
    } else {
      S = S.get(0UL);
    }
    if (S.isNamed())
      S = CurModule.NamedTypeSigns[S.getName()];
  }
  Signedness Result;
  Result.makeComposite(S);
  return Result;
}

/// This function just translates a ConstantInfo into a ValueInfo and calls
/// getElementSign(ValueInfo,...). Its just a convenience.
/// @brief ConstantInfo version of getElementSign.
static Signedness getElementSign(const ConstInfo& CI, 
                                 const std::vector<Constant*> &Indices) {
  ValueInfo VI;
  VI.V = CI.C;
  VI.S.copy(CI.S);
  std::vector<Value*> Idx;
  for (unsigned i = 0; i < Indices.size(); ++i)
    Idx.push_back(Indices[i]);
  Signedness result = getElementSign(VI, Idx);
  VI.destroy();
  return result;
}

/// This function determines if two function types differ only in their use of
/// the sret parameter attribute in the first argument. If they are identical 
/// in all other respects, it returns true. Otherwise, it returns false.
static bool FuncTysDifferOnlyBySRet(const FunctionType *F1, 
                                    const FunctionType *F2) {
  if (F1->getReturnType() != F2->getReturnType() ||
      F1->getNumParams() != F2->getNumParams())
    return false;
  ParamAttrsList PAL1;
  if (F1->getParamAttrs())
    PAL1 = *F1->getParamAttrs();
  ParamAttrsList PAL2;
  if (F2->getParamAttrs())
    PAL2 = *F2->getParamAttrs();
  if (PAL1.getParamAttrs(0) != PAL2.getParamAttrs(0))
    return false;
  unsigned SRetMask = ~unsigned(ParamAttr::StructRet);
  for (unsigned i = 0; i < F1->getNumParams(); ++i) {
    if (F1->getParamType(i) != F2->getParamType(i) ||
        unsigned(PAL1.getParamAttrs(i+1)) & SRetMask !=
        unsigned(PAL2.getParamAttrs(i+1)) & SRetMask)
      return false;
  }
  return true;
}

/// This function determines if the type of V and Ty differ only by the SRet
/// parameter attribute. This is a more generalized case of
/// FuncTysDIfferOnlyBySRet since it doesn't require FunctionType arguments.
static bool TypesDifferOnlyBySRet(Value *V, const Type* Ty) {
  if (V->getType() == Ty)
    return true;
  const PointerType *PF1 = dyn_cast<PointerType>(Ty);
  const PointerType *PF2 = dyn_cast<PointerType>(V->getType());
  if (PF1 && PF2) {
    const FunctionType* FT1 = dyn_cast<FunctionType>(PF1->getElementType());
    const FunctionType* FT2 = dyn_cast<FunctionType>(PF2->getElementType());
    if (FT1 && FT2)
      return FuncTysDifferOnlyBySRet(FT1, FT2);
  }
  return false;
}

// The upgrade of csretcc to sret param attribute may have caused a function 
// to not be found because the param attribute changed the type of the called 
// function. This helper function, used in getExistingValue, detects that
// situation and bitcasts the function to the correct type.
static Value* handleSRetFuncTypeMerge(Value *V, const Type* Ty) {
  // Handle degenerate cases
  if (!V)
    return 0;
  if (V->getType() == Ty)
    return V;

  const PointerType *PF1 = dyn_cast<PointerType>(Ty);
  const PointerType *PF2 = dyn_cast<PointerType>(V->getType());
  if (PF1 && PF2) {
    const FunctionType *FT1 = dyn_cast<FunctionType>(PF1->getElementType());
    const FunctionType *FT2 = dyn_cast<FunctionType>(PF2->getElementType());
    if (FT1 && FT2 && FuncTysDifferOnlyBySRet(FT1, FT2)) {
      const ParamAttrsList *PAL2 = FT2->getParamAttrs();
      if (PAL2 && PAL2->paramHasAttr(1, ParamAttr::StructRet))
        return V;
      else if (Constant *C = dyn_cast<Constant>(V))
        return ConstantExpr::getBitCast(C, PF1);
      else
        return new BitCastInst(V, PF1, "upgrd.cast", CurBB);
    }
      
  }
  return 0;
}

// getExistingValue - Look up the value specified by the provided type and
// the provided ValID.  If the value exists and has already been defined, return
// it.  Otherwise return null.
//
static Value *getExistingValue(const Type *Ty, const ValID &D) {
  if (isa<FunctionType>(Ty)) {
    error("Functions are not values and must be referenced as pointers");
  }

  switch (D.Type) {
  case ValID::NumberVal: {                 // Is it a numbered definition?
    unsigned Num = (unsigned)D.Num;

    // Module constants occupy the lowest numbered slots...
    std::map<const Type*,ValueList>::iterator VI = CurModule.Values.find(Ty);
    if (VI != CurModule.Values.end()) {
      if (Num < VI->second.size())
        return VI->second[Num];
      Num -= VI->second.size();
    }

    // Make sure that our type is within bounds
    VI = CurFun.Values.find(Ty);
    if (VI == CurFun.Values.end()) return 0;

    // Check that the number is within bounds...
    if (VI->second.size() <= Num) return 0;

    return VI->second[Num];
  }

  case ValID::NameVal: {                // Is it a named definition?
    // Get the name out of the ID
    RenameMapKey Key = makeRenameMapKey(D.Name, Ty, D.S);
    Value *V = 0;
    if (inFunctionScope()) {
      // See if the name was renamed
      RenameMapType::const_iterator I = CurFun.RenameMap.find(Key);
      std::string LookupName;
      if (I != CurFun.RenameMap.end())
        LookupName = I->second;
      else
        LookupName = D.Name;
      ValueSymbolTable &SymTab = CurFun.CurrentFunction->getValueSymbolTable();
      V = SymTab.lookup(LookupName);
      if (V && V->getType() != Ty)
        V = handleSRetFuncTypeMerge(V, Ty);
      assert((!V || TypesDifferOnlyBySRet(V, Ty)) && "Found wrong type");
    }
    if (!V) {
      RenameMapType::const_iterator I = CurModule.RenameMap.find(Key);
      std::string LookupName;
      if (I != CurModule.RenameMap.end())
        LookupName = I->second;
      else
        LookupName = D.Name;
      V = CurModule.CurrentModule->getValueSymbolTable().lookup(LookupName);
      if (V && V->getType() != Ty)
        V = handleSRetFuncTypeMerge(V, Ty);
      assert((!V || TypesDifferOnlyBySRet(V, Ty)) && "Found wrong type");
    }
    if (!V) 
      return 0;

    D.destroy();  // Free old strdup'd memory...
    return V;
  }

  // Check to make sure that "Ty" is an integral type, and that our
  // value will fit into the specified type...
  case ValID::ConstSIntVal:    // Is it a constant pool reference??
    if (!ConstantInt::isValueValidForType(Ty, D.ConstPool64)) {
      error("Signed integral constant '" + itostr(D.ConstPool64) + 
            "' is invalid for type '" + Ty->getDescription() + "'");
    }
    return ConstantInt::get(Ty, D.ConstPool64);

  case ValID::ConstUIntVal:     // Is it an unsigned const pool reference?
    if (!ConstantInt::isValueValidForType(Ty, D.UConstPool64)) {
      if (!ConstantInt::isValueValidForType(Ty, D.ConstPool64))
        error("Integral constant '" + utostr(D.UConstPool64) + 
              "' is invalid or out of range");
      else     // This is really a signed reference.  Transmogrify.
        return ConstantInt::get(Ty, D.ConstPool64);
    } else
      return ConstantInt::get(Ty, D.UConstPool64);

  case ValID::ConstFPVal:        // Is it a floating point const pool reference?
    if (!ConstantFP::isValueValidForType(Ty, D.ConstPoolFP))
      error("FP constant invalid for type");
    return ConstantFP::get(Ty, D.ConstPoolFP);

  case ValID::ConstNullVal:      // Is it a null value?
    if (!isa<PointerType>(Ty))
      error("Cannot create a a non pointer null");
    return ConstantPointerNull::get(cast<PointerType>(Ty));

  case ValID::ConstUndefVal:      // Is it an undef value?
    return UndefValue::get(Ty);

  case ValID::ConstZeroVal:      // Is it a zero value?
    return Constant::getNullValue(Ty);
    
  case ValID::ConstantVal:       // Fully resolved constant?
    if (D.ConstantValue->getType() != Ty) 
      error("Constant expression type different from required type");
    return D.ConstantValue;

  case ValID::InlineAsmVal: {    // Inline asm expression
    const PointerType *PTy = dyn_cast<PointerType>(Ty);
    const FunctionType *FTy =
      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
    if (!FTy || !InlineAsm::Verify(FTy, D.IAD->Constraints))
      error("Invalid type for asm constraint string");
    InlineAsm *IA = InlineAsm::get(FTy, D.IAD->AsmString, D.IAD->Constraints,
                                   D.IAD->HasSideEffects);
    D.destroy();   // Free InlineAsmDescriptor.
    return IA;
  }
  default:
    assert(0 && "Unhandled case");
    return 0;
  }   // End of switch

  assert(0 && "Unhandled case");
  return 0;
}

// getVal - This function is identical to getExistingValue, except that if a
// value is not already defined, it "improvises" by creating a placeholder var
// that looks and acts just like the requested variable.  When the value is
// defined later, all uses of the placeholder variable are replaced with the
// real thing.
//
static Value *getVal(const Type *Ty, const ValID &ID) {
  if (Ty == Type::LabelTy)
    error("Cannot use a basic block here");

  // See if the value has already been defined.
  Value *V = getExistingValue(Ty, ID);
  if (V) return V;

  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty))
    error("Invalid use of a composite type");

  // If we reached here, we referenced either a symbol that we don't know about
  // or an id number that hasn't been read yet.  We may be referencing something
  // forward, so just create an entry to be resolved later and get to it...
  V = new Argument(Ty);

  // Remember where this forward reference came from.  FIXME, shouldn't we try
  // to recycle these things??
  CurModule.PlaceHolderInfo.insert(
    std::make_pair(V, std::make_pair(ID, Upgradelineno)));

  if (inFunctionScope())
    InsertValue(V, CurFun.LateResolveValues);
  else
    InsertValue(V, CurModule.LateResolveValues);
  return V;
}

/// @brief This just makes any name given to it unique, up to MAX_UINT times.
static std::string makeNameUnique(const std::string& Name) {
  static unsigned UniqueNameCounter = 1;
  std::string Result(Name);
  Result += ".upgrd." + llvm::utostr(UniqueNameCounter++);
  return Result;
}

/// getBBVal - This is used for two purposes:
///  * If isDefinition is true, a new basic block with the specified ID is being
///    defined.
///  * If isDefinition is true, this is a reference to a basic block, which may
///    or may not be a forward reference.
///
static BasicBlock *getBBVal(const ValID &ID, bool isDefinition = false) {
  assert(inFunctionScope() && "Can't get basic block at global scope");

  std::string Name;
  BasicBlock *BB = 0;
  switch (ID.Type) {
  default: 
    error("Illegal label reference " + ID.getName());
    break;
  case ValID::NumberVal:                // Is it a numbered definition?
    if (unsigned(ID.Num) >= CurFun.NumberedBlocks.size())
      CurFun.NumberedBlocks.resize(ID.Num+1);
    BB = CurFun.NumberedBlocks[ID.Num];
    break;
  case ValID::NameVal:                  // Is it a named definition?
    Name = ID.Name;
    if (Value *N = CurFun.CurrentFunction->getValueSymbolTable().lookup(Name)) {
      if (N->getType() != Type::LabelTy) {
        // Register names didn't use to conflict with basic block names
        // because of type planes. Now they all have to be unique. So, we just
        // rename the register and treat this name as if no basic block
        // had been found.
        RenameMapKey Key = makeRenameMapKey(ID.Name, N->getType(), ID.S);
        N->setName(makeNameUnique(N->getName()));
        CurModule.RenameMap[Key] = N->getName();
        BB = 0;
      } else {
        BB = cast<BasicBlock>(N);
      }
    }
    break;
  }

  // See if the block has already been defined.
  if (BB) {
    // If this is the definition of the block, make sure the existing value was
    // just a forward reference.  If it was a forward reference, there will be
    // an entry for it in the PlaceHolderInfo map.
    if (isDefinition && !CurFun.BBForwardRefs.erase(BB))
      // The existing value was a definition, not a forward reference.
      error("Redefinition of label " + ID.getName());

    ID.destroy();                       // Free strdup'd memory.
    return BB;
  }

  // Otherwise this block has not been seen before.
  BB = new BasicBlock("", CurFun.CurrentFunction);
  if (ID.Type == ValID::NameVal) {
    BB->setName(ID.Name);
  } else {
    CurFun.NumberedBlocks[ID.Num] = BB;
  }

  // If this is not a definition, keep track of it so we can use it as a forward
  // reference.
  if (!isDefinition) {
    // Remember where this forward reference came from.
    CurFun.BBForwardRefs[BB] = std::make_pair(ID, Upgradelineno);
  } else {
    // The forward declaration could have been inserted anywhere in the
    // function: insert it into the correct place now.
    CurFun.CurrentFunction->getBasicBlockList().remove(BB);
    CurFun.CurrentFunction->getBasicBlockList().push_back(BB);
  }
  ID.destroy();
  return BB;
}


//===----------------------------------------------------------------------===//
//              Code to handle forward references in instructions
//===----------------------------------------------------------------------===//
//
// This code handles the late binding needed with statements that reference
// values not defined yet... for example, a forward branch, or the PHI node for
// a loop body.
//
// This keeps a table (CurFun.LateResolveValues) of all such forward references
// and back patchs after we are done.
//

// ResolveDefinitions - If we could not resolve some defs at parsing
// time (forward branches, phi functions for loops, etc...) resolve the
// defs now...
//
static void 
ResolveDefinitions(std::map<const Type*,ValueList> &LateResolvers,
                   std::map<const Type*,ValueList> *FutureLateResolvers) {

  // Loop over LateResolveDefs fixing up stuff that couldn't be resolved
  for (std::map<const Type*,ValueList>::iterator LRI = LateResolvers.begin(),
         E = LateResolvers.end(); LRI != E; ++LRI) {
    const Type* Ty = LRI->first;
    ValueList &List = LRI->second;
    while (!List.empty()) {
      Value *V = List.back();
      List.pop_back();

      std::map<Value*, std::pair<ValID, int> >::iterator PHI =
        CurModule.PlaceHolderInfo.find(V);
      assert(PHI != CurModule.PlaceHolderInfo.end() && "Placeholder error");

      ValID &DID = PHI->second.first;

      Value *TheRealValue = getExistingValue(Ty, DID);
      if (TheRealValue) {
        V->replaceAllUsesWith(TheRealValue);
        delete V;
        CurModule.PlaceHolderInfo.erase(PHI);
      } else if (FutureLateResolvers) {
        // Functions have their unresolved items forwarded to the module late
        // resolver table
        InsertValue(V, *FutureLateResolvers);
      } else {
        if (DID.Type == ValID::NameVal) {
          error("Reference to an invalid definition: '" + DID.getName() +
                "' of type '" + V->getType()->getDescription() + "'",
                PHI->second.second);
            return;
        } else {
          error("Reference to an invalid definition: #" +
                itostr(DID.Num) + " of type '" + 
                V->getType()->getDescription() + "'", PHI->second.second);
          return;
        }
      }
    }
  }

  LateResolvers.clear();
}

/// This function is used for type resolution and upref handling. When a type
/// becomes concrete, this function is called to adjust the signedness for the
/// concrete type.
static void ResolveTypeSign(const Type* oldTy, const Signedness &Sign) {
  std::string TyName = CurModule.CurrentModule->getTypeName(oldTy);
  if (!TyName.empty())
    CurModule.NamedTypeSigns[TyName] = Sign;
}

/// ResolveTypeTo - A brand new type was just declared.  This means that (if
/// name is not null) things referencing Name can be resolved.  Otherwise, 
/// things refering to the number can be resolved.  Do this now.
static void ResolveTypeTo(char *Name, const Type *ToTy, const Signedness& Sign){
  ValID D;
  if (Name)
    D = ValID::create(Name);
  else      
    D = ValID::create((int)CurModule.Types.size());
  D.S.copy(Sign);

  CurModule.NamedTypeSigns[Name] = Sign;

  std::map<ValID, PATypeHolder>::iterator I =
    CurModule.LateResolveTypes.find(D);
  if (I != CurModule.LateResolveTypes.end()) {
    const Type *OldTy = I->second.get();
    ((DerivedType*)OldTy)->refineAbstractTypeTo(ToTy);
    CurModule.LateResolveTypes.erase(I);
  }
}

/// This is the implementation portion of TypeHasInteger. It traverses the
/// type given, avoiding recursive types, and returns true as soon as it finds
/// an integer type. If no integer type is found, it returns false.
static bool TypeHasIntegerI(const Type *Ty, std::vector<const Type*> Stack) {
  // Handle some easy cases
  if (Ty->isPrimitiveType() || (Ty->getTypeID() == Type::OpaqueTyID))
    return false;
  if (Ty->isInteger())
    return true;
  if (const SequentialType *STy = dyn_cast<SequentialType>(Ty))
    return STy->getElementType()->isInteger();

  // Avoid type structure recursion
  for (std::vector<const Type*>::iterator I = Stack.begin(), E = Stack.end();
       I != E; ++I)
    if (Ty == *I)
      return false;

