1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
|
// Test evaluation of set operations in dags.
// RUN: llvm-tblgen -print-sets %s | FileCheck %s
//
// The -print-sets driver configures a primitive SetTheory instance that
// understands these sets:
class Set<dag d> {
dag Elements = d;
}
// It prints all Set instances and their ordered set interpretation.
// Define some elements.
def a;
def b;
def c;
def d;
// The 'add' operator evaluates and concatenates its arguments.
def add;
def S0a : Set<(add)>;
def S0b : Set<(add a)>;
def S0c : Set<(add a, b)>;
def S0d : Set<(add b, a)>;
def S0e : Set<(add a, a)>;
def S0f : Set<(add a, a, b, a, c, b, d, a)>;
def S0g : Set<(add b, a, b)>;
// CHECK: S0a = [ ]
// CHECK: S0b = [ a ]
// CHECK: S0c = [ a b ]
// CHECK: S0d = [ b a ]
// CHECK: S0e = [ a ]
// CHECK: S0f = [ a b c d ]
// CHECK: S0g = [ b a ]
// Defs of Set class expand into their elements.
// Mixed sets and elements are flattened.
def S1a : Set<(add S0a)>;
def S1b : Set<(add S0a, S0a)>;
def S1c : Set<(add S0d, S0f)>;
def S1d : Set<(add d, S0d, S0f)>;
// CHECK: S1a = [ ]
// CHECK: S1b = [ ]
// CHECK: S1c = [ b a c d ]
// CHECK: S1d = [ d b a c ]
// The 'sub' operator returns the first argument with the following arguments
// removed.
def sub;
def S2a : Set<(sub S1a, S1c)>;
def S2b : Set<(sub S1c, S1d)>;
def S2c : Set<(sub S1c, b)>;
def S2d : Set<(sub S1c, S0c)>;
def S2e : Set<(sub S1c, S2d)>;
// CHECK: S2a = [ ]
// CHECK: S2b = [ ]
// CHECK: S2c = [ a c d ]
// CHECK: S2d = [ c d ]
// CHECK: S2e = [ b a ]
// The 'and' operator intersects two sets. The result has the same order as the
// first argument.
def and;
def S3a : Set<(and S2d, S2e)>;
def S3b : Set<(and S2d, S1d)>;
// CHECK: S3a = [ ]
// CHECK: S3b = [ c d ]
// The 'shl' operator removes the first N elements.
def shl;
def S4a : Set<(shl S0f, 0)>;
def S4b : Set<(shl S0f, 1)>;
def S4c : Set<(shl S0f, 3)>;
def S4d : Set<(shl S0f, 4)>;
def S4e : Set<(shl S0f, 5)>;
// CHECK: S4a = [ a b c d ]
// CHECK: S4b = [ b c d ]
// CHECK: S4c = [ d ]
// CHECK: S4d = [ ]
// CHECK: S4e = [ ]
// The 'trunc' operator truncates after the first N elements.
def trunc;
def S5a : Set<(trunc S0f, 0)>;
def S5b : Set<(trunc S0f, 1)>;
def S5c : Set<(trunc S0f, 3)>;
def S5d : Set<(trunc S0f, 4)>;
def S5e : Set<(trunc S0f, 5)>;
// CHECK: S5a = [ ]
// CHECK: S5b = [ a ]
// CHECK: S5c = [ a b c ]
// CHECK: S5d = [ a b c d ]
// CHECK: S5e = [ a b c d ]
// The 'rotl' operator rotates left, but also accepts a negative shift.
def rotl;
def S6a : Set<(rotl S0f, 0)>;
def S6b : Set<(rotl S0f, 1)>;
def S6c : Set<(rotl S0f, 3)>;
def S6d : Set<(rotl S0f, 4)>;
def S6e : Set<(rotl S0f, 5)>;
def S6f : Set<(rotl S0f, -1)>;
def S6g : Set<(rotl S0f, -4)>;
def S6h : Set<(rotl S0f, -5)>;
// CHECK: S6a = [ a b c d ]
// CHECK: S6b = [ b c d a ]
// CHECK: S6c = [ d a b c ]
// CHECK: S6d = [ a b c d ]
// CHECK: S6e = [ b c d a ]
// CHECK: S6f = [ d a b c ]
// CHECK: S6g = [ a b c d ]
// CHECK: S6h = [ d a b c ]
// The 'rotr' operator rotates right, but also accepts a negative shift.
def rotr;
def S7a : Set<(rotr S0f, 0)>;
def S7b : Set<(rotr S0f, 1)>;
def S7c : Set<(rotr S0f, 3)>;
def S7d : Set<(rotr S0f, 4)>;
def S7e : Set<(rotr S0f, 5)>;
def S7f : Set<(rotr S0f, -1)>;
def S7g : Set<(rotr S0f, -4)>;
def S7h : Set<(rotr S0f, -5)>;
// CHECK: S7a = [ a b c d ]
// CHECK: S7b = [ d a b c ]
// CHECK: S7c = [ b c d a ]
// CHECK: S7d = [ a b c d ]
// CHECK: S7e = [ d a b c ]
// CHECK: S7f = [ b c d a ]
// CHECK: S7g = [ a b c d ]
// CHECK: S7h = [ b c d a ]
// The 'decimate' operator picks every N'th element.
def decimate;
def e0;
def e1;
def e2;
def e3;
def e4;
def e5;
def e6;
def e7;
def e8;
def e9;
def E : Set<(add e0, e1, e2, e3, e4, e5, e6, e7, e8, e9)>;
def S8a : Set<(decimate E, 3)>;
def S8b : Set<(decimate E, 9)>;
def S8c : Set<(decimate E, 10)>;
def S8d : Set<(decimate (rotl E, 1), 2)>;
def S8e : Set<(add (decimate E, 2), (decimate (rotl E, 1), 2))>;
// CHECK: S8a = [ e0 e3 e6 e9 ]
// CHECK: S8b = [ e0 e9 ]
// CHECK: S8c = [ e0 ]
// CHECK: S8d = [ e1 e3 e5 e7 e9 ]
// CHECK: S8e = [ e0 e2 e4 e6 e8 e1 e3 e5 e7 e9 ]
// The 'sequence' operator finds a sequence of records from their name.
def sequence;
def S9a : Set<(sequence "e%u", 3, 7)>;
def S9b : Set<(sequence "e%u", 7, 3)>;
def S9c : Set<(sequence "e%u", 0, 0)>;
def S9d : Set<(sequence "S%ua", 7, 9)>;
def S9e : Set<(sequence "e%u", 3, 6, 2)>;
// CHECK: S9a = [ e3 e4 e5 e6 e7 ]
// CHECK: S9b = [ e7 e6 e5 e4 e3 ]
// CHECK: S9c = [ e0 ]
// CHECK: S9d = [ a b c d e0 e3 e6 e9 e4 e5 e7 ]
// CHECK: S9e = [ e3 e5 ]
// The 'interleave' operator is almost the inverse of 'decimate'.
def interleave;
def T0a : Set<(interleave S9a, S9b)>;
def T0b : Set<(interleave S8e, S8d)>;
// CHECK: T0a = [ e3 e7 e4 e6 e5 ]
// CHECK: T0b = [ e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 ]
|