  // Push us on the type stack
  Stack.push_back(Ty);

  if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
    if (TypeHasIntegerI(FTy->getReturnType(), Stack)) 
      return true;
    FunctionType::param_iterator I = FTy->param_begin();
    FunctionType::param_iterator E = FTy->param_end();
    for (; I != E; ++I)
      if (TypeHasIntegerI(*I, Stack))
        return true;
    return false;
  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
    StructType::element_iterator I = STy->element_begin();
    StructType::element_iterator E = STy->element_end();
    for (; I != E; ++I) {
      if (TypeHasIntegerI(*I, Stack))
        return true;
    }
    return false;
  }
  // There shouldn't be anything else, but its definitely not integer
  assert(0 && "What type is this?");
  return false;
}

/// This is the interface to TypeHasIntegerI. It just provides the type stack,
/// to avoid recursion, and then calls TypeHasIntegerI.
static inline bool TypeHasInteger(const Type *Ty) {
  std::vector<const Type*> TyStack;
  return TypeHasIntegerI(Ty, TyStack);
}

// setValueName - Set the specified value to the name given.  The name may be
// null potentially, in which case this is a noop.  The string passed in is
// assumed to be a malloc'd string buffer, and is free'd by this function.
//
static void setValueName(const ValueInfo &V, char *NameStr) {
  if (NameStr) {
    std::string Name(NameStr);      // Copy string
    free(NameStr);                  // Free old string

    if (V.V->getType() == Type::VoidTy) {
      error("Can't assign name '" + Name + "' to value with void type");
      return;
    }

    assert(inFunctionScope() && "Must be in function scope");

    // Search the function's symbol table for an existing value of this name
    ValueSymbolTable &ST = CurFun.CurrentFunction->getValueSymbolTable();
    Value* Existing = ST.lookup(Name);
    if (Existing) {
      // An existing value of the same name was found. This might have happened
      // because of the integer type planes collapsing in LLVM 2.0. 
      if (Existing->getType() == V.V->getType() &&
          !TypeHasInteger(Existing->getType())) {
        // If the type does not contain any integers in them then this can't be
        // a type plane collapsing issue. It truly is a redefinition and we 
        // should error out as the assembly is invalid.
        error("Redefinition of value named '" + Name + "' of type '" +
              V.V->getType()->getDescription() + "'");
        return;
      } 
      // In LLVM 2.0 we don't allow names to be re-used for any values in a 
      // function, regardless of Type. Previously re-use of names was okay as 
      // long as they were distinct types. With type planes collapsing because
      // of the signedness change and because of PR411, this can no longer be
      // supported. We must search the entire symbol table for a conflicting
      // name and make the name unique. No warning is needed as this can't 
      // cause a problem.
      std::string NewName = makeNameUnique(Name);
      // We're changing the name but it will probably be used by other 
      // instructions as operands later on. Consequently we have to retain
      // a mapping of the renaming that we're doing.
      RenameMapKey Key = makeRenameMapKey(Name, V.V->getType(), V.S);
      CurFun.RenameMap[Key] = NewName;
      Name = NewName;
    }

    // Set the name.
    V.V->setName(Name);
  }
}

/// ParseGlobalVariable - Handle parsing of a global.  If Initializer is null,
/// this is a declaration, otherwise it is a definition.
static GlobalVariable *
ParseGlobalVariable(char *NameStr,GlobalValue::LinkageTypes Linkage,
                    bool isConstantGlobal, const Type *Ty,
                    Constant *Initializer,
                    const Signedness &Sign) {
  if (isa<FunctionType>(Ty))
    error("Cannot declare global vars of function type");

  const PointerType *PTy = PointerType::get(Ty);

  std::string Name;
  if (NameStr) {
    Name = NameStr;      // Copy string
    free(NameStr);       // Free old string
  }

  // See if this global value was forward referenced.  If so, recycle the
  // object.
  ValID ID;
  if (!Name.empty()) {
    ID = ValID::create((char*)Name.c_str());
  } else {
    ID = ValID::create((int)CurModule.Values[PTy].size());
  }
  ID.S.makeComposite(Sign);

  if (GlobalValue *FWGV = CurModule.GetForwardRefForGlobal(PTy, ID)) {
    // Move the global to the end of the list, from whereever it was
    // previously inserted.
    GlobalVariable *GV = cast<GlobalVariable>(FWGV);
    CurModule.CurrentModule->getGlobalList().remove(GV);
    CurModule.CurrentModule->getGlobalList().push_back(GV);
    GV->setInitializer(Initializer);
    GV->setLinkage(Linkage);
    GV->setConstant(isConstantGlobal);
    InsertValue(GV, CurModule.Values);
    return GV;
  }

  // If this global has a name, check to see if there is already a definition
  // of this global in the module and emit warnings if there are conflicts.
  if (!Name.empty()) {
    // The global has a name. See if there's an existing one of the same name.
    if (CurModule.CurrentModule->getNamedGlobal(Name)) {
      // We found an existing global ov the same name. This isn't allowed 
      // in LLVM 2.0. Consequently, we must alter the name of the global so it
      // can at least compile. This can happen because of type planes 
      // There is alread a global of the same name which means there is a
      // conflict. Let's see what we can do about it.
      std::string NewName(makeNameUnique(Name));
      if (Linkage != GlobalValue::InternalLinkage) {
        // The linkage of this gval is external so we can't reliably rename 
        // it because it could potentially create a linking problem.  
        // However, we can't leave the name conflict in the output either or 
        // it won't assemble with LLVM 2.0.  So, all we can do is rename 
        // this one to something unique and emit a warning about the problem.
        warning("Renaming global variable '" + Name + "' to '" + NewName + 
                  "' may cause linkage errors");
      }

      // Put the renaming in the global rename map
      RenameMapKey Key = makeRenameMapKey(Name, PointerType::get(Ty), ID.S);
      CurModule.RenameMap[Key] = NewName;

      // Rename it
      Name = NewName;
    }
  }

  // Otherwise there is no existing GV to use, create one now.
  GlobalVariable *GV =
    new GlobalVariable(Ty, isConstantGlobal, Linkage, Initializer, Name,
                       CurModule.CurrentModule);
  InsertValue(GV, CurModule.Values);
  // Remember the sign of this global.
  CurModule.NamedValueSigns[Name] = ID.S;
  return GV;
}

// setTypeName - Set the specified type to the name given.  The name may be
// null potentially, in which case this is a noop.  The string passed in is
// assumed to be a malloc'd string buffer, and is freed by this function.
//
// This function returns true if the type has already been defined, but is
// allowed to be redefined in the specified context.  If the name is a new name
// for the type plane, it is inserted and false is returned.
static bool setTypeName(const PATypeInfo& TI, char *NameStr) {
  assert(!inFunctionScope() && "Can't give types function-local names");
  if (NameStr == 0) return false;
 
  std::string Name(NameStr);      // Copy string
  free(NameStr);                  // Free old string

  const Type* Ty = TI.PAT->get();

  // We don't allow assigning names to void type
  if (Ty == Type::VoidTy) {
    error("Can't assign name '" + Name + "' to the void type");
    return false;
  }

  // Set the type name, checking for conflicts as we do so.
  bool AlreadyExists = CurModule.CurrentModule->addTypeName(Name, Ty);

  // Save the sign information for later use 
  CurModule.NamedTypeSigns[Name] = TI.S;

  if (AlreadyExists) {   // Inserting a name that is already defined???
    const Type *Existing = CurModule.CurrentModule->getTypeByName(Name);
    assert(Existing && "Conflict but no matching type?");

    // There is only one case where this is allowed: when we are refining an
    // opaque type.  In this case, Existing will be an opaque type.
    if (const OpaqueType *OpTy = dyn_cast<OpaqueType>(Existing)) {
      // We ARE replacing an opaque type!
      const_cast<OpaqueType*>(OpTy)->refineAbstractTypeTo(Ty);
      return true;
    }

    // Otherwise, this is an attempt to redefine a type. That's okay if
    // the redefinition is identical to the original. This will be so if
    // Existing and T point to the same Type object. In this one case we
    // allow the equivalent redefinition.
    if (Existing == Ty) return true;  // Yes, it's equal.

    // Any other kind of (non-equivalent) redefinition is an error.
    error("Redefinition of type named '" + Name + "' in the '" +
          Ty->getDescription() + "' type plane");
  }

  return false;
}

//===----------------------------------------------------------------------===//
// Code for handling upreferences in type names...
//

// TypeContains - Returns true if Ty directly contains E in it.
//
static bool TypeContains(const Type *Ty, const Type *E) {
  return std::find(Ty->subtype_begin(), Ty->subtype_end(),
                   E) != Ty->subtype_end();
}

namespace {
  struct UpRefRecord {
    // NestingLevel - The number of nesting levels that need to be popped before
    // this type is resolved.
    unsigned NestingLevel;

    // LastContainedTy - This is the type at the current binding level for the
    // type.  Every time we reduce the nesting level, this gets updated.
    const Type *LastContainedTy;

    // UpRefTy - This is the actual opaque type that the upreference is
    // represented with.
    OpaqueType *UpRefTy;

    UpRefRecord(unsigned NL, OpaqueType *URTy)
      : NestingLevel(NL), LastContainedTy(URTy), UpRefTy(URTy) { }
  };
}

// UpRefs - A list of the outstanding upreferences that need to be resolved.
static std::vector<UpRefRecord> UpRefs;

/// HandleUpRefs - Every time we finish a new layer of types, this function is
/// called.  It loops through the UpRefs vector, which is a list of the
/// currently active types.  For each type, if the up reference is contained in
/// the newly completed type, we decrement the level count.  When the level
/// count reaches zero, the upreferenced type is the type that is passed in:
/// thus we can complete the cycle.
///
static PATypeHolder HandleUpRefs(const Type *ty, const Signedness& Sign) {
  // If Ty isn't abstract, or if there are no up-references in it, then there is
  // nothing to resolve here.
  if (!ty->isAbstract() || UpRefs.empty()) return ty;
  
  PATypeHolder Ty(ty);
  UR_OUT("Type '" << Ty->getDescription() <<
         "' newly formed.  Resolving upreferences.\n" <<
         UpRefs.size() << " upreferences active!\n");

  // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
  // to zero), we resolve them all together before we resolve them to Ty.  At
  // the end of the loop, if there is anything to resolve to Ty, it will be in
  // this variable.
  OpaqueType *TypeToResolve = 0;

  unsigned i = 0;
  for (; i != UpRefs.size(); ++i) {
    UR_OUT("  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
           << UpRefs[i].UpRefTy->getDescription() << ") = "
           << (TypeContains(Ty, UpRefs[i].UpRefTy) ? "true" : "false") << "\n");
    if (TypeContains(Ty, UpRefs[i].LastContainedTy)) {
      // Decrement level of upreference
      unsigned Level = --UpRefs[i].NestingLevel;
      UpRefs[i].LastContainedTy = Ty;
      UR_OUT("  Uplevel Ref Level = " << Level << "\n");
      if (Level == 0) {                     // Upreference should be resolved!
        if (!TypeToResolve) {
          TypeToResolve = UpRefs[i].UpRefTy;
        } else {
          UR_OUT("  * Resolving upreference for "
                 << UpRefs[i].UpRefTy->getDescription() << "\n";
          std::string OldName = UpRefs[i].UpRefTy->getDescription());
          ResolveTypeSign(UpRefs[i].UpRefTy, Sign);
          UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
          UR_OUT("  * Type '" << OldName << "' refined upreference to: "
                 << (const void*)Ty << ", " << Ty->getDescription() << "\n");
        }
        UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list...
        --i;                                // Do not skip the next element...
      }
    }
  }

  if (TypeToResolve) {
    UR_OUT("  * Resolving upreference for "
           << UpRefs[i].UpRefTy->getDescription() << "\n";
           std::string OldName = TypeToResolve->getDescription());
    ResolveTypeSign(TypeToResolve, Sign);
    TypeToResolve->refineAbstractTypeTo(Ty);
  }

  return Ty;
}

bool Signedness::operator<(const Signedness &that) const {
  if (isNamed()) {
    if (that.isNamed()) 
      return *(this->name) < *(that.name);
    else
      return CurModule.NamedTypeSigns[*name] < that;
  } else if (that.isNamed()) {
    return *this < CurModule.NamedTypeSigns[*that.name];
  }

  if (isComposite() && that.isComposite()) {
    if (sv->size() == that.sv->size()) {
      SignVector::const_iterator thisI = sv->begin(), thisE = sv->end();
      SignVector::const_iterator thatI = that.sv->begin(), 
                                 thatE = that.sv->end();
      for (; thisI != thisE; ++thisI, ++thatI) {
        if (*thisI < *thatI)
          return true;
        else if (!(*thisI == *thatI))
          return false;
      }
      return false;
    }
    return sv->size() < that.sv->size();
  }  
  return kind < that.kind;
}

bool Signedness::operator==(const Signedness &that) const {
  if (isNamed())
    if (that.isNamed())
      return *(this->name) == *(that.name);
    else 
      return CurModule.NamedTypeSigns[*(this->name)] == that;
  else if (that.isNamed())
    return *this == CurModule.NamedTypeSigns[*(that.name)];
  if (isComposite() && that.isComposite()) {
    if (sv->size() == that.sv->size()) {
      SignVector::const_iterator thisI = sv->begin(), thisE = sv->end();
      SignVector::const_iterator thatI = that.sv->begin(), 
                                 thatE = that.sv->end();
      for (; thisI != thisE; ++thisI, ++thatI) {
        if (!(*thisI == *thatI))
          return false;
      }
      return true;
    }
    return false;
  }
  return kind == that.kind;
}

void Signedness::copy(const Signedness &that) {
  if (that.isNamed()) {
    kind = Named;
    name = new std::string(*that.name);
  } else if (that.isComposite()) {
    kind = Composite;
    sv = new SignVector();
    *sv = *that.sv;
  } else {
    kind = that.kind;
    sv = 0;
  }
}

void Signedness::destroy() {
  if (isNamed()) {
    delete name;
  } else if (isComposite()) {
    delete sv;
  } 
}

#ifndef NDEBUG
void Signedness::dump() const {
  if (isComposite()) {
    if (sv->size() == 1) {
      (*sv)[0].dump();
      std::cerr << "*";
    } else {
      std::cerr << "{ " ;
      for (unsigned i = 0; i < sv->size(); ++i) {
        if (i != 0)
          std::cerr << ", ";
        (*sv)[i].dump();
      }
      std::cerr << "} " ;
    }
  } else if (isNamed()) {
    std::cerr << *name;
  } else if (isSigned()) {
    std::cerr << "S";
  } else if (isUnsigned()) {
    std::cerr << "U";
  } else
    std::cerr << ".";
}
#endif

static inline Instruction::TermOps 
getTermOp(TermOps op) {
  switch (op) {
    default           : assert(0 && "Invalid OldTermOp");
    case RetOp        : return Instruction::Ret;
    case BrOp         : return Instruction::Br;
    case SwitchOp     : return Instruction::Switch;
    case InvokeOp     : return Instruction::Invoke;
    case UnwindOp     : return Instruction::Unwind;
    case UnreachableOp: return Instruction::Unreachable;
  }
}

static inline Instruction::BinaryOps 
getBinaryOp(BinaryOps op, const Type *Ty, const Signedness& Sign) {
  switch (op) {
    default     : assert(0 && "Invalid OldBinaryOps");
    case SetEQ  : 
    case SetNE  : 
    case SetLE  :
    case SetGE  :
    case SetLT  :
    case SetGT  : assert(0 && "Should use getCompareOp");
    case AddOp  : return Instruction::Add;
    case SubOp  : return Instruction::Sub;
    case MulOp  : return Instruction::Mul;
    case DivOp  : {
      // This is an obsolete instruction so we must upgrade it based on the
      // types of its operands.
      bool isFP = Ty->isFloatingPoint();
      if (const VectorType* PTy = dyn_cast<VectorType>(Ty))
        // If its a vector type we want to use the element type
        isFP = PTy->getElementType()->isFloatingPoint();
      if (isFP)
        return Instruction::FDiv;
      else if (Sign.isSigned())
        return Instruction::SDiv;
      return Instruction::UDiv;
    }
    case UDivOp : return Instruction::UDiv;
    case SDivOp : return Instruction::SDiv;
    case FDivOp : return Instruction::FDiv;
    case RemOp  : {
      // This is an obsolete instruction so we must upgrade it based on the
      // types of its operands.
      bool isFP = Ty->isFloatingPoint();
      if (const VectorType* PTy = dyn_cast<VectorType>(Ty))
        // If its a vector type we want to use the element type
        isFP = PTy->getElementType()->isFloatingPoint();
      // Select correct opcode
      if (isFP)
        return Instruction::FRem;
      else if (Sign.isSigned())
        return Instruction::SRem;
      return Instruction::URem;
    }
    case URemOp : return Instruction::URem;
    case SRemOp : return Instruction::SRem;
    case FRemOp : return Instruction::FRem;
    case LShrOp : return Instruction::LShr;
    case AShrOp : return Instruction::AShr;
    case ShlOp  : return Instruction::Shl;
    case ShrOp  : 
      if (Sign.isSigned())
        return Instruction::AShr;
      return Instruction::LShr;
    case AndOp  : return Instruction::And;
    case OrOp   : return Instruction::Or;
    case XorOp  : return Instruction::Xor;
  }
}

static inline Instruction::OtherOps 
getCompareOp(BinaryOps op, unsigned short &predicate, const Type* &Ty,
             const Signedness &Sign) {
  bool isSigned = Sign.isSigned();
  bool isFP = Ty->isFloatingPoint();
  switch (op) {
    default     : assert(0 && "Invalid OldSetCC");
    case SetEQ  : 
      if (isFP) {
        predicate = FCmpInst::FCMP_OEQ;
        return Instruction::FCmp;
      } else {
        predicate = ICmpInst::ICMP_EQ;
        return Instruction::ICmp;
      }
    case SetNE  : 
      if (isFP) {
        predicate = FCmpInst::FCMP_UNE;
        return Instruction::FCmp;
      } else {
        predicate = ICmpInst::ICMP_NE;
        return Instruction::ICmp;
      }
    case SetLE  : 
      if (isFP) {
        predicate = FCmpInst::FCMP_OLE;
        return Instruction::FCmp;
      } else {
        if (isSigned)
          predicate = ICmpInst::ICMP_SLE;
        else
          predicate = ICmpInst::ICMP_ULE;
        return Instruction::ICmp;
      }
    case SetGE  : 
      if (isFP) {
        predicate = FCmpInst::FCMP_OGE;
        return Instruction::FCmp;
      } else {
        if (isSigned)
          predicate = ICmpInst::ICMP_SGE;
        else
          predicate = ICmpInst::ICMP_UGE;
        return Instruction::ICmp;
      }
    case SetLT  : 
      if (isFP) {
        predicate = FCmpInst::FCMP_OLT;
        return Instruction::FCmp;
      } else {
        if (isSigned)
          predicate = ICmpInst::ICMP_SLT;
        else
          predicate = ICmpInst::ICMP_ULT;
        return Instruction::ICmp;
      }
    case SetGT  : 
      if (isFP) {
        predicate = FCmpInst::FCMP_OGT;
        return Instruction::FCmp;
      } else {
        if (isSigned)
          predicate = ICmpInst::ICMP_SGT;
        else
          predicate = ICmpInst::ICMP_UGT;
        return Instruction::ICmp;
      }
  }
}

static inline Instruction::MemoryOps getMemoryOp(MemoryOps op) {
  switch (op) {
    default              : assert(0 && "Invalid OldMemoryOps");
    case MallocOp        : return Instruction::Malloc;
    case FreeOp          : return Instruction::Free;
    case AllocaOp        : return Instruction::Alloca;
    case LoadOp          : return Instruction::Load;
    case StoreOp         : return Instruction::Store;
    case GetElementPtrOp : return Instruction::GetElementPtr;
  }
}

static inline Instruction::OtherOps 
getOtherOp(OtherOps op, const Signedness &Sign) {
  switch (op) {
    default               : assert(0 && "Invalid OldOtherOps");
    case PHIOp            : return Instruction::PHI;
    case CallOp           : return Instruction::Call;
    case SelectOp         : return Instruction::Select;
    case UserOp1          : return Instruction::UserOp1;
    case UserOp2          : return Instruction::UserOp2;
    case VAArg            : return Instruction::VAArg;
    case ExtractElementOp : return Instruction::ExtractElement;
    case InsertElementOp  : return Instruction::InsertElement;
    case ShuffleVectorOp  : return Instruction::ShuffleVector;
    case ICmpOp           : return Instruction::ICmp;
    case FCmpOp           : return Instruction::FCmp;
  };
}

static inline Value*
getCast(CastOps op, Value *Src, const Signedness &SrcSign, const Type *DstTy, 
        const Signedness &DstSign, bool ForceInstruction = false) {
  Instruction::CastOps Opcode;
  const Type* SrcTy = Src->getType();
  if (op == CastOp) {
    if (SrcTy->isFloatingPoint() && isa<PointerType>(DstTy)) {
      // fp -> ptr cast is no longer supported but we must upgrade this
      // by doing a double cast: fp -> int -> ptr
      SrcTy = Type::Int64Ty;
      Opcode = Instruction::IntToPtr;
      if (isa<Constant>(Src)) {
        Src = ConstantExpr::getCast(Instruction::FPToUI, 
                                     cast<Constant>(Src), SrcTy);
      } else {
        std::string NewName(makeNameUnique(Src->getName()));
        Src = new FPToUIInst(Src, SrcTy, NewName, CurBB);
      }
    } else if (isa<IntegerType>(DstTy) &&
               cast<IntegerType>(DstTy)->getBitWidth() == 1) {
      // cast type %x to bool was previously defined as setne type %x, null
      // The cast semantic is now to truncate, not compare so we must retain
      // the original intent by replacing the cast with a setne
      Constant* Null = Constant::getNullValue(SrcTy);
      Instruction::OtherOps Opcode = Instruction::ICmp;
      unsigned short predicate = ICmpInst::ICMP_NE;
      if (SrcTy->isFloatingPoint()) {
        Opcode = Instruction::FCmp;
        predicate = FCmpInst::FCMP_ONE;
      } else if (!SrcTy->isInteger() && !isa<PointerType>(SrcTy)) {
        error("Invalid cast to bool");
      }
      if (isa<Constant>(Src) && !ForceInstruction)
        return ConstantExpr::getCompare(predicate, cast<Constant>(Src), Null);
      else
        return CmpInst::create(Opcode, predicate, Src, Null);
    }
    // Determine the opcode to use by calling CastInst::getCastOpcode
    Opcode = 
      CastInst::getCastOpcode(Src, SrcSign.isSigned(), DstTy, 
                              DstSign.isSigned());

  } else switch (op) {
    default: assert(0 && "Invalid cast token");
    case TruncOp:    Opcode = Instruction::Trunc; break;
    case ZExtOp:     Opcode = Instruction::ZExt; break;
    case SExtOp:     Opcode = Instruction::SExt; break;
    case FPTruncOp:  Opcode = Instruction::FPTrunc; break;
    case FPExtOp:    Opcode = Instruction::FPExt; break;
    case FPToUIOp:   Opcode = Instruction::FPToUI; break;
    case FPToSIOp:   Opcode = Instruction::FPToSI; break;
    case UIToFPOp:   Opcode = Instruction::UIToFP; break;
    case SIToFPOp:   Opcode = Instruction::SIToFP; break;
    case PtrToIntOp: Opcode = Instruction::PtrToInt; break;
    case IntToPtrOp: Opcode = Instruction::IntToPtr; break;
    case BitCastOp:  Opcode = Instruction::BitCast; break;
  }

  if (isa<Constant>(Src) && !ForceInstruction)
    return ConstantExpr::getCast(Opcode, cast<Constant>(Src), DstTy);
  return CastInst::create(Opcode, Src, DstTy);
}

static Instruction *
upgradeIntrinsicCall(const Type* RetTy, const ValID &ID, 
                     std::vector<Value*>& Args) {

  std::string Name = ID.Type == ValID::NameVal ? ID.Name : "";
  switch (Name[5]) {
    case 'i':
      if (Name == "llvm.isunordered.f32" || Name == "llvm.isunordered.f64") {
        if (Args.size() != 2)
          error("Invalid prototype for " + Name);
        return new FCmpInst(FCmpInst::FCMP_UNO, Args[0], Args[1]);
      }
      break;
    case 'b':
      if (Name.length() == 14 && !memcmp(&Name[5], "bswap.i", 7)) {
        const Type* ArgTy = Args[0]->getType();
        Name += ".i" + utostr(cast<IntegerType>(ArgTy)->getBitWidth());
        Function *F = cast<Function>(
          CurModule.CurrentModule->getOrInsertFunction(Name, RetTy, ArgTy, 
                                                       (void*)0));
        return new CallInst(F, Args[0]);
      }
      break;
    case 'c':
      if ((Name.length() <= 14 && !memcmp(&Name[5], "ctpop.i", 7)) ||
          (Name.length() <= 13 && !memcmp(&Name[5], "ctlz.i", 6)) ||
          (Name.length() <= 13 && !memcmp(&Name[5], "cttz.i", 6))) {
        // These intrinsics changed their result type.
        const Type* ArgTy = Args[0]->getType();
        Function *OldF = CurModule.CurrentModule->getFunction(Name);
        if (OldF)
          OldF->setName("upgrd.rm." + Name);

        Function *NewF = cast<Function>(
          CurModule.CurrentModule->getOrInsertFunction(Name, Type::Int32Ty, 
                                                       ArgTy, (void*)0));

        Instruction *Call = new CallInst(NewF, Args[0], "", CurBB);
        return CastInst::createIntegerCast(Call, RetTy, false);
      }
      break;

    case 'v' : {
      const Type* PtrTy = PointerType::get(Type::Int8Ty);
      std::vector<const Type*> Params;
      if (Name == "llvm.va_start" || Name == "llvm.va_end") {
        if (Args.size() != 1)
          error("Invalid prototype for " + Name + " prototype");
        Params.push_back(PtrTy);
        const FunctionType *FTy = 
          FunctionType::get(Type::VoidTy, Params, false);
        const PointerType *PFTy = PointerType::get(FTy);
        Value* Func = getVal(PFTy, ID);
        Args[0] = new BitCastInst(Args[0], PtrTy, makeNameUnique("va"), CurBB);
        return new CallInst(Func, &Args[0], Args.size());
      } else if (Name == "llvm.va_copy") {
        if (Args.size() != 2)
          error("Invalid prototype for " + Name + " prototype");
        Params.push_back(PtrTy);
        Params.push_back(PtrTy);
        const FunctionType *FTy = 
          FunctionType::get(Type::VoidTy, Params, false);
        const PointerType *PFTy = PointerType::get(FTy);
        Value* Func = getVal(PFTy, ID);
        std::string InstName0(makeNameUnique("va0"));
        std::string InstName1(makeNameUnique("va1"));
        Args[0] = new BitCastInst(Args[0], PtrTy, InstName0, CurBB);
        Args[1] = new BitCastInst(Args[1], PtrTy, InstName1, CurBB);
        return new CallInst(Func, &Args[0], Args.size());
      }
    }
  }
  return 0;
}

const Type* upgradeGEPIndices(const Type* PTy, 
                       std::vector<ValueInfo> *Indices, 
                       std::vector<Value*>    &VIndices, 
                       std::vector<Constant*> *CIndices = 0) {
  // Traverse the indices with a gep_type_iterator so we can build the list
  // of constant and value indices for use later. Also perform upgrades
  VIndices.clear();
  if (CIndices) CIndices->clear();
  for (unsigned i = 0, e = Indices->size(); i != e; ++i)
    VIndices.push_back((*Indices)[i].V);
  generic_gep_type_iterator<std::vector<Value*>::iterator>
    GTI = gep_type_begin(PTy, VIndices.begin(),  VIndices.end()),
    GTE = gep_type_end(PTy,  VIndices.begin(),  VIndices.end());
  for (unsigned i = 0, e = Indices->size(); i != e && GTI != GTE; ++i, ++GTI) {
    Value *Index = VIndices[i];
    if (CIndices && !isa<Constant>(Index))
      error("Indices to constant getelementptr must be constants");
    // LLVM 1.2 and earlier used ubyte struct indices.  Convert any ubyte 
    // struct indices to i32 struct indices with ZExt for compatibility.
    else if (isa<StructType>(*GTI)) {        // Only change struct indices
      if (ConstantInt *CUI = dyn_cast<ConstantInt>(Index))
        if (CUI->getType()->getBitWidth() == 8)
          Index = 
            ConstantExpr::getCast(Instruction::ZExt, CUI, Type::Int32Ty);
    } else {
      // Make sure that unsigned SequentialType indices are zext'd to 
      // 64-bits if they were smaller than that because LLVM 2.0 will sext 
      // all indices for SequentialType elements. We must retain the same 
      // semantic (zext) for unsigned types.
      if (const IntegerType *Ity = dyn_cast<IntegerType>(Index->getType()))
        if (Ity->getBitWidth() < 64 && (*Indices)[i].S.isUnsigned()) {
          if (CIndices)
            Index = ConstantExpr::getCast(Instruction::ZExt, 
              cast<Constant>(Index), Type::Int64Ty);
          else
            Index = CastInst::create(Instruction::ZExt, Index, Type::Int64Ty,
              makeNameUnique("gep"), CurBB);
          VIndices[i] = Index;
        }
    }
    // Add to the CIndices list, if requested.
    if (CIndices)
      CIndices->push_back(cast<Constant>(Index));
  }

  const Type *IdxTy =
    GetElementPtrInst::getIndexedType(PTy, &VIndices[0], VIndices.size(), true);
    if (!IdxTy)
      error("Index list invalid for constant getelementptr");
  return IdxTy;
}

unsigned upgradeCallingConv(unsigned CC) {
  switch (CC) {
    case OldCallingConv::C           : return CallingConv::C;
    case OldCallingConv::CSRet       : return CallingConv::C;
    case OldCallingConv::Fast        : return CallingConv::Fast;
    case OldCallingConv::Cold        : return CallingConv::Cold;
    case OldCallingConv::X86_StdCall : return CallingConv::X86_StdCall;
    case OldCallingConv::X86_FastCall: return CallingConv::X86_FastCall;
    default:
      return CC;
  }
}

Module* UpgradeAssembly(const std::string &infile, std::istream& in, 
                              bool debug, bool addAttrs)
{
  Upgradelineno = 1; 
  CurFilename = infile;
  LexInput = &in;
  yydebug = debug;
  AddAttributes = addAttrs;
  ObsoleteVarArgs = false;
  NewVarArgs = false;

  CurModule.CurrentModule = new Module(CurFilename);

  // Check to make sure the parser succeeded
  if (yyparse()) {
    if (ParserResult)
      delete ParserResult;
    std::cerr << "llvm-upgrade: parse failed.\n";
    return 0;
  }

  // Check to make sure that parsing produced a result
  if (!ParserResult) {
    std::cerr << "llvm-upgrade: no parse result.\n";
    return 0;
  }

  // Reset ParserResult variable while saving its value for the result.
  Module *Result = ParserResult;
  ParserResult = 0;

  //Not all functions use vaarg, so make a second check for ObsoleteVarArgs
  {
    Function* F;
    if ((F = Result->getFunction("llvm.va_start"))
        && F->getFunctionType()->getNumParams() == 0)
      ObsoleteVarArgs = true;
    if((F = Result->getFunction("llvm.va_copy"))
       && F->getFunctionType()->getNumParams() == 1)
      ObsoleteVarArgs = true;
  }

  if (ObsoleteVarArgs && NewVarArgs) {
    error("This file is corrupt: it uses both new and old style varargs");
    return 0;
  }

  if(ObsoleteVarArgs) {
    if(Function* F = Result->getFunction("llvm.va_start")) {
      if (F->arg_size() != 0) {
        error("Obsolete va_start takes 0 argument");
        return 0;
      }
      
      //foo = va_start()
      // ->
      //bar = alloca typeof(foo)
      //va_start(bar)
      //foo = load bar

      const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID);
      const Type* ArgTy = F->getFunctionType()->getReturnType();
      const Type* ArgTyPtr = PointerType::get(ArgTy);
      Function* NF = cast<Function>(Result->getOrInsertFunction(
        "llvm.va_start", RetTy, ArgTyPtr, (Type *)0));

      while (!F->use_empty()) {
        CallInst* CI = cast<CallInst>(F->use_back());
        AllocaInst* bar = new AllocaInst(ArgTy, 0, "vastart.fix.1", CI);
        new CallInst(NF, bar, "", CI);
        Value* foo = new LoadInst(bar, "vastart.fix.2", CI);
        CI->replaceAllUsesWith(foo);
        CI->getParent()->getInstList().erase(CI);
      }
      Result->getFunctionList().erase(F);
    }
    
    if(Function* F = Result->getFunction("llvm.va_end")) {
      if(F->arg_size() != 1) {
        error("Obsolete va_end takes 1 argument");
        return 0;
      }

      //vaend foo
      // ->
      //bar = alloca 1 of typeof(foo)
      //vaend bar
      const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID);
      const Type* ArgTy = F->getFunctionType()->getParamType(0);
      const Type* ArgTyPtr = PointerType::get(ArgTy);
      Function* NF = cast<Function>(Result->getOrInsertFunction(
        "llvm.va_end", RetTy, ArgTyPtr, (Type *)0));

      while (!F->use_empty()) {
        CallInst* CI = cast<CallInst>(F->use_back());
        AllocaInst* bar = new AllocaInst(ArgTy, 0, "vaend.fix.1", CI);
        new StoreInst(CI->getOperand(1), bar, CI);
        new CallInst(NF, bar, "", CI);
        CI->getParent()->getInstList().erase(CI);
      }
      Result->getFunctionList().erase(F);
    }

    if(Function* F = Result->getFunction("llvm.va_copy")) {
      if(F->arg_size() != 1) {
        error("Obsolete va_copy takes 1 argument");
        return 0;
      }
      //foo = vacopy(bar)
      // ->
      //a = alloca 1 of typeof(foo)
      //b = alloca 1 of typeof(foo)
      //store bar -> b
      //vacopy(a, b)
      //foo = load a
      
      const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID);
      const Type* ArgTy = F->getFunctionType()->getReturnType();
      const Type* ArgTyPtr = PointerType::get(ArgTy);
      Function* NF = cast<Function>(Result->getOrInsertFunction(
        "llvm.va_copy", RetTy, ArgTyPtr, ArgTyPtr, (Type *)0));

      while (!F->use_empty()) {
        CallInst* CI = cast<CallInst>(F->use_back());
        AllocaInst* a = new AllocaInst(ArgTy, 0, "vacopy.fix.1", CI);
        AllocaInst* b = new AllocaInst(ArgTy, 0, "vacopy.fix.2", CI);
        new StoreInst(CI->getOperand(1), b, CI);
        new CallInst(NF, a, b, "", CI);
        Value* foo = new LoadInst(a, "vacopy.fix.3", CI);
        CI->replaceAllUsesWith(foo);
        CI->getParent()->getInstList().erase(CI);
      }
      Result->getFunctionList().erase(F);
    }
  }

  return Result;
}

} // end llvm namespace

using namespace llvm;

%}

%union {
  llvm::Module                           *ModuleVal;
  llvm::Function                         *FunctionVal;
  std::pair<llvm::PATypeInfo, char*>     *ArgVal;
  llvm::BasicBlock                       *BasicBlockVal;
  llvm::TermInstInfo                     TermInstVal;
  llvm::InstrInfo                        InstVal;
  llvm::ConstInfo                        ConstVal;
  llvm::ValueInfo                        ValueVal;
  llvm::PATypeInfo                       TypeVal;
  llvm::TypeInfo                         PrimType;
  llvm::PHIListInfo                      PHIList;
  std::list<llvm::PATypeInfo>            *TypeList;
  std::vector<llvm::ValueInfo>           *ValueList;
  std::vector<llvm::ConstInfo>           *ConstVector;


  std::vector<std::pair<llvm::PATypeInfo,char*> > *ArgList;
  // Represent the RHS of PHI node
  std::vector<std::pair<llvm::Constant*, llvm::BasicBlock*> > *JumpTable;

  llvm::GlobalValue::LinkageTypes         Linkage;
  int64_t                           SInt64Val;
  uint64_t                          UInt64Val;
  int                               SIntVal;
  unsigned                          UIntVal;
  double                            FPVal;
  bool                              BoolVal;

  char                             *StrVal;   // This memory is strdup'd!
  llvm::ValID                       ValIDVal; // strdup'd memory maybe!

  llvm::BinaryOps                   BinaryOpVal;
  llvm::TermOps                     TermOpVal;
  llvm::MemoryOps                   MemOpVal;
  llvm::OtherOps                    OtherOpVal;
  llvm::CastOps                     CastOpVal;
  llvm::ICmpInst::Predicate         IPred;
  llvm::FCmpInst::Predicate         FPred;
  llvm::Module::Endianness          Endianness;
}

%type <ModuleVal>     Module FunctionList
%type <FunctionVal>   Function FunctionProto FunctionHeader BasicBlockList
%type <BasicBlockVal> BasicBlock InstructionList
%type <TermInstVal>   BBTerminatorInst
%type <InstVal>       Inst InstVal MemoryInst
%type <ConstVal>      ConstVal ConstExpr
%type <ConstVector>   ConstVector
%type <ArgList>       ArgList ArgListH
%type <ArgVal>        ArgVal
%type <PHIList>       PHIList
%type <ValueList>     ValueRefList ValueRefListE  // For call param lists
%type <ValueList>     IndexList                   // For GEP derived indices
%type <TypeList>      TypeListI ArgTypeListI
%type <JumpTable>     JumpTable
%type <BoolVal>       GlobalType                  // GLOBAL or CONSTANT?
%type <BoolVal>       OptVolatile                 // 'volatile' or not
%type <BoolVal>       OptTailCall                 // TAIL CALL or plain CALL.
%type <BoolVal>       OptSideEffect               // 'sideeffect' or not.
%type <Linkage>       OptLinkage FnDeclareLinkage
%type <Endianness>    BigOrLittle

// ValueRef - Unresolved reference to a definition or BB
%type <ValIDVal>      ValueRef ConstValueRef SymbolicValueRef
%type <ValueVal>      ResolvedVal            // <type> <valref> pair

// Tokens and types for handling constant integer values
//
// ESINT64VAL - A negative number within long long range
%token <SInt64Val> ESINT64VAL

// EUINT64VAL - A positive number within uns. long long range
%token <UInt64Val> EUINT64VAL
%type  <SInt64Val> EINT64VAL

%token  <SIntVal>   SINTVAL   // Signed 32 bit ints...
%token  <UIntVal>   UINTVAL   // Unsigned 32 bit ints...
%type   <SIntVal>   INTVAL
%token  <FPVal>     FPVAL     // Float or Double constant

// Built in types...
%type  <TypeVal> Types TypesV UpRTypes UpRTypesV
%type  <PrimType> SIntType UIntType IntType FPType PrimType // Classifications
%token <PrimType> VOID BOOL SBYTE UBYTE SHORT USHORT INT UINT LONG ULONG
%token <PrimType> FLOAT DOUBLE TYPE LABEL

%token <StrVal> VAR_ID LABELSTR STRINGCONSTANT
%type  <StrVal> Name OptName OptAssign
%type  <UIntVal> OptAlign OptCAlign
%type <StrVal> OptSection SectionString

%token IMPLEMENTATION ZEROINITIALIZER TRUETOK FALSETOK BEGINTOK ENDTOK
%token DECLARE GLOBAL CONSTANT SECTION VOLATILE
%token TO DOTDOTDOT NULL_TOK UNDEF CONST INTERNAL LINKONCE WEAK APPENDING
%token DLLIMPORT DLLEXPORT EXTERN_WEAK
%token OPAQUE NOT EXTERNAL TARGET TRIPLE ENDIAN POINTERSIZE LITTLE BIG ALIGN
%token DEPLIBS CALL TAIL ASM_TOK MODULE SIDEEFFECT
%token CC_TOK CCC_TOK CSRETCC_TOK FASTCC_TOK COLDCC_TOK
%token X86_STDCALLCC_TOK X86_FASTCALLCC_TOK
%token DATALAYOUT
%type <UIntVal> OptCallingConv

// Basic Block Terminating Operators
%token <TermOpVal> RET BR SWITCH INVOKE UNREACHABLE
%token UNWIND EXCEPT

// Binary Operators
%type  <BinaryOpVal> ArithmeticOps LogicalOps SetCondOps // Binops Subcatagories
%type  <BinaryOpVal> ShiftOps
%token <BinaryOpVal> ADD SUB MUL DIV UDIV SDIV FDIV REM UREM SREM FREM 
%token <BinaryOpVal> AND OR XOR SHL SHR ASHR LSHR 
%token <BinaryOpVal> SETLE SETGE SETLT SETGT SETEQ SETNE  // Binary Comparators
%token <OtherOpVal> ICMP FCMP

// Memory Instructions
%token <MemOpVal> MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR

// Other Operators
%token <OtherOpVal> PHI_TOK SELECT VAARG
%token <OtherOpVal> EXTRACTELEMENT INSERTELEMENT SHUFFLEVECTOR
%token VAARG_old VANEXT_old //OBSOLETE

// Support for ICmp/FCmp Predicates, which is 1.9++ but not 2.0
%type  <IPred> IPredicates
%type  <FPred> FPredicates
%token  EQ NE SLT SGT SLE SGE ULT UGT ULE UGE 
%token  OEQ ONE OLT OGT OLE OGE ORD UNO UEQ UNE

%token <CastOpVal> CAST TRUNC ZEXT SEXT FPTRUNC FPEXT FPTOUI FPTOSI 
%token <CastOpVal> UITOFP SITOFP PTRTOINT INTTOPTR BITCAST 
%type  <CastOpVal> CastOps

%start Module

%%

// Handle constant integer size restriction and conversion...
//
INTVAL 
  : SINTVAL
  | UINTVAL {
    if ($1 > (uint32_t)INT32_MAX)     // Outside of my range!
      error("Value too large for type");
    $$ = (int32_t)$1;
  }
  ;

EINT64VAL 
  : ESINT64VAL       // These have same type and can't cause problems...
  | EUINT64VAL {
    if ($1 > (uint64_t)INT64_MAX)     // Outside of my range!
      error("Value too large for type");
    $$ = (int64_t)$1;
  };

// Operations that are notably excluded from this list include:
// RET, BR, & SWITCH because they end basic blocks and are treated specially.
//
ArithmeticOps
  : ADD | SUB | MUL | DIV | UDIV | SDIV | FDIV | REM | UREM | SREM | FREM
  ;

LogicalOps   
  : AND | OR | XOR
  ;

SetCondOps   
  : SETLE | SETGE | SETLT | SETGT | SETEQ | SETNE
  ;

IPredicates  
  : EQ   { $$ = ICmpInst::ICMP_EQ; }  | NE   { $$ = ICmpInst::ICMP_NE; }
  | SLT  { $$ = ICmpInst::ICMP_SLT; } | SGT  { $$ = ICmpInst::ICMP_SGT; }
  | SLE  { $$ = ICmpInst::ICMP_SLE; } | SGE  { $$ = ICmpInst::ICMP_SGE; }
  | ULT  { $$ = ICmpInst::ICMP_ULT; } | UGT  { $$ = ICmpInst::ICMP_UGT; }
  | ULE  { $$ = ICmpInst::ICMP_ULE; } | UGE  { $$ = ICmpInst::ICMP_UGE; } 
  ;

FPredicates  
  : OEQ  { $$ = FCmpInst::FCMP_OEQ; } | ONE  { $$ = FCmpInst::FCMP_ONE; }
  | OLT  { $$ = FCmpInst::FCMP_OLT; } | OGT  { $$ = FCmpInst::FCMP_OGT; }
  | OLE  { $$ = FCmpInst::FCMP_OLE; } | OGE  { $$ = FCmpInst::FCMP_OGE; }
  | ORD  { $$ = FCmpInst::FCMP_ORD; } | UNO  { $$ = FCmpInst::FCMP_UNO; }
  | UEQ  { $$ = FCmpInst::FCMP_UEQ; } | UNE  { $$ = FCmpInst::FCMP_UNE; }
  | ULT  { $$ = FCmpInst::FCMP_ULT; } | UGT  { $$ = FCmpInst::FCMP_UGT; }
  | ULE  { $$ = FCmpInst::FCMP_ULE; } | UGE  { $$ = FCmpInst::FCMP_UGE; }
  | TRUETOK { $$ = FCmpInst::FCMP_TRUE; }
  | FALSETOK { $$ = FCmpInst::FCMP_FALSE; }
  ;
ShiftOps  
  : SHL | SHR | ASHR | LSHR
  ;

CastOps      
  : TRUNC | ZEXT | SEXT | FPTRUNC | FPEXT | FPTOUI | FPTOSI 
  | UITOFP | SITOFP | PTRTOINT | INTTOPTR | BITCAST | CAST
  ;

// These are some types that allow classification if we only want a particular 
// thing... for example, only a signed, unsigned, or integral type.
SIntType 
  :  LONG |  INT |  SHORT | SBYTE
  ;

UIntType 
  : ULONG | UINT | USHORT | UBYTE
  ;

IntType  
  : SIntType | UIntType
  ;

FPType   
  : FLOAT | DOUBLE
  ;

// OptAssign - Value producing statements have an optional assignment component
OptAssign 
  : Name '=' {
    $$ = $1;
  }
  | /*empty*/ {
    $$ = 0;
  };

OptLinkage 
  : INTERNAL    { $$ = GlobalValue::InternalLinkage; }
  | LINKONCE    { $$ = GlobalValue::LinkOnceLinkage; } 
  | WEAK        { $$ = GlobalValue::WeakLinkage; } 
  | APPENDING   { $$ = GlobalValue::AppendingLinkage; } 
  | DLLIMPORT   { $$ = GlobalValue::DLLImportLinkage; } 
  | DLLEXPORT   { $$ = GlobalValue::DLLExportLinkage; } 
  | EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; }
  | /*empty*/   { $$ = GlobalValue::ExternalLinkage; }
  ;

OptCallingConv 
  : /*empty*/          { $$ = OldCallingConv::C; } 
  | CCC_TOK            { $$ = OldCallingConv::C; } 
  | CSRETCC_TOK        { $$ = OldCallingConv::CSRet; } 
  | FASTCC_TOK         { $$ = OldCallingConv::Fast; } 
  | COLDCC_TOK         { $$ = OldCallingConv::Cold; } 
  | X86_STDCALLCC_TOK  { $$ = OldCallingConv::X86_StdCall; } 
  | X86_FASTCALLCC_TOK { $$ = OldCallingConv::X86_FastCall; } 
  | CC_TOK EUINT64VAL  {
    if ((unsigned)$2 != $2)
      error("Calling conv too large");
    $$ = $2;
  }
  ;

// OptAlign/OptCAlign - An optional alignment, and an optional alignment with
// a comma before it.
OptAlign 
  : /*empty*/        { $$ = 0; } 
  | ALIGN EUINT64VAL {
    $$ = $2;
    if ($$ != 0 && !isPowerOf2_32($$))
      error("Alignment must be a power of two");
  }
  ;

OptCAlign 
  : /*empty*/ { $$ = 0; } 
  | ',' ALIGN EUINT64VAL {
    $$ = $3;
    if ($$ != 0 && !isPowerOf2_32($$))
      error("Alignment must be a power of two");
  }
  ;

SectionString 
  : SECTION STRINGCONSTANT {
    for (unsigned i = 0, e = strlen($2); i != e; ++i)
      if ($2[i] == '"' || $2[i] == '\\')
        error("Invalid character in section name");
    $$ = $2;
  }
  ;

OptSection 
  : /*empty*/ { $$ = 0; } 
  | SectionString { $$ = $1; }
  ;

// GlobalVarAttributes - Used to pass the attributes string on a global.  CurGV
// is set to be the global we are processing.
//
GlobalVarAttributes 
  : /* empty */ {} 
  | ',' GlobalVarAttribute GlobalVarAttributes {}
  ;

GlobalVarAttribute
  : SectionString {
    CurGV->setSection($1);
    free($1);
  } 
  | ALIGN EUINT64VAL {
    if ($2 != 0 && !isPowerOf2_32($2))
      error("Alignment must be a power of two");
    CurGV->setAlignment($2);
    
  }
  ;

//===----------------------------------------------------------------------===//
// Types includes all predefined types... except void, because it can only be
// used in specific contexts (function returning void for example).  To have
// access to it, a user must explicitly use TypesV.
//

// TypesV includes all of 'Types', but it also includes the void type.
TypesV    
  : Types
  | VOID { 
    $$.PAT = new PATypeHolder($1.T); 
    $$.S.makeSignless();
  }
  ;

UpRTypesV 
  : UpRTypes 
  | VOID { 
    $$.PAT = new PATypeHolder($1.T); 
    $$.S.makeSignless();
  }
  ;

Types
  : UpRTypes {
    if (!UpRefs.empty())
      error("Invalid upreference in type: " + (*$1.PAT)->getDescription());
    $$ = $1;
  }
  ;

PrimType
  : BOOL | SBYTE | UBYTE | SHORT  | USHORT | INT   | UINT 
  | LONG | ULONG | FLOAT | DOUBLE | LABEL
  ;

// Derived types are added later...
UpRTypes 
  : PrimType { 
    $$.PAT = new PATypeHolder($1.T);
    $$.S.copy($1.S);
  }
  | OPAQUE {
    $$.PAT = new PATypeHolder(OpaqueType::get());
    $$.S.makeSignless();
  }
  | SymbolicValueRef {            // Named types are also simple types...
    $$.S.copy(getTypeSign($1));
    const Type* tmp = getType($1);
    $$.PAT = new PATypeHolder(tmp);
  }
  | '\\' EUINT64VAL {                   // Type UpReference
    if ($2 > (uint64_t)~0U) 
      error("Value out of range");
    OpaqueType *OT = OpaqueType::get();        // Use temporary placeholder
    UpRefs.push_back(UpRefRecord((unsigned)$2, OT));  // Add to vector...
    $$.PAT = new PATypeHolder(OT);
    $$.S.makeSignless();
    UR_OUT("New Upreference!\n");
  }
  | UpRTypesV '(' ArgTypeListI ')' {           // Function derived type?
    $$.S.makeComposite($1.S);
    std::vector<const Type*> Params;
    for (std::list<llvm::PATypeInfo>::iterator I = $3->begin(),
           E = $3->end(); I != E; ++I) {
      Params.push_back(I->PAT->get());
      $$.S.add(I->S);
    }
    bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
    if (isVarArg) Params.pop_back();

    const FunctionType *FTy =
      FunctionType::get($1.PAT->get(), Params, isVarArg, 0);

    $$.PAT = new PATypeHolder( HandleUpRefs(FTy, $$.S) );
    delete $1.PAT;  // Delete the return type handle
    delete $3;      // Delete the argument list
  }
  | '[' EUINT64VAL 'x' UpRTypes ']' {          // Sized array type?
    $$.S.makeComposite($4.S);
    $$.PAT = new PATypeHolder(HandleUpRefs(ArrayType::get($4.PAT->get(), 
                                           (unsigned)$2), $$.S));
    delete $4.PAT;
  }
  | '<' EUINT64VAL 'x' UpRTypes '>' {          // Vector type?
    const llvm::Type* ElemTy = $4.PAT->get();
    if ((unsigned)$2 != $2)
       error("Unsigned result not equal to signed result");
    if (!(ElemTy->isInteger() || ElemTy->isFloatingPoint()))
       error("Elements of a VectorType must be integer or floating point");
    if (!isPowerOf2_32($2))
      error("VectorType length should be a power of 2");
    $$.S.makeComposite($4.S);
    $$.PAT = new PATypeHolder(HandleUpRefs(VectorType::get(ElemTy, 
                                         (unsigned)$2), $$.S));
    delete $4.PAT;
  }
  | '{' TypeListI '}' {                        // Structure type?
    std::vector<const Type*> Elements;
    $$.S.makeComposite();
    for (std::list<llvm::PATypeInfo>::iterator I = $2->begin(),
           E = $2->end(); I != E; ++I) {
      Elements.push_back(I->PAT->get());
      $$.S.add(I->S);
    }
    $$.PAT = new PATypeHolder(HandleUpRefs(StructType::get(Elements), $$.S));
    delete $2;
  }
  | '{' '}' {                                  // Empty structure type?
    $$.PAT = new PATypeHolder(StructType::get(std::vector<const Type*>()));
    $$.S.makeComposite();
  }
  | '<' '{' TypeListI '}' '>' {                // Packed Structure type?
    $$.S.makeComposite();
    std::vector<const Type*> Elements;
    for (std::list<llvm::PATypeInfo>::iterator I = $3->begin(),
           E = $3->end(); I != E; ++I) {
      Elements.push_back(I->PAT->get());
      $$.S.add(I->S);
      delete I->PAT;
    }
    $$.PAT = new PATypeHolder(HandleUpRefs(StructType::get(Elements, true), 
                                           $$.S));
    delete $3;
  }
  | '<' '{' '}' '>' {                          // Empty packed structure type?
    $$.PAT = new PATypeHolder(StructType::get(std::vector<const Type*>(),true));
    $$.S.makeComposite();
  }
  | UpRTypes '*' {                             // Pointer type?
    if ($1.PAT->get() == Type::LabelTy)
      error("Cannot form a pointer to a basic block");
    $$.S.makeComposite($1.S);
    $$.PAT = new PATypeHolder(HandleUpRefs(PointerType::get($1.PAT->get()),
                                           $$.S));
    delete $1.PAT;
  }
  ;

// TypeList - Used for struct declarations and as a basis for function type 
// declaration type lists
//
TypeListI 
  : UpRTypes {
    $$ = new std::list<PATypeInfo>();
    $$->push_back($1); 
  }
  | TypeListI ',' UpRTypes {
    ($$=$1)->push_back($3);
  }
  ;

// ArgTypeList - List of types for a function type declaration...
ArgTypeListI 
  : TypeListI
  | TypeListI ',' DOTDOTDOT {
    PATypeInfo VoidTI;
    VoidTI.PAT = new PATypeHolder(Type::VoidTy);
    VoidTI.S.makeSignless();
    ($$=$1)->push_back(VoidTI);
  }
  | DOTDOTDOT {
    $$ = new std::list<PATypeInfo>();
    PATypeInfo VoidTI;
    VoidTI.PAT = new PATypeHolder(Type::VoidTy);
    VoidTI.S.makeSignless();
    $$->push_back(VoidTI);
  }
  | /*empty*/ {
    $$ = new std::list<PATypeInfo>();
  }
  ;

// ConstVal - The various declarations that go into the constant pool.  This
// production is used ONLY to represent constants that show up AFTER a 'const',
// 'constant' or 'global' token at global scope.  Constants that can be inlined
// into other expressions (such as integers and constexprs) are handled by the
// ResolvedVal, ValueRef and ConstValueRef productions.
//
ConstVal
  : Types '[' ConstVector ']' { // Nonempty unsized arr
    const ArrayType *ATy = dyn_cast<ArrayType>($1.PAT->get());
    if (ATy == 0)
      error("Cannot make array constant with type: '" + 
            $1.PAT->get()->getDescription() + "'");
    const Type *ETy = ATy->getElementType();
    int NumElements = ATy->getNumElements();

    // Verify that we have the correct size...
    if (NumElements != -1 && NumElements != (int)$3->size())
      error("Type mismatch: constant sized array initialized with " +
            utostr($3->size()) +  " arguments, but has size of " + 
            itostr(NumElements) + "");

    // Verify all elements are correct type!
    std::vector<Constant*> Elems;
    for (unsigned i = 0; i < $3->size(); i++) {
      Constant *C = (*$3)[i].C;
      const Type* ValTy = C->getType();
      if (ETy != ValTy)
        error("Element #" + utostr(i) + " is not of type '" + 
              ETy->getDescription() +"' as required!\nIt is of type '"+
              ValTy->getDescription() + "'");
      Elems.push_back(C);
    }
    $$.C = ConstantArray::get(ATy, Elems);
    $$.S.copy($1.S);
    delete $1.PAT; 
    delete $3;
  }
  | Types '[' ']' {
    const ArrayType *ATy = dyn_cast<ArrayType>($1.PAT->get());
    if (ATy == 0)
      error("Cannot make array constant with type: '" + 
            $1.PAT->get()->getDescription() + "'");
    int NumElements = ATy->getNumElements();
    if (NumElements != -1 && NumElements != 0) 
      error("Type mismatch: constant sized array initialized with 0"
            " arguments, but has size of " + itostr(NumElements) +"");
    $$.C = ConstantArray::get(ATy, std::vector<Constant*>());
    $$.S.copy($1.S);
    delete $1.PAT;
  }
  | Types 'c' STRINGCONSTANT {
    const ArrayType *ATy = dyn_cast<ArrayType>($1.PAT->get());
    if (ATy == 0)
      error("Cannot make array constant with type: '" + 
            $1.PAT->get()->getDescription() + "'");
    int NumElements = ATy->getNumElements();
    const Type *ETy = dyn_cast<IntegerType>(ATy->getElementType());
    if (!ETy || cast<IntegerType>(ETy)->getBitWidth() != 8)
      error("String arrays require type i8, not '" + ETy->getDescription() + 
            "'");
    char *EndStr = UnEscapeLexed($3, true);
    if (NumElements != -1 && NumElements != (EndStr-$3))
      error("Can't build string constant of size " + 
            itostr((int)(EndStr-$3)) + " when array has size " + 
            itostr(NumElements) + "");
    std::vector<Constant*> Vals;
    for (char *C = (char *)$3; C != (char *)EndStr; ++C)
      Vals.push_back(ConstantInt::get(ETy, *C));
    free($3);
    $$.C = ConstantArray::get(ATy, Vals);
    $$.S.copy($1.S);
    delete $1.PAT;
  }
  | Types '<' ConstVector '>' { // Nonempty unsized arr
    const VectorType *PTy = dyn_cast<VectorType>($1.PAT->get());
    if (PTy == 0)
      error("Cannot make packed constant with type: '" + 
            $1.PAT->get()->getDescription() + "'");
    const Type *ETy = PTy->getElementType();
    int NumElements = PTy->getNumElements();
    // Verify that we have the correct size...
    if (NumElements != -1 && NumElements != (int)$3->size())
      error("Type mismatch: constant sized packed initialized with " +
            utostr($3->size()) +  " arguments, but has size of " + 
            itostr(NumElements) + "");
    // Verify all elements are correct type!
    std::vector<Constant*> Elems;
    for (unsigned i = 0; i < $3->size(); i++) {
      Constant *C = (*$3)[i].C;
      const Type* ValTy = C->getType();
      if (ETy != ValTy)
        error("Element #" + utostr(i) + " is not of type '" + 
              ETy->getDescription() +"' as required!\nIt is of type '"+
              ValTy->getDescription() + "'");
      Elems.push_back(C);
    }
    $$.C = ConstantVector::get(PTy, Elems);
    $$.S.copy($1.S);
    delete $1.PAT;
    delete $3;
  }
  | Types '{' ConstVector '}' {
    const StructType *STy = dyn_cast<StructType>($1.PAT->get());
    if (STy == 0)
      error("Cannot make struct constant with type: '" + 
            $1.PAT->get()->getDescription() + "'");
    if ($3->size() != STy->getNumContainedTypes())
      error("Illegal number of initializers for structure type");

    // Check to ensure that constants are compatible with the type initializer!
    std::vector<Constant*> Fields;
    for (unsigned i = 0, e = $3->size(); i != e; ++i) {
      Constant *C = (*$3)[i].C;
      if (C->getType() != STy->getElementType(i))
        error("Expected type '" + STy->getElementType(i)->getDescription() +
              "' for element #" + utostr(i) + " of structure initializer");
      Fields.push_back(C);
    }
    $$.C = ConstantStruct::get(STy, Fields);
    $$.S.copy($1.S);
    delete $1.PAT;
    delete $3;
  }
  | Types '{' '}' {
    const StructType *STy = dyn_cast<StructType>($1.PAT->get());
    if (STy == 0)
      error("Cannot make struct constant with type: '" + 
              $1.PAT->get()->getDescription() + "'");
    if (STy->getNumContainedTypes() != 0)
      error("Illegal number of initializers for structure type");
    $$.C = ConstantStruct::get(STy, std::vector<Constant*>());
    $$.S.copy($1.S);
    delete $1.PAT;
  }
  | Types '<' '{' ConstVector '}' '>' {
    const StructType *STy = dyn_cast<StructType>($1.PAT->get());
    if (STy == 0)
      error("Cannot make packed struct constant with type: '" + 
            $1.PAT->get()->getDescription() + "'");
    if ($4->size() != STy->getNumContainedTypes())
      error("Illegal number of initializers for packed structure type");

    // Check to ensure that constants are compatible with the type initializer!
    std::vector<Constant*> Fields;
    for (unsigned i = 0, e = $4->size(); i != e; ++i) {
      Constant *C = (*$4)[i].C;
      if (C->getType() != STy->getElementType(i))
        error("Expected type '" + STy->getElementType(i)->getDescription() +
              "' for element #" + utostr(i) + " of packed struct initializer");
      Fields.push_back(C);
    }
    $$.C = ConstantStruct::get(STy, Fields);
    $$.S.copy($1.S);
    delete $1.PAT; 
    delete $4;
  }
  | Types '<' '{' '}' '>' {
    const StructType *STy = dyn_cast<StructType>($1.PAT->get());
    if (STy == 0)
      error("Cannot make packed struct constant with type: '" + 
              $1.PAT->get()->getDescription() + "'");
    if (STy->getNumContainedTypes() != 0)
      error("Illegal number of initializers for packed structure type");
    $$.C = ConstantStruct::get(STy, std::vector<Constant*>());
    $$.S.copy($1.S);
    delete $1.PAT;
  }
  | Types NULL_TOK {
    const PointerType *PTy = dyn_cast<PointerType>($1.PAT->get());
    if (PTy == 0)
      error("Cannot make null pointer constant with type: '" + 
            $1.PAT->get()->getDescription() + "'");
    $$.C = ConstantPointerNull::get(PTy);
    $$.S.copy($1.S);
    delete $1.PAT;
  }
  | Types UNDEF {
    $$.C = UndefValue::get($1.PAT->get());
    $$.S.copy($1.S);
    delete $1.PAT;
  }
  | Types SymbolicValueRef {
    const PointerType *Ty = dyn_cast<PointerType>($1.PAT->get());
    if (Ty == 0)
      error("Global const reference must be a pointer type, not" +
            $1.PAT->get()->getDescription());

    // ConstExprs can exist in the body of a function, thus creating
    // GlobalValues whenever they refer to a variable.  Because we are in
    // the context of a function, getExistingValue will search the functions
    // symbol table instead of the module symbol table for the global symbol,
    // which throws things all off.  To get around this, we just tell
    // getExistingValue that we are at global scope here.
    //
    Function *SavedCurFn = CurFun.CurrentFunction;
    CurFun.CurrentFunction = 0;
    $2.S.copy($1.S);
    Value *V = getExistingValue(Ty, $2);
    CurFun.CurrentFunction = SavedCurFn;

    // If this is an initializer for a constant pointer, which is referencing a
    // (currently) undefined variable, create a stub now that shall be replaced
    // in the future with the right type of variable.
    //
    if (V == 0) {
      assert(isa<PointerType>(Ty) && "Globals may only be used as pointers");
      const PointerType *PT = cast<PointerType>(Ty);

      // First check to see if the forward references value is already created!
      PerModuleInfo::GlobalRefsType::iterator I =
        CurModule.GlobalRefs.find(std::make_pair(PT, $2));
    
      if (I != CurModule.GlobalRefs.end()) {
        V = I->second;             // Placeholder already exists, use it...
        $2.destroy();
      } else {
        std::string Name;
        if ($2.Type == ValID::NameVal) Name = $2.Name;

        // Create the forward referenced global.
        GlobalValue *GV;
        if (const FunctionType *FTy = 
                 dyn_cast<FunctionType>(PT->getElementType())) {
          GV = new Function(FTy, GlobalValue::ExternalLinkage, Name,
                            CurModule.CurrentModule);
        } else {
          GV = new GlobalVariable(PT->getElementType(), false,
                                  GlobalValue::ExternalLinkage, 0,
                                  Name, CurModule.CurrentModule);
        }

        // Keep track of the fact that we have a forward ref to recycle it
        CurModule.GlobalRefs.insert(std::make_pair(std::make_pair(PT, $2), GV));
        V = GV;
      }
    }
    $$.C = cast<GlobalValue>(V);
    $$.S.copy($1.S);
    delete $1.PAT;            // Free the type handle
  }
  | Types ConstExpr {
    if ($1.PAT->get() != $2.C->getType())
      error("Mismatched types for constant expression");
    $$ = $2;
    $$.S.copy($1.S);
    delete $1.PAT;
  }
  | Types ZEROINITIALIZER {
    const Type *Ty = $1.PAT->get();
    if (isa<FunctionType>(Ty) || Ty == Type::LabelTy || isa<OpaqueType>(Ty))
      error("Cannot create a null initialized value of this type");
    $$.C = Constant::getNullValue(Ty);
    $$.S.copy($1.S);
    delete $1.PAT;
  }
  | SIntType EINT64VAL {      // integral constants
    const Type *Ty = $1.T;
    if (!ConstantInt::isValueValidForType(Ty, $2))
      error("Constant value doesn't fit in type");
    $$.C = ConstantInt::get(Ty, $2);
    $$.S.makeSigned();
  }
  | UIntType EUINT64VAL {            // integral constants
    const Type *Ty = $1.T;
    if (!ConstantInt::isValueValidForType(Ty, $2))
      error("Constant value doesn't fit in type");
    $$.C = ConstantInt::get(Ty, $2);
    $$.S.makeUnsigned();
  }
  | BOOL TRUETOK {                      // Boolean constants
    $$.C = ConstantInt::get(Type::Int1Ty, true);
    $$.S.makeUnsigned();
  }
  | BOOL FALSETOK {                     // Boolean constants
    $$.C = ConstantInt::get(Type::Int1Ty, false);
    $$.S.makeUnsigned();
  }
  | FPType FPVAL {                   // Float & Double constants
    if (!ConstantFP::isValueValidForType($1.T, $2))
      error("Floating point constant invalid for type");
    $$.C = ConstantFP::get($1.T, $2);
    $$.S.makeSignless();
  }
  ;

ConstExpr
  : CastOps '(' ConstVal TO Types ')' {
    const Type* SrcTy = $3.C->getType();
    const Type* DstTy = $5.PAT->get();
    Signedness SrcSign($3.S);
    Signedness DstSign($5.S);
    if (!SrcTy->isFirstClassType())
      error("cast constant expression from a non-primitive type: '" +
            SrcTy->getDescription() + "'");
    if (!DstTy->isFirstClassType())
      error("cast constant expression to a non-primitive type: '" +
            DstTy->getDescription() + "'");
    $$.C = cast<Constant>(getCast($1, $3.C, SrcSign, DstTy, DstSign));
    $$.S.copy(DstSign);
    delete $5.PAT;
  }
  | GETELEMENTPTR '(' ConstVal IndexList ')' {
    const Type *Ty = $3.C->getType();
    if (!isa<PointerType>(Ty))
      error("GetElementPtr requires a pointer operand");

    std::vector<Value*> VIndices;
    std::vector<Constant*> CIndices;
    upgradeGEPIndices($3.C->getType(), $4, VIndices, &CIndices);

    delete $4;
    $$.C = ConstantExpr::getGetElementPtr($3.C, &CIndices[0], CIndices.size());
    $$.S.copy(getElementSign($3, CIndices));
  }
  | SELECT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
    if (!$3.C->getType()->isInteger() ||
        cast<IntegerType>($3.C->getType())->getBitWidth() != 1)
      error("Select condition must be bool type");
    if ($5.C->getType() != $7.C->getType())
      error("Select operand types must match");
    $$.C = ConstantExpr::getSelect($3.C, $5.C, $7.C);
    $$.S.copy($5.S);
  }
  | ArithmeticOps '(' ConstVal ',' ConstVal ')' {
    const Type *Ty = $3.C->getType();
    if (Ty != $5.C->getType())
      error("Binary operator types must match");
    // First, make sure we're dealing with the right opcode by upgrading from
    // obsolete versions.
    Instruction::BinaryOps Opcode = getBinaryOp($1, Ty, $3.S);

    // HACK: llvm 1.3 and earlier used to emit invalid pointer constant exprs.
    // To retain backward compatibility with these early compilers, we emit a
    // cast to the appropriate integer type automatically if we are in the
    // broken case.  See PR424 for more information.
    if (!isa<PointerType>(Ty)) {
      $$.C = ConstantExpr::get(Opcode, $3.C, $5.C);
    } else {
      const Type *IntPtrTy = 0;
      switch (CurModule.CurrentModule->getPointerSize()) {
      case Module::Pointer32: IntPtrTy = Type::Int32Ty; break;
      case Module::Pointer64: IntPtrTy = Type::Int64Ty; break;
      default: error("invalid pointer binary constant expr");
      }
      $$.C = ConstantExpr::get(Opcode, 
             ConstantExpr::getCast(Instruction::PtrToInt, $3.C, IntPtrTy),
             ConstantExpr::getCast(Instruction::PtrToInt, $5.C, IntPtrTy));
      $$.C = ConstantExpr::getCast(Instruction::IntToPtr, $$.C, Ty);
    }
    $$.S.copy($3.S); 
  }
  | LogicalOps '(' ConstVal ',' ConstVal ')' {
    const Type* Ty = $3.C->getType();
    if (Ty != $5.C->getType())
      error("Logical operator types must match");
    if (!Ty->isInteger()) {
      if (!isa<VectorType>(Ty) || 
          !cast<VectorType>(Ty)->getElementType()->isInteger())
        error("Logical operator requires integer operands");
    }
    Instruction::BinaryOps Opcode = getBinaryOp($1, Ty, $3.S);
    $$.C = ConstantExpr::get(Opcode, $3.C, $5.C);
    $$.S.copy($3.S);
  }
  | SetCondOps '(' ConstVal ',' ConstVal ')' {
    const Type* Ty = $3.C->getType();
    if (Ty != $5.C->getType())
      error("setcc operand types must match");
    unsigned short pred;
    Instruction::OtherOps Opcode = getCompareOp($1, pred, Ty, $3.S);
    $$.C = ConstantExpr::getCompare(Opcode, $3.C, $5.C);
    $$.S.makeUnsigned();
  }
  | ICMP IPredicates '(' ConstVal ',' ConstVal ')' {
    if ($4.C->getType() != $6.C->getType()) 
      error("icmp operand types must match");
    $$.C = ConstantExpr::getCompare($2, $4.C, $6.C);
    $$.S.makeUnsigned();
  }
  | FCMP FPredicates '(' ConstVal ',' ConstVal ')' {
    if ($4.C->getType() != $6.C->getType()) 
      error("fcmp operand types must match");
    $$.C = ConstantExpr::getCompare($2, $4.C, $6.C);
    $$.S.makeUnsigned();
  }
  | ShiftOps '(' ConstVal ',' ConstVal ')' {
    if (!$5.C->getType()->isInteger() ||
        cast<IntegerType>($5.C->getType())->getBitWidth() != 8)
      error("Shift count for shift constant must be unsigned byte");
    const Type* Ty = $3.C->getType();
    if (!$3.C->getType()->isInteger())
      error("Shift constant expression requires integer operand");
    Constant *ShiftAmt = ConstantExpr::getZExt($5.C, Ty);
    $$.C = ConstantExpr::get(getBinaryOp($1, Ty, $3.S), $3.C, ShiftAmt);
    $$.S.copy($3.S);
  }
  | EXTRACTELEMENT '(' ConstVal ',' ConstVal ')' {
    if (!ExtractElementInst::isValidOperands($3.C, $5.C))
      error("Invalid extractelement operands");
    $$.C = ConstantExpr::getExtractElement($3.C, $5.C);
    $$.S.copy($3.S.get(0));
  }
  | INSERTELEMENT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
    if (!InsertElementInst::isValidOperands($3.C, $5.C, $7.C))
      error("Invalid insertelement operands");
    $$.C = ConstantExpr::getInsertElement($3.C, $5.C, $7.C);
    $$.S.copy($3.S);
  }
  | SHUFFLEVECTOR '(' ConstVal ',' ConstVal ',' ConstVal ')' {
    if (!ShuffleVectorInst::isValidOperands($3.C, $5.C, $7.C))
      error("Invalid shufflevector operands");
    $$.C = ConstantExpr::getShuffleVector($3.C, $5.C, $7.C);
    $$.S.copy($3.S);
  }
  ;


// ConstVector - A list of comma separated constants.
ConstVector 
  : ConstVector ',' ConstVal { ($$ = $1)->push_back($3); }
  | ConstVal {
    $$ = new std::vector<ConstInfo>();
    $$->push_back($1);
  }
  ;


// GlobalType - Match either GLOBAL or CONSTANT for global declarations...
GlobalType 
  : GLOBAL { $$ = false; } 
  | CONSTANT { $$ = true; }
  ;


//===----------------------------------------------------------------------===//
//                             Rules to match Modules
//===----------------------------------------------------------------------===//

// Module rule: Capture the result of parsing the whole file into a result
// variable...
//
Module 
  : FunctionList {
    $$ = ParserResult = $1;
    CurModule.ModuleDone();
  }
  ;

// FunctionList - A list of functions, preceeded by a constant pool.
//
FunctionList 
  : FunctionList Function { $$ = $1; CurFun.FunctionDone(); } 
  | FunctionList FunctionProto { $$ = $1; }
  | FunctionList MODULE ASM_TOK AsmBlock { $$ = $1; }  
  | FunctionList IMPLEMENTATION { $$ = $1; }
  | ConstPool {
    $$ = CurModule.CurrentModule;
    // Emit an error if there are any unresolved types left.
    if (!CurModule.LateResolveTypes.empty()) {
      const ValID &DID = CurModule.LateResolveTypes.begin()->first;
      if (DID.Type == ValID::NameVal) {
        error("Reference to an undefined type: '"+DID.getName() + "'");
      } else {
        error("Reference to an undefined type: #" + itostr(DID.Num));
      }
    }
  }
  ;

// ConstPool - Constants with optional names assigned to them.
ConstPool 
  : ConstPool OptAssign TYPE TypesV {
    // Eagerly resolve types.  This is not an optimization, this is a
    // requirement that is due to the fact that we could have this:
    //
    // %list = type { %list * }
    // %list = type { %list * }    ; repeated type decl
    //
    // If types are not resolved eagerly, then the two types will not be
    // determined to be the same type!
    //
    ResolveTypeTo($2, $4.PAT->get(), $4.S);

    if (!setTypeName($4, $2) && !$2) {
      // If this is a numbered type that is not a redefinition, add it to the 
      // slot table.
      CurModule.Types.push_back($4.PAT->get());
      CurModule.TypeSigns.push_back($4.S);
    }
    delete $4.PAT;
  }
  | ConstPool FunctionProto {       // Function prototypes can be in const pool
  }
  | ConstPool MODULE ASM_TOK AsmBlock {  // Asm blocks can be in the const pool
  }
  | ConstPool OptAssign OptLinkage GlobalType ConstVal {
    if ($5.C == 0) 
      error("Global value initializer is not a constant");
    CurGV = ParseGlobalVariable($2, $3, $4, $5.C->getType(), $5.C, $5.S);
  } GlobalVarAttributes {
    CurGV = 0;
  }
  | ConstPool OptAssign EXTERNAL GlobalType Types {
    const Type *Ty = $5.PAT->get();
    CurGV = ParseGlobalVariable($2, GlobalValue::ExternalLinkage, $4, Ty, 0,
                                $5.S);
    delete $5.PAT;
  } GlobalVarAttributes {
    CurGV = 0;
  }
  | ConstPool OptAssign DLLIMPORT GlobalType Types {
    const Type *Ty = $5.PAT->get();
    CurGV = ParseGlobalVariable($2, GlobalValue::DLLImportLinkage, $4, Ty, 0,
                                $5.S);
    delete $5.PAT;
  } GlobalVarAttributes {
    CurGV = 0;
  }
  | ConstPool OptAssign EXTERN_WEAK GlobalType Types {
    const Type *Ty = $5.PAT->get();
    CurGV = 
      ParseGlobalVariable($2, GlobalValue::ExternalWeakLinkage, $4, Ty, 0, 
                          $5.S);
    delete $5.PAT;
  } GlobalVarAttributes {
    CurGV = 0;
  }
  | ConstPool TARGET TargetDefinition { 
  }
  | ConstPool DEPLIBS '=' LibrariesDefinition {
  }
  | /* empty: end of list */ { 
  }
  ;

AsmBlock 
  : STRINGCONSTANT {
    const std::string &AsmSoFar = CurModule.CurrentModule->getModuleInlineAsm();
    char *EndStr = UnEscapeLexed($1, true);
    std::string NewAsm($1, EndStr);
    free($1);

    if (AsmSoFar.empty())
      CurModule.CurrentModule->setModuleInlineAsm(NewAsm);
    else
      CurModule.CurrentModule->setModuleInlineAsm(AsmSoFar+"\n"+NewAsm);
  }
  ;

BigOrLittle 
  : BIG    { $$ = Module::BigEndian; }
  | LITTLE { $$ = Module::LittleEndian; }
  ;

TargetDefinition 
  : ENDIAN '=' BigOrLittle {
    CurModule.setEndianness($3);
  }
  | POINTERSIZE '=' EUINT64VAL {
    if ($3 == 32)
      CurModule.setPointerSize(Module::Pointer32);
    else if ($3 == 64)
      CurModule.setPointerSize(Module::Pointer64);
    else
      error("Invalid pointer size: '" + utostr($3) + "'");
  }
  | TRIPLE '=' STRINGCONSTANT {
    CurModule.CurrentModule->setTargetTriple($3);
    free($3);
  }
  | DATALAYOUT '=' STRINGCONSTANT {
    CurModule.CurrentModule->setDataLayout($3);
    free($3);
  }
  ;

LibrariesDefinition 
  : '[' LibList ']'
  ;

LibList 
  : LibList ',' STRINGCONSTANT {
      CurModule.CurrentModule->addLibrary($3);
      free($3);
  }
  | STRINGCONSTANT {
    CurModule.CurrentModule->addLibrary($1);
    free($1);
  }
  | /* empty: end of list */ { }
  ;

//===----------------------------------------------------------------------===//
//                       Rules to match Function Headers
//===----------------------------------------------------------------------===//

Name 
  : VAR_ID | STRINGCONSTANT
  ;

OptName 
  : Name 
  | /*empty*/ { $$ = 0; }
  ;

ArgVal 
  : Types OptName {
    if ($1.PAT->get() == Type::VoidTy)
      error("void typed arguments are invalid");
    $$ = new std::pair<PATypeInfo, char*>($1, $2);
  }
  ;

ArgListH 
  : ArgListH ',' ArgVal {
    $$ = $1;
    $$->push_back(*$3);
    delete $3;
  }
  | ArgVal {
    $$ = new std::vector<std::pair<PATypeInfo,char*> >();
    $$->push_back(*$1);
    delete $1;
  }
  ;

ArgList 
  : ArgListH { $$ = $1; }
  | ArgListH ',' DOTDOTDOT {
    $$ = $1;
    PATypeInfo VoidTI;
    VoidTI.PAT = new PATypeHolder(Type::VoidTy);
    VoidTI.S.makeSignless();
    $$->push_back(std::pair<PATypeInfo, char*>(VoidTI, 0));
  }
  | DOTDOTDOT {
    $$ = new std::vector<std::pair<PATypeInfo,char*> >();
    PATypeInfo VoidTI;
    VoidTI.PAT = new PATypeHolder(Type::VoidTy);
    VoidTI.S.makeSignless();
    $$->push_back(std::pair<PATypeInfo, char*>(VoidTI, 0));
  }
  | /* empty */ { $$ = 0; }
  ;

FunctionHeaderH 
  : OptCallingConv TypesV Name '(' ArgList ')' OptSection OptAlign {
    UnEscapeLexed($3);
    std::string FunctionName($3);
    free($3);  // Free strdup'd memory!

    const Type* RetTy = $2.PAT->get();
    
    if (!RetTy->isFirstClassType() && RetTy != Type::VoidTy)
      error("LLVM functions cannot return aggregate types");

    Signedness FTySign;
    FTySign.makeComposite($2.S);
    std::vector<const Type*> ParamTyList;

    // In LLVM 2.0 the signatures of three varargs intrinsics changed to take
    // i8*. We check here for those names and override the parameter list
    // types to ensure the prototype is correct.
    if (FunctionName == "llvm.va_start" || FunctionName == "llvm.va_end") {
      ParamTyList.push_back(PointerType::get(Type::Int8Ty));
    } else if (FunctionName == "llvm.va_copy") {
      ParamTyList.push_back(PointerType::get(Type::Int8Ty));
      ParamTyList.push_back(PointerType::get(Type::Int8Ty));
    } else if ($5) {   // If there are arguments...
      for (std::vector<std::pair<PATypeInfo,char*> >::iterator 
           I = $5->begin(), E = $5->end(); I != E; ++I) {
        const Type *Ty = I->first.PAT->get();
        ParamTyList.push_back(Ty);
        FTySign.add(I->first.S);
      }
    }

    bool isVarArg = ParamTyList.size() && ParamTyList.back() == Type::VoidTy;
    if (isVarArg) 
      ParamTyList.pop_back();

    // Convert the CSRet calling convention into the corresponding parameter
    // attribute.
    ParamAttrsList *ParamAttrs = 0;
    if ($1 == OldCallingConv::CSRet) {
      ParamAttrs = new ParamAttrsList();
      ParamAttrs->addAttributes(0, ParamAttr::None);     // result
      ParamAttrs->addAttributes(1, ParamAttr::StructRet); // first arg
    }

    const FunctionType *FT = 
      FunctionType::get(RetTy, ParamTyList, isVarArg, ParamAttrs);
    const PointerType *PFT = PointerType::get(FT);
    delete $2.PAT;

    ValID ID;
    if (!FunctionName.empty()) {
      ID = ValID::create((char*)FunctionName.c_str());
    } else {
      ID = ValID::create((int)CurModule.Values[PFT].size());
    }
    ID.S.makeComposite(FTySign);

    Function *Fn = 0;
    Module* M = CurModule.CurrentModule;

    // See if this function was forward referenced.  If so, recycle the object.
    if (GlobalValue *FWRef = CurModule.GetForwardRefForGlobal(PFT, ID)) {
      // Move the function to the end of the list, from whereever it was 
      // previously inserted.
      Fn = cast<Function>(FWRef);
      M->getFunctionList().remove(Fn);
      M->getFunctionList().push_back(Fn);
    } else if (!FunctionName.empty()) {
      GlobalValue *Conflict = M->getFunction(FunctionName);
      if (!Conflict)
        Conflict = M->getNamedGlobal(FunctionName);
      if (Conflict && PFT == Conflict->getType()) {
        if (!CurFun.isDeclare && !Conflict->isDeclaration()) {
          // We have two function definitions that conflict, same type, same
          // name. We should really check to make sure that this is the result
          // of integer type planes collapsing and generate an error if it is
          // not, but we'll just rename on the assumption that it is. However,
          // let's do it intelligently and rename the internal linkage one
          // if there is one.
          std::string NewName(makeNameUnique(FunctionName));
          if (Conflict->hasInternalLinkage()) {
            Conflict->setName(NewName);
            RenameMapKey Key = 
              makeRenameMapKey(FunctionName, Conflict->getType(), ID.S);
            CurModule.RenameMap[Key] = NewName;
            Fn = new Function(FT, CurFun.Linkage, FunctionName, M);
            InsertValue(Fn, CurModule.Values);
          } else {
            Fn = new Function(FT, CurFun.Linkage, NewName, M);
            InsertValue(Fn, CurModule.Values);
            RenameMapKey Key = 
              makeRenameMapKey(FunctionName, PFT, ID.S);
            CurModule.RenameMap[Key] = NewName;
          }
        } else {
          // If they are not both definitions, then just use the function we
          // found since the types are the same.
          Fn = cast<Function>(Conflict);

          // Make sure to strip off any argument names so we can't get 
          // conflicts.
          if (Fn->isDeclaration())
            for (Function::arg_iterator AI = Fn->arg_begin(), 
                 AE = Fn->arg_end(); AI != AE; ++AI)
              AI->setName("");
        }
      } else if (Conflict) {
        // We have two globals with the same name and  different types. 
        // Previously, this was permitted because the symbol table had 
        // "type planes" and names only needed to be distinct within a 
        // type plane. After PR411 was fixed, this is no loner the case. 
        // To resolve this we must rename one of the two. 
        if (Conflict->hasInternalLinkage()) {
          // We can safely rename the Conflict.
          RenameMapKey Key = 
            makeRenameMapKey(Conflict->getName(), Conflict->getType(), 
              CurModule.NamedValueSigns[Conflict->getName()]);
          Conflict->setName(makeNameUnique(Conflict->getName()));
          CurModule.RenameMap[Key] = Conflict->getName();
          Fn = new Function(FT, CurFun.Linkage, FunctionName, M);
          InsertValue(Fn, CurModule.Values);
        } else { 
          // We can't quietly rename either of these things, but we must
          // rename one of them. Only if the function's linkage is internal can
          // we forgo a warning message about the renamed function. 
          std::string NewName = makeNameUnique(FunctionName);
          if (CurFun.Linkage != GlobalValue::InternalLinkage) {
            warning("Renaming function '" + FunctionName + "' as '" + NewName +
                    "' may cause linkage errors");
          }
          // Elect to rename the thing we're now defining.
          Fn = new Function(FT, CurFun.Linkage, NewName, M);
          InsertValue(Fn, CurModule.Values);
          RenameMapKey Key = makeRenameMapKey(FunctionName, PFT, ID.S);
          CurModule.RenameMap[Key] = NewName;
        } 
      } else {
        // There's no conflict, just define the function
        Fn = new Function(FT, CurFun.Linkage, FunctionName, M);
        InsertValue(Fn, CurModule.Values);
      }
    }

    CurFun.FunctionStart(Fn);

    if (CurFun.isDeclare) {
      // If we have declaration, always overwrite linkage.  This will allow us 
      // to correctly handle cases, when pointer to function is passed as 
      // argument to another function.
      Fn->setLinkage(CurFun.Linkage);
    }
    Fn->setCallingConv(upgradeCallingConv($1));
    Fn->setAlignment($8);
    if ($7) {
      Fn->setSection($7);
      free($7);
    }

    // Add all of the arguments we parsed to the function...
    if ($5) {                     // Is null if empty...
      if (isVarArg) {  // Nuke the last entry
        assert($5->back().first.PAT->get() == Type::VoidTy && 
               $5->back().second == 0 && "Not a varargs marker");
        delete $5->back().first.PAT;
        $5->pop_back();  // Delete the last entry
      }
      Function::arg_iterator ArgIt = Fn->arg_begin();
      Function::arg_iterator ArgEnd = Fn->arg_end();
      std::vector<std::pair<PATypeInfo,char*> >::iterator I = $5->begin();
      std::vector<std::pair<PATypeInfo,char*> >::iterator E = $5->end();
      for ( ; I != E && ArgIt != ArgEnd; ++I, ++ArgIt) {
        delete I->first.PAT;                      // Delete the typeholder...
        ValueInfo VI; VI.V = ArgIt; VI.S.copy(I->first.S); 
        setValueName(VI, I->second);           // Insert arg into symtab...
        InsertValue(ArgIt);
      }
      delete $5;                     // We're now done with the argument list
    }
  }
  ;

BEGIN 
  : BEGINTOK | '{'                // Allow BEGIN or '{' to start a function
  ;

FunctionHeader 
  : OptLinkage { CurFun.Linkage = $1; } FunctionHeaderH BEGIN {
    $$ = CurFun.CurrentFunction;

    // Make sure that we keep track of the linkage type even if there was a
    // previous "declare".
    $$->setLinkage($1);
  }
  ;

END 
  : ENDTOK | '}'                    // Allow end of '}' to end a function
  ;

Function 
  : BasicBlockList END {
    $$ = $1;
  };

FnDeclareLinkage
  : /*default*/ { $$ = GlobalValue::ExternalLinkage; }
  | DLLIMPORT   { $$ = GlobalValue::DLLImportLinkage; } 
  | EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; }
  ;
  
FunctionProto 
  : DECLARE { CurFun.isDeclare = true; } 
     FnDeclareLinkage { CurFun.Linkage = $3; } FunctionHeaderH {
    $$ = CurFun.CurrentFunction;
    CurFun.FunctionDone();
    
  }
  ;

//===----------------------------------------------------------------------===//
//                        Rules to match Basic Blocks
//===----------------------------------------------------------------------===//

OptSideEffect 
  : /* empty */ { $$ = false; }
  | SIDEEFFECT { $$ = true; }
  ;

ConstValueRef 
    // A reference to a direct constant
  : ESINT64VAL { $$ = ValID::create($1); }
  | EUINT64VAL { $$ = ValID::create($1); }
  | FPVAL { $$ = ValID::create($1); } 
  | TRUETOK { 
    $$ = ValID::create(ConstantInt::get(Type::Int1Ty, true));
    $$.S.makeUnsigned();
  }
  | FALSETOK { 
    $$ = ValID::create(ConstantInt::get(Type::Int1Ty, false)); 
    $$.S.makeUnsigned();
  }
  | NULL_TOK { $$ = ValID::createNull(); }
  | UNDEF { $$ = ValID::createUndef(); }
  | ZEROINITIALIZER { $$ = ValID::createZeroInit(); }
  | '<' ConstVector '>' { // Nonempty unsized packed vector
    const Type *ETy = (*$2)[0].C->getType();
    int NumElements = $2->size(); 
    VectorType* pt = VectorType::get(ETy, NumElements);
    $$.S.makeComposite((*$2)[0].S);
    PATypeHolder* PTy = new PATypeHolder(HandleUpRefs(pt, $$.S));
    
    // Verify all elements are correct type!
    std::vector<Constant*> Elems;
    for (unsigned i = 0; i < $2->size(); i++) {
      Constant *C = (*$2)[i].C;
      const Type *CTy = C->getType();
      if (ETy != CTy)
        error("Element #" + utostr(i) + " is not of type '" + 
              ETy->getDescription() +"' as required!\nIt is of type '" +
              CTy->getDescription() + "'");
      Elems.push_back(C);
    }
    $$ = ValID::create(ConstantVector::get(pt, Elems));
    delete PTy; delete $2;
  }
  | ConstExpr {
    $$ = ValID::create($1.C);
    $$.S.copy($1.S);
  }
  | ASM_TOK OptSideEffect STRINGCONSTANT ',' STRINGCONSTANT {
    char *End = UnEscapeLexed($3, true);
    std::string AsmStr = std::string($3, End);
    End = UnEscapeLexed($5, true);
    std::string Constraints = std::string($5, End);
    $$ = ValID::createInlineAsm(AsmStr, Constraints, $2);
    free($3);
    free($5);
  }
  ;

// SymbolicValueRef - Reference to one of two ways of symbolically refering to // another value.
//
SymbolicValueRef 
  : INTVAL {  $$ = ValID::create($1); $$.S.makeSignless(); }
  | Name   {  $$ = ValID::create($1); $$.S.makeSignless(); }
  ;

// ValueRef - A reference to a definition... either constant or symbolic
ValueRef 
  : SymbolicValueRef | ConstValueRef
  ;


// ResolvedVal - a <type> <value> pair.  This is used only in cases where the
// type immediately preceeds the value reference, and allows complex constant
// pool references (for things like: 'ret [2 x int] [ int 12, int 42]')
ResolvedVal 
  : Types ValueRef { 
    const Type *Ty = $1.PAT->get();
    $2.S.copy($1.S);
    $$.V = getVal(Ty, $2); 
    $$.S.copy($1.S);
    delete $1.PAT;
  }
  ;

BasicBlockList 
  : BasicBlockList BasicBlock {
    $$ = $1;
  }
  | FunctionHeader BasicBlock { // Do not allow functions with 0 basic blocks   
    $$ = $1;
  };


// Basic blocks are terminated by branching instructions: 
// br, br/cc, switch, ret
//
BasicBlock 
  : InstructionList OptAssign BBTerminatorInst  {
    ValueInfo VI; VI.V = $3.TI; VI.S.copy($3.S);
    setValueName(VI, $2);
    InsertValue($3.TI);
    $1->getInstList().push_back($3.TI);
    InsertValue($1);
    $$ = $1;
  }
  ;

InstructionList
  : InstructionList Inst {
    if ($2.I)
      $1->getInstList().push_back($2.I);
    $$ = $1;
  }
  | /* empty */ {
    $$ = CurBB = getBBVal(ValID::create((int)CurFun.NextBBNum++),true);
    // Make sure to move the basic block to the correct location in the
    // function, instead of leaving it inserted wherever it was first
    // referenced.
    Function::BasicBlockListType &BBL = 
      CurFun.CurrentFunction->getBasicBlockList();
    BBL.splice(BBL.end(), BBL, $$);
  }
  | LABELSTR {
    $$ = CurBB = getBBVal(ValID::create($1), true);
    // Make sure to move the basic block to the correct location in the
    // function, instead of leaving it inserted wherever it was first
    // referenced.
    Function::BasicBlockListType &BBL = 
      CurFun.CurrentFunction->getBasicBlockList();
    BBL.splice(BBL.end(), BBL, $$);
  }
  ;

Unwind : UNWIND | EXCEPT;

BBTerminatorInst 
  : RET ResolvedVal {              // Return with a result...
    $$.TI = new ReturnInst($2.V);
    $$.S.makeSignless();
  }
  | RET VOID {                                       // Return with no result...
    $$.TI = new ReturnInst();
    $$.S.makeSignless();
  }
  | BR LABEL ValueRef {                         // Unconditional Branch...
    BasicBlock* tmpBB = getBBVal($3);
    $$.TI = new BranchInst(tmpBB);
    $$.S.makeSignless();
  }                                                  // Conditional Branch...
  | BR BOOL ValueRef ',' LABEL ValueRef ',' LABEL ValueRef {  
    $6.S.makeSignless();
    $9.S.makeSignless();
    BasicBlock* tmpBBA = getBBVal($6);
    BasicBlock* tmpBBB = getBBVal($9);
    $3.S.makeUnsigned();
    Value* tmpVal = getVal(Type::Int1Ty, $3);
    $$.TI = new BranchInst(tmpBBA, tmpBBB, tmpVal);
    $$.S.makeSignless();
  }
  | SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' {
    $3.S.copy($2.S);
    Value* tmpVal = getVal($2.T, $3);
    $6.S.makeSignless();
    BasicBlock* tmpBB = getBBVal($6);
    SwitchInst *S = new SwitchInst(tmpVal, tmpBB, $8->size());
    $$.TI = S;
    $$.S.makeSignless();
    std::vector<std::pair<Constant*,BasicBlock*> >::iterator I = $8->begin(),
      E = $8->end();
    for (; I != E; ++I) {
      if (ConstantInt *CI = dyn_cast<ConstantInt>(I->first))
          S->addCase(CI, I->second);
      else
        error("Switch case is constant, but not a simple integer");
    }
    delete $8;
  }
  | SWITCH IntType ValueRef ',' LABEL ValueRef '[' ']' {
    $3.S.copy($2.S);
    Value* tmpVal = getVal($2.T, $3);
    $6.S.makeSignless();
    BasicBlock* tmpBB = getBBVal($6);
    SwitchInst *S = new SwitchInst(tmpVal, tmpBB, 0);
    $$.TI = S;
    $$.S.makeSignless();
  }
  | INVOKE OptCallingConv TypesV ValueRef '(' ValueRefListE ')'
    TO LABEL ValueRef Unwind LABEL ValueRef {
    const PointerType *PFTy;
    const FunctionType *Ty;
    Signedness FTySign;

    if (!(PFTy = dyn_cast<PointerType>($3.PAT->get())) ||
        !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
      // Pull out the types of all of the arguments...
      std::vector<const Type*> ParamTypes;
      FTySign.makeComposite($3.S);
      if ($6) {
        for (std::vector<ValueInfo>::iterator I = $6->begin(), E = $6->end();
             I != E; ++I) {
          ParamTypes.push_back((*I).V->getType());
          FTySign.add(I->S);
        }
      }
      ParamAttrsList *ParamAttrs = 0;
      if ($2 == OldCallingConv::CSRet) {
        ParamAttrs = new ParamAttrsList();
        ParamAttrs->addAttributes(0, ParamAttr::None);      // Function result
        ParamAttrs->addAttributes(1, ParamAttr::StructRet);  // first param
      }
      bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
      if (isVarArg) ParamTypes.pop_back();
      Ty = FunctionType::get($3.PAT->get(), ParamTypes, isVarArg, ParamAttrs);
      PFTy = PointerType::get(Ty);
      $$.S.copy($3.S);
    } else {
      FTySign = $3.S;
      // Get the signedness of the result type. $3 is the pointer to the
      // function type so we get the 0th element to extract the function type,
      // and then the 0th element again to get the result type.
      $$.S.copy($3.S.get(0).get(0)); 
    }

    $4.S.makeComposite(FTySign);
    Value *V = getVal(PFTy, $4);   // Get the function we're calling...
    BasicBlock *Normal = getBBVal($10);
    BasicBlock *Except = getBBVal($13);

    // Create the call node...
    if (!$6) {                                   // Has no arguments?
      $$.TI = new InvokeInst(V, Normal, Except, 0, 0);
    } else {                                     // Has arguments?
      // Loop through FunctionType's arguments and ensure they are specified
      // correctly!
      //
      FunctionType::param_iterator I = Ty->param_begin();
      FunctionType::param_iterator E = Ty->param_end();
      std::vector<ValueInfo>::iterator ArgI = $6->begin(), ArgE = $6->end();

      std::vector<Value*> Args;
      for (; ArgI != ArgE && I != E; ++ArgI, ++I) {
        if ((*ArgI).V->getType() != *I)
          error("Parameter " +(*ArgI).V->getName()+ " is not of type '" +
                (*I)->getDescription() + "'");
        Args.push_back((*ArgI).V);
      }

      if (I != E || (ArgI != ArgE && !Ty->isVarArg()))
        error("Invalid number of parameters detected");

      $$.TI = new InvokeInst(V, Normal, Except, &Args[0], Args.size());
    }
    cast<InvokeInst>($$.TI)->setCallingConv(upgradeCallingConv($2));
    delete $3.PAT;
    delete $6;
  }
  | Unwind {
    $$.TI = new UnwindInst();
    $$.S.makeSignless();
  }
  | UNREACHABLE {
    $$.TI = new UnreachableInst();
    $$.S.makeSignless();
  }
  ;

JumpTable 
  : JumpTable IntType ConstValueRef ',' LABEL ValueRef {
    $$ = $1;
    $3.S.copy($2.S);
    Constant *V = cast<Constant>(getExistingValue($2.T, $3));
    
    if (V == 0)
      error("May only switch on a constant pool value");

    $6.S.makeSignless();
    BasicBlock* tmpBB = getBBVal($6);
    $$->push_back(std::make_pair(V, tmpBB));
  }
  | IntType ConstValueRef ',' LABEL ValueRef {
    $$ = new std::vector<std::pair<Constant*, BasicBlock*> >();
    $2.S.copy($1.S);
    Constant *V = cast<Constant>(getExistingValue($1.T, $2));

    if (V == 0)
      error("May only switch on a constant pool value");

    $5.S.makeSignless();
    BasicBlock* tmpBB = getBBVal($5);
    $$->push_back(std::make_pair(V, tmpBB)); 
  }
  ;

Inst 
  : OptAssign InstVal {
    bool omit = false;
    if ($1)
      if (BitCastInst *BCI = dyn_cast<BitCastInst>($2.I))
        if (BCI->getSrcTy() == BCI->getDestTy() && 
            BCI->getOperand(0)->getName() == $1)
          // This is a useless bit cast causing a name redefinition. It is
          // a bit cast from a type to the same type of an operand with the
          // same name as the name we would give this instruction. Since this
          // instruction results in no code generation, it is safe to omit
          // the instruction. This situation can occur because of collapsed
          // type planes. For example:
          //   %X = add int %Y, %Z
          //   %X = cast int %Y to uint
          // After upgrade, this looks like:
          //   %X = add i32 %Y, %Z
          //   %X = bitcast i32 to i32
          // The bitcast is clearly useless so we omit it.
          omit = true;
    if (omit) {
      $$.I = 0;
      $$.S.makeSignless();
    } else {
      ValueInfo VI; VI.V = $2.I; VI.S.copy($2.S);
      setValueName(VI, $1);
      InsertValue($2.I);
      $$ = $2;
    }
  };

PHIList : Types '[' ValueRef ',' ValueRef ']' {    // Used for PHI nodes
    $$.P = new std::list<std::pair<Value*, BasicBlock*> >();
    $$.S.copy($1.S);
    $3.S.copy($1.S);
    Value* tmpVal = getVal($1.PAT->get(), $3);
    $5.S.makeSignless();
    BasicBlock* tmpBB = getBBVal($5);
    $$.P->push_back(std::make_pair(tmpVal, tmpBB));
    delete $1.PAT;
  }
  | PHIList ',' '[' ValueRef ',' ValueRef ']' {
    $$ = $1;
    $4.S.copy($1.S);
    Value* tmpVal = getVal($1.P->front().first->getType(), $4);
    $6.S.makeSignless();
    BasicBlock* tmpBB = getBBVal($6);
    $1.P->push_back(std::make_pair(tmpVal, tmpBB));
  }
  ;

ValueRefList : ResolvedVal {    // Used for call statements, and memory insts...
    $$ = new std::vector<ValueInfo>();
    $$->push_back($1);
  }
  | ValueRefList ',' ResolvedVal {
    $$ = $1;
    $1->push_back($3);
  };

// ValueRefListE - Just like ValueRefList, except that it may also be empty!
ValueRefListE 
  : ValueRefList 
  | /*empty*/ { $$ = 0; }
  ;

OptTailCall 
  : TAIL CALL {
    $$ = true;
  }
  | CALL {
    $$ = false;
  }
  ;

InstVal 
  : ArithmeticOps Types ValueRef ',' ValueRef {
    $3.S.copy($2.S);
    $5.S.copy($2.S);
    const Type* Ty = $2.PAT->get();
    if (!Ty->isInteger() && !Ty->isFloatingPoint() && !isa<VectorType>(Ty))
      error("Arithmetic operator requires integer, FP, or packed operands");
    if (isa<VectorType>(Ty) && 
        ($1 == URemOp || $1 == SRemOp || $1 == FRemOp || $1 == RemOp))
      error("Remainder not supported on vector types");
    // Upgrade the opcode from obsolete versions before we do anything with it.
    Instruction::BinaryOps Opcode = getBinaryOp($1, Ty, $2.S);
    Value* val1 = getVal(Ty, $3); 
    Value* val2 = getVal(Ty, $5);
    $$.I = BinaryOperator::create(Opcode, val1, val2);
    if ($$.I == 0)
      error("binary operator returned null");
    $$.S.copy($2.S);
    delete $2.PAT;
  }
  | LogicalOps Types ValueRef ',' ValueRef {
    $3.S.copy($2.S);
    $5.S.copy($2.S);
    const Type *Ty = $2.PAT->get();
    if (!Ty->isInteger()) {
      if (!isa<VectorType>(Ty) ||
          !cast<VectorType>(Ty)->getElementType()->isInteger())
        error("Logical operator requires integral operands");
    }
    Instruction::BinaryOps Opcode = getBinaryOp($1, Ty, $2.S);
    Value* tmpVal1 = getVal(Ty, $3);
    Value* tmpVal2 = getVal(Ty, $5);
    $$.I = BinaryOperator::create(Opcode, tmpVal1, tmpVal2);
    if ($$.I == 0)
      error("binary operator returned null");
    $$.S.copy($2.S);
    delete $2.PAT;
  }
  | SetCondOps Types ValueRef ',' ValueRef {
    $3.S.copy($2.S);
    $5.S.copy($2.S);
    const Type* Ty = $2.PAT->get();
    if(isa<VectorType>(Ty))
      error("VectorTypes currently not supported in setcc instructions");
    unsigned short pred;
    Instruction::OtherOps Opcode = getCompareOp($1, pred, Ty, $2.S);
    Value* tmpVal1 = getVal(Ty, $3);
    Value* tmpVal2 = getVal(Ty, $5);
    $$.I = CmpInst::create(Opcode, pred, tmpVal1, tmpVal2);
    if ($$.I == 0)
      error("binary operator returned null");
    $$.S.makeUnsigned();
    delete $2.PAT;
  }
  | ICMP IPredicates Types ValueRef ',' ValueRef {
    $4.S.copy($3.S);
    $6.S.copy($3.S);
    const Type *Ty = $3.PAT->get();
    if (isa<VectorType>(Ty)) 
      error("VectorTypes currently not supported in icmp instructions");
    else if (!Ty->isInteger() && !isa<PointerType>(Ty))
      error("icmp requires integer or pointer typed operands");
    Value* tmpVal1 = getVal(Ty, $4);
    Value* tmpVal2 = getVal(Ty, $6);
    $$.I = new ICmpInst($2, tmpVal1, tmpVal2);
    $$.S.makeUnsigned();
    delete $3.PAT;
  }
  | FCMP FPredicates Types ValueRef ',' ValueRef {
    $4.S.copy($3.S);
    $6.S.copy($3.S);
    const Type *Ty = $3.PAT->get();
    if (isa<VectorType>(Ty))
      error("VectorTypes currently not supported in fcmp instructions");
    else if (!Ty->isFloatingPoint())
      error("fcmp instruction requires floating point operands");
    Value* tmpVal1 = getVal(Ty, $4);
    Value* tmpVal2 = getVal(Ty, $6);
    $$.I = new FCmpInst($2, tmpVal1, tmpVal2);
    $$.S.makeUnsigned();
    delete $3.PAT;
  }
  | NOT ResolvedVal {
    warning("Use of obsolete 'not' instruction: Replacing with 'xor");
    const Type *Ty = $2.V->getType();
    Value *Ones = ConstantInt::getAllOnesValue(Ty);
    if (Ones == 0)
      error("Expected integral type for not instruction");
    $$.I = BinaryOperator::create(Instruction::Xor, $2.V, Ones);
    if ($$.I == 0)
      error("Could not create a xor instruction");
    $$.S.copy($2.S);
  }
  | ShiftOps ResolvedVal ',' ResolvedVal {
    if (!$4.V->getType()->isInteger() ||
        cast<IntegerType>($4.V->getType())->getBitWidth() != 8)
      error("Shift amount must be int8");
    const Type* Ty = $2.V->getType();
    if (!Ty->isInteger())
      error("Shift constant expression requires integer operand");
    Value* ShiftAmt = 0;
    if (cast<IntegerType>(Ty)->getBitWidth() > Type::Int8Ty->getBitWidth())
      if (Constant *C = dyn_cast<Constant>($4.V))
        ShiftAmt = ConstantExpr::getZExt(C, Ty);
      else
        ShiftAmt = new ZExtInst($4.V, Ty, makeNameUnique("shift"), CurBB);
    else
      ShiftAmt = $4.V;
    $$.I = BinaryOperator::create(getBinaryOp($1, Ty, $2.S), $2.V, ShiftAmt);
    $$.S.copy($2.S);
  }
  | CastOps ResolvedVal TO Types {
    const Type *DstTy = $4.PAT->get();
    if (!DstTy->isFirstClassType())
      error("cast instruction to a non-primitive type: '" +
            DstTy->getDescription() + "'");
    $$.I = cast<Instruction>(getCast($1, $2.V, $2.S, DstTy, $4.S, true));
    $$.S.copy($4.S);
    delete $4.PAT;
  }
  | SELECT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
    if (!$2.V->getType()->isInteger() ||
        cast<IntegerType>($2.V->getType())->getBitWidth() != 1)
      error("select condition must be bool");
    if ($4.V->getType() != $6.V->getType())
      error("select value types should match");
    $$.I = new SelectInst($2.V, $4.V, $6.V);
    $$.S.copy($4.S);
  }
  | VAARG ResolvedVal ',' Types {
    const Type *Ty = $4.PAT->get();
    NewVarArgs = true;
    $$.I = new VAArgInst($2.V, Ty);
    $$.S.copy($4.S);
    delete $4.PAT;
  }
  | VAARG_old ResolvedVal ',' Types {
    const Type* ArgTy = $2.V->getType();
    const Type* DstTy = $4.PAT->get();
    ObsoleteVarArgs = true;
    Function* NF = cast<Function>(CurModule.CurrentModule->
      getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy, (Type *)0));

    //b = vaarg a, t -> 
    //foo = alloca 1 of t
    //bar = vacopy a 
    //store bar -> foo
    //b = vaarg foo, t
    AllocaInst* foo = new AllocaInst(ArgTy, 0, "vaarg.fix");
    CurBB->getInstList().push_back(foo);
    CallInst* bar = new CallInst(NF, $2.V);
    CurBB->getInstList().push_back(bar);
    CurBB->getInstList().push_back(new StoreInst(bar, foo));
    $$.I = new VAArgInst(foo, DstTy);
    $$.S.copy($4.S);
    delete $4.PAT;
  }
  | VANEXT_old ResolvedVal ',' Types {
    const Type* ArgTy = $2.V->getType();
    const Type* DstTy = $4.PAT->get();
    ObsoleteVarArgs = true;
    Function* NF = cast<Function>(CurModule.CurrentModule->
      getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy, (Type *)0));

    //b = vanext a, t ->
    //foo = alloca 1 of t
    //bar = vacopy a
    //store bar -> foo
    //tmp = vaarg foo, t
    //b = load foo
    AllocaInst* foo = new AllocaInst(ArgTy, 0, "vanext.fix");
    CurBB->getInstList().push_back(foo);
    CallInst* bar = new CallInst(NF, $2.V);
    CurBB->getInstList().push_back(bar);
    CurBB->getInstList().push_back(new StoreInst(bar, foo));
    Instruction* tmp = new VAArgInst(foo, DstTy);
    CurBB->getInstList().push_back(tmp);
    $$.I = new LoadInst(foo);
    $$.S.copy($4.S);
    delete $4.PAT;
  }
  | EXTRACTELEMENT ResolvedVal ',' ResolvedVal {
    if (!ExtractElementInst::isValidOperands($2.V, $4.V))
      error("Invalid extractelement operands");
    $$.I = new ExtractElementInst($2.V, $4.V);
    $$.S.copy($2.S.get(0));
  }
  | INSERTELEMENT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
    if (!InsertElementInst::isValidOperands($2.V, $4.V, $6.V))
      error("Invalid insertelement operands");
    $$.I = new InsertElementInst($2.V, $4.V, $6.V);
    $$.S.copy($2.S);
  }
  | SHUFFLEVECTOR ResolvedVal ',' ResolvedVal ',' ResolvedVal {
    if (!ShuffleVectorInst::isValidOperands($2.V, $4.V, $6.V))
      error("Invalid shufflevector operands");
    $$.I = new ShuffleVectorInst($2.V, $4.V, $6.V);
    $$.S.copy($2.S);
  }
  | PHI_TOK PHIList {
    const Type *Ty = $2.P->front().first->getType();
    if (!Ty->isFirstClassType())
      error("PHI node operands must be of first class type");
    PHINode *PHI = new PHINode(Ty);
    PHI->reserveOperandSpace($2.P->size());
    while ($2.P->begin() != $2.P->end()) {
      if ($2.P->front().first->getType() != Ty) 
        error("All elements of a PHI node must be of the same type");
      PHI->addIncoming($2.P->front().first, $2.P->front().second);
      $2.P->pop_front();
    }
    $$.I = PHI;
    $$.S.copy($2.S);
    delete $2.P;  // Free the list...
  }
  | OptTailCall OptCallingConv TypesV ValueRef '(' ValueRefListE ')' {
    // Handle the short call syntax
    const PointerType *PFTy;
    const FunctionType *FTy;
    Signedness FTySign;
    if (!(PFTy = dyn_cast<PointerType>($3.PAT->get())) ||
        !(FTy = dyn_cast<FunctionType>(PFTy->getElementType()))) {
      // Pull out the types of all of the arguments...
      std::vector<const Type*> ParamTypes;
      FTySign.makeComposite($3.S);
      if ($6) {
        for (std::vector<ValueInfo>::iterator I = $6->begin(), E = $6->end();
             I != E; ++I) {
          ParamTypes.push_back((*I).V->getType());
          FTySign.add(I->S);
        }
      }

      bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
      if (isVarArg) ParamTypes.pop_back();

      const Type *RetTy = $3.PAT->get();
      if (!RetTy->isFirstClassType() && RetTy != Type::VoidTy)
        error("Functions cannot return aggregate types");

      // Deal with CSRetCC
      ParamAttrsList *ParamAttrs = 0;
      if ($2 == OldCallingConv::CSRet) {
        ParamAttrs = new ParamAttrsList();
        ParamAttrs->addAttributes(0, ParamAttr::None);     // function result
        ParamAttrs->addAttributes(1, ParamAttr::StructRet); // first parameter
      }

      FTy = FunctionType::get(RetTy, ParamTypes, isVarArg, ParamAttrs);
      PFTy = PointerType::get(FTy);
      $$.S.copy($3.S);
    } else {
      FTySign = $3.S;
      // Get the signedness of the result type. $3 is the pointer to the
      // function type so we get the 0th element to extract the function type,
      // and then the 0th element again to get the result type.
      $$.S.copy($3.S.get(0).get(0)); 
    }
    $4.S.makeComposite(FTySign);

    // First upgrade any intrinsic calls.
    std::vector<Value*> Args;
    if ($6)
      for (unsigned i = 0, e = $6->size(); i < e; ++i) 
        Args.push_back((*$6)[i].V);
    Instruction *Inst = upgradeIntrinsicCall(FTy->getReturnType(), $4, Args);

    // If we got an upgraded intrinsic
    if (Inst) {
      $$.I = Inst;
    } else {
      // Get the function we're calling
      Value *V = getVal(PFTy, $4);

      // Check the argument values match
      if (!$6) {                                   // Has no arguments?
        // Make sure no arguments is a good thing!
        if (FTy->getNumParams() != 0)
          error("No arguments passed to a function that expects arguments");
      } else {                                     // Has arguments?
        // Loop through FunctionType's arguments and ensure they are specified
        // correctly!
        //
        FunctionType::param_iterator I = FTy->param_begin();
        FunctionType::param_iterator E = FTy->param_end();
        std::vector<ValueInfo>::iterator ArgI = $6->begin(), ArgE = $6->end();

        for (; ArgI != ArgE && I != E; ++ArgI, ++I)
          if ((*ArgI).V->getType() != *I)
            error("Parameter " +(*ArgI).V->getName()+ " is not of type '" +
                  (*I)->getDescription() + "'");

        if (I != E || (ArgI != ArgE && !FTy->isVarArg()))
          error("Invalid number of parameters detected");
      }

      // Create the call instruction
      CallInst *CI = new CallInst(V, &Args[0], Args.size());
      CI->setTailCall($1);
      CI->setCallingConv(upgradeCallingConv($2));
      $$.I = CI;
    }
    delete $3.PAT;
    delete $6;
  }
  | MemoryInst {
    $$ = $1;
  }
  ;


// IndexList - List of indices for GEP based instructions...
IndexList 
  : ',' ValueRefList { $$ = $2; } 
  | /* empty */ { $$ = new std::vector<ValueInfo>(); }
  ;

OptVolatile 
  : VOLATILE { $$ = true; }
  | /* empty */ { $$ = false; }
  ;

MemoryInst 
  : MALLOC Types OptCAlign {
    const Type *Ty = $2.PAT->get();
    $$.S.makeComposite($2.S);
    $$.I = new MallocInst(Ty, 0, $3);
    delete $2.PAT;
  }
  | MALLOC Types ',' UINT ValueRef OptCAlign {
    const Type *Ty = $2.PAT->get();
    $5.S.makeUnsigned();
    $$.S.makeComposite($2.S);
    $$.I = new MallocInst(Ty, getVal($4.T, $5), $6);
    delete $2.PAT;
  }
  | ALLOCA Types OptCAlign {
    const Type *Ty = $2.PAT->get();
    $$.S.makeComposite($2.S);
    $$.I = new AllocaInst(Ty, 0, $3);
    delete $2.PAT;
  }
  | ALLOCA Types ',' UINT ValueRef OptCAlign {
    const Type *Ty = $2.PAT->get();
    $5.S.makeUnsigned();
    $$.S.makeComposite($4.S);
    $$.I = new AllocaInst(Ty, getVal($4.T, $5), $6);
    delete $2.PAT;
  }
  | FREE ResolvedVal {
    const Type *PTy = $2.V->getType();
    if (!isa<PointerType>(PTy))
      error("Trying to free nonpointer type '" + PTy->getDescription() + "'");
    $$.I = new FreeInst($2.V);
    $$.S.makeSignless();
  }
  | OptVolatile LOAD Types ValueRef {
    const Type* Ty = $3.PAT->get();
    $4.S.copy($3.S);
    if (!isa<PointerType>(Ty))
      error("Can't load from nonpointer type: " + Ty->getDescription());
    if (!cast<PointerType>(Ty)->getElementType()->isFirstClassType())
      error("Can't load from pointer of non-first-class type: " +
                     Ty->getDescription());
    Value* tmpVal = getVal(Ty, $4);
    $$.I = new LoadInst(tmpVal, "", $1);
    $$.S.copy($3.S.get(0));
    delete $3.PAT;
  }
  | OptVolatile STORE ResolvedVal ',' Types ValueRef {
    $6.S.copy($5.S);
    const PointerType *PTy = dyn_cast<PointerType>($5.PAT->get());
    if (!PTy)
      error("Can't store to a nonpointer type: " + 
             $5.PAT->get()->getDescription());
    const Type *ElTy = PTy->getElementType();
    Value *StoreVal = $3.V;
    Value* tmpVal = getVal(PTy, $6);
    if (ElTy != $3.V->getType()) {
      StoreVal = handleSRetFuncTypeMerge($3.V, ElTy);
      if (!StoreVal)
        error("Can't store '" + $3.V->getType()->getDescription() +
              "' into space of type '" + ElTy->getDescription() + "'");
      else {
        PTy = PointerType::get(StoreVal->getType());
        if (Constant *C = dyn_cast<Constant>(tmpVal))
          tmpVal = ConstantExpr::getBitCast(C, PTy);
        else
          tmpVal = new BitCastInst(tmpVal, PTy, "upgrd.cast", CurBB);
      }
    }
    $$.I = new StoreInst(StoreVal, tmpVal, $1);
    $$.S.makeSignless();
    delete $5.PAT;
  }
  | GETELEMENTPTR Types ValueRef IndexList {
    $3.S.copy($2.S);
    const Type* Ty = $2.PAT->get();
    if (!isa<PointerType>(Ty))
      error("getelementptr insn requires pointer operand");

    std::vector<Value*> VIndices;
    upgradeGEPIndices(Ty, $4, VIndices);

    Value* tmpVal = getVal(Ty, $3);
    $$.I = new GetElementPtrInst(tmpVal, &VIndices[0], VIndices.size());
    ValueInfo VI; VI.V = tmpVal; VI.S.copy($2.S);
    $$.S.copy(getElementSign(VI, VIndices));
    delete $2.PAT;
    delete $4;
  };


%%

int yyerror(const char *ErrorMsg) {
  std::string where 
    = std::string((CurFilename == "-") ? std::string("<stdin>") : CurFilename)
                  + ":" + llvm::utostr((unsigned) Upgradelineno) + ": ";
  std::string errMsg = where + "error: " + std::string(ErrorMsg);
  if (yychar != YYEMPTY && yychar != 0)
    errMsg += " while reading token '" + std::string(Upgradetext, Upgradeleng) +
              "'.";
  std::cerr << "llvm-upgrade: " << errMsg << '\n';
  std::cout << "llvm-upgrade: parse failed.\n";
  exit(1);
}

void warning(const std::string& ErrorMsg) {
  std::string where 
    = std::string((CurFilename == "-") ? std::string("<stdin>") : CurFilename)
                  + ":" + llvm::utostr((unsigned) Upgradelineno) + ": ";
  std::string errMsg = where + "warning: " + std::string(ErrorMsg);
  if (yychar != YYEMPTY && yychar != 0)
    errMsg += " while reading token '" + std::string(Upgradetext, Upgradeleng) +
              "'.";
  std::cerr << "llvm-upgrade: " << errMsg << '\n';
}

void error(const std::string& ErrorMsg, int LineNo) {
  if (LineNo == -1) LineNo = Upgradelineno;
  Upgradelineno = LineNo;
  yyerror(ErrorMsg.c_str());
